1
|
Dumitrescu R, Bolchis V, Fratila AD, Jumanca D, Buzatu BLR, Sava-Rosianu R, Alexa VT, Galuscan A, Balean O. The Global Trends and Advances in Oral Microbiome Research on Oral Squamous Cell Carcinoma: A Systematic Review. Microorganisms 2025; 13:373. [PMID: 40005740 DOI: 10.3390/microorganisms13020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The oral microbiome is increasingly recognized as a key factor in the development and progression of oral squamous cell carcinoma (OSCC). Dysbiosis has been associated with inflammation and tumorigenesis, highlighting the potential of microbial alterations and salivary biomarkers as tools for early, non-invasive diagnosis. This review examines recent advancements in understanding the oral microbiome's role in OSCC. A comprehensive synthesis of studies from 2016 to 2024 was conducted to identify emerging themes and significant findings in the field. Key topics included the interplay between microbiome-driven mechanisms and cancer development, with a focus on microbial communities and their metabolic byproducts. The findings emphasize the importance of specific microbial alterations in modulating immune responses and tumor microenvironments, as well as the promise of biomarkers such as interleukins and miRNA signatures in improving diagnostic accuracy. Recent research trends indicate growing interest in the therapeutic potential of targeting the oral microbiome in OSCC management. Despite significant advancements, gaps remain in the understanding of the precise mechanisms linking dysbiosis to cancer progression. This review underscores the need for continued research to develop personalized diagnostic and therapeutic strategies based on the oral microbiome, with the potential to transform OSCC management.
Collapse
Affiliation(s)
- Ramona Dumitrescu
- Translational and Experimental Clinical Research Centre in Oral Health, University of Medicine and Pharmacy "Victor Babes", 300040 Timisoara, Romania
- Clinic of Preventive, Community Dentistry and Oral Health, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. no 2, 300041 Timisoara, Romania
| | - Vanessa Bolchis
- Translational and Experimental Clinical Research Centre in Oral Health, University of Medicine and Pharmacy "Victor Babes", 300040 Timisoara, Romania
- Clinic of Preventive, Community Dentistry and Oral Health, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. no 2, 300041 Timisoara, Romania
| | - Aurora Doris Fratila
- Faculty of Dental Medicine, Ludwig Maximilian University of Munich, Goethestrasse 70, 80336 Munich, Germany
| | - Daniela Jumanca
- Translational and Experimental Clinical Research Centre in Oral Health, University of Medicine and Pharmacy "Victor Babes", 300040 Timisoara, Romania
- Clinic of Preventive, Community Dentistry and Oral Health, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. no 2, 300041 Timisoara, Romania
| | - Berivan Laura Rebeca Buzatu
- Translational and Experimental Clinical Research Centre in Oral Health, University of Medicine and Pharmacy "Victor Babes", 300040 Timisoara, Romania
- Clinic of Preventive, Community Dentistry and Oral Health, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. no 2, 300041 Timisoara, Romania
| | - Ruxandra Sava-Rosianu
- Translational and Experimental Clinical Research Centre in Oral Health, University of Medicine and Pharmacy "Victor Babes", 300040 Timisoara, Romania
- Clinic of Preventive, Community Dentistry and Oral Health, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. no 2, 300041 Timisoara, Romania
| | - Vlad Tiberiu Alexa
- Translational and Experimental Clinical Research Centre in Oral Health, University of Medicine and Pharmacy "Victor Babes", 300040 Timisoara, Romania
- Clinic of Preventive, Community Dentistry and Oral Health, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. no 2, 300041 Timisoara, Romania
| | - Atena Galuscan
- Translational and Experimental Clinical Research Centre in Oral Health, University of Medicine and Pharmacy "Victor Babes", 300040 Timisoara, Romania
- Clinic of Preventive, Community Dentistry and Oral Health, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. no 2, 300041 Timisoara, Romania
| | - Octavia Balean
- Translational and Experimental Clinical Research Centre in Oral Health, University of Medicine and Pharmacy "Victor Babes", 300040 Timisoara, Romania
- Clinic of Preventive, Community Dentistry and Oral Health, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. no 2, 300041 Timisoara, Romania
| |
Collapse
|
2
|
Guo J, Han J, Li F, Ma Q, He J, You F, Ren Y, Fu X. 16S rRNA sequencing reveals relationships among enrichment of oral microbiota in the lower respiratory tract and pulmonary nodules malignant progression. Microbiol Spectr 2025:e0128424. [PMID: 39907436 DOI: 10.1128/spectrum.01284-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/26/2024] [Accepted: 12/17/2024] [Indexed: 02/06/2025] Open
Abstract
Micro-aspiration of oral microorganisms results in considerable enrichment within the lower respiratory tract (LRT), constituting an early event in lung cancer pathogenesis. To explore the correlation between malignant risk of pulmonary nodules (PNs) and oral commensals enrichment in LRT, oral saliva and bronchial alveolar lavage fluid samples from 22 low-risk PN patients, 17 intermediate-risk PN patients, and 11 high-risk PN patients were analyzed using 16S rRNA gene sequencing. Alpha and beta diversity analyses reveal minimal variation in oral microbial diversity and abundance among patients with different risks of PN. In contrast, a significant reduction in the diversity of LRT microbiota is observed in patients at high risk of PN. Based on multigroup comparative analysis of species differences and the linear discriminant analysis effect size method, Synergistes and Tannerella were identified as the dominant bacterial genera in the oral and LRT of high-risk PN patients, respectively. The study found that the LRT microbiota of PN patients seemed to originate from the oral, and the high enrichment of oral microbiota in the lower respiratory tract was most common in high-risk PN patients. The predominant bacterial genera present in the oral cavity and LRT of patients with PN were identified through abundance variance analysis. Eight key microbial genera were found in both the oral cavity and LRT: Streptococcus, Granulicatella, Porphyromonas, Bacillus, Neisseria, Alloprevotella, Prevotella, and Leptotrichia. Notably, receiver operating characteristic analysis identified Streptococcus, Granulicatella, and Leptotrichia as reliable biomarkers to differentiate high-risk PN. Spearman correlation analysis confirmed that the accumulation of oral microorganisms in the LRT played an important role in the process of PN cancerization. The co-occurrence network showed that the coexistence of Veillonella and Streptococcus in the oral and LRT may be involved in the occurrence of PN, while the LRT cluster of Rothia occurred in high-risk PN patients. Correlation analysis among species identified microbial communities predominantly composed of Veillonella, which may facilitate pulmonary carcinogenesis. IMPORTANCE This study is the first to elucidate the composition and interrelationships of oral and lower respiratory tract (LRT) microbiota in patients with pulmonary nodule (PN) across varying malignancy risk levels. We conducted an analysis to investigate the correlation between the malignant potential of PNs and the enrichment of oral microbiota within the LRT. Additionally, we explored the feasibility of utilizing oral-lower respiratory commensal microbiota as biomarkers to assess the benign and malignant nature of pulmonary nodules. This study aims to provide evidence supporting early diagnosis and intervention strategies for lung cancer.
