1
|
Guo Y, Miao S, Jin Y, Li Q, Wang Y, Zhang X, Li J. Tumor-associated macrophages contribute to cholangiocarcinoma progression and chemoresistance through activation of ID1. Ann Hepatol 2024:101773. [PMID: 39674368 DOI: 10.1016/j.aohep.2024.101773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
INTRODUCTION AND OBJECTIVES Tumor-associated macrophages (TAM) can influence both cancer growth and chemoresistance, but the specific mechanisms involved in these processes in cholangiocarcinoma (CCA) are unclear. MATERIALS AND METHODS We explored the distribution of TAM in CCA samples by multiplex immunofluorescence staining and tested the effects of TAM on CCA in vitro and in vivo. We then investigated the mechanisms underlying these effects using the Luminex assay, RNA sequencing, western blotting, flow cytometry, and co-immunoprecipitation. RESULTS The infiltration of TAM was strongly increased in the cholangiocarcinoma tumor microenvironment. Oncostain M (OSM) secreted by TAM increased the proliferation and chemotherapeutic resistance of CCA cells both in vitro and in vivo. The results of transcriptome sequencing analysis, Western blot analysis, and immunofluorescence staining confirmed that OSM can promote Yap nuclear translocation and its subsequent formation of complexes with SMADs to upregulate the expression of inhibitor of DNA binding 1 (ID1). CONCLUSIONS TAM promotes CCA progression and chemoresistance through activating OSM-Yap-ID1.
Collapse
Affiliation(s)
- Yinghao Guo
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Shuangda Miao
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Yun Jin
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Qi Li
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Yihang Wang
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Xiaoxiao Zhang
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Jiangtao Li
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China.
| |
Collapse
|
2
|
Jung J, Kim NH, Park J, Lim D, Kwon M, Gil W, Jung S, Go M, Kim C, Cheong YH, Lee MH, Park HS, Eom YB, Park SA. Gremlin-2 is a novel tumor suppressor that negatively regulates ID1 in breast cancer. Breast Cancer Res 2024; 26:174. [PMID: 39614338 DOI: 10.1186/s13058-024-01935-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Breast cancer is one of the most common cancers in women and is closely associated with obesity. Gremlin-2 (GREM2), an antagonist for bone morphogenetic proteins (BMPs), has been considered an inhibitor of adipogenic differentiation in adipose-derived stromal/stem cells. However, the role of GREM2 in breast cancer cells remains largely unknown, and its signaling mechanism has yet to be clarified. METHODS Bioinformatics analysis was conducted using public databases. Breast cancer cells overexpressing mock or GREM2 were used for in vitro and in vivo studies. Cell viability, colony formation, migration, and animal studies were performed to investigate the role of GREM2 in breast cancer cells. Screening of target genes affected by GREM2 overexpression in breast cancer cells was performed through RNA sequencing (RNA-seq) analysis. RESULTS The expression level of GREM2 mRNA was significantly reduced in both breast cancer tissues and cell lines. Kaplan-Meier analysis showed that low expression of GREM2 and high methylation of the GREM2 promoter were each associated with poor patient survival. The low mRNA expression of GREM2 in breast cancer cells was increased by the demethylating agent decitabine. Breast cancer cells overexpressing GREM2 decreased cell proliferation when compared to control cells, both in vitro and in vivo. Through comparison of RNA-seq analysis between cell lines and tissue samples, gene ontologies that were consistently upregulated or downregulated by GREM2 in breast cancer were identified. In particular, the expression of inhibitor of DNA-binding-1 (ID1) was repressed by GREM2. BMP2 is one of the upstream regulators that increases the expression of ID1, and the expression of ID1 reduced by GREM2 was restored by overexpression of BMP2. Also, the migration ability of breast cancer cells, which had been suppressed by GREM2, was restored by BMP2 or ID1. CONCLUSIONS Low expression of GREM2 in breast cancer cells is associated with hypermethylation of the GREM2 promoter, which may ultimately contribute to poor patient survival. GREM2 participates in regulating the expression of various genes, including ID1, and is involved in suppressing the proliferation of breast cancer cells. This suggests that GREM2 has the potential to act as a novel tumor suppressor in breast cancer.
Collapse
Affiliation(s)
- Jiwoo Jung
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Na Hui Kim
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Jayeon Park
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Dayeon Lim
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Minji Kwon
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - World Gil
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Suyeon Jung
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Minjeong Go
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Chaeeon Kim
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Ye Hwang Cheong
- Drug Discovery Research Laboratories, Dong-A ST Co., Ltd, Yongin, 17073, Republic of Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, 58245, Republic of Korea
| | - Hee Sun Park
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Sin-Aye Park
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
| |
Collapse
|
3
|
Liu D, Tian Z, Tusong K, Mamat H, Luo Y. Expression, purification and characterization of CTP synthase PyrG in Staphylococcusaureus. Protein Expr Purif 2024; 221:106520. [PMID: 38833752 DOI: 10.1016/j.pep.2024.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024]
Abstract
Staphylococcus aureus (S. aureus) presents a significant challenge in both nosocomial and community settings due to its pathogenicity. The emergence of drug-resistant strains exacerbates S. aureus infections, leading to increased mortality rates. PyrG, a member of the cytidine triphosphate (CTP) synthase family, serves as a crucial therapeutic target against S. aureus due to the pivotal role of CTP in cellular metabolism. However, the structural and mechanistic details of S. aureus PyrG remains unknown. Here, we successfully expressed and purified monomeric PyrG. Mutational experiments were conducted based on the results of molecular docking. Based on the results of the molecular docking, we carried out mutation experiments and found that Q386A dramatically decreased the CTP synthase activity compared to the wild-type protein, while Y54A almost completely abolished the activity. Exposure of S. aureus to the kinase inhibitor crizotinib increased expression of gene pyrG. Our results identify the two key sites on PyrG for the CTP synthase activity, and present PyrG gene expression increased during the treatment of crizotinib, which may eventually provide valuable guidance for the development of new drugs against S. aureus infections.
Collapse
Affiliation(s)
- Dafeng Liu
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China; School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Zhu Tian
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| | - Kuerban Tusong
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| | - Hayrinsa Mamat
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| | - Yihan Luo
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| |
Collapse
|
4
|
Phadte P, Bishnu A, Dey P, M M, Mehrotra M, Singh P, Chakrabarty S, Majumdar R, Rekhi B, Patra M, De A, Ray P. Autophagy-mediated ID1 turnover dictates chemo-resistant fate in ovarian cancer stem cells. J Exp Clin Cancer Res 2024; 43:222. [PMID: 39123206 PMCID: PMC11316295 DOI: 10.1186/s13046-024-03147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The mechanisms enabling dynamic shifts between drug-resistant and drug-sensitive states in cancer cells are still underexplored. This study investigated the role of targeted autophagic protein degradation in regulating ovarian cancer stem cell (CSC) fate decisions and chemo-resistance. METHODS Autophagy levels were compared between CSC-enriched side population (SP) and non-SP cells (NSP) in multiple ovarian cancer cell lines using immunoblotting, immunofluorescence, and transmission electron microscopy. The impact of autophagy modulation on CSC markers and differentiation was assessed by flow cytometry, immunoblotting and qRT-PCR. In silico modeling and co-immunoprecipitation identified ID1 interacting proteins. Pharmacological and genetic approaches along with Annexin-PI assay, ChIP assay, western blotting, qRT-PCR and ICP-MS were used to evaluate effects on cisplatin sensitivity, apoptosis, SLC31A1 expression, promoter binding, and intracellular platinum accumulation in ID1 depleted backdrop. Patient-derived tumor spheroids were analyzed for autophagy and SLC31A1 levels. RESULTS Ovarian CSCs exhibited increased basal autophagy compared to non-CSCs. Further autophagy stimulation by serum-starvation and chemical modes triggered proteolysis of the stemness regulator ID1, driving the differentiation of chemo-resistant CSCs into chemo-sensitive non-CSCs. In silico modeling predicted TCF12 as a potent ID1 interactor, which was validated by co-immunoprecipitation. ID1 depletion freed TCF12 to transactivate the cisplatin influx transporter SLC31A1, increasing intracellular cisplatin levels and cytotoxicity. Patient-derived tumor spheroids exhibited a functional association between autophagy, ID1, SLC31A1, and platinum sensitivity. CONCLUSIONS This study reveals a novel autophagy-ID1-TCF12-SLC31A1 axis where targeted autophagic degradation of ID1 enables rapid remodeling of CSCs to reverse chemo-resistance. Modulating this pathway could counter drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Pratham Phadte
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Aniketh Bishnu
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pranay Dey
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Manikandan M
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Megha Mehrotra
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Prerna Singh
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Shritama Chakrabarty
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Indian Institute of Science Education and Research, Bhopal, 462066, India
| | - Rounak Majumdar
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Indian Institute of Science Education and Research, Kolkata, 741246, India
| | - Bharat Rekhi
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Department of Pathology, Tata Memorial Hospital, Mumbai, 400012, India
| | - Malay Patra
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pritha Ray
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India.
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
5
|
Li X, Gao ML, Wang SS, Li YL, Liu TN, Xiang H, Liu PN. Engineering an Organic Nanoplatform for Augmented Pyroeletroimmunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400756. [PMID: 38820232 DOI: 10.1002/adma.202400756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Photothermal immunotherapy has shown great promise in the treatment of tumor metastasis. However, the thermal resistance of tumor cells substantially compromises the treatment effect of photothermal immunotherapy. Herein, a high-performance organic pyroelectric nanoplatform, tBu-TPAD-BF2 nanoparticles (NPs), is rationally engineered for the effective pyroelectroimmunotherapy of tumor metastasis. Biocompatible tBu-TPAD-BF2 NPs with excellent pyroelectric and photothermal conversion properties are constructed by assembling organic, low-bandgap pyroelectric molecules with amphiphilic polymers. After internalization by tumor cells, treatment with tBu-TPAD-BF2 NPs causes an apparent temperature elevation upon near-infrared (NIR) laser irradiation, inducing potent immunogenic cell death (ICD). Additionally, the temperature variations under alternating NIR laser irradiation facilitate reactive oxygen species production for pyroelectric therapy, thus promoting ICD activation and lowering thermal resistance. Importantly, in vivo assessments illustrate that tBu-TPAD-BF2 NPs in combination with NIR laser exposure notably inhibit primary and distant tumor proliferation and prominently retarded lung metastasis. RNA profiling reveals that treatment with tBu-TPAD-BF2 NPs markedly suppresses metastasis under NIR laser illumination by downregulating metastasis-related genes and upregulating immune response-associated pathways. Therefore, this study provides a strategy for designing high-performance pyroelectric nanoplatforms to effectively cure tumor metastasis, thereby overcoming the inherent shortcomings of photothermal immunotherapy.
Collapse
Affiliation(s)
- Xingguang Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meng-Lu Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shan-Shan Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yu-Long Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tong-Ning Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Huijing Xiang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
6
|
Chang JX, Zhang M, Lou LL, Chu HY, Wang HQ. KIS, a target of SOX4, regulates the ID1-mediated enhancement of β-catenin to facilitate lung adenocarcinoma cell proliferation and metastasis. J Cancer Res Clin Oncol 2024; 150:366. [PMID: 39052126 PMCID: PMC11272720 DOI: 10.1007/s00432-024-05853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE Kinase interacting with stathmin (KIS) is a serine/threonine kinase involved in RNA processing and protein phosphorylation. Increasing evidence has suggested its involvement in cancer progression. The aim of this study was to investigate the role of KIS in the development of lung adenocarcinoma (LUAD). Dual luciferase assay was used to explore the relationship between KIS and SOX4, and its effect on ID1/β-catenin pathway. METHODS Real-time qPCR and western blot were used to assess the levels of KIS and other factors. Cell proliferation, migration, and invasion were monitored, and xenograft animal model were established to investigate the biological functions of KIS in vitro and in vivo. RESULTS In the present study, KIS was found to be highly expressed in LUAD tissues and cell lines. KIS accelerated the proliferative, migratory and invasive abilities of LUAD cells in vitro, and promoted the growth of LUAD in a mouse tumor xenograft model in vivo. Mechanistically, KIS activated the β-catenin signaling pathway by modulating the inhibitor of DNA binding 1 (ID1) and was transcriptionally regulated by SOX4 in LUAD cells. CONCLUSION KIS, a target of SOX4, regulates the ID1-mediated enhancement of β-catenin to facilitate LUAD cell invasion and metastasis.
