1
|
Wang Y, Huang M, Zhou X, Li H, Ma X, Sun C. Potential of natural flavonoids to target breast cancer angiogenesis (review). Br J Pharmacol 2023. [PMID: 37940117 DOI: 10.1111/bph.16275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Angiogenesis is the process by which new blood vessels form and is required for tumour growth and metastasis. It helps in supplying oxygen and nutrients to tumour cells and plays a crucial role in the local progression and distant metastasis of, and development of treatment resistance in, breast cancer. Tumour angiogenesis is currently regarded as a critical therapeutic target; however, anti-angiogenic therapy for breast cancer fails to produce satisfactory results, owing to issues such as inconsistent efficacy and significant adverse reactions. As a result, new anti-angiogenic drugs are urgently needed. Flavonoids, a class of natural compounds found in many foods, are inexpensive, widely available, and exhibit a broad range of biological activities, low toxicity, and favourable safety profiles. Several studies find that various flavonoids inhibit angiogenesis in breast cancer, indicating great therapeutic potential. In this review, we summarize the role of angiogenesis in breast cancer and the potential of natural flavonoids as anti-angiogenic agents for breast cancer treatment. We discuss the value and significance of nanotechnology for improving flavonoid absorption and utilization and anti-angiogenic effects, as well as the challenges of using natural flavonoids as drugs.
Collapse
Affiliation(s)
- Yuetong Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengge Huang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xintong Zhou
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Xiaoran Ma
- Department of Oncology, Linyi People's Hospital, Linyi, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
2
|
Durrani IA, Bhatti A, John P. Integrated bioinformatics analyses identifying potential biomarkers for type 2 diabetes mellitus and breast cancer: In SIK1-ness and health. PLoS One 2023; 18:e0289839. [PMID: 37556419 PMCID: PMC10411810 DOI: 10.1371/journal.pone.0289839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/23/2023] [Indexed: 08/11/2023] Open
Abstract
The bidirectional causal relationship between type 2 diabetes mellitus (T2DM) and breast cancer (BC) has been established by numerous epidemiological studies. However, the underlying molecular mechanisms are not yet fully understood. Identification of hub genes implicated in T2DM-BC molecular crosstalk may help elucidate on the causative mechanisms. For this, expression series GSE29231 (T2DM-adipose tissue), GSE70905 (BC- breast adenocarcinoma biopsies) and GSE150586 (diabetes and BC breast biopsies) were extracted from Gene Expression Omnibus (GEO) database, and analyzed to obtain differentially expressed genes (DEGs). The overlapping DEGs were determined using FunRich. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Transcription Factor (TF) analyses were performed on EnrichR software and a protein-protein interaction (PPI) network was constructed using STRING software. The network was analyzed on Cytoscape to determine hub genes and Kaplan-Meier plots were obtained. A total of 94 overlapping DEGs were identified between T2DM and BC samples. These DEGs were mainly enriched for GO terms RNA polymerase II core promoter proximal region sequence and its DNA binding, and cAMP response element binding protein, and KEGG pathways including bladder cancer, thyroid cancer and PI3K-AKT signaling. Eight hub genes were identified: interleukin 6 (IL6), tumor protein 53 (TP53), interleukin 8 (CXCL8), MYC, matrix metalloproteinase 9 (MMP9), beta-catenin 1 (CTNNB1), nitric oxide synthase 3 (NOS3) and interleukin 1 beta (IL1β). MMP9 and MYC associated unfavorably with overall survival (OS) in breast cancer patients, IL6, TP53, IL1β and CTNNB1 associated favorably, whereas NOS3 did not show any correlation with OS. Salt inducible kinase 1 (SIK1) was identified as a significant key DEG for comorbid samples when compared with BC, also dysregulated in T2DM and BC samples (adjusted p <0.05). Furthermore, four of the significant hub genes identified, including IL6, CXCL8, IL1B and MYC were also differentially expressed for comorbid samples, however at p < 0.05. Our study identifies key genes including SIK1, for comorbid state and 8 hub genes that may be implicated in T2DM-BC crosstalk. However, limitations associated with the insilico nature of this study necessitates for subsequent validation in wet lab. Hence, further investigation is crucial to study the molecular mechanisms of action underlying these genes to fully explore their potential as diagnostic and prognostic biomarkers and therapeutic targets for T2DM-BC association.