Collapse
Affiliation(s)
- Jing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
| | - Jierong Han
- Hospital of Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
| | - Fang Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
| | - Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
| | - Jiawei He
- Hospital of Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
- Cancer Institute, Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
| | - Yifeng Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
- Tumor Teaching and Research Office, Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
- Tumor Teaching and Research Office, Chengdu University of Traditional Chinese Medicine, Jinniu District, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Bano Y, Shrivastava A, Shukla P, Chaudhary AA, Khan SUD, Khan S. The implication of microbiome in lungs cancer: mechanisms and strategies of cancer growth, diagnosis and therapy. Crit Rev Microbiol 2025; 51:128-152. [PMID: 38556797 DOI: 10.1080/1040841x.2024.2324864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 04/02/2024]
Abstract
Available evidence illustrates that microbiome is a promising target for the study of growth, diagnosis and therapy of various types of cancer. Lung cancer is a leading cause of cancer death worldwide. The relationship of microbiota and their products with diverse pathologic conditions has been getting large attention. The novel research suggests that the microbiome plays an important role in the growth and progression of lung cancer. The lung microbiome plays a crucial role in maintaining mucosal immunity and synchronizing the stability between tolerance and inflammation. Alteration in microbiome is identified as a critical player in the progression of lung cancer and negatively impacts the patient. Studies suggest that healthy microbiome is essential for effective therapy. Various clinical trials and research are focusing on enhancing the treatment efficacy by altering the microbiome. The regulation of microbiota will provide innovative and promising treatment strategies for the maintenance of host homeostasis and the prevention of lung cancer in lung cancer patients. In the current review article, we presented the latest progress about the involvement of microbiome in the growth and diagnosis of lung cancer. Furthermore, we also assessed the therapeutic status of the microbiome for the management and treatment of lung cancer.
Collapse
Affiliation(s)
- Yasmin Bano
- Department of Biotechnology, College of Life Sciences, Cancer Hospital and research Institute, Gwalior, India
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior, India
| | - Abhinav Shrivastava
- Department of Biotechnology, College of Life Sciences, Cancer Hospital and research Institute, Gwalior, India
| | - Piyush Shukla
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior, India
- Laboratory of Natural Products, Department of Rural Technology and Social Development, Guru Ghasidas University, Bilaspur, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health Technology (IIHT), Deoband, Saharanpur, UP, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, Australia
| |
Collapse
|
4
|
Zhao L, Fang Y, Zhang J, Wei C, Ji H, Zhao J, Wang D, Tang D. Changes in Intestinal Microbiota and Their Relationship With Patient Characteristics in Colorectal Cancer. Clin Med Insights Oncol 2024; 18:11795549241307632. [PMID: 39734513 PMCID: PMC11672582 DOI: 10.1177/11795549241307632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2024] [Accepted: 11/28/2024] [Indexed: 12/31/2024] Open
Abstract
Background Gut microbiota are associated with the pathological features and development of colorectal cancer (CRC); however, how gut microbiota changes in patients with CRC is unknown. This study investigated the role of gut microbiota in the development and progression of CRC by retrospectively comparing the structural differences between the gut microbiota of patients with CRC and healthy individuals. Methods Together with clinical data, we collected fecal samples from patients with CRC (n = 18) and healthy controls (n = 18) and performed 16S rRNA gene sequencing and alpha and beta diversity analysis to compare microbiota richness and diversity. Based on the differences in microbiota between the CRC and control groups, we identified disease-specific microbial communities after relevant factors. PICRUSt2 software was used to predict the differential microbial functions. Results The CRC and control groups differed in both composition and abundance of intestinal microbiota. Firmicutes and Bacteroidetes were the most abundant phyla in both groups, while Verrucomicrobi was significantly more abundant in the CRC group. Megamonas, Lachnospira, and Romboutsia were more abundant in the control group; 18 genera differed significantly in abundance between the groups, which were found to involve 21 metabolic pathways. The distribution and abundance of gut microbiota differed significantly between patients with CRC with and without lymph node metastasis; at the genus level, the abundance of Rothia and Streptococcus was significantly higher and that of Bacteroides, Parabacteroides, and Oscillibacter was significantly lower in patients with lymph node metastasis. Conclusions The gut microbiota is altered in CRC patients compared with healthy individuals, with specific changes in the microbiota associated with clinical and pathological features such as tumor stage, lymph node involvement, and tumor differentiation. Our findings elaborate to some extent on the link between the gut microbiota and CRC.
Collapse
Affiliation(s)
- Lu Zhao
- The Yangzhou Clinical College of Xuzhou Medical University, Xuzhou Medical University, Yangzhou, China
| | - Yongkun Fang
- Northern Jiangsu People’s Hospital, Yangzhou, China
| | | | - Chen Wei
- Northern Jiangsu People’s Hospital Affiliate to Yangzhou University, Yangzhou University, Yangzhou, China
| | - Hao Ji
- Northern Jiangsu People’s Hospital Affiliate to Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jiahao Zhao
- Northern Jiangsu People’s Hospital Affiliate to Yangzhou University, Yangzhou University, Yangzhou, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou, China
| | - Dong Tang
- The Yangzhou Clinical College of Xuzhou Medical University, Xuzhou Medical University, Yangzhou, China
- Northern Jiangsu People’s Hospital, Yangzhou, China
- Northern Jiangsu People’s Hospital Affiliate to Yangzhou University, Yangzhou University, Yangzhou, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou, China
- The Yangzhou School of Clinical Medicine, Dalian Medical University, Dalian, China
- The Yangzhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Northern Jiangsu People’s Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China
| |
Collapse
|
5
|
Nurkolis F, Utami TW, Alatas AI, Wicaksono D, Kurniawan R, Ratmandhika SR, Sukarno KT, Pahu YGP, Kim B, Tallei TE, Tjandrawinata RR, Alhasyimi AA, Surya R, Helen H, Halim P, Muhar AM, Syahputra RA. Can salivary and skin microbiome become a biodetector for aging-associated diseases? Current insights and future perspectives. FRONTIERS IN AGING 2024; 5:1462569. [PMID: 39484071 PMCID: PMC11524912 DOI: 10.3389/fragi.2024.1462569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/10/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024]
Abstract
Growth and aging are fundamental elements of human development. Aging is defined by a decrease in physiological activities and higher illness vulnerability. Affected by lifestyle, environmental, and hereditary elements, aging results in disorders including cardiovascular, musculoskeletal, and neurological diseases, which accounted for 16.1 million worldwide deaths in 2019. Stress-induced cellular senescence, caused by DNA damage, can reduce tissue regeneration and repair, promoting aging. The root cause of many age-related disorders is inflammation, encouraged by the senescence-associated secretory phenotype (SASP). Aging's metabolic changes and declining immune systems raise illness risk via promoting microbiome diversity. Stable, individual-specific skin and oral microbiomes are essential for both health and disease since dysbiosis is linked with periodontitis and eczema. Present from birth to death, the human microbiome, under the influence of diet and lifestyle, interacts symbiotically with the body. Poor dental health has been linked to Alzheimer's and Parkinson's diseases since oral microorganisms and systemic diseases have important interactions. Emphasizing the importance of microbiome health across the lifetime, this study reviews the understanding of the microbiome's role in aging-related diseases that can direct novel diagnosis and treatment approaches.