Collapse
Affiliation(s)
- Jing-Xia Chang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan Province, 450000, P.R. China.
| | - Meng Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan Province, 450000, P.R. China
| | - Li-Li Lou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan Province, 450000, P.R. China
| | - He-Ying Chu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan Province, 450000, P.R. China
| | - Hua-Qi Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan Province, 450000, P.R. China
| |
Collapse
|
7
|
Abbas SA, Hamzah IH. Assessment of ID family proteins expression in colorectal cancer of Iraqi patients. Mol Biol Rep 2024; 51:806. [PMID: 39001993 DOI: 10.1007/s11033-024-09775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the second most deathly worldwide and third most common cancer, CRC is a very heterogeneous disease where tumors can form by both environmental and genetic risk factors and includes epigenetic and genetic alternations. Inhibitors of DNA binding proteins (ID) are a class of helix-loop-helix transcription regulatory factors; these proteins are considered a family of four highly preserved transcriptional regulators (ID1-4), shown to play significant roles in many processes that are associated with tumor development. ID family plays as negatively dominant antagonists of other essential HLH proteins, concluding the creation of non-functional heterodimers and regulation of the transcription process. MATERIALS AND METHODS 120 Fresh tissue and blood samples Forty (40) samples of fresh tissue and blood were collected from patients diagnosed with CRC, twenty (20) samples were collected from a patient diagnosed as healthy. The (qRT-PCR) method is a sensitive technique for the quantifying of steady-state mRNA levels that used to evaluation the expression levels of ID (1-4) gene. RESULTS The findings indicate downregulation in ID1 in tissue with a highly significant change between patients and control groups, where upregulation in the ID1 gene is shown in blood samples.ID2 gene also demonstrated high significant change where show upregulation in tissue and downregulation in blood sample. ID3 and ID4 genes show downregulation in tissue and blood samples with a significant change in ID3 blood samples between patient and blood groups. CONCLUSION Because of the regulation function of the ID family in many processes, the up or down regulation of IDs genes in tumors Proves how important its tumor development, and therefore those proteins can be used as an indicator for CRC.
Collapse
Affiliation(s)
- Saja Ali Abbas
- Biology Department, College of Science, Mustansiriyah University, Baghdad, Iraq.
- Biology department, college of Education for pure sciences-Ibn Al-Haytham, University of Baghdad, Baghdad, Iraq.
| | | |
Collapse
|
8
|
Lima AS, Bezerra MF, Moreira-Aguiar A, Weinhäuser I, Santos BL, Falcão RM, Salustiano-Bandeira ML, Franca-Neto PL, Lima MM, Saldanha-Araujo F, Coelho-Silva JL, Pereira-Martins DA, Bezerra MA, Lucena-Araujo AR. Prognostic implications of the ID1 expression in acute myeloid leukemia patients treated in a resource-constrained setting. Hematol Transfus Cell Ther 2024; 46:250-255. [PMID: 37393163 PMCID: PMC11221249 DOI: 10.1016/j.htct.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/03/2022] [Accepted: 04/17/2023] [Indexed: 07/03/2023] Open
Abstract
INTRODUCTION The aberrant expression of the inhibitor of DNA binding (ID1) gene has been frequently associated with the leukemogenesis and prognostication acute myeloid leukemia (AML), although its clinical importance has never been investigated in patients treated outside well-controlled clinical trials. METHODS Using quantitative real-time polymerase chain reaction, we investigated the role of the ID1 expression in the clinical outcomes of non-selected patients with acute myeloid leukemia treated in a real-life setting. RESULTS Overall, 128 patients were enrolled. Patients with high ID1 expression had a lower 3-year overall survival (OS) rate of 9%, with the 95% confidence interval (95%CI) at 3 to 20%, compared to patients with a low ID1 expression (22%, 95%CI: 11 - 34%) (p = 0.037), although these findings did not retain significance after adjustment (hazard ratio (HR): 1.5, 95%CI: 0.98 - 2.28; p = 0.057). The ID1 expression had no impact on post-induction outcomes (disease-free survival, p = 0.648; cumulative incidence of relapse, p = 0.584). CONCLUSIONS Although we are aware thar our data are confronted with many variables that cannot be fully controlled, including drug unavailability, risk-adapted treatment, comorbidities and the time from diagnosis to treatment initiation, we are firm believers that such an initiative can provide more realistic data on understudied populations, in particular those from low- and middle-income countries.
Collapse
Affiliation(s)
- Aleide S Lima
- Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | | | | | - Isabel Weinhäuser
- Cancer Research Centre Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bianca L Santos
- Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Raul M Falcão
- Bioinformatics Multidisciplinary Environment (BioME), Metrópole Digital Institute, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | | | | | - Marinus M Lima
- Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Hematologia e Células-Tronco, Universidade de Brasília (UnB) Brasília, DF, Brazil
| | - Juan L Coelho-Silva
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Diego A Pereira-Martins
- Cancer Research Centre Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | |
Collapse
|
9
|
Yücer R, Fayez S, Feineis D, Klauck SM, Shan L, Bringmann G, Efferth T, Dawood M. Cytotoxicity of dioncophylline A and related naphthylisoquinolines in leukemia cells, mediated by NF-κB inhibition, angiogenesis suppression, G2/M cell cycle arrest, and autophagy induction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155267. [PMID: 38368795 DOI: 10.1016/j.phymed.2023.155267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 02/20/2024]
Abstract
BACKGROUND Inhibition of NF-κB activity represents a strategy to treat acute myeloid leukemia, one of the most lethal leukemia types. Naphthylisoquinolines (NIQs) are cytotoxic alkaloids from lianas of the families Ancistrocladaceae and Dioncophyllaceae, which are indigenous to tropical rainforests. PURPOSE Uncovering therapeutic possibilities and underlying molecular mechanisms of dioncophylline A and its derivatives towards NF-κB related cellular processes. METHODS Resazurin-based cell viability assay was performed for dioncophylline A and three derivatives on wild-type CCRF-CEM and multidrug-resistant CEM/ADR5000 cells. Transcriptome analysis was executed to discover cellular functions and molecular networks associated with dioncophylline A treatment. Expression changes obtained by mRNA microarray hybridization were confirmed using qRT-PCR. Molecular docking was applied to predict the affinity of the NIQs with NF-κB. To validate the in silico approach, NF-κB reporter assays were conducted on HEK-Blue™ Null1 cells. Cell death mechanisms and cell cycle arrest were studied using flow cytometry. The potential activity on angiogenesis was evaluated with the endothelial cell tube formation assay on HUVECs using fluorescence microscopy. Intracellular NF-κB location in HEK-Blue™ Null1 cells was visualized with immunofluorescence. Finally, the anti-tumor activity of dioncophylline A was studied by a xenograft zebrafish model in vivo. RESULTS Our study demonstrated that dioncophylline A and its derivatives exerted potent cytotoxicity on leukemia cells. Using Ingenuity Pathway Analysis, we identified the NF-κB network as the top network, and docking experiments predicted dioncophylline A and two of its derivatives sharing the same binding pocket with the positive control compound, triptolide. Dioncophylline A showed the best inhibitory activity in NF-κB reporter assays compared to its derivatives, caused autophagy rather than apoptosis, and induced G2/M arrest. It also prevented NF-κB translocation from the cytoplasm to the nucleus. Tube formation as an angiogenesis marker was significantly suppressed by dioncophylline A treatment. Finally, the remarkable anti-tumor activity of dioncophylline A was proven in zebrafish in vivo. CONCLUSION Taken together, we report for the first time the molecular mechanism behind the cytotoxic effect of dioncophylline A on leukemia cells. Dioncophylline A showed strong cytotoxic activity, inhibited NF-κB translocation, significantly affected the NF-κB in silico and in vitro, subdued tube formation, induced autophagy, and exerted antitumor activity in vivo. Our findings enlighten both the cellular functions including the NF-κB signaling pathway and the cytotoxic mechanism affected by dioncophylline A.
Collapse
Affiliation(s)
- Rümeysa Yücer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Shaimaa Fayez
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany; Home address: Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Germany
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany.
| |
Collapse
|
10
|
Varriano S, Yu A, Xu YQ, Natelson DM, Ramadei A, Kleiman FE. Estrogen receptor alpha (ERα) regulates PARN-mediated nuclear deadenylation and gene expression in breast cancer cells. RNA Biol 2024; 21:14-23. [PMID: 39392174 PMCID: PMC11487348 DOI: 10.1080/15476286.2024.2413821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
The estrogen signalling pathway is highly dynamic and primarily mediated by estrogen receptors (ERs) that transcriptionally regulate the expression of target genes. While transcriptional functions of ERs have been widely studied, their roles in RNA biology have not been extensively explored. Here, we reveal a novel biological role of ER alpha (ERα) in mRNA 3' end processing in breast cancer cells, providing an alternative mechanism in regulating gene expression at the post-transcriptional level. We show that ERα activates poly(A) specific ribonuclease (PARN) deadenylase using in vitro assays, and that this activation is further increased by tumour suppressor p53, a factor involved in mRNA processing. Consistent with this, we confirm ERα-mediated activation of nuclear deadenylation by PARN in samples from MCF7 and T47D breast cancer cells that vary in expression of ERα and p53. We further show that ERα can form complex(es) with PARN and p53. Lastly, we identify and validate expression of common mRNA targets of ERα and PARN known to be involved in cell invasion, metastasis and angiogenesis, supporting the functional overlap of these factors in regulating gene expression in a transactivation-independent manner. Together, these results show a new regulatory mechanism by which ERα regulates mRNA processing and gene expression post-transcriptionally, highlighting its contribution to unique transcriptomic profiles and breast cancer progression.
Collapse
Affiliation(s)
- Sophia Varriano
- Chemistry Department, Hunter College, The City University of New York, New York, NY, USA
- Biology Program, The Graduate Center, The City University of New York, New York, NY, USA
| | - Amy Yu
- Chemistry Department, Hunter College, The City University of New York, New York, NY, USA
| | - Yu Qing Xu
- Chemistry Department, Hunter College, The City University of New York, New York, NY, USA
| | - Devorah M. Natelson
- Chemistry Department, Hunter College, The City University of New York, New York, NY, USA
- Biology Program, The Graduate Center, The City University of New York, New York, NY, USA
| | - Anthony Ramadei
- Chemistry Department, Hunter College, The City University of New York, New York, NY, USA
- Biology Program, The Graduate Center, The City University of New York, New York, NY, USA
| | - Frida E. Kleiman
- Chemistry Department, Hunter College, The City University of New York, New York, NY, USA
- Biology Program, The Graduate Center, The City University of New York, New York, NY, USA
| |
Collapse
|
11
|
Jamali E, Hashemnejad MA, Askari A, Shomali H, Eslami S, Akbari Dilmaghani N, Sharifi G, Bahranian A, Ghafouri-Fard S. A bioinformatics-based approach and expression assay for identification of dysregulated genes in pituitary adenoma. Pathol Res Pract 2024; 253:155006. [PMID: 38056134 DOI: 10.1016/j.prp.2023.155006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Non-functioning pituitary adenomas (NFPAs) are a group of pituitary neuroendocrine tumors that are associated with morbidity. The exact pathophysiological process leading to this pathology is not known. Nerve growth factor (NGF) is a neurotropic factor that might be involved in this process. We used bioinformatics tools to analyze expression of genes in NFPA samples. Our analyses led to identification of NGF-related genes, namely ARC, ID1, and SH3GL3 - as well as one long non-coding RNA (lncRNA) called myocardial infarction associated transcript (MIAT). Then, we assessed their expression in NFPAs and their adjacent non-cancerous samples. While expression levels of SH3GL3 and MIAT were different between NFPA samples and control samples, expressions of ARC and ID1 were not meaningfully different between these two groups of specimens. SH3GL3 was over-expressed in NFPA samples compared with control samples (expression ratio (95% CI)= 8.22 (1.51-44.6), P value= 0.03). Similarly, expression of MIAT was higher in NFPAs compared with controls (expression ratio (95% CI)= 7.7 (1.7-33.6), P value= 0.009). Taken together, we validated the bioinformatics results regarding the expression of SH3GL3 and MIAT. This study provides a deeper understanding of the involvement of these genes in the pituitary tumorigenesis.