Collapse
Affiliation(s)
- Ilhaam Ayaz Durrani
- Department of Healthcare Biotechnology, Atta ur Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H12, Islamabad, Islamabad Capital Territory, Pakistan
| | - Attya Bhatti
- Department of Healthcare Biotechnology, Atta ur Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H12, Islamabad, Islamabad Capital Territory, Pakistan
| | - Peter John
- Department of Healthcare Biotechnology, Atta ur Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H12, Islamabad, Islamabad Capital Territory, Pakistan
| |
Collapse
|
3
|
Blood Vessels as a Key Mediator for Ethanol Toxicity: Implication for Neuronal Damage. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111882. [PMID: 36431016 PMCID: PMC9696276 DOI: 10.3390/life12111882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Excessive intake of ethanol is associated with severe brain dysfunction, and the subsequent neurological and behavioral abnormalities are well-established social risks. Many research studies have addressed how ethanol induces neurological toxicity. However, the underlying mechanisms with which ethanol induces neurological toxicity are still obscure, perhaps due to the variety and complexity of these mechanisms. Epithelial cells are in direct contact with blood and can thus mediate ethanol neurotoxicity. Ethanol activates the endothelial cells of blood vessels, as well as lymphatic vessels, in a concentration-dependent manner. Among various signaling mediators, nitric oxide plays important roles in response to ethanol. Endothelial and inducible nitric oxide synthases (eNOS and iNOS) are upregulated and activated by ethanol and enhance neuroinflammation. On the other hand, angiogenesis and blood vessel remodeling are both affected by ethanol intake, altering blood supply and releasing angiocrine factors to regulate neuronal functions. Thus, ethanol directly acts on endothelial cells, yet the molecular target(s) on endothelial cells remain unknown. Previous studies on neurons and glial cells have validated the potential contribution of membrane lipids and some specific proteins as ethanol targets, which may also be the case in endothelial cells. Future studies, based on current knowledge, will allow for a greater understanding of the contribution and underlying mechanisms of endothelial cells in ethanol-induced neurological toxicity, protecting neurological health against ethanol toxicity.
Collapse
|
4
|
Maniyar RR, Chakraborty S, Jarboe T, Suriano R, Wallack M, Geliebter J, Tiwari RK. Interacting Genetic Lesions of Melanoma in the Tumor Microenvironment: Defining a Viable Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1350:123-143. [PMID: 34888847 DOI: 10.1007/978-3-030-83282-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melanoma is the most aggressive form of skin cancer with an estimated 106,110 newly diagnosed cases in the United States of America in 2021 leading to an approximated 7180 melanoma-induced deaths. Cancer typically arises from an accumulation of somatic mutations and can be associated with mutagenic or carcinogenic exposure. A key characteristic of melanoma is the extensive somatic mutation rate of 16.8 mutations/Mb, which is largely attributed to UV exposure. Bearing the highest mutational load, many of them occur in key driver pathways, most commonly the BRAFV600E in the mitogen-activated protein kinase (MAPK) pathway. This driver mutation is targeted clinically with FDA-approved therapies using small molecule inhibitors of oncogenic BRAFV600E and MEK, which has greatly expanded therapeutic intervention following a melanoma diagnosis. Up until 2011, therapeutic options for metastatic melanoma were limited, and treatment typically fell under the spectrum of surgery, radiotherapy, and chemotherapy.Attributed to the extensive mutation rate, as well as having the highest number of neoepitopes, melanoma is deemed to be extremely immunogenic. However, despite this highly immunogenic nature, melanoma is notorious for