Collapse
Affiliation(s)
- Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | - Trianna Wahyu Utami
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Aiman Idrus Alatas
- Program of Clinical Microbiology Residency, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Danar Wicaksono
- Alumnus Department of Dermatology and Venereology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rudy Kurniawan
- Graduate School of Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | | | | | | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| | | | - Ananto Ali Alhasyimi
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Reggie Surya
- Department of Food Technology, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia
| | - Helen Helen
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Adi Muradi Muhar
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
6
|
Wang N, Sieng S, Chen P, Liang T, Xu J, Han Q. Regulation Effect of Toxocara canis and Anthelmintics on Intestinal Microbiota Diversity and Composition in Dog. Microorganisms 2024; 12:2037. [PMID: 39458346 PMCID: PMC11510115 DOI: 10.3390/microorganisms12102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Toxocara canis is an intestinal roundworm that can cause serious zoonotic parasitic diseases. Drontal Plus® Tasty (Dog) is a kind of commercial drug used to treat T. canis infection. Febantel, Praziquantel, and Pyrantel pamoate (PP) are its main component. However, there are few studies investigating the impact of Drontal Plus® Tasty (Dog) and its primary ingredients on the intestinal microbiota of dogs. In this study, we first collected the intestinal content samples of the dogs which administrated with anthelmintics or saline by sterile catheters, then used 16S rRNA high-throughput sequencing technology combined with a variety of bioinformatic analysis methods to analyze the effect of anthelmintics on intestinal microbiota. First, the results of the α and β diversity analysis showed that the abundance and diversity of intestinal microbiota decreased with T. canis infection, and increased after anthelmintic treatment. Then, we found the dominant species (the value of relative abundance > 0.05) was both 28 on phylum and genus levels, besides the most dominant species was Bacillota on phylum level and Segatella and Clostridium_sensu_stricto were most dominant on genus level. Futher analyzing the differences in microbiotal composition on phylum level, we found that Drontal Plus® Tasty treatment could significantly increase the proportion of Bacillota, while Febantel, Praziquantel, or PP could induce the significantly changes of Bacillota and Bacteroidota. In addition, by analyzing the differences in microbiotal composition on genus level, we found that anthelmintic could significantly decreased the relative abundance of Clostridium_sensu_stricto and significantly increased the abundance of Segatella. However, Drontal Plus® Tasty had no regulatory effect on the abundance of Segatella. In short, these finding showed that various anthelmintics all have significant effects for changing the abundance and diversity of host intestinal microbiota.
Collapse
Affiliation(s)
- Na Wang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, Hainan Province Key Laboratory of One Health, School of Life and Health Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (N.W.)
| | - Soben Sieng
- Laboratory of Tropical Veterinary Medicine and Vector Biology, Hainan Province Key Laboratory of One Health, School of Life and Health Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (N.W.)
- Faculty of Veterinary Medicine, Royal University of Agriculture, Dongkor District, Phnom Penh 120501, Cambodia
| | - Ping Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, Hainan Province Key Laboratory of One Health, School of Life and Health Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (N.W.)
| | - Tian Liang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, Hainan Province Key Laboratory of One Health, School of Life and Health Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (N.W.)
| | - Jingyun Xu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, Hainan Province Key Laboratory of One Health, School of Life and Health Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (N.W.)
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, Hainan Province Key Laboratory of One Health, School of Life and Health Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (N.W.)
| |
Collapse
|
7
|
Zhou Y, Meyle J, Groeger S. Periodontal pathogens and cancer development. Periodontol 2000 2024; 96:112-149. [PMID: 38965193 PMCID: PMC11579836 DOI: 10.1111/prd.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Increasing evidence suggests a significant association between periodontal disease and the occurrence of various cancers. The carcinogenic potential of several periodontal pathogens has been substantiated in vitro and in vivo. This review provides a comprehensive overview of the diverse mechanisms employed by different periodontal pathogens in the development of cancer. These mechanisms induce chronic inflammation, inhibit the host's immune system, activate cell invasion and proliferation, possess anti-apoptotic activity, and produce carcinogenic substances. Elucidating these mechanisms might provide new insights for developing novel approaches for tumor prevention, therapeutic purposes, and survival improvement.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Joerg Meyle
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Sabine Groeger
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
- Department of OrthodonticsJustus‐Liebig‐University of GiessenGiessenGermany
| |
Collapse
|
8
|
Kashyap P, Dutt N, Ahirwar DK, Yadav P. Lung Microbiome in Lung Cancer: A New Horizon in Cancer Study. Cancer Prev Res (Phila) 2024; 17:401-414. [PMID: 38787628 DOI: 10.1158/1940-6207.capr-24-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Lung cancer is the second most prevalent cancer worldwide and a leading cause of cancer-related deaths. Recent technological advancements have revealed that the lung microbiome, previously thought to be sterile, is host to various microorganisms. The association between the lung microbiome and lung cancer initiation, progression, and metastasis is complex and contradictory. However, disruption in the homeostasis of microbiome compositions correlated with the increased risk of lung cancer. This review summarizes current knowledge about the most recent developments and trends in lung cancer-related microbiota or microbial components. This article aims to provide information on this rapidly evolving field while giving context to the general role of the lung microbiome in lung cancer. In addition, this review briefly discussed the causative association of lung microbiome with lung cancer. We will review the mechanisms by which lung microbiota influence carcinogenesis, focusing on microbiota dysbiosis. Moreover, we will also discuss the host-microbiome interaction as it plays a crucial role in stimulating and regulating the immune response. Finally, we will provide information on the diagnostic role of the microbiome in lung cancer. This article aims to offer an overview of the lung microbiome as a predictive and diagnostic biomarker in lung cancer.