Collapse
Affiliation(s)
- Elena Jamali
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Amin Hashemnejad
- Clinical Research Developmental Unit (CRDU) of Shahid Rajaei Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Shomali
- Department of Biomedical Engineering, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Guive Sharifi
- Skull Base Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arefe Bahranian
- Skull Base Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Iran.
| |
Collapse
|
12
|
Li ZX, Sun MC, Fang K, Zhao ZY, Leng ZY, Zhang ZH, Xu AP, Chu Y, Zhang L, Lian J, Chen T, Xu MD. Transcription factor 3 promotes migration and invasion potential and maintains cancer stemness by activating ID1 expression in esophageal squamous cell carcinoma. Cancer Biol Ther 2023; 24:2246206. [PMID: 37607071 PMCID: PMC10443991 DOI: 10.1080/15384047.2023.2246206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/09/2022] [Accepted: 06/06/2023] [Indexed: 08/24/2023] Open
Abstract
Transcription factor 3 (TCF3) is a member of the basic Helix - Loop - Helix (bHLH) transcription factor (TF) family and is encoded by the TCF3 gene (also known as E2A). It has been shown that TCF3 functions as a key transcription factor in the pathogenesis of several human cancers and plays an important role in stem cell maintenance and carcinogenesis. However, the effect of TCF3 in the progression of esophageal squamous cell carcinoma (ESCC) is poorly known. In our study, TCF3 was found to express highly and correlated with cancer stage and prognosis. TCF3 was shown to promote ESCC invasion, migration, and drug resistance both from the results of in vivo and in vitro assays. Moreover, further studies suggested that TCF3 played these roles through transcriptionally regulating Inhibitor of DNA binding 1(ID1). Notably, we also found that TCF3 or ID1 was associated with ESCC stemness. Furthermore, TCF3 was correlated with the expression of cancer stemness markers CD44 and CD133. Therefore, maintaining cancer stemness might be the underlying mechanism that TCF3 transcriptionally regulated ID1 and further promoted ESCC progression and drug resistance.
Collapse
Affiliation(s)
- Zhao-Xing Li
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ming-Chuang Sun
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kang Fang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zi-Ying Zhao
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhu-Yun Leng
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ze-Hua Zhang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ai-Ping Xu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan Chu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Zhang
- Department of Pathology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingjing Lian
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tao Chen
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mei-Dong Xu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
13
|
Song P, Yue Q, Chen X, Fu Q, Zhang P, Zhou R. Identification of ID1 and miR-150 interaction and effects on proliferation and apoptosis in ovine granulosa cells. Theriogenology 2023; 212:1-8. [PMID: 37672890 DOI: 10.1016/j.theriogenology.2023.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/19/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Granulosa cells (GCs) proliferation and apoptosis play a significantly role in follicular development and atresia. ID1 and miR-150 are involved in cell apoptosis and follicular atresia, but the interaction and function of ID1 and miR-150 in GCs are unclear. This study focuses on ID1 and miR-150 in terms of the interaction and effects on proliferation and apoptosis in ovine granulosa cells. Our findings revealed that ID1 decreased the promoter activity and expression level of oar-miR-150. However, the expression of ID1 was downregulated by miR-150, and ID1 was identified as a target gene of oar-miR-150. miR-150 mimic inhibited proliferation and upregulated apoptosis rate in ovine GCs, while the results of miR-150 inhibitor were opposite. Overexpression of ID1 significantly inhibited ovine GCs proliferation and cell cycle-related genes (CDK1, CDK2, CDK4, CCND2, CDC20, and PCNA) expression, whereas knockdown of ID1 promoted cell proliferation and those genes expression. Overexpression of ID1 significantly downregulated mitochondrial membrane potential and Bcl-2 expression in ovine GCs, and upregulated the expression of pro-apoptosis genes Bax, Caspase-3, and Caspase-9, whereas the results of ID1 knockdown were reversed. Collectively, these findings indicate the interaction and the vital role of ID1 and miR-150 on proliferation and apoptosis in ovine granulosa cells, which may suggest a novel target for ovine follicular development and atresia.
Collapse
Affiliation(s)
- Pengyan Song
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Qiaoxian Yue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Xiaoyong Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Qiang Fu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Peiying Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Rongyan Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China.
| |
Collapse
|
14
|
Zang K, Wang M, Zhu X, Yao B, Huang Y. A novel necroptosis signature for predicting survival in lung adenocarcinoma. BMC Med Genomics 2023; 16:305. [PMID: 38017445 PMCID: PMC10685572 DOI: 10.1186/s12920-023-01748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND To explore the necroptosis-related genes (NRGs) signature and its predictive values in lung adenocarcinoma (LUAD). METHODS The training cohort consisted of tumor samples from The Cancer Genome Atlas, and the validation set comprised data from the Gene Expression Omnibus. Univariate and multivariate Cox regression analyses were applied to identify the prognostic NRG signature as an independent molecular indicator. Correlation analysis was used for the association assessment between the NRG signature and immune checkpoint molecules. RESULTS NRGs involved in necroptosis and immune NOD-like receptor signaling. The NRG signature based on eight NRGs can divide tumors into high-risk and low-risk groups, which was significantly associated with worse survival. Multivariate Cox regression analysis showed that this NRG signature remained an independent prognostic indicator. Stratification analyses demonstrated that this NRG signature was still effective for predicting survival in each stratum of age, gender, and tumor stage. The ROC curve showed a good predictive ability using the NRG signature in the validation cohort (AUC = 0.81). The NRG signature was related to immune checkpoint molecules PD - 1, PD-L1, and PD-L2. CONCLUSIONS The NRG signature could be a novel predictor of the prognosis and may become a potential therapeutic target in LUAD.
Collapse
Affiliation(s)
- Kui Zang
- Department of ICU, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an, No.1, Huanghe West Road, Huaiyin District, 223300, China
| | - Min Wang
- Department of ICU, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an, No.1, Huanghe West Road, Huaiyin District, 223300, China
| | - Xingxing Zhu
- Department of ICU, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an, No.1, Huanghe West Road, Huaiyin District, 223300, China
| | - Bin Yao
- Department of ICU, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an, No.1, Huanghe West Road, Huaiyin District, 223300, China
| | - Ying Huang
- Department of ICU, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an, No.1, Huanghe West Road, Huaiyin District, 223300, China.
| |
Collapse
|
15
|
Muhie S, Gautam A, Misganaw B, Yang R, Mellon SH, Hoke A, Flory J, Daigle B, Swift K, Hood L, Doyle FJ, Wolkowitz OM, Marmar CR, Ressler K, Yehuda R, Hammamieh R, Jett M. Integrated analysis of proteomics, epigenomics and metabolomics data revealed divergent pathway activation patterns in the recent versus chronic post-traumatic stress disorder. Brain Behav Immun 2023; 113:303-316. [PMID: 37516387 DOI: 10.1016/j.bbi.2023.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023] Open
Abstract
Metabolomics, proteomics and DNA methylome assays, when done in tandem from the same blood sample and analyzed together, offer an opportunity to evaluate the molecular basis of post-traumatic stress disorder (PTSD) course and pathogenesis. We performed separate metabolomics, proteomics, and DNA methylome assays on blood samples from two well-characterized cohorts of 159 active duty male participants with relatively recent onset PTSD (<1.5 years) and 300 male veterans with chronic PTSD (>7 years). Analyses of the multi-omics datasets from these two independent cohorts were used to identify convergent and distinct molecular profiles that might constitute potential signatures of severity and progression of PTSD and its comorbid conditions. Molecular signatures indicative of homeostatic processes such as signaling and metabolic pathways involved in cellular remodeling, neurogenesis, molecular safeguards against oxidative stress, metabolism of polyunsaturated fatty acids, regulation of normal immune response, post-transcriptional regulation, cellular maintenance and markers of longevity were significantly activated in the active duty participants with recent PTSD. In contrast, we observed significantly altered multimodal molecular signatures associated with chronic inflammation, neurodegeneration, cardiovascular and metabolic disorders, and cellular attritions in the veterans with chronic PTSD. Activation status of signaling and metabolic pathways at the early and late timepoints of PTSD demonstrated the differential molecular changes related to homeostatic processes at its recent and multi-system syndromes at its chronic phase. Molecular alterations in the recent PTSD seem to indicate some sort of recalibration or compensatory response, possibly directed in mitigating the pathological trajectory of the disorder.
Collapse
Affiliation(s)
- Seid Muhie
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; The Geneva Foundation, Silver Spring, MD 20910, USA.
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Burook Misganaw
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Vysnova Inc. Landover, MD 20785, USA
| | - Ruoting Yang
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Synthia H Mellon
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Allison Hoke
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Janine Flory
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10468, USA
| | - Bernie Daigle
- Departments of Biological Sciences and Computer Science, The University of Memphis, Memphis, TN 38152, USA
| | - Kevin Swift
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA
| | - Owen M Wolkowitz
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA
| | - Charles R Marmar
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kerry Ressler
- McLean Hospital, Belmont, MA 02478, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Rachel Yehuda
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10468, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Marti Jett
- US Army Medical Research and Development Command, HQ, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
16
|
Yang H, Sun Y, Jia X, Cai Y, Zhao X, Li N. TBX3 promotes the epithelial mesenchymal transition of cervical cancer by upregulating ID1. Am J Cancer Res 2023; 13:4115-4124. [PMID: 37818083 PMCID: PMC10560953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/03/2023] [Indexed: 10/12/2023] Open
Abstract
In this study, we aim to investigate the role and mechanism of T-box transcription factor 3 (TBX3) in cervical cancer. The mRNA and protein expression of TBX3, inhibitor of DNA binding 1 (ID1), and epithelial mesenchymal transition (EMT) markers (E-Cadherin, N-Cadherin, and vimentin) were measured using qRT-PCR and Western blot. shTBX3 and shID1 were transfected into SiHa cells to knockdown TBX3 and ID1. The metastasis and invasion abilities of cervical cancer cells were determined using a wound healing assay and an invasive assay. The shTBX3- and shID1-transfected SiHa cells were injected into nude mice using a xenograft tumor growth model. We found that TBX3 and ID1 were highly expressed in cervical cancer cells. Importantly, silencing TBX3 and ID1 significantly reduced the migration and metastasis of cervical cancer cells. In addition, silencing TBX3 and ID1 significantly inhibited the EMT, evidenced by the increased E-cadherin, and decreased N-cadherin and vimentin. The size and weight of the xenograft tumor were significantly reduced by shTBX3 and shID1. We demonstrate that TBX3 or ID1 knockdown can effectively inhibit cervical cancer cells migration and invasion. These findings indicate that TBX3 and ID1 can act as potential therapeutic targets for the prevention and treatment of cervical cancer.
Collapse
Affiliation(s)
- Hongyu Yang
- Department of Gynecology and Obstetrics, Bethune International Peace HospitalShijiazhuang 050082, Hebei, China
| | - Yanan Sun
- Department of Gynecology and Obstetrics, Bethune International Peace HospitalShijiazhuang 050082, Hebei, China
| | - Xiaopeng Jia
- Department of Urology, The Third Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| | - Yuru Cai
- Department of Gynecology, Shijiazhuang People’s HospitalShijiazhuang 050000, Hebei, China
| | - Xingnan Zhao
- Department of Gynecology and Obstetrics, Bethune International Peace HospitalShijiazhuang 050082, Hebei, China
| | - Nan Li
- Department of Gynecology, The Second Hospital of Hebei Medical UniversityShijiazhuang 050017, Hebei, China
| |
Collapse
|
17
|
Nguyen A, Sung Y, Lee SH, Martin CE, Srikanth S, Chen W, Kang MK, Kim RH, Park NH, Gwack Y, Kim Y, Shin KH. Orai3 Calcium Channel Contributes to Oral/Oropharyngeal Cancer Stemness through the Elevation of ID1 Expression. Cells 2023; 12:2225. [PMID: 37759448 PMCID: PMC10527097 DOI: 10.3390/cells12182225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Emerging evidence indicates that intracellular calcium (Ca2+) levels and their regulatory proteins play essential roles in normal stem cell proliferation and differentiation. Cancer stem-like cells (CSCs) are subpopulations of cancer cells that retain characteristics similar to stem cells and play an essential role in cancer progression. Recent studies have reported that the Orai3 calcium channel plays an oncogenic role in human cancer. However, its role in CSCs remains underexplored. In this study, we explored the effects of Orai3 in the progression and stemness of oral/oropharyngeal squamous cell carcinoma (OSCC). During the course of OSCC progression, the expression of Orai3 exhibited a stepwise augmentation. Notably, Orai3 was highly enriched in CSC populations of OSCC. Ectopic Orai3 expression in non-tumorigenic immortalized oral epithelial cells increased the intracellular Ca2+ levels, acquiring malignant growth and CSC properties. Conversely, silencing of the endogenous Orai3 in OSCC cells suppressed the CSC phenotype, indicating a pivotal role of Orai3 in CSC regulation. Moreover, Orai3 markedly increased the expression of inhibitor of DNA binding 1 (ID1), a stemness transcription factor. Orai3 and ID1 exhibited elevated expression within CSCs compared to their non-CSC counterparts, implying the functional importance of the Orai3/ID1 axis in CSC regulation. Furthermore, suppression of ID1 abrogated the CSC phenotype in the cell with ectopic Orai3 overexpression and OSCC. Our study reveals that Orai3 is a novel functional CSC regulator in OSCC and further suggests that Orai3 plays an oncogenic role in OSCC by promoting cancer stemness via ID1 upregulation.