inducing an immunosuppressive microenvironment which can be relieved by checkpoint inhibitor therapy. The two molecules currently approved clinically are ipilimumab and nivolumab, which target the molecules CTLA-4 and PD-1, respectively.A plethora of immunomodulatory molecules exist, many with redundant functions. Additionally, these molecules are expressed not only by immune cells but also by tumor cells within the tumor microenvironment. Tumor profiling of these cell surface checkpoint molecules is necessary to optimize a clinical response. The presence of immunomodulatory molecules in melanoma, using data from The Cancer Genome Atlas and validation of expression in two model systems, human melanoma tissues and patient-derived melanoma cells, revealed that the expression levels of B and T lymphocyte attenuator (BTLA), TIM1, and CD226, concurrently with the BRAFV600E mutation status, significantly dictated overall survival in melanoma patients. These molecules, along with herpesvirus entry mediator (HVEM) and CD160, two molecules that are a part of the HVEM/BTLA/CD160 axis, had a higher expression in human melanoma tissues when compared to normal skin melanocytes and have unique roles to play in T cell activation. New links are being uncovered between the expression of immunomodulatory molecules and the BRAFV600E genetic lesion in melanoma. Small molecule inhibitors of the MAPK pathway regulate the surface expression of this multifaceted molecule, making BTLA a promising target for immuno-oncology to be targeted in combination with small molecule inhibitors, potentially alleviating T regulatory cell activation and improving patient prognosis.
Collapse
Affiliation(s)
- R R Maniyar
- Human Oncology and Pathogenesis Program, Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - S Chakraborty
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - T Jarboe
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - R Suriano
- Division of Natural Sciences, College of Mount Saint Vincent, Bronx, NY, USA
| | - M Wallack
- Department Surgery, Metropolitan Hospital, New York, NY, USA
| | - J Geliebter
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - R K Tiwari
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
5
|
Estrogens Regulate Placental Angiogenesis in Horses. Int J Mol Sci 2021; 22:ijms222212116. [PMID: 34829994 PMCID: PMC8621320 DOI: 10.3390/ijms222212116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
A sufficient vascular network within the feto-maternal interface is necessary for placental function. Several pregnancy abnormalities have been associated with abnormal vascular formations in the placenta. We hypothesized that growth and expansion of the placental vascular network in the equine (Equus caballus) placenta is regulated by estrogens (estrogen family hormones), a hormone with a high circulating concentration during equine gestation. Administration of letrozole, a potent and specific inhibitor of aromatase, during the first trimester (D30 to D118), decreased circulatory estrone sulfate concentrations, increased circulatory testosterone and androstenedione concentrations, and tended to reduce the weight of the fetus (p < 0.1). Moreover, the gene expression of CYP17A1 was increased, and the expression of androgen receptor was decreased in the D120 chorioallantois (CA) of letrozole-treated mares in comparison to that of the control mares. We also found that at D120, the number of vessels tended to decrease in the CAs with letrozole treatment (p = 0.07). In addition, expression of a subset of angiogenic genes, such as ANGPT1, VEGF, and NOS2, were altered in the CAs of letrozole-treated mares. We further demonstrated that 17β-estradiol increases the expression of ANGPT1 and VEGF and increases the angiogenic activity of equine endothelial cells in vitro. Our results from the estrogen-suppressed group demonstrated an impaired placental vascular network, suggesting an estrogen-dependent vasculogenesis in the equine CA during the first trimester.