Collapse
Affiliation(s)
- Pragya Kashyap
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, India
| | - Naveen Dutt
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Dinesh K Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, India
- Interdesciplinary Research Platform-Smart Healthcare, Indian Institute of Technology Jodhpur, India
| | - Pankaj Yadav
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, India
- School of Artificial Intelligence and Data Science, Indian Institute of Technology Jodhpur, India
| |
Collapse
|
9
|
Ma Q, Li X, Jiang H, Fu X, You L, You F, Ren Y. Mechanisms underlying the effects, and clinical applications, of oral microbiota in lung cancer: current challenges and prospects. Crit Rev Microbiol 2024; 50:631-652. [PMID: 37694585 DOI: 10.1080/1040841x.2023.2247493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/06/2023] [Revised: 07/10/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
The oral cavity contains a site-specific microbiota that interacts with host cells to regulate many physiological processes in the human body. Emerging evidence has suggested that changes in the oral microbiota can increase the risk of lung cancer (LC), and the oral microbiota is also altered in patients with LC. Human and animal studies have shown that oral microecological disorders and/or specific oral bacteria may play an active role in the occurrence and development of LC through direct and/or indirect mechanisms. These studies support the potential of oral microbiota in the clinical treatment of LC. Oral microbiota may therefore be used in the prevention and treatment of LC and to improve the side effects of anticancer therapy by regulating the balance of the oral microbiome. Specific oral microbiota in LC may also be used as screening or predictive biomarkers. This review summarizes the main findings in research on oral microbiome-related LC and discusses current challenges and future research directions.
Collapse
Affiliation(s)
- Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Hua Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Liting You
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Yifeng Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| |
Collapse
|
10
|
Gupta A, Saleena LM, Kannan P, Shivachandran A. The impact of oral diseases on respiratory health and the influence of respiratory infections on the oral microbiome. J Dent 2024; 148:105213. [PMID: 38936454 DOI: 10.1016/j.jdent.2024.105213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE The objective of this review is to examine the relationship between oral diseases and respiratory health, investigating how oral microbiome disruptions contribute to respiratory tract infections. Additionally, it aims to explore the impact of respiratory disease symptoms and treatments on the oral microbiome. DATA SOURCES The literature utilized in this review was sourced from studies focusing on the correlation between oral health and respiratory infections, spanning a period of 40 years. Various databases and scholarly sources were likely consulted to gather relevant research articles, reviews, and clinical studies. STUDY SELECTION This review summarizes four decades-long research, providing insights into the intricate relationship between oral and respiratory health. It delves into how oral diseases influence respiratory tract conditions and vice versa. The selection process likely involved identifying studies that addressed the interaction between oral microbiome disruptions and respiratory complications. CONCLUSION Oral diseases or poor oral habits have been known to increase the risk of getting respiratory infections. Modern techniques have demonstrated the relationship between oral disease and respiratory tract infections like influenza, chronic obstructive pulmonary diseases, asthma, and Pneumonia. Apart from that, the medications used to treat respiratory diseases affect oral physiological factors like the pH of saliva, and saliva flow rate, which can cause significant changes in the oral microbiome. This review provides regular oral hygiene and care that can prevent respiratory health and respiratory infections. CLINICAL SIGNIFICANCE Understanding the intricate relationship between oral health and respiratory infections is crucial for healthcare providers. Implementing preventive measures and promoting good oral hygiene habits can reduce respiratory tract infections and improve overall respiratory health outcomes.
Collapse
Affiliation(s)
- Annapurna Gupta
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203, India
| | - Lilly M Saleena
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203, India.
| | - Priya Kannan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203, India
| | - A Shivachandran
- Department of Oral Pathology, SRM Dental College and Hospital, SRM Institute of Science and Technology, SRM Nagar Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203, India
| |
Collapse
|
11
|
Ren Y, Ma Q, Zeng X, Huang C, Tan S, Fu X, Zheng C, You F, Li X. Saliva‑microbiome‑derived signatures: expected to become a potential biomarker for pulmonary nodules (MCEPN-1). BMC Microbiol 2024; 24:132. [PMID: 38643115 PMCID: PMC11031921 DOI: 10.1186/s12866-024-03280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2023] [Accepted: 03/27/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Oral microbiota imbalance is associated with the progression of various lung diseases, including lung cancer. Pulmonary nodules (PNs) are often considered a critical stage for the early detection of lung cancer; however, the relationship between oral microbiota and PNs remains unknown. METHODS We conducted a 'Microbiome with pulmonary nodule series study 1' (MCEPN-1) where we compared PN patients and healthy controls (HCs), aiming to identify differences in oral microbiota characteristics and discover potential microbiota biomarkers for non-invasive, radiation-free PNs diagnosis and warning in the future. We performed 16 S rRNA amplicon sequencing on saliva samples from 173 PN patients and 40 HCs to compare the characteristics and functional changes in oral microbiota between the two groups. The random forest algorithm was used to identify PN salivary microbial markers. Biological functions and potential mechanisms of differential genes in saliva samples were preliminarily explored using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cluster of Orthologous Groups (COG) analyses. RESULTS The diversity of salivary microorganisms was higher in the PN group than in the HC group. Significant differences were noted in community composition and abundance of oral microorganisms between the two groups. Neisseria, Prevotella, Haemophilus and Actinomyces, Porphyromonas, Fusobacterium, 7M7x, Granulicatella and Selenomonas were the main differential genera between the PN and HC groups. Fusobacterium, Porphyromonas, Parvimonas, Peptostreptococcus and Haemophilus constituted the optimal marker sets (area under curve, AUC = 0.80), which can distinguish between patients with PNs and HCs. Further, the salivary microbiota composition was significantly correlated with age, sex, and smoking history (P < 0.001), but not with personal history of cancer (P > 0.05). Bioinformatics analysis of differential genes showed that patients with PN showed significant enrichment in protein/molecular functions related to immune deficiency and energy metabolisms, such as the cytoskeleton protein RodZ, nicotinamide adenine dinucleotide phosphate dehydrogenase (NADPH) dehydrogenase, major facilitator superfamily transporters and AraC family transcription regulators. CONCLUSIONS Our study provides the first evidence that the salivary microbiota can serve as potential biomarkers for identifying PN. We observed a significant association between changes in the oral microbiota and PNs, indicating the potential of salivary microbiota as a new non-invasive biomarker for PNs. TRIAL REGISTRATION Clinical trial registration number: ChiCTR2200062140; Date of registration: 07/25/2022.