Collapse
Affiliation(s)
- Anthony Nguyen
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (A.N.)
| | - Youngjae Sung
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (A.N.)
| | - Sung Hee Lee
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (A.N.)
| | - Charlotte Ellen Martin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (A.N.)
| | - Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Wei Chen
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (A.N.)
| | - Mo K. Kang
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (A.N.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Reuben H. Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (A.N.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (A.N.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yong Kim
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Laboratory of Stem Cell and Cancer Epigenetics, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Broad Stem Cell Research Center, Los Angeles, CA 90095, USA
| | - Ki-Hyuk Shin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (A.N.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
Chan TC, Pan CT, Hsieh HY, Vejvisithsakul PP, Wei RJ, Yeh BW, Wu WJ, Chen LR, Shiao MS, Li CF, Shiue YL. The autocrine glycosylated-GREM1 interacts with TGFB1 to suppress TGFβ/BMP/SMAD-mediated EMT partially by inhibiting MYL9 transactivation in urinary carcinoma. Cell Oncol (Dordr) 2023; 46:933-951. [PMID: 36920729 DOI: 10.1007/s13402-023-00788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
PURPOSE Urothelial carcinoma (UC) is a common disease in developed counties. This study aimed to identify autocrine roles and signaling pathways of gremlin 1, DAN family BMP antagonist (GREM1), which inhibits tumor growth and epithelial-mesenchymal transition (EMT) in UC. METHODS Systematic in vitro and in vivo studies using genetic engineering, different urinary bladder urothelial carcinoma (UBUC)-derived cell lines, and mouse models were performed, respectively. Further, primary upper tract urothelial carcinoma (UTUC) and UBUC specimens were evaluated by immunohistochemistry. RESULTS GREM1 protein levels conferred better disease-specific and metastasis-free survival rates and played an independent prognostic factor in UTUC and UBUC. Hypermethylation is the primary cause of low GREM1 levels. In different UBUC-derived cell lines, the autocrine/secreted and glycosylated GREM1 interacted with transforming growth factor beta 1 (TGFB1) and inhibited TGFβ/BMP/SMAD signaling and myosin light chain 9 (MYL9) transactivation, subsequently cell proliferation and epithelial-mesenchymal transition (EMT). Secreted and glycosylated GREM1 also suppressed tumor growth, metastasis, and MYL9 levels in the mouse model. Instead, cytosolic GREM1 promoted cell proliferation and EMT by activating the tumor necrosis factor (TNF)/AKT/nuclear factor kappa B (NFκB) axis. CONCLUSIONS Clinical associations, animal models, and in vitro indications provided solid evidence to show that the epithelial autocrine GREM1 is a novel tumor suppressor in UCs. The glycosylated-GREM1 hampered cell proliferation, migration, invasion, and in vitro angiogenesis through interaction with TGFB1 to inactivate TGFβ/BMP/SMAD-mediated EMT in an autocrine manner.
Collapse
Affiliation(s)
- Ti-Chun Chan
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 71004, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 71004, Taiwan
| | - Cheng-Tang Pan
- Institute of Precision Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Institute of Advanced Semiconductor Packaging and Testing, College of Semiconductor and Advanced Technology Research, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Hsin-Yu Hsieh
- Institute of Precision Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Pichpisith Pierre Vejvisithsakul
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Ren-Jie Wei
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan
- Institute of Medical Science and Technology, School of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, 83102, Taiwan
| | - Bi-Wen Yeh
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Lih-Ren Chen
- Division of Physiology, Livestock Research Institute, Tainan, 71246, Taiwan
| | - Meng-Shin Shiao
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Chien-Feng Li
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 71004, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 71004, Taiwan.
- Institute of Precision Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Yow-Ling Shiue
- Institute of Precision Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
19
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
20
|
Pricl S. The Spicy Science of Dendrimers in the Realm of Cancer Nanomedicine: A Report from the COST Action CA17140 Nano2Clinic. Pharmaceutics 2023; 15:2013. [PMID: 37514199 PMCID: PMC10384593 DOI: 10.3390/pharmaceutics15072013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
COST Action CA17140 Cancer Nanomedicine-from the bench to the bedside (Nano2Clinic,) is the first, pan-European interdisciplinary network of representatives from academic institutions and small and medium enterprises including clinical research organizations (CROs) devoted to the development of nanosystems carrying anticancer drugs from their initial design, preclinical testing of efficacy, pharmacokinetics and toxicity to the preparation of detailed protocols needed for the first phase of their clinical studies. By promoting scientific exchanges, technological implementation, and innovative solutions, the action aims at providing a timely instrument to rationalize and focus research efforts at the European level in dealing with the grand challenge of nanomedicine translation in cancer, one of the major and societal-burdening human pathologies. Within CA17140, dendrimers in all their forms (from covalent to self-assembling dendrons) play a vital role as powerful nanotheranostic agents in oncology; therefore, the purpose of this review work is to gather and summarize the major results in the field stemming from collaborative efforts in the framework of the European Nano2Clinic COST Action.
Collapse
Affiliation(s)
- Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture (DEA), University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
21
|
Beccacece L, Costa F, Pascali JP, Giorgi FM. Cross-Species Transcriptomics Analysis Highlights Conserved Molecular Responses to Per- and Polyfluoroalkyl Substances. TOXICS 2023; 11:567. [PMID: 37505532 PMCID: PMC10385990 DOI: 10.3390/toxics11070567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
In recent decades, per- and polyfluoroalkyl substances (PFASs) have garnered widespread public attention due to their persistence in the environment and detrimental effects on the health of living organisms, spurring the generation of several transcriptome-centered investigations to understand the biological basis of their mechanism. In this study, we collected 2144 publicly available samples from seven distinct animal species to examine the molecular responses to PFAS exposure and to determine if there are conserved responses. Our comparative transcriptional analysis revealed that exposure to PFAS is conserved across different tissues, molecules and species. We identified and reported several genes exhibiting consistent and evolutionarily conserved transcriptional response to PFASs, such as ESR1, HADHA and ID1, as well as several pathways including lipid metabolism, immune response and hormone pathways. This study provides the first evidence that distinct PFAS molecules induce comparable transcriptional changes and affect the same metabolic processes across inter-species borders. Our findings have significant implications for understanding the impact of PFAS exposure on living organisms and the environment. We believe that this study offers a novel perspective on the molecular responses to PFAS exposure and provides a foundation for future research into developing strategies for mitigating the detrimental effects of these substances in the ecosystem.
Collapse
Affiliation(s)
- Livia Beccacece
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Filippo Costa
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Jennifer Paola Pascali
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35121 Padua, Italy
| | | |
Collapse
|
22
|
Zeng Z, Gao J, Chen T, Zhang Z, Li M, Fan Q, Liu G, Li X, Li Z, Zhong C, Yao F, Sun L, Deng Y, Li M. Nicotinamide adenine dinucleotide kinase promotes lymph node metastasis of NSCLC via activating ID1 expression through BMP pathway. Int J Biol Sci 2023; 19:3184-3199. [PMID: 37416767 PMCID: PMC10321276 DOI: 10.7150/ijbs.84322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/11/2023] [Indexed: 07/08/2023] Open
Abstract
Metastasis is a significant cause of high mortality in lung cancer. Lymph node (LN) metastasis is the most common metastatic pathway in non-small cell lung cancer and the most crucial factor affecting the prognosis of NSCLC. Nevertheless, the molecular mechanism underlying metastasis is unknown. We demonstrated that higher NADK expression suggests worsened survival prognosis, and NADK expression positively correlates with the lymph node metastasis rate and TNM and AJCC stages in NSCLC patients. Moreover, patients with LN metastasis show higher NADK expression than those without LN metastasis. NADK can promote NSCLC progression by enhancing the migration, invasion, lymph node metastasis and growth of NSCLC cells. Mechanistically, NADK inhibits the ubiquitination and degradation of BMPR1A by interacting with Smurf1, further activating the BMPs signalling pathway and promoting ID1 transcription. In conclusion, NADK may be a potential diagnostic indicator and a novel therapeutic target for metastatic NSCLC.
Collapse
Affiliation(s)
- Zimei Zeng
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Hunan Province, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Hunan Province, Changsha 410008, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Hunan Province, Changsha 410008, China
| | - Jie Gao
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Hunan Province, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Hunan Province, Changsha 410008, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Hunan Province, Changsha 410008, China
| | - Tao Chen
- State Key Laboratory of Respiratory Diseases at People's Hospital of Yangjiang, Yangjiang, Guangdong 529500, China
- Yangjiang Key Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Yangjiang, Guangdong 529500, China
| | - Ziyu Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Mengwei Li
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Hunan Province, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Hunan Province, Changsha 410008, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Hunan Province, Changsha 410008, China
| | - Qi Fan
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Hunan Province, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Hunan Province, Changsha 410008, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Hunan Province, Changsha 410008, China
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, Shanghai, China
| | - Guoqian Liu
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Hunan Province, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Hunan Province, Changsha 410008, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Hunan Province, Changsha 410008, China
| | - Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhi Li
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Hunan Province, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Hunan Province, Changsha 410008, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Hunan Province, Changsha 410008, China
| | - Chenxi Zhong
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, Shanghai, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, Shanghai, China
| | - Lunquan Sun
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Hunan Province, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Hunan Province, Changsha 410008, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Hunan Province, Changsha 410008, China
| | - Yuezhen Deng
- State Key Laboratory of Respiratory Diseases at People's Hospital of Yangjiang, Yangjiang, Guangdong 529500, China
- Yangjiang Key Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Yangjiang, Guangdong 529500, China
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, Shanghai, China
| | - Min Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| |
Collapse
|
23
|
Gillette JS, Wang EJ, Dowd RS, Toms SA. Barriers to overcoming immunotherapy resistance in glioblastoma. Front Med (Lausanne) 2023; 10:1175507. [PMID: 37275361 PMCID: PMC10232794 DOI: 10.3389/fmed.2023.1175507] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/12/2023] [Indexed: 06/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor, known for its poor prognosis and high recurrence rate. Current standard of care includes surgical resection followed by combined radiotherapy and chemotherapy. Although immunotherapies have yielded promising results in hematological malignancies, their successful application in GBM remains limited due to a host of immunosuppressive factors unique to GBM. As a result of these roadblocks, research efforts have focused on utilizing combinatorial immunotherapies that target networks of immune processes in GBM with promising results in both preclinical and clinical trials, although limitations in overcoming the immunosuppressive factors within GBM remain. In this review, we aim to discuss the intrinsic and adaptive immune resistance unique to GBM and to summarize the current evidence and outcomes of engineered and non-engineered treatments targeted at overcoming GBM resistance to immunotherapy. Additionally, we aim to highlight the most promising strategies of targeted GBM immunotherapy combinatorial treatments and the insights that may directly improve the current patient prognosis and clinical care.
Collapse
|
24
|
Zhang F, Hu K, Liu W, Quan B, Li M, Lu S, Chen R, Ren Z, Yin X. Oxaliplatin-Resistant Hepatocellular Carcinoma Drives Immune Evasion Through PD-L1 Up-Regulation and PMN-Singular Recruitment. Cell Mol Gastroenterol Hepatol 2023; 15:573-591. [PMID: 36513250 PMCID: PMC9868681 DOI: 10.1016/j.jcmgh.2022.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Previously, we showed the inhibitor of differentiation or DNA binding 1 (ID1)/Myc signaling is highly expressed in oxaliplatin-resistant hepatocellular carcinoma (HCC). This study sought to investigate the role of ID1/Myc signaling on immune evasion in oxaliplatin-resistant HCC. METHODS The oxaliplatin (OXA)-resistant HCC cell lines (Hepa 1-6-OXA, 97H-OXA, and 3B-OXA) were established and their oxaliplatin tolerance was confirmed in vitro and in vivo. The relationship between ID1/Myc and programmed death-ligand 1 (PD-L1) up-regulation and polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) accumulation was explored. The underlying mechanism in which ID1/Myc signaling regulated PD-L1 expression and PMN-MDSC accumulation was investigated in vitro and vivo. RESULTS Increased ID1/Myc expression was identified in oxaliplatin-resistant HCC and correlated with PD-L1 up-regulation and PMN-MDSC accumulation. The knockdown of Myc sensitized oxaliplatin-resistant HCC cells to oxaliplatin and resulted in a decrease of PMN-MDSCs and an increase of interferon-γ+ CD8+ T cells in a tumor microenvironment. Polymerase chain reaction array, enzyme-linked immunosorbent assay, and MDSC Transwell migration assay indicated that oxaliplatin-resistant HCC cells recruited PMN-MDSCs through chemokine (C-C motif) ligand 5 (CCL5). The dual luciferase reporter assay and chromatin immunoprecipitation assay indicated that Myc could directly increase the transcriptions of PD-L1 and CCL5. Furthermore, anti-PD-L1 antibody combined with CCL5 blockade showed significant antitumor effects in oxaliplatin-resistant HCC. CONCLUSIONS ID1/Myc signaling drives immune evasion in oxaliplatin-resistant HCC via PD-L1 up-regulation and PMN-MDSC recruitment. Blocking the ID1/Myc-induced immune tolerance represents a promising treatment target to conquer chemoresistance in HCC.