Collapse
|
6
|
Zou D, Song J, Deng M, Ma Y, Yang C, Liu J, Wang S, Wen Z, Tang Y, Qu X, Zhang Y. Bufalin inhibits peritoneal dissemination of gastric cancer through endothelial nitric oxide synthase-mitogen-activated protein kinases signaling pathway. FASEB J 2021; 35:e21601. [PMID: 33913201 DOI: 10.1096/fj.202002780r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/19/2021] [Accepted: 04/01/2021] [Indexed: 01/11/2023]
Abstract
Peritoneal dissemination threatens the survival of patients with gastric cancer (GC). Bufalin is an extract of traditional Chinese medicine, which has been proved to have anticancer effect. The target of bufalin in suppressing gastric cancer peritoneal dissemination (GCPD) and the underlying mechanism are still unclear. In this research, GC cell line MGC-803 and high-potential peritoneal dissemination cell line MKN-45P were treated with bufalin or L-NAME. Malignant biological behavior and protein level of GC cell lines were detected with MTT, wound healing, transwell, adhesion, and western blotting. Bioinformatics analysis and patient tissues were used to verify the role of endothelial nitric oxide synthase (NOS3) in GC. Mice model was used to assess the effect of bufalin and role of NOS3 in vivo. We found that bufalin inhibited the proliferation, invasion, and migration in GC cell lines. NOS3, which was an independent prognostic factor of GC patients, was predicted to be a potential target of bufalin. Further experiments proved that bufalin reduced the phosphorylation of NOS3, thereby inhibiting the mitogen-activated protein kinase (MAPK) signaling pathway, and ultimately suppressed GCPD by inhibiting EMT process. In conclusion, NOS3 was a potential therapeutic target and prognostic biomarker of GC. Bufalin could suppress GCPD through NOS3-MAPK signaling pathway, which provided more evidence support for intraperitoneal perfusion of bufalin to treat GCPD.
Collapse
Affiliation(s)
- Dan Zou
- The First Laboratory of Cancer Institute, the First Hospital of China Medical University, Shenyang, China
| | - Jincheng Song
- The First Laboratory of Cancer Institute, the First Hospital of China Medical University, Shenyang, China.,Department of Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingming Deng
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanju Ma
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, China
| | - Chunjiao Yang
- The First Laboratory of Cancer Institute, the First Hospital of China Medical University, Shenyang, China
| | - Jiaqing Liu
- The First Laboratory of Cancer Institute, the First Hospital of China Medical University, Shenyang, China
| | - Song Wang
- The First Laboratory of Cancer Institute, the First Hospital of China Medical University, Shenyang, China
| | - Zhenpeng Wen
- The First Laboratory of Cancer Institute, the First Hospital of China Medical University, Shenyang, China
| | - Yu Tang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Zou D, Li Z, Lv F, Yang Y, Yang C, Song J, Chen Y, Jin Z, Zhou J, Jiang Y, Ma Y, Jing Z, Tang Y, Zhang Y. Pan-Cancer Analysis of NOS3 Identifies Its Expression and Clinical Relevance in Gastric Cancer. Front Oncol 2021; 11:592761. [PMID: 33747912 PMCID: PMC7969995 DOI: 10.3389/fonc.2021.592761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background:NOS3 (endothelial NOS, eNOS) is a member of the nitric oxide synthase (NOS) enzyme family, mainly participating in nitric oxide (NO) generation. NOS3 has been reported to inhibit apoptosis and promote angiogenesis, proliferation, and invasiveness. However, the expression pattern of NOS3 and its diagnostic and prognostic potential has not been investigated in a pan-cancer perspective. Methods: Data from the Genotype-Tissue Expression (GTEx), the Cancer Genome Atlas (TCGA), the Cancer Cell Line Encyclopedia (CCLE), and the Cancer Therapeutics Response Portal (CTRP) were employed and NOS3 expression was comprehensively analyzed in normal tissues, cancer tissues, and cell lines. Immunohistochemical staining of tissue sections were used to validate the prognostic role of NOS3 in gastric cancer patients. GSVA and GSEA analyses were performed to investigate signaling pathways related to NOS3 expression. Results: In normal tissues, NOS3 was expressed highest in the spleen and lowest in the blood. NOS3 expression was increased in stomach adenocarcinoma (STAD) and significantly associated with poor prognosis of patients. Immunohistochemical staining validated that NOS3 was an independent prognostic factor of gastric cancer. Several canonical cancer-related pathways were found to be correlated with NOS3 expression in STAD. The expression of NOS3 was related to the response to QS-11 and brivinib in STAD. Conclusions:NOS3 was an independent prognostic factor for patients with STAD. Increased expression of NOS3 influenced occurrence and development of STAD through several canonical cancer-related pathways. Drug response analysis reported drugs to suppress NOS3. NOS3 might be a novel target for gastric cancer treatment.