Collapse
Affiliation(s)
- Yifeng Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Xiao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Chunxia Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Shiyan Tan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| |
Collapse
|
12
|
Druzhinin VG, Baranova ED, Demenkov PS, Matskova LV, Larionov AV. Composition of the sputum bacterial microbiome of patients with different pathomorphological forms of non-small-cell lung cancer. Vavilovskii Zhurnal Genet Selektsii 2024; 28:204-214. [PMID: 38680177 PMCID: PMC11043513 DOI: 10.18699/vjgb-24-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 05/01/2024] Open
Abstract
Recent studies have shown that the bacterial microbiome of the respiratory tract influences the development of lung cancer. Changes in the composition of the microbiome are observed in patients with chronic inflammatory processes. Such microbiome changes may include the occurrence of bacteria that cause oxidative stress and that are capable of causing genome damage in the cells of the host organism directly and indirectly. To date, the composition of the respiratory microbiome in patients with various histological variants of lung cancer has not been studied. In the present study, we determined the taxonomic composition of the sputum microbiome of 52 patients with squamous cell carcinoma of the lung, 52 patients with lung adenocarcinoma and 52 healthy control donors, using next-generation sequencing (NGS) on the V3-V4 region of the bacterial gene encoding 16S rRNA. The sputum microbiomes of patients with different histological types of lung cancer and controls did not show significant differences in terms of the species richness index (Shannon); however, the patients differed from the controls in terms of evenness index (Pielou). The structures of bacterial communities (beta diversity) in the adenocarcinoma and squamous cell carcinoma groups were also similar; however, when analyzed according to the matrix constructed by the Bray-Curtis method, there were differences between patients with squamous cell carcinoma and healthy subjects, but not between those with adenocarcinoma and controls. Using the LEFse method it was possible to identify an increase in the content of Bacillota (Streptococcus and Bacillus) and Actinomycetota (Rothia) in the sputum of patients with squamous cell carcinoma when compared with samples from patients with adenocarcinoma. There were no differences in the content of bacteria between the samples of patients with adenocarcinoma and the control ones. The content of representatives of the genera Streptococcus, Bacillus, Peptostreptococcus (phylum Bacillota), Prevotella, Macellibacteroides (phylum Bacteroidota), Rothia (phylum Actinomycetota) and Actinobacillus (phylum Pseudomonadota) was increased in the microbiome of sputum samples from patients with squamous cell carcinoma, compared with the control. Thus, the sputum bacterial microbiome of patients with different histological types of non-small-cell lung cancer has significant differences. Further research should be devoted to the search for microbiome biomarkers of lung cancer at the level of bacterial species using whole-genome sequencing.
Collapse
Affiliation(s)
- V G Druzhinin
- Kemerovo State University, Kemerovo, Russia Kemerovo State Medical University, Kemerovo, Russia
| | | | - P S Demenkov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | |
Collapse
|
13
|
Liu W, Pi Z, Wang X, Shang C, Song C, Wang R, He Z, Zhang X, Wan Y, Mao W. Microbiome and lung cancer: carcinogenic mechanisms, early cancer diagnosis, and promising microbial therapies. Crit Rev Oncol Hematol 2024; 196:104322. [PMID: 38460928 DOI: 10.1016/j.critrevonc.2024.104322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2023] [Revised: 02/13/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Microbiomes in the lung, gut, and oral cavity are correlated with lung cancer initiation and progression. While correlations have been preliminarily established in earlier studies, delving into microbe-mediated carcinogenic mechanisms will extend our understanding from correlation to causation. Building upon the causative relationships between microbiome and lung cancer, a novel concept of microbial biomarkers has emerged, mainly encompassing cancer-specific bacteria and circulating microbiome DNA. They might function as noninvasive liquid biopsy techniques for lung cancer early detection. Furthermore, potential microbial therapies have displayed initial efficacy in lung cancer treatment, providing multiple avenues for therapeutic intervention. Herein, we will discuss the molecular mechanisms and signaling pathways through which microbes influence lung cancer initiation and development. Additionally, we will summarize recent findings on microbial biomarkers as a member of tumor liquid biopsy techniques and provide an overview of the latest advances in various microbe-assisted/mediated therapeutic approaches for lung cancer.
Collapse
Affiliation(s)
- Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Zheshun Pi
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Xiaokun Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chenwei Shang
- The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chenghu Song
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Ruixin Wang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Zhao He
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Xu Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| | - Yuan Wan
- The Pq Laboratory of Biome Dx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton 13850, USA.
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China.
| |
Collapse
|
14
|
Li L, Zhong H, Wang Y, Pan Z, Xu S, Li S, Zeng G, Zhang W, Li J, He L. Exploring the relationship between intestinal microbiota and immune checkpoint inhibitors in the treatment of non-small cell lung cancer: insights from the "lung and large intestine stand in exterior-interior relationship" theory. Front Cell Infect Microbiol 2024; 14:1341032. [PMID: 38415012 PMCID: PMC10898591 DOI: 10.3389/fcimb.2024.1341032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/19/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Objective This study is aim to discern the Traditional Chinese Medicine (TCM) syndrome classifications relevant to immunotherapy sensitive in non-small cell lung cancer (NSCLC) patients, and to delineate intestinal microbiota biomarkers and impact that wield influence over the efficacy of NSCLC immunotherapy, grounded in the TCM theory of "lung and large intestine stand in exterior-interior relationship." Methods The study cohort consisted of patients with advanced NSCLC who received treatment at the Oncology Department of Chengdu Fifth People's Hospital. These patients were categorized into distinct TCM syndrome types and subsequently administered immune checkpoint inhibitors (ICIs), specifically PD-1 inhibitors. Stool specimens were collected from patients both prior to and following treatment. To scrutinize the differences in microbial gene sequences and species of the intestinal microbiota, 16S rRNA amplicon sequencing technology was employed. Additionally, peripheral blood samples were collected, and the analysis encompassed the assessment of T lymphocyte subsets and myeloid suppressor cell subsets via flow cytometry. Subsequently, alterations in the immune microenvironment pre- and post-treatment were thoroughly analyzed. Results The predominant clinical manifestations of advanced NSCLC patients encompassed spleen-lung Qi deficiency syndrome and Qi-Yin deficiency syndrome. Notably, the latter exhibited enhanced responsiveness to ICIs with a discernible amelioration of the immune microenvironment. Following ICIs treatment, significant variations in microbial abundance were identified among the three strains: Clostridia, Lachnospiraceae, and Lachnospirales, with a mutual dependency relationship. In the subset of patients manifesting positive PD-L1 expression and enduring therapeutic benefits, the study recorded marked increases in the ratios of CD3+%, CD4+%, and CD4+/CD8+ within the T lymphocyte subsets. Conversely, reductions were observed in the ratios of CD8%, Treg/CD4+, M-MDSC/MDSC, and G-MDSC/MDSC. Conclusion The strains Clostridia, Lachnospiraceae, and Lachnospirales emerge as potential biomarkers denoting the composition of the intestinal microbiota in the NSCLC therapy. The immunotherapy efficacy of ICIs markedly accentuates in patients displaying durable treatment benefits and those expressing positive PD-L1.