Collapse
Affiliation(s)
- Feng Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Keshu Hu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenfeng Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bing Quan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Miao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shenxin Lu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Yin
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Zhou R, Zhou J, Muhuitijiang B, Tan W. Construction and experimental validation of a B cell senescence-related gene signature to evaluate prognosis and immunotherapeutic sensitivity in bladder cancer. Funct Integr Genomics 2022; 23:3. [PMID: 36527532 DOI: 10.1007/s10142-022-00936-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Senescent B cells exhibit reduced antibody production and enhanced proinflammatory cytokine and chemokine secretion, exerting non-negligible functions in antitumor immunity. This study aims to clarify the prognosis value of B cell senescence-related genes in bladder cancer (BLCA). Twelve B cell senescence-related genes were identified based on previous studies and the single-cell RNA sequencing of a BLCA sample from Gene Expression Omnibus (GEO). The Cancer Genome Atlas BLCA cohort was used as the training dataset. Three cohorts from GEO, 35 clinical samples from the local hospital, and in vitro cell experiments were used for validation. The unsupervised clustering based on the 12 genes was associated with the prognosis and the tumor immunity. Through least absolute shrinkage and selection operator regression and random forest algorithm, G protein subunit gamma 11 (GNG11) and inhibitor of DNA binding 1 (ID1) of the 12 genes were determined as significant prognosis predictors and then included in the multivariate Cox regression model. The model was a reliable and robust prognosis biomarker across multiple large-scale cohorts (pooled HR = 1.76, 95% CI = 1.41-2.20). The tight association between the model and BLCA malignant degree was demonstrated in the local cohort (P < 0.01). The model could also predict the immunotherapeutic sensitivity, which was confirmed by the tumor immune dysfunction and exclusion algorithm (P < 0.0001) and IMvigor210 cohort (P < 0.0001). At last, in vitro cell experiments in IM-9 and GM12878 B cells indicated that GNG11 and ID1 were involved in the cellular aging process. Collectively, a B cell senescence-related gene signature was constructed to evaluate the prognosis and immunotherapeutic response in BLCA, providing novel insights into the biological mechanisms.
Collapse
Affiliation(s)
- Ranran Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, 510000, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Jiawei Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, 510000, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Bahaerguli Muhuitijiang
- Department of Urology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, 510000, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, 510000, China.
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
26
|
Zhang J, Chen A, Xue Z, Liang C. Identification of immune-associated prognostic biomarkers in lung adenocarcinoma on the basis of gene co-expression network. Immunopharmacol Immunotoxicol 2022; 45:334-346. [DOI: 10.1080/08923973.2022.2145965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianhai Zhang
- Department of Thoracic and Cardiac Surgery, Ruian People's Hospital, Zhejiang, China
| | - Ange Chen
- Department of Thoracic and Cardiac Surgery, Ruian People's Hospital, Zhejiang, China
| | - Zhang Xue
- Department of Thoracic and Cardiac Surgery, Ruian People's Hospital, Zhejiang, China
| | - Chengzhi Liang
- Department of Thoracic and Cardiac Surgery, Ruian People's Hospital, Zhejiang, China
| |
Collapse
|
27
|
Li J, Li X, Guo Q. Drug Resistance in Cancers: A Free Pass for Bullying. Cells 2022; 11:3383. [PMID: 36359776 PMCID: PMC9654341 DOI: 10.3390/cells11213383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
The cancer burden continues to grow globally, and drug resistance remains a substantial challenge in cancer therapy. It is well established that cancerous cells with clonal dysplasia generate the same carcinogenic lesions. Tumor cells pass on genetic templates to subsequent generations in evolutionary terms and exhibit drug resistance simply by accumulating genetic alterations. However, recent evidence has implied that tumor cells accumulate genetic alterations by progressively adapting. As a result, intratumor heterogeneity (ITH) is generated due to genetically distinct subclonal populations of cells coexisting. The genetic adaptive mechanisms of action of ITH include activating "cellular plasticity", through which tumor cells create a tumor-supportive microenvironment in which they can proliferate and cause increased damage. These highly plastic cells are located in the tumor microenvironment (TME) and undergo extreme changes to resist therapeutic drugs. Accordingly, the underlying mechanisms involved in drug resistance have been re-evaluated. Herein, we will reveal new themes emerging from initial studies of drug resistance and outline the findings regarding drug resistance from the perspective of the TME; the themes include exosomes, metabolic reprogramming, protein glycosylation and autophagy, and the relates studies aim to provide new targets and strategies for reversing drug resistance in cancers.
Collapse
Affiliation(s)
| | | | - Qie Guo
- The Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
28
|
Wei M, Yan X, Xin X, Chen H, Hou L, Zhang J. Hepatocyte-Specific Smad4 Deficiency Alleviates Liver Fibrosis via the p38/p65 Pathway. Int J Mol Sci 2022; 23:ijms231911696. [PMID: 36232998 PMCID: PMC9570188 DOI: 10.3390/ijms231911696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022] Open
Abstract
Liver fibrosis is a wound-healing response caused by the abnormal accumulation of extracellular matrix, which is produced by activated hepatic stellate cells (HSCs). Most studies have focused on the activated HSCs themselves in liver fibrosis, and whether hepatocytes can modulate the process of fibrosis is still unclear. Sma mothers against decapentaplegic homologue 4 (Smad4) is a key intracellular transcription mediator of transforming growth factor-β (TGF-β) during the development and progression of liver fibrosis. However, the role of hepatocyte Smad4 in the development of fibrosis is poorly elucidated. Here, to explore the functional role of hepatocyte Smad4 and the molecular mechanism in liver fibrosis, a CCl4-induced liver fibrosis model was established in mice with hepatocyte-specific Smad4 deletion (Smad4Δhep). We found that hepatocyte-specific Smad4 deficiency reduced liver inflammation and fibrosis, alleviated epithelial-mesenchymal transition, and inhibited hepatocyte proliferation and migration. Molecularly, Smad4 deletion in hepatocytes suppressed the expression of inhibitor of differentiation 1 (ID1) and the secretion of connective tissue growth factor (CTGF) of hepatocytes, which subsequently activated the p38 and p65 signaling pathways of HSCs in an epidermal growth factor receptor-dependent manner. Taken together, our results clearly demonstrate that the Smad4 expression in hepatocytes plays an important role in promoting liver fibrosis and could therefore be a promising target for future anti-fibrotic therapy.
Collapse
Affiliation(s)
- Miaomiao Wei
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Xinlong Yan
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Xin Xin
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Haiqiang Chen
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Lingling Hou
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinhua Zhang
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
29
|
Nair VA, Malhab LJB, Abdel-Rahman WM. Characterization of the Molecular Alterations Induced by the Prolonged Exposure of Normal Colon Mucosa and Colon Cancer Cells to Low-Dose Bisphenol A. Int J Mol Sci 2022; 23:ijms231911620. [PMID: 36232920 PMCID: PMC9569561 DOI: 10.3390/ijms231911620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Colorectal cancer is a common cancer with a poor prognosis in both males and females. The influence of bisphenol A (BPA), a widely used environmental contaminant, in colon cancer development and progression is not well identified, in spite of the fact that the most common mode of exposure to BPA is ingestion. The aim of this work is to elucidate the carcinogenic effects of BPA in the colon in vitro. We analyzed BPA’s effects on human colon epithelial (HCoEpiC) and colon cancer (HCT116) cells. BPA exerted cytotoxic effects and augmented the 5FU cytotoxicity on both cell lines at high doses, while it did not show this effect at low doses. Therefore, we focused on studying the effects of low-dose (0.0043 nM) exposure on normal colonic epithelial cells for a long period of time (two months), which is more consistent with environmental exposure levels and patterns. BPA increased cellular invasiveness through collagen and the ability to anchorage-independent cell growth, as measured by colony formation in soft agar, which could support oncogenicity. To gain insights into the mechanism of these actions, we performed transcriptomic analysis using next-generation sequencing, which revealed 340 differentially expressed transcripts by BPA in HCT116 and 75 in HCoEpiC. These transcripts belong in many cancer-related pathways such as apoptosis, cell proliferation, signal transduction, and angiogenesis. Some of the significant genes (FAM83H, CXCL12, PITPNA, HMOX1, DGKZ, NR5A2, VMP1, and ID1) were confirmed by quantitative RT-PCR. Furthermore, BPA induced the phosphorylation of protein kinases such as JNK1/2/3, GSK-3α/β, AMPKα1, AKT1/2/3, AMPKα2, HSP27, β-catenin, STAT2, Hck, Chk2, FAK, and PRAS40 in HCoEpiC, as well as GSK-3α/β, p53, AKT1/2/3, p70 S6 kinase, and WNK1 in HCT116. The majority of these proteins are involved in potential carcinogenic pathways. Taken together, these data suggest that BPA plays a role in colon carcinogenesis, and they provide insights into the molecular mechanisms of colon epithelial cell transformation by BPA. Increasing exposure to environmental toxins such as BPA can explain the increasing incidence of colorectal cancer.
Collapse
Affiliation(s)
- Vidhya A Nair
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Lara J Bou Malhab
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wael M. Abdel-Rahman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-65057556
| |
Collapse
|
30
|
Schürmann M, Goon P, Sudhoff H. Review of potential medical treatments for middle ear cholesteatoma. Cell Commun Signal 2022; 20:148. [PMID: 36123729 PMCID: PMC9487140 DOI: 10.1186/s12964-022-00953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022] Open
Abstract
Middle ear cholesteatoma (MEC), is a destructive, and locally invasive lesion in the middle ear driven by inflammation with an annual incidence of 10 per 100,000. Surgical extraction/excision remains the only treatment strategy available and recurrence is high (up to 40%), therefore developing the first pharmaceutical treatments for MEC is desperately required. This review was targeted at connecting the dysregulated inflammatory network of MEC to pathogenesis and identification of pharmaceutical targets. We summarized the numerous basic research endeavors undertaken over the last 30+ years to identify the key targets in the dysregulated inflammatory pathways and judged the level of evidence for a given target if it was generated by in vitro, in vivo or clinical experiments. MEC pathogenesis was found to be connected to cytokines characteristic for Th1, Th17 and M1 cells. In addition, we found that the inflammation created damage associated molecular patterns (DAMPs), which further promoted inflammation. Similar positive feedback loops have already been described for other Th1/Th17 driven inflammatory diseases (arthritis, Crohn’s disease or multiple sclerosis). A wide-ranging search for molecular targeted therapies (MTT) led to the discovery of over a hundred clinically approved drugs already applied in precision medicine. Based on exclusion criteria designed to enable fast translation as well as efficacy, we condensed the numerous MTTs down to 13 top drugs. The review should serve as groundwork for the primary goal, which is to provide potential pharmaceutical therapies to MEC patients for the first time in history. Video Abstract
Middle ear cholesteatoma (MEC) is a destructive and locally invasive ulcerated lesion in the middle ear driven by inflammation which occurs in 10 out of 100,000 people annually. Surgical extraction/excision is the only treatment strategy available and recurrence is high (up to 40% after ten years), therefore developing the first pharmaceutical treatments for MEC is desperately required. This review is focused on the connections between inflammation and MEC pathogenesis. These connections can be used as attack points for pharmaceuticals. For this we summarized the results of research undertaken over the last 30 + years. MEC pathogenesis can be described by specific inflammatory dysregulation already known from arthritis, Crohn’s disease or multiple sclerosis. A hallmark of this dysregulation are positive feedback loops of the inflammation further amplifying itself in a vicious circle-like manner. We have identified over one hundred drugs which are already used in clinic to treat other inflammatory diseases, and could potentially be repurposed to treat MEC. To improve and expedite clinical success rates, we applied certain criteria based on our literature searches and condensed these drugs down to the 13 top drugs. We hope the review will serve as groundwork for the primary goal, which is to provide potential pharmaceutical therapies to MEC patients for the first time in history.