Collapse
Affiliation(s)
- Dan Zou
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Fei Lv
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Yi Yang
- Laboratory Animal Center, China Medical University, Shenyang, China
| | - Chunjiao Yang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Jincheng Song
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China.,Lymphoma and Myeloma Diagnosis and Treatment Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yang Chen
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Zi Jin
- The First Department of Oncology, Shenyang Fifth People's Hospital, Shenyang, China
| | - Jinpeng Zhou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yang Jiang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.,Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanju Ma
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, China
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yu Tang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Strube F, Infanger M, Wehland M, Delvinioti X, Romswinkel A, Dietz C, Kraus A. Alteration of Cytoskeleton Morphology and Gene Expression in Human Breast Cancer Cells under Simulated Microgravity. CELL JOURNAL 2019; 22:106-114. [PMID: 31606974 PMCID: PMC6791064 DOI: 10.22074/cellj.2020.6537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/16/2019] [Indexed: 12/24/2022]
Abstract
Objective Weightlessness simulation due to the simulated microgravity has been shown to considerably affect behavior of tumor cells. It is aim of this study to evaluate characteristics of human breast cancer cells in this scaffoldfree 3D culture model. Materials and Methods In this experimental study, the cells were exposed to simulated microgravity in a randompositioning machine (RPM) for five days. Morphology was observed under phase-contrast and confocal microscopy. Cytofilament staining was performed and changes in expression level of cytofilament genes, proliferation/differentiation genes, oncogenes and tumor suppressor genes were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR), followed by western blot confirmation. Results After five days, distinct spheroid formation was observed. Rearrangement of the cytoskeleton into spherical shape was visible. VIM gene expression was significantly up-regulated for adherent cells and spheroids (3.3x and 3.6x respectively, P<0.05 each). RHOA also showed significant gene up-regulation for adherent cells and spheroids (3.2x and 3.9x respectively, P<0.05 each). BRCA showed significant gene up-regulation in adherent cells and spheroids (2.1x and 4.1x respectively, P<0.05 each). ERBB2 showed significant gene up-regulation (2.4x, P<0.05) in the spheroids, but not in the adherent cells. RAB27A showed no significant alteration in gene expression. MAPK) showed significant gene up-regulation in adherent cells and spheroids (3.2x, 3.0x, P<0.05 each). VEGF gene expression was down-regulated under simulated microgravity, without significance. Alterations of gene expressions could be confirmed on protein level for vimentin and MAPK1. Protein production was not increased for BRCA1, human epidermal growth factor receptor 2 (HER2) and VEGF. Contradictory changes were determined for RHOA and its related protein. Conclusion Microgravity provides an easy-to handle, scaffold-free 3D-culture model for human breast cancer cells. There were considerable changes in morphology, cytoskeleton shape and gene expressions. Identification of the underlying mechanisms could provide new therapeutic options.
Collapse
Affiliation(s)
- Florian Strube
- Department of Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, Magdeburg, Germany
| | - Manfred Infanger
- Department of Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, Magdeburg, Germany
| | - Markus Wehland
- Department of Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, Magdeburg, Germany
| | - Xenia Delvinioti
- Department of Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, Magdeburg, Germany
| | - Alexander Romswinkel
- Department of Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, Magdeburg, Germany
| | - Carlo Dietz
- Department of Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, Magdeburg, Germany
| | - Armin Kraus
- Department of Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, Magdeburg, Germany.Electronic Address:
| |
Collapse
|