Collapse
Affiliation(s)
- Luwei Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Cancer Prevention and Treatment Institute of Chengdu, Department of Oncology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College), Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hongmei Zhong
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Cancer Prevention and Treatment Institute of Chengdu, Department of Oncology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College), Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yajie Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Cancer Prevention and Treatment Institute of Chengdu, Department of Oncology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College), Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zongying Pan
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Cancer Prevention and Treatment Institute of Chengdu, Department of Oncology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College), Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shumei Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Cancer Prevention and Treatment Institute of Chengdu, Department of Oncology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College), Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuai Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Cancer Prevention and Treatment Institute of Chengdu, Department of Oncology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College), Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Guilin Zeng
- Cancer Prevention and Treatment Institute of Chengdu, Department of Oncology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College), Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Weiwei Zhang
- Cancer Prevention and Treatment Institute of Chengdu, Department of Oncology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College), Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jie Li
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Lang He
- Cancer Prevention and Treatment Institute of Chengdu, Department of Oncology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College), Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Cheng J, Zhou L, Wang H. Symbiotic microbial communities in various locations of the lung cancer respiratory tract along with potential host immunological processes affected. Front Cell Infect Microbiol 2024; 14:1296295. [PMID: 38371298 PMCID: PMC10873922 DOI: 10.3389/fcimb.2024.1296295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Lung cancer has the highest mortality rate among all cancers worldwide. The 5-year overall survival rate for non-small cell lung cancer (NSCLC) is estimated at around 26%, whereas for small cell lung cancer (SCLC), the survival rate is only approximately 7%. This disease places a significant financial and psychological burden on individuals worldwide. The symbiotic microbiota in the human body has been significantly associated with the occurrence, progression, and prognosis of various diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Studies have demonstrated that respiratory symbiotic microorganisms and their metabolites play a crucial role in modulating immune function and contributing to the pathophysiology of lung cancer through their interactions with the host. In this review, we provide a comprehensive overview of the microbial characteristics associated with lung cancer, with a focus on the respiratory tract microbiota from different locations, including saliva, sputum, bronchoalveolar lavage fluid (BALF), bronchial brush samples, and tissue. We describe the respiratory tract microbiota's biodiversity characteristics by anatomical region, elucidating distinct pathological features, staging, metastasis, host chromosomal mutations, immune therapies, and the differentiated symbiotic microbiota under the influence of environmental factors. Our exploration investigates the intrinsic mechanisms linking the microbiota and its host. Furthermore, we have also provided a comprehensive review of the immune mechanisms by which microbiota are implicated in the development of lung cancer. Dysbiosis of the respiratory microbiota can promote or inhibit tumor progression through various mechanisms, including DNA damage and genomic instability, activation and regulation of the innate and adaptive immune systems, and stimulation of epithelial cells leading to the upregulation of carcinogenesis-related pathways.
Collapse
Affiliation(s)
- Jiuling Cheng
- Respiratory Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lujia Zhou
- Henan Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huaqi Wang
- Respiratory Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Kim G, Park C, Yoon YK, Park D, Lee JE, Lee D, Sun P, Park S, Yun C, Kang DH, Chung C. Prediction of lung cancer using novel biomarkers based on microbiome profiling of bronchoalveolar lavage fluid. Sci Rep 2024; 14:1691. [PMID: 38242941 PMCID: PMC10799071 DOI: 10.1038/s41598-024-52296-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024] Open
Abstract
There is an unmet need for biomarkers for the diagnosis of lung cancer and decision criteria for lung biopsy. We comparatively investigated the lung microbiomes of patients with lung cancer and benign lung diseases. Patients who underwent bronchoscopy at Chungnam National University Hospital between June 2021 and June 2022 were enrolled. Bronchoalveolar lavage fluid (BALF) was collected from 24 patients each with lung cancer and benign lung diseases. The samples were analyzed using 16S rRNA-based metagenomic sequencing. We found that alpha diversity and the beta diversity distribution (P = 0.001) differed significantly between patients with benign lung diseases and those with lung cancer. Firmicutes was the most abundant phylum in patients with lung cancer (33.39% ± 17.439), whereas Bacteroidota was the most abundant phylum in patients with benign lung disease (31.132% ± 22.505), respectively. In differential abundance analysis, the most differentially abundant microbiota taxon was unclassified_SAR202_clade, belonging to the phylum Chloroflexi. The established prediction model distinguished patients with benign lung disease from those with lung cancer with a high accuracy (micro area under the curve [AUC] = 0.98 and macro AUC = 0.99). The BALF microbiome may be a novel biomarker for the detection of lung cancer.
Collapse
Affiliation(s)
- Gihyeon Kim
- Genome and Company, Pangyo-ro 255, Bundang-gu, Seongnam, Korea
| | - Changho Park
- Genome and Company, Pangyo-ro 255, Bundang-gu, Seongnam, Korea
| | | | - Dongil Park
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jeong Eun Lee
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Dahye Lee
- Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Pureum Sun
- Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Shinyoung Park
- Genome and Company, Pangyo-ro 255, Bundang-gu, Seongnam, Korea
| | - Changhee Yun
- Genome and Company, Pangyo-ro 255, Bundang-gu, Seongnam, Korea
| | - Da Hyun Kang
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea.
| | - Chaeuk Chung
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea.
| |
Collapse
|
17
|
Aghili S, Rahimi H, Hakim LK, Karami S, Soufdoost RS, Oskouei AB, Alam M, Badkoobeh A, Golkar M, Abbasi K, Heboyan A, Hosseini ZS. Interactions Between Oral Microbiota and Cancers in the Aging Community: A Narrative Review. Cancer Control 2024; 31:10732748241270553. [PMID: 39092988 PMCID: PMC11378226 DOI: 10.1177/10732748241270553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 08/04/2024] Open
Abstract
The oral microbiome potentially wields significant influence in the development of cancer. Within the human oral cavity, an impressive diversity of more than 700 bacterial species resides, making it the second most varied microbiome in the body. This finely balanced oral microbiome ecosystem is vital for sustaining oral health. However, disruptions in this equilibrium, often brought about by dietary habits and inadequate oral hygiene, can result in various oral ailments like periodontitis, cavities, gingivitis, and even oral cancer. There is compelling evidence that the oral microbiome is linked to several types of cancer, including oral, pancreatic, colorectal, lung, gastric, and head and neck cancers. This review discussed the critical connections between cancer and members of the human oral microbiota. Extensive searches were conducted across the Web of Science, Scopus, and PubMed databases to provide an up-to-date overview of our understanding of the oral microbiota's role in various human cancers. By understanding the possible microbial origins of carcinogenesis, healthcare professionals can diagnose neoplastic diseases earlier and design treatments accordingly.