Collapse
Affiliation(s)
- Matthias Schürmann
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany
| | - Peter Goon
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany.,Department of Medicine, National University of Singapore, and National University Health System, Singapore, Singapore
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany.
| |
Collapse
|
31
|
Luo D, Shi F, Wang S, Yang J, Zhou R. Tongue squamous cell carcinoma resists hyperthermia treatment by promoting Id-1 expression mediated EMT. Bull Cancer 2022; 109:886-894. [DOI: 10.1016/j.bulcan.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022]
|
32
|
Necroptosis-Related Prognostic Signature and Nomogram Model for Predicting the Overall Survival of Patients with Lung Cancer. Genet Res (Camb) 2022; 2022:4908608. [PMID: 36101745 PMCID: PMC9452994 DOI: 10.1155/2022/4908608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/21/2022] [Indexed: 01/19/2023] Open
Abstract
Background Necroptosis is a type of programmed cell death mode and it serves an important role in the tumorigenesis and tumor metastasis. The purpose of this study is to develop a prognostic model based on necroptosis-related genes and nomogram for predicting the overall survival of patients with lung cancer. Method Differentially expressed necroptosis-related genes (NRDs) between lung cancer and normal samples were identified. Univariate and LASSO regression analyses were performed to establish a risk score (RS) model, followed by validation within TCGA and GSE37745. The correlation between RS model and tumor microenvironment, mutation status, or drug susceptibility was analyzed. By combining clinical factors, nomogram was developed to predict 1-, 3-, and 5-year survival probability of an individual. The biological function involved by different risk groups was conducted by GSEA. Results A RS model containing six NRDs (FLNC, PLK1, ID1, MYO1C, SERTAD1, and LEF1) was constructed, and patients were divieded into low-risk (LR) and high-risk (HR) groups. Patients in HR group were associated with shorter survival time than those in the LR group; this model had better prognostic performance. Nomogram based on necroptosis score, T stage, and stage had been confirmed to predict survival of patients. The number of resting NK cells and M0 macrophages was higher in HR group. In addition, higher tumor mutational burden and drug sensitivity were observed in the HR group. Patients in HR group were involved in p53 signaling pathway and cell cycle. Conclusion This study constructed a robust six-NRDs signature and established a prognostic nomogram for survival prediction of lung cancer.
Collapse
|
33
|
Li M, Song D, Chen X, Wang X, Xu L, Yang M, Yang J, Kalvakolanu DV, Wei X, Liu X, Li Y, Guo B, Zhang L. RSL3 triggers glioma stem cell differentiation via the Tgm2/AKT/ID1 signaling axis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166529. [PMID: 36041715 DOI: 10.1016/j.bbadis.2022.166529] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 10/15/2022]
Abstract
RSL3 is a synthetic molecule that inactivates glutathione peroxidase 4 to induce ferroptosis. However, its effect on glioma stem cells (GSC) remains unclear. In this study, we found that RSL3 significantly suppressed GSC proliferation and induced their differentiation into astrocytes, which was accompanied by the downregulation of stemness-related markers, including Nestin and Sox2. Combined transcriptome and proteome analyses further revealed that RSL3 promoted GSC differentiation by suppressing transglutaminase 2 (Tgm2), but not by ferroptosis-related pathways. Tgm2 overexpression in CSC2078 cells rescued the changes in stemness-related markers and differentiation caused by RSL3, which was mediated by inhibitor of DNA binding 1 (ID1) activation. Further studies identified ID1 as a downstream signaling target of Tgm2. Blocking the phosphoinositide-3 kinase (PI3K)/Akt pathway with LY294002 suppressed PI3K, p-Akt, and ID1 levels but not Tgm2. Tgm2 overexpression abrogated the changes in PI3K, p-Akt, and ID1 levels caused by LY294002. Taken together, we demonstrate that RSL3 does not induce ferroptosis; instead, it inhibits GSC proliferation and triggers their differentiation by suppressing the Tgm2/Akt/ID1 signaling axis.
Collapse
Affiliation(s)
- Mengxin Li
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China; Department of Breast Surgery, First Hospital of Jilin University, Changchun, China
| | - Dong Song
- Department of Breast Surgery, First Hospital of Jilin University, Changchun, China
| | - Xuyang Chen
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuanzhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Libo Xu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Mei Yang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiaying Yang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology University of Maryland School Medicine, Baltimore, MD, USA
| | - Xiaodong Wei
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaorui Liu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yang Li
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| | - Baofeng Guo
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Ling Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
34
|
ID1 marks the tumorigenesis of pancreatic ductal adenocarcinoma in mouse and human. Sci Rep 2022; 12:13555. [PMID: 35941362 PMCID: PMC9359991 DOI: 10.1038/s41598-022-17827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a deadly disease that has an increasing death rate but no effective treatment to now. Although biological and immunological hallmarks of PDAC have been frequently reported recently, early detection and the particularly aggressive biological features are the major challenges remaining unclear. In the current study, we retrieved multiple scRNA-seq datasets and illustrated the genetic programs of PDAC development in genetically modified mouse models. Notably, the transcription levels of Id1 were elevated specifically along with the PDAC development. Pseudotime trajectory analysis revealed that Id1 was closely correlated with the malignancy of PDAC. The gene expression patterns of human PDAC cells were determined by the comparative analysis of the scRNA-seq data on human PDAC and normal pancreas tissues. ID1 levels in human PDAC cancer cells were dramatically increased compared to normal epithelial cells. ID1 deficiency in vitro significantly blunt the invasive tumor-formation related phenotypes. IPA analysis on the differentially expressed genes suggested that EIF2 signaling was the core pathway regulating the development of PDAC. Blocking EFI2 signaling remarkably decreased the expression of ID1 and attenuated the tumor-formation related phenotypes. These observations confirmed that ID1 was regulated by EIF2 signaling and was the critical determinator of PDAC development and progression. This study suggests that ID1 is a potential malignant biomarker of PDAC in both mouse models and human and detecting and targeting ID1 may be a promising strategy to treat or even rescue PDAC.
Collapse
|
35
|
Hersh AM, Gaitsch H, Alomari S, Lubelski D, Tyler BM. Molecular Pathways and Genomic Landscape of Glioblastoma Stem Cells: Opportunities for Targeted Therapy. Cancers (Basel) 2022; 14:3743. [PMID: 35954407 PMCID: PMC9367289 DOI: 10.3390/cancers14153743] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive tumor of the central nervous system categorized by the World Health Organization as a Grade 4 astrocytoma. Despite treatment with surgical resection, adjuvant chemotherapy, and radiation therapy, outcomes remain poor, with a median survival of only 14-16 months. Although tumor regression is often observed initially after treatment, long-term recurrence or progression invariably occurs. Tumor growth, invasion, and recurrence is mediated by a unique population of glioblastoma stem cells (GSCs). Their high mutation rate and dysregulated transcriptional landscape augment their resistance to conventional chemotherapy and radiation therapy, explaining the poor outcomes observed in patients. Consequently, GSCs have emerged as targets of interest in new treatment paradigms. Here, we review the unique properties of GSCs, including their interactions with the hypoxic microenvironment that drives their proliferation. We discuss vital signaling pathways in GSCs that mediate stemness, self-renewal, proliferation, and invasion, including the Notch, epidermal growth factor receptor, phosphatidylinositol 3-kinase/Akt, sonic hedgehog, transforming growth factor beta, Wnt, signal transducer and activator of transcription 3, and inhibitors of differentiation pathways. We also review epigenomic changes in GSCs that influence their transcriptional state, including DNA methylation, histone methylation and acetylation, and miRNA expression. The constituent molecular components of the signaling pathways and epigenomic regulators represent potential sites for targeted therapy, and representative examples of inhibitory molecules and pharmaceuticals are discussed. Continued investigation into the molecular pathways of GSCs and candidate therapeutics is needed to discover new effective treatments for GBM and improve survival.
Collapse
Affiliation(s)
- Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Hallie Gaitsch
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
- NIH Oxford-Cambridge Scholars Program, Wellcome—MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Daniel Lubelski
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| |
Collapse
|
36
|
Chen PY, Wang CY, Tsao EC, Chen YT, Wu MJ, Ho CT, Yen JH. 5-Demethylnobiletin Inhibits Cell Proliferation, Downregulates ID1 Expression, Modulates the NF-κB/TNF-α Pathway and Exerts Antileukemic Effects in AML Cells. Int J Mol Sci 2022; 23:ijms23137392. [PMID: 35806401 PMCID: PMC9266321 DOI: 10.3390/ijms23137392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is characterized by the dysregulation of hematopoietic cell proliferation, resulting in the accumulation of immature myeloid cells in bone marrow. 5-Demethylnobiletin (5-demethyl NOB), a citrus 5-hydroxylated polymethoxyflavone, has been reported to exhibit various bioactivities, such as antioxidant, anti-inflammatory and anticancer properties. In this study, we investigated the antileukemic effects of 5-demethyl NOB and its underlying molecular mechanisms in human AML cells. We found that 5-demethyl NOB (20−80 μM) significantly reduced human leukemia cell viability, and the following trend of effectiveness was observed: THP-1 ≈ U-937 > HEL > HL-60 > K562 cells. 5-Demethyl NOB (20 and 40 μM) modulated the cell cycle through the regulation of p21, cyclin E1 and cyclin A1 expression and induced S phase arrest. 5-Demethyl NOB also promoted leukemia cell apoptosis and differentiation. Microarray-based transcriptome, Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) of differentially expressed genes (DEGs) analysis showed that the expression of inhibitor of differentiation/DNA binding 1 (ID1), a gene associated with the GO biological process (BP) cell population proliferation (GO: 0008283), was most strongly suppressed by 5-demethyl NOB (40 μM) in THP-1 cells. We further demonstrated that 5-demethyl NOB-induced ID1 reduction was associated with the inhibition of leukemia cell growth. Moreover, DEGs involved in the hallmark gene set NF-κB/TNF-α signaling pathway were markedly enriched and downregulated by 5-demethyl NOB. Finally, we demonstrated that 5-demethyl NOB (20 and 40 μM), combined with cytarabine, synergistically reduced THP-1 and U-937 cell viability. Our current findings support that 5-demethyl NOB dramatically suppresses leukemia cell proliferation and may serve as a potential phytochemical for human AML chemotherapy.
Collapse
Affiliation(s)
- Pei-Yi Chen
- Center of Medical Genetics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan;
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - En-Ci Tsao
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
| | - Yu-Ting Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan;
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
- Correspondence: ; Tel.: +886-3-856-5301 (ext. 2683)
| |
Collapse
|
37
|
Li L, Liu Y, Zhao Y, Feng R, Li Y, Yu X, Liu Z, Wang L. Deubiquitinase USP8 increases ID1 stability and promotes esophageal squamous cell carcinoma tumorigenesis. Cancer Lett 2022; 542:215760. [DOI: 10.1016/j.canlet.2022.215760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
|
38
|
Koppenhafer SL, Goss KL, Voigt E, Croushore E, Terry WW, Ostergaard J, Gordon PM, Gordon DJ. Inhibitor of DNA binding 2 (ID2) regulates the expression of developmental genes and tumorigenesis in ewing sarcoma. Oncogene 2022; 41:2873-2884. [PMID: 35422476 PMCID: PMC9107507 DOI: 10.1038/s41388-022-02310-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/24/2022]
Abstract
Sarcomas are difficult to treat and the therapy, even when effective, is associated with long-term and life-threatening side effects. In addition, the treatment regimens for many sarcomas, including Ewing sarcoma, rhabdomyosarcoma, and osteosarcoma, are relatively unchanged over the past two decades, indicating a critical lack of progress. Although differentiation-based therapies are used for the treatment of some cancers, the application of this approach to sarcomas has proven challenging. Here, using a CRISPR-mediated gene knockout approach, we show that Inhibitor of DNA Binding 2 (ID2) is a critical regulator of developmental-related genes and tumor growth in vitro and in vivo in Ewing sarcoma tumors. We also identified that homoharringtonine, which is an inhibitor of protein translation and FDA-approved for the treatment of leukemia, decreases the level of the ID2 protein and significantly reduces tumor growth and prolongs mouse survival in an Ewing sarcoma xenograft model. Furthermore, in addition to targeting ID2, homoharringtonine also reduces the protein levels of ID1 and ID3, which are additional members of the ID family of proteins with well-described roles in tumorigenesis, in multiple types of cancer. Overall, these results provide insight into developmental regulation in Ewing sarcoma tumors and identify a novel, therapeutic approach to target the ID family of proteins using an FDA-approved drug.