Collapse
Affiliation(s)
- Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hussein Rahimi
- Student Research Committee, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | | | | | - Asal Bagherzadeh Oskouei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | | |
Collapse
|
18
|
Nishimoto Y, Salim F, Yama K, Kumagai K, Jo R, Harada M, Maruyama Y, Aita Y, Fujii N, Inokuchi T, Kawamata R, Sako M, Ichiba Y, Tsutsumi K, Kimura M, Mori Y, Murakami S, Kakizawa Y, Kumagai T, Fukuda S. Integrated analysis of the oral and intestinal microbiome and metabolome of elderly people with more than 26 original teeth: a pilot study. Front Microbiol 2023; 14:1233460. [PMID: 37901820 PMCID: PMC10600518 DOI: 10.3389/fmicb.2023.1233460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
Elderly subjects with more than 20 natural teeth have a higher healthy life expectancy than those with few or no teeth. The oral microbiome and its metabolome are associated with oral health, and they are also associated with systemic health via the oral-gut axis. Here, we analyzed the oral and gut microbiome and metabolome profiles of elderly subjects with more than 26 natural teeth. Salivary samples collected as mouth-rinsed water and fecal samples were obtained from 22 healthy individuals, 10 elderly individuals with more than 26 natural teeth and 24 subjects with periodontal disease. The oral microbiome and metabolome profiles of elderly individuals resembled those of subjects with periodontal disease, with the metabolome showing a more substantial differential abundance of components. Despite the distinct oral metabolome profiles, there was no differential abundance of components in the gut microbiome and metabolomes, except for enrichment of short-chain fatty acids in elderly subjects. Finally, to investigate the relationship between the oral and gut microbiome and metabolome, we analyzed bacterial coexistence in the oral cavity and gut and analyzed the correlation of metabolite levels between the oral cavity and gut. However, there were few associations between oral and gut for bacteria and metabolites in either elderly or healthy subjects. Overall, these results indicate distinct oral microbiome and metabolome profiles, as well as the lack of an oral-gut axis in elderly subjects with a high number of natural teeth.
Collapse
Affiliation(s)
| | - Felix Salim
- Metagen Inc., Tsuruoka, Yamagata, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Kazuma Yama
- Research and Development Headquarters, Lion Corporation, Tokyo, Japan
| | - Kota Kumagai
- Hiyoshi Oral Health Clinics, Sakata, Yamagata, Japan
| | - Ryutaro Jo
- Research and Development Headquarters, Lion Corporation, Tokyo, Japan
| | - Minori Harada
- Hiyoshi Oral Health Clinics, Sakata, Yamagata, Japan
| | - Yuki Maruyama
- Research and Development Headquarters, Lion Corporation, Tokyo, Japan
| | - Yuto Aita
- Research and Development Headquarters, Lion Corporation, Tokyo, Japan
| | - Narumi Fujii
- Research and Development Headquarters, Lion Corporation, Tokyo, Japan
| | - Takuya Inokuchi
- Research and Development Headquarters, Lion Corporation, Tokyo, Japan
| | - Ryosuke Kawamata
- Research and Development Headquarters, Lion Corporation, Tokyo, Japan
| | - Misato Sako
- Research and Development Headquarters, Lion Corporation, Tokyo, Japan
| | - Yuko Ichiba
- Research and Development Headquarters, Lion Corporation, Tokyo, Japan
| | - Kota Tsutsumi
- Research and Development Headquarters, Lion Corporation, Tokyo, Japan
| | - Mitsuo Kimura
- Research and Development Headquarters, Lion Corporation, Tokyo, Japan
| | - Yuka Mori
- Metagen Inc., Tsuruoka, Yamagata, Japan
| | - Shinnosuke Murakami
- Metagen Inc., Tsuruoka, Yamagata, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Yasushi Kakizawa
- Research and Development Headquarters, Lion Corporation, Tokyo, Japan
| | | | - Shinji Fukuda
- Metagen Inc., Tsuruoka, Yamagata, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
19
|
Czarnecka-Chrebelska KH, Kordiak J, Brzeziańska-Lasota E, Pastuszak-Lewandoska D. Respiratory Tract Oncobiome in Lung Carcinogenesis: Where Are We Now? Cancers (Basel) 2023; 15:4935. [PMID: 37894302 PMCID: PMC10605430 DOI: 10.3390/cancers15204935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The importance of microbiota in developing and treating diseases, including lung cancer (LC), is becoming increasingly recognized. Studies have shown differences in microorganism populations in the upper and lower respiratory tracts of patients with lung cancer compared to healthy individuals, indicating a link between dysbiosis and lung cancer. However, it is not only important to identify "which bacteria are present" but also to understand "how" they affect lung carcinogenesis. The interactions between the host and lung microbiota are complex, and our knowledge of this relationship is limited. This review presents research findings on the bacterial lung microbiota and discusses the mechanisms by which lung-dwelling microorganisms may directly or indirectly contribute to the development of lung cancer. These mechanisms include influences on the host immune system regulation and the local immune microenvironment, the regulation of oncogenic signaling pathways in epithelial cells (causing cell cycle disorders, mutagenesis, and DNA damage), and lastly, the MAMPs-mediated path involving the effects of bacteriocins, TLRs signaling induction, and TNF release. A better understanding of lung microbiota's role in lung tumor pathology could lead to identifying new diagnostic and therapeutic biomarkers and developing personalized therapeutic management for lung cancer patients.
Collapse
Affiliation(s)
| | - Jacek Kordiak
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, 90-151 Lodz, Poland
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Dorota Pastuszak-Lewandoska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Pomorska 251, 90-151 Lodz, Poland;
| |
Collapse
|
20
|
Zhang K, He C, Qiu Y, Li X, Hu J, Fu B. ASSOCIATION OF ORAL MICROBIOTA AND PERIODONTAL DISEASE WITH LUNG CANCER: A SYSTEMATIC REVIEW AND META-ANALYSIS. J Evid Based Dent Pract 2023; 23:101897. [PMID: 37689446 DOI: 10.1016/j.jebdp.2023.101897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2022] [Revised: 04/22/2023] [Accepted: 05/17/2023] [Indexed: 09/11/2023]
Abstract
OBJECTIVES Evidence of oral microbiota perturbations has been accumulated for lung cancers. This review focused on the oral microbiota alterations in population suffering from lung cancer. In addition, we also discussed conflicting data about the association between oral microbiota dysbiosis and risk of lung cancer. METHODS A systematic search was conducted in Medline, Embase, PubMed, and Cochrane Library databases. The studies evaluated diversity and abundance of oral microbes in healthy and lung cancer individuals as well as association of periodontal disease and pathogens with lung cancer. Of 3559 studies, 28 included studies were performed in qualitative analysis, and 25 studies were used in meta-analyses for quantitative assessment. Heterogeneity was analyzed by using I² and chi-squared Q test statistics. Statistical analyses were performed by using the RevMan 5.4 software. RESULTS Compared with the control, lung cancer patients had lower alpha diversity (Shannon: SMD = -0.54; 95% CI, -0.90 to -0.19; P < .01, I2 = 71%). In nested case-control studies, individuals with decreased alpha diversity tended to have an increased risk of lung cancer (observed species: HR = 0.90; 95% CI, 0.85-0.96; P < .01, I2 = 0%; Shannon: HR = 0.89; 95% CI, 0.83-0.95; P < .01, I2 = 0%). Overall, no strong evidence of association of relative abundance with specific oral microbes with lung cancers was found because of inconsistent data. No associations were found between periodontal pathogens and lung cancer risk (red complex: HR = 1.12, 95% CI: 0.42-3.02, P = .82, I2 = 62%; orange complex: HR =1.77, 95% CI: 0.78-3.98, P = .17, I2 = 36%), expect for Fusobacterium nucleatum (HR = 2.27, 95% CI: 1.13-4.58, P = .02, I2 = 0%). The positive association of periodontal disease with lung cancer risk was found (HR = 1.58, 95% CI: 1.25-2.00, P < .001, I2= 0%) with increase of periodontal diseases severity (HR = 2.39, 95% CI: 1.57-3.66, P < .001, I2 = 0%). However, such association was not found in never-smoker participants (HR = 1.00, 95% CI: 0.76-1.31, P = .37, I2= 7%). CONCLUSIONS Lower alpha diversity of oral microbiome may be associated with a greater risk of lung cancer and might serve as a predictive signal of lung cancer risk. There was no strong evidence of relative abundance of oral microbial taxa and periodontal pathogens in lung cancer patients. Fusobacterium nucleatum might be a potential microbial candidate of biomarkers in lung cancer. Periodontal disease may be positively associated with lung cancer risk by confounding of smoking, but not an independent risk factor.