Collapse
Affiliation(s)
- Stacia L Koppenhafer
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Kelli L Goss
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Ellen Voigt
- Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Emma Croushore
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - William W Terry
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Jason Ostergaard
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Peter M Gordon
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David J Gordon
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
39
|
He X, Liao Y, Liu J, Sun S. Research Progress of Natural Small-Molecule Compounds Related to Tumor Differentiation. Molecules 2022; 27:2128. [PMID: 35408534 PMCID: PMC9000768 DOI: 10.3390/molecules27072128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Tumor differentiation is a therapeutic strategy aimed at reactivating the endogenous differentiation program of cancer cells and inducing cancer cells to mature and differentiate into other types of cells. It has been found that a variety of natural small-molecule drugs can induce tumor cell differentiation both in vitro and in vivo. Relevant molecules involved in the differentiation process may be potential therapeutic targets for tumor cells. Compared with synthetic drugs, natural small-molecule antitumor compounds have the characteristics of wide sources, structural diversity and low toxicity. In addition, natural drugs with structural modification and transformation have relatively concentrated targets and enhanced efficacy. Therefore, using natural small-molecule compounds to induce malignant cell differentiation represents a more targeted and potential low-toxicity means of tumor treatment. In this review, we focus on natural small-molecule compounds that induce differentiation of myeloid leukemia cells, osteoblasts and other malignant cells into functional cells by regulating signaling pathways and the expression of specific genes. We provide a reference for the subsequent development of natural small molecules for antitumor applications and promote the development of differentiation therapy.
Collapse
Affiliation(s)
- Xiaoli He
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| | - Yongkang Liao
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| | - Shuming Sun
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
40
|
Luo Y, Tao T, Tao R, Huang G, Wu S. Single-Cell Transcriptome Comparison of Bladder Cancer Reveals Its Ecosystem. Front Oncol 2022; 12:818147. [PMID: 35265520 PMCID: PMC8899594 DOI: 10.3389/fonc.2022.818147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Bladder carcinoma (BLCA) is a highly heterogeneous disease, and the underlying biological behavior is still poorly understood. Here, single-cell RNA sequencing was performed on four clinical samples of different grades from three patients, and 26,792 cell transcriptomes were obtained revealing different tumor ecosystems. We found that N-glycan biosynthesis pathway was activated in high-grade tumor, but TNF-related pathway was activated in cystitis glandularis. The tumor microenvironment (TME) of different samples showed great heterogeneity. Notably, cystitis glandularis was dominated by T cells, low-grade and high-grade tumors by macrophages, while TME in patient with high-grade relapse by stromal cells. Our research provides single-cell transcriptome profiles of cystitis glandularis and BLCA in different clinical states, and the biological program revealed by single-cell data can be used as biomarkers related to clinical prognosis in independent cohorts.
Collapse
Affiliation(s)
- Yongxiang Luo
- Institute of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China.,Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Tao Tao
- Institute of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China.,Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Ran Tao
- Institute of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Guixiao Huang
- Institute of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Song Wu
- Institute of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China.,Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China.,Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| |
Collapse
|
41
|
Xu X, Tang X, Zhang Y, Pan Z, Wang Q, Tang L, Zhu C, Cheng H, Zhou F. Chromatin accessibility and transcriptome integrative analysis revealed AP-1-mediated genes potentially modulate histopathology features in psoriasis. Clin Epigenetics 2022; 14:38. [PMID: 35277199 PMCID: PMC8917665 DOI: 10.1186/s13148-022-01250-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Abstract
Background
Psoriasis is a chronic and hyperproliferative skin disease featured by hyperkeratosis with parakeratosis, Munro micro-abscess, elongation of rete pegs, granulosa thinning, and lymphocyte infiltration. We previously profiled gene expression and chromatin accessibility of psoriatic skins by transcriptome sequencing and ATAC-seq. However, integrating both of these datasets to unravel gene expression regulation is lacking. Here, we integrated transcriptome and ATAC-seq of the same psoriatic and normal skin tissues, trying to leverage the potential role of chromatin accessibility and their function in histopathology features.
Results
By inducing binding and expression target analysis (BETA) algorithms, we explored the target prediction of transcription factors binding in 15 psoriatic and 19 control skins. BETA identified 408 upregulated genes (rank product < 0.01) and 133 downregulated genes linked with chromatin accessibility. We noticed that cumulative fraction of genes in upregulation group was statistically higher than background, while that of genes in downregulation group was not significant. KEGG pathway analysis showed that the upregulated 408 genes were enriched in TNF, NOD, and IL-17 signaling pathways. In addition, the motif module in BETA suggested the 57 upregulated genes are targeted by transcription factor AP-1, indicating that increased chromatin accessibility facilitated the binding of AP-1 to the target regions and further induced expression of relevant genes. Among these genes, SQLE, STRN, EIF4, and MYO1B expression was increased in patients with hyperkeratosis, parakeratosis, and acanthosis thickening.
Conclusions
In summary, with the advantage of BETA, we identified a series of genes that contribute to the disease pathogenesis, especially in modulating histopathology features, providing us with new clues in treating psoriasis.
Collapse
|
42
|
Valanti EK, Dalakoura-Karagkouni K, Fotakis P, Vafiadaki E, Mantzoros CS, Chroni A, Zannis V, Kardassis D, Sanoudou D. Reconstituted HDL-apoE3 promotes endothelial cell migration through ID1 and its downstream kinases ERK1/2, AKT and p38 MAPK. Metabolism 2022; 127:154954. [PMID: 34875308 DOI: 10.1016/j.metabol.2021.154954] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Atherosclerotic Coronary Artery Disease (ASCAD) is the leading cause of mortality worldwide. Novel therapeutic approaches aiming to improve the atheroprotective functions of High Density Lipoprotein (HDL) include the use of reconstituted HDL forms containing human apolipoprotein A-I (rHDL-apoA-I). Given the strong atheroprotective properties of apolipoprotein E3 (apoE3), rHDL-apoE3 may represent an attractive yet largely unexplored therapeutic agent. OBJECTIVE To evaluate the atheroprotective potential of rHDL-apoE3 starting with the unbiased assessment of global transcriptome effects and focusing on endothelial cell (EC) migration as a critical process in re-endothelialization and atherosclerosis prevention. The cellular, molecular and functional effects of rHDL-apoE3 on EC migration-associated pathways were assessed, as well as the potential translatability of these findings in vivo. METHODS Human Aortic ECs (HAEC) were treated with rHDL-apoE3 and total RNA was analyzed by whole genome microarrays. Expression and phosphorylation changes of key EC migration-associated molecules were validated by qRT-PCR and Western blot analysis in primary HAEC, Human Coronary Artery ECs (HCAEC) and the human EA.hy926 EC line. The capacity of rHDL-apoE3 to stimulate EC migration was assessed by wound healing and transwell migration assays. The contribution of MEK1/2, PI3K and the transcription factor ID1 in rHDL-apoE3-induced EC migration and activation of EC migration-related effectors was assessed using specific inhibitors (PD98059: MEK1/2, LY294002: PI3K) and siRNA-mediated gene silencing, respectively. The capacity of rHDL-apoE3 to improve vascular permeability and hypercholesterolemia in vivo was tested in a mouse model of hypercholesterolemia (apoE KO mice) using Evans Blue assays and lipid/lipoprotein analysis in the serum, respectively. RESULTS rHDL-apoE3 induced significant expression changes in 198 genes of HAEC mainly involved in re-endothelialization and atherosclerosis-associated functions. The most pronounced effect was observed for EC migration, with 42/198 genes being involved in the following EC migration-related pathways: 1) MEK/ERK, 2) PI3K/AKT/eNOS-MMP2/9, 3) RHO-GTPases, 4) integrin. rHDL-apoE3 induced changes in 24 representative transcripts of these pathways in HAEC, increasing the expression of their key proteins PIK3CG, EFNB2, ID1 and FLT1 in HCAEC and EA.hy926 cells. In addition, rHDL-apoE3 stimulated migration of HCAEC and EA.hy926 cells, and the migration was markedly attenuated in the presence of PD98059 or LY294002. rHDL-apoE3 also increased the phosphorylation of ERK1/2, AKT, eNOS and p38 MAPK in these cells, while PD98059 and LY294002 inhibited rHDL-apoE3-induced phosphorylation of ERK1/2, AKT and p38 MAPK, respectively. LY had no effect on rHDL-apoE3-mediated eNOS phosphorylation. ID1 siRNA markedly decreased EA.hy926 cell migration by inhibiting rHDL-apoE3-triggered ERK1/2 and AKT phosphorylation. Finally, administration of a single dose of rHDL-apoE3 in apoE KO mice markedly improved vascular permeability as demonstrated by the reduced concentration of Evans Blue dye in tissues such as the stomach, the tongue and the urinary bladder and ameliorated hypercholesterolemia. CONCLUSIONS rHDL-apoE3 significantly enhanced EC migration in vitro, predominantly via overexpression of ID1 and subsequent activation of MEK1/2 and PI3K, and their downstream targets ERK1/2, AKT and p38 MAPK, respectively, and improved vascular permeability in vivo. These novel insights into the rHDL-apoE3 functions suggest a potential clinical use to promote re-endothelialization and retard development of atherosclerosis.
Collapse
Affiliation(s)
- Eftaxia-Konstantina Valanti
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, 'Attikon' Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Katerina Dalakoura-Karagkouni
- Laboratory of Biochemistry, University of Crete Medical School, Heraklion, Greece; Division of Gene Regulation and Genomics, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | | | - Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Vassilis Zannis
- Molecular Genetics, Boston University Medical School, Boston, USA
| | - Dimitris Kardassis
- Laboratory of Biochemistry, University of Crete Medical School, Heraklion, Greece; Division of Gene Regulation and Genomics, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Despina Sanoudou
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, 'Attikon' Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
43
|
Qiu J, Li Y, Wang B, Sun X, Qian D, Ying Y, Zhou J. The Role and Research Progress of Inhibitor of Differentiation 1 in Atherosclerosis. DNA Cell Biol 2022; 41:71-79. [PMID: 35049366 PMCID: PMC8863915 DOI: 10.1089/dna.2021.0745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022] Open
Abstract
Inhibitor of differentiation 1 has a helix-loop-helix (HLH) structure, belongs to a class of molecules known as the HLH trans-acting factor family, and plays an important role in advancing the cell cycle, promoting cell proliferation and inhibiting cell differentiation. Recent studies have confirmed that inhibitor of differentiation 1 plays an important role in the endothelial-mesenchymal transition of vascular endothelial cells, angiogenesis, reendothelialization after injury, and the formation and rupture of atherosclerotic plaques. An in-depth understanding of the role of inhibitor of differentiation 1 in atherosclerosis will provide new ideas and strategies for the treatment of related diseases.
Collapse
Affiliation(s)
- Jun Qiu
- Department of Cardiology, Medicine School of Ningbo University, Ningbo, China
- Department of Cardiology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
- Department of Cardiology, Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo, China
| | - Youhong Li
- Department of Cardiology, Medicine School of Ningbo University, Ningbo, China
| | - BingYu Wang
- Department of Cardiology, Medicine School of Ningbo University, Ningbo, China
- Department of Cardiology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
- Department of Cardiology, Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo, China
| | - XinYi Sun
- Department of Cardiology, Medicine School of Ningbo University, Ningbo, China
- Department of Cardiology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
- Department of Cardiology, Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo, China
| | - Dingding Qian
- Department of Cardiology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
| | - Yuchen Ying
- Department of Cardiology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
| | - Jianqing Zhou
- Department of Cardiology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
| |
Collapse
|
44
|
Up-Regulation of Cyclooxygenase-2 (COX-2) Expression by Temozolomide (TMZ) in Human Glioblastoma (GBM) Cell Lines. Int J Mol Sci 2022; 23:ijms23031545. [PMID: 35163465 PMCID: PMC8835858 DOI: 10.3390/ijms23031545] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
TMZ-resistance remains a main limitation in glioblastoma (GBM) treatment. TMZ is an alkylating agent whose cytotoxicity is modulated by O6-methylguanine-DNA methyltransferase (MGMT), whose expression is determined by MGMT gene promoter methylation status. The inflammatory marker COX-2 has been implicated in GBM tumorigenesis, progression, and stemness. COX-2 inhibitors are considered a GBM add-on treatment due to their ability to increase TMZ-sensitivity. We investigated the effect of TMZ on COX-2 expression in GBM cell lines showing different COX-2 levels and TMZ sensitivity (T98G and U251MG). β-catenin, MGMT, and SOX-2 expression was analyzed. The effects of NS398, COX-2 inhibitor, alone or TMZ-combined, were studied evaluating cell proliferation by the IncuCyte® system, cell cycle/apoptosis, and clonogenic potential. COX-2, β-catenin, MGMT, and SOX-2 expression was evaluated by RT-PCR, Western blotting, and immunofluorescence and PGE2 by ELISA. Our findings, sustaining the role of COX-2/PGE2 system in TMZ-resistance of GBM, show, for the first time, a relevant, dose-dependent up-regulation of COX-2 expression and activity in TMZ-treated T98G that, in turn, correlated with chemoresistance. Similarly, all the COX-2-dependent signaling pathways involved in TMZ-resistance also resulted in being up-modulated after treatment with TMZ. NS398+TMZ was able to reduce cell proliferation and induce cell cycle arrest and apoptosis. Moreover, NS398+TMZ counteracted the resistance in T98G preventing the TMZ-induced COX-2, β-catenin, MGMT, and SOX-2 up-regulation.
Collapse
|
45
|
Pan D, Zhou Y, Xiao S, Hu Y, Huan C, Wu Q, Wang X, Pan Q, Liu J, Zhu H. Identification of Differentially Expressed Genes and Pathways in Human Atrial Fibrillation by Bioinformatics Analysis. Int J Gen Med 2022; 15:103-114. [PMID: 35023949 PMCID: PMC8743500 DOI: 10.2147/ijgm.s334122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia, but the molecular mechanisms underlying AF are not known. We aimed to identify the pivotal genes and pathways involved in AF pathogenesis because they could become potential biomarkers and therapeutic targets of AF. Methods The microarray datasets of GSE31821 and GSE41177 were downloaded from the Gene Expression Omnibus database. After combining the two datasets, differentially expressed genes (DEGs) were screened by the Limma package. MicroRNAs (miRNAs) confirmed experimentally to have an interaction with AF were screened through the miRTarBase database. Target genes of miRNAs were predicted using the miRNet database, and the intersection between DEGs and target genes of miRNAs, which were defined as common genes (CGs), were analyzed. Functional and pathway-enrichment analyses of DEGs and CGs were performed using the databases DAVID and KOBAS. Protein-protein interaction (PPI) network, miRNA- messenger(m) RNA network, and drug-gene network was visualized. Finally, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was used to validate the expression of hub genes in the miRNA-mRNA network. Results Thirty-three CGs were acquired from the intersection of 65 DEGs from the integrated dataset and 9777 target genes of miRNAs. Fifteen "hub" genes were selected from the PPI network, and the miRNA-mRNA network, including 82 miRNAs and 9 target mRNAs, was constructed. Furthermore, with the validation by RT-qPCR, macrophage migration inhibitory factor (MIF), MYC proto-oncogene, bHLH transcription factor (MYC), inhibitor of differentiation 1 (ID1), and C-X-C Motif Chemokine Receptor 4 (CXCR4) were upregulated and superoxide Dismutase 2 (SOD2) was downregulated in patients with AF compared with healthy controls. We also found MIF, MYC, and ID1 were enriched in the transforming growth factor (TGF)-β and Hippo signaling pathway. Conclusion We identified several pivotal genes and pathways involved in AF pathogenesis. MIF, MYC, and ID1 might participate in AF progression through the TGF-β and Hippo signaling pathways. Our study provided new insights into the mechanisms of action of AF.
Collapse
Affiliation(s)
- Defeng Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yufei Zhou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shengjue Xiao
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yue Hu
- Department of General Practice, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Chunyan Huan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Qi Wu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Xiaotong Wang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Qinyuan Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Jie Liu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Hong Zhu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| |
Collapse
|
46
|
Wei J, Shi Y, Zou C, Zhang H, Peng H, Wang S, Xia L, Yang Y, Zhang X, Liu J, Zhou H, Luo M, Huang A, Wang D. Cellular Id1 inhibits hepatitis B virus transcription by interacting with the novel covalently closed circular DNA-binding protein E2F4. Int J Biol Sci 2022; 18:65-81. [PMID: 34975318 PMCID: PMC8692152 DOI: 10.7150/ijbs.62106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC), which required developing novel therapies targeting the inhibition of HBV transcription and replication due to current limited treatment options. We explored novel target for the development of novel therapies targeting the inhibition of HBV replication and transcription. The expression of Id1 and E2F4 in HCC cells and tissues was detected by qRT-PCR and western blot. We investigated the Id1 and E2F4-mediated transcription of HBV infection by using HepG2.2.15, HepAD38, HepG2-NTCP cell lines and AAV/HBV-infected mice. Interactions between the two host proteins and viral covalently closed circular DNA (cccDNA) were assessed using subcellular localization, protein-protein interaction, chromatin immunoprecipitation, and luciferase assays. Ectopic Id1 significantly reduced HBV transcription and replication in both HBV-expressing cells and AAV/HBV-infected mice. Id1 and E2F4 could form a heterodimer to prevent E2F4 from promoting HBV transcription and replication. E2F4 could directly bind to cccDNA and activate the HBV core promoter in cell lines. Furthermore, in vitro binding experiments confirmed that the sequence 1758'-TTAAAGGTC-1766', which is highly conserved among HBV genotypes, is the target site of the E2F4 homodimer. The findings suggest that E2F4 function as novel cccDNA-binding protein to directly activate HBV transcription by binding to Cp promoter region. Our results highlight the ability that E2F4 represent a pan-potential therapeutic target against HBV transcription and provide more clues to better understand the life cycle of HBV.
Collapse
Affiliation(s)
- Jie Wei
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.,Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, 519000, China
| | - Yueyuan Shi
- College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, 400016, China.,Department of Clinical Laboratory, The People's Hospital of Yubei District of Chongqing City, Chongqing, 401120, China
| | - Chunhong Zou
- College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Hongpeng Zhang
- Department of Laboratory Medicine, Chongqing Health Center for Women and Children, Chongqing, China, 401147, China
| | - Hui Peng
- Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, California. Davis Bldg., Room 3094, 8700 Beverly Blvd., Los Angeles, CA 90048
| | - Shilei Wang
- College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Lulu Xia
- College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Yuan Yang
- College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Xiang Zhang
- College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Junye Liu
- College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Hua Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400010, China
| | - Miao Luo
- Department of Clinical Laboratory, The People's Hospital of Yubei District of Chongqing City, Chongqing, 401120, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Deqiang Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.,College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| |
Collapse
|
47
|
Hou Y, Ding Y, Du D, Yu T, Zhou W, Cui Y, Nie H. Airway Basal Cells Mediate Hypoxia-Induced EMT by Increasing Ribosome Biogenesis. Front Pharmacol 2021; 12:783946. [PMID: 34955855 PMCID: PMC8696177 DOI: 10.3389/fphar.2021.783946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 01/11/2023] Open
Abstract
Excessive secretion of airway mucus and fluid accumulation are the common features of many respiratory diseases, which, in turn, induce cell hypoxia in the airway epithelium, resulting in epithelial–mesenchymal transition (EMT) and ultimately fibrosis. However, the mechanisms of EMT induced by hypoxia in the airway are currently unclear. To mimic the status of edematous fluid retention in the airway, we cultured primary mouse tracheal epithelial cells (MTECs) in a liquid–liquid interface (LLI) mode after full differentiation in a classic air–liquid interface (ALI) culture system. The cell hypoxia was verified by the physical characteristics and lactate production in cultured medium as well as HIF expression in MTECs cultured by LLI mode. EMT was evidenced and mainly mediated by basal cells, supported by flow cytometry and immunofluorescence assay. The differently expressed genes of basal and other airway epithelial cells were found to be enriched in the ribosome by our analysis of an MTEC single-cell RNA sequencing data set and Myc, the global regulator of ribosome biogenesis was identified to be highly expressed in basal cells. We next separated basal cells from bulk MTECs by flow cytometry, and the real-time PCR results showed that ribosome biogenesis was significantly upregulated in basal cells, whereas the inhibition of ribosome biogenesis alleviated the phosphorylation of the mammalian target of rapamycin/AKT and abrogated hypoxia-induced EMT in MTECs. Collectively, these observations strongly suggest that basal cells in the airway epithelium may mediate the process of hypoxia-induced EMT, partly through enhancing ribosome biogenesis.
Collapse
Affiliation(s)
- Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Danni Du
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Wei Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
48
|
Song X, Li L, Shi L, Liu X, Qu X, Wei F, Wang K. C1QTNF6 promotes oral squamous cell carcinoma by enhancing proliferation and inhibiting apoptosis. Cancer Cell Int 2021; 21:666. [PMID: 34906149 PMCID: PMC8670214 DOI: 10.1186/s12935-021-02377-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND C1QTNF6 (CTRP6), a member of the CTRP family, has recently been implied to play a role in the tumorigenesis of for a variety of cancer types. However, the role of C1QTNF6 in oral squamous cell carcinoma (OSCC) and its potential molecular remains unclear. METHODS C1QTNF6 expression was detected by qRT-PCR and western blot analysis. Lentiviral vectors were constructed to knockdown C1QTNF6 in CaL27 and SCC-9 human OSCC cell lines. Cell viability, cell cycle and cell apoptosis analyses were performed by MTT assay, PI/Annexin V staining, and flow cytometry. The effect of C1QTNF6 knockdown on in vivo tumorigenicity of OSCC cells in vivo was evaluated using nude mouse xenograft tumor model. Downstream signaling mechanisms were identified by microarray and Ingenuity Pathway Analysis. RESULTS Immunohistochemistry of OSCC tissue and data from TCGA demonstrate that C1QTNF6 was overexpressed in OSCC tissues, and that cellular proliferation was significantly decreased after C1QTNF6 was knockdown in CaL27 and SCC-9 cell lines. Knockdown of C1QTNF6 also resulted in cell cycle arrest at the G2/M phase and enhanced cell apoptosis in in CaL27 and SCC-9 cell lines. Furthermore, knockdown of C1QTNF6 in Cal-27 cells inhibited tumor growth of OSCC in vivo. Microarray analysis revealed that C1QTNF6 silencing resulted in significant alterations of gene expression, with the Acute Phase Response signaling pathway significantly activated following C1QTNF6 silencing. CONCLUSIONS These results suggest that C1QTNF6 plays an important role in promoting OSCC tumorigenesis, which indicates that C1QTNF6 may comprise a promising therapeutic target for OSCC treatment.
Collapse
Affiliation(s)
- Xiaobin Song
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China.,Institute of Stomatology, Shandong University, Jinan, 250012, China
| | - Longjie Li
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China.,Institute of Stomatology, Shandong University, Jinan, 250012, China
| | - Liang Shi
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China.,Institute of Stomatology, Shandong University, Jinan, 250012, China
| | - Xinyu Liu
- Institute of Stomatology, Shandong University, Jinan, 250012, China.,Department of Oral Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Fengcai Wei
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China.,Institute of Stomatology, Shandong University, Jinan, 250012, China
| | - Ketao Wang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China. .,Institute of Stomatology, Shandong University, Jinan, 250012, China.
| |
Collapse
|
49
|
Huang YJ, Cao J, Lee CY, Wu YM. Umbilical cord blood plasma-derived exosomes as a novel therapy to reverse liver fibrosis. Stem Cell Res Ther 2021; 12:568. [PMID: 34772443 PMCID: PMC8588641 DOI: 10.1186/s13287-021-02641-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cirrhosis is a chronic liver disease whereby scar tissue replaces healthy liver parenchyma, leading to disruption of the liver architecture and hepatic dysfunction. Currently, there is no effective disease-modifying therapy for liver fibrosis. Recently, our group demonstrated that human umbilical cord blood (UCB) plasma possesses therapeutic effects in a rat model of acute liver failure. Methods In the current study, we tested whether exosomes (Exo) existed in UCB plasma and if they produced any antifibrotic benefits in a liver fibrosis model. Results Our results showed that UCB-Exo improved liver function and increased matrix metalloproteinase/tissue inhibitor of metalloproteinase degradation to reduce the degree of fibrosis. Moreover, UCB-Exo were found to suppress hepatic stellate cell (HSC) activity in vitro. These effects were associated with suppression of transforming growth factor-β/inhibitor of DNA binding 1 signaling. Conclusions These results further support that UCB-Exo have antifibrotic effects in mice with liver fibrosis and activated HSCs and may herald a new cell-free antifibrotic therapy.
Collapse
Affiliation(s)
- Yu-Jen Huang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jerry Cao
- Department of Surgery, Wollongong Hospital, Loftus Street, Wollongong, NSW, 2500, Australia
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yao-Ming Wu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Road, Taipei, Taiwan.
| |
Collapse
|
50
|
Thompson-Elliott B, Johnson R, Khan SA. Alterations in TGFβ signaling during prostate cancer progression. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:318-328. [PMID: 34541030 PMCID: PMC8446771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
During prostate cancer progression, TGF-β acts as both a tumor suppressor and tumor promoter. TGF-β inhibits cell proliferation in normal and early-stage prostate cancer cells, but during later stages of the disease the cancer cells develop resistance to inhibitory effects on cell proliferation. In these cells, TGF-β promotes cancer progression due to its effects on epithelial to mesenchymal transition (EMT), cell migration and invasion, and immune suppression. The intracellular mechanisms involved in the development of resistance to TGF-β effects on cell proliferation are largely unknown. In this review, we summarized the roles of several intracellular proteins including PTEN, Id1 and JunD, which may play a role in this transition. The role of Ski/SnoN proteins in inhibition of Smad2/3 signaling is highlighted.
Collapse
Affiliation(s)
| | - Rarnice Johnson
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University Atlanta, Georgia, USA
| | - Shafiq A Khan
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University Atlanta, Georgia, USA
| |
Collapse
|