Collapse
Affiliation(s)
- Kai Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Cheng He
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuan Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiuyang Li
- Department of Epidemiology & Biostatistics, and Center for Clinical Big Data and Statistics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Pratap Singh R, Kumari N, Gupta S, Jaiswal R, Mehrotra D, Singh S, Mukherjee S, Kumar R. Intratumoral Microbiota Changes with Tumor Stage and Influences the Immune Signature of Oral Squamous Cell Carcinoma. Microbiol Spectr 2023; 11:e0459622. [PMID: 37409975 PMCID: PMC10434029 DOI: 10.1128/spectrum.04596-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/10/2022] [Accepted: 06/11/2023] [Indexed: 07/07/2023] Open
Abstract
Characterization of the oral microbiota profile through various studies has shown an association between the microbiome and oral cancer; however, stage-specific determinants of dynamic changes in microbial communities of oral cancer remain elusive. Additionally, the influence of the intratumoral microbiota on the intratumoral immune system remains largely unexplored. Therefore, this study aims to stratify microbial abundance in the early-onset and subsequent stages of oral cancer and analyze their influence on clinical-pathological and immunological features. The microbiome composition of tissue biopsy samples was identified using 16S rRNA amplicon sequencing, while intratumoral and systemic immune profiling was done with flow cytometry and immunohistochemistry-based analysis. The bacterial composition differed significantly among precancer, early cancer, and late cancer stages with the enrichment of genera Capnocytophaga, Fusobacterium, and Treponema in the cancer group, while Streptococcus and Rothia were enriched in the precancer group. Late cancer stages were significantly associated with Capnocytophaga with high predicting accuracy, while Fusobacterium was associated with early stages of cancer. A dense intermicrobial and microbiome-immune network was observed in the precancer group. At the cellular level, intratumoral immune cell infiltration of B cells and T cells (CD4+ and CD8+) was observed with enrichment of the effector memory phenotype. Naive and effector subsets of tumor-infiltrating lymphocytes (TILs) and related gene expression were found to be distinctly associated with bacterial communities; most importantly, highly abundant bacterial genera of the tumor microenvironment were either negatively correlated or not associated with the effector lymphocytes, which led to the conclusion that the tumor microenvironment favors an immunosuppressive and nonimmunogenic microbiota. IMPORTANCE The gut microbiome has been explored extensively for its importance in the modulation of systemic inflammation and immune response; in contrast, the intratumoral microbiome is less studied for its influence on immunity in cancer. Given the established correlation between intratumoral lymphocyte infiltration and patient survival in cases of solid tumors, it was pertinent to explore the extrinsic factor influencing immune cell infiltration in the tumor. Modulation of intratumoral microbiota could have a beneficial effect on the antitumor immune response. This study stratifies the microbial profile of oral squamous cell carcinoma starting from precancer to late-stage cancer and provides evidence for their immunomodulatory role in the tumor microenvironment. Our results suggest combining microbiome study with immunological signatures of tumors for their prognostic and diagnostic application.
Collapse
Affiliation(s)
- Raghwendra Pratap Singh
- Immunology Laboratory, Council for Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Naina Kumari
- Human Microbiome Research Laboratory, National Institute of Biomedical Genomics, Kalyani, West-Bengal, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Riddhi Jaiswal
- Department of Pathology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Divya Mehrotra
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Sudhir Singh
- Department of Radiology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Souvik Mukherjee
- Human Microbiome Research Laboratory, National Institute of Biomedical Genomics, Kalyani, West-Bengal, India
| | - Rashmi Kumar
- Immunology Laboratory, Council for Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
22
|
Najafi S, Jamalkandi SA, Najafi A, Salimian J, Ahmadi A. Exploring Co-occurrence patterns and microbial diversity in the lung microbiome of patients with non-small cell lung cancer. BMC Microbiol 2023; 23:182. [PMID: 37434142 DOI: 10.1186/s12866-023-02931-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND It has been demonstrated in the literature that a dysbiotic microbiome could have a negative impact on the host immune system and promote disease onset or exacerbation. Co-occurrence networks have been widely adopted to identify biomarkers and keystone taxa in the pathogenesis of microbiome-related diseases. Despite the promising results that network-driven approaches have led to in various human diseases, there is a dearth of research pertaining to key taxa that contribute to the pathogenesis of lung cancer. Therefore, our primary goal in this study is to explore co-existing relationships among members of the lung microbial community and any potential gained or lost interactions in lung cancer. RESULTS Using integrative and network-based approaches, we integrated four studies assessing the microbiome of lung biopsies of cancer patients. Differential abundance analyses showed that several bacterial taxa are different between tumor and tumor-adjacent normal tissues (FDR adjusted p-value < 0.05). Four, fifteen, and twelve significantly different associations were found at phylum, family, and genus levels. Diversity analyses suggested reduced alpha diversity in the tumor microbiome. However, beta diversity analysis did not show any discernible pattern between groups. In addition, four distinct modules of bacterial families were detected by the DBSCAN clustering method. Finally, in the co-occurrence network context, Actinobacteria, Firmicutes, Bacteroidetes, and Chloroflexi at the phylum level and Bifidobacterium, Massilia, Sphingobacterium, and Ochrobactrum at the genus level showed the highest degree of rewiring. CONCLUSIONS Despite the absence of statistically significant differences in the relative abundance of certain taxa between groups, it is imperative not to overlook them for further exploration. This is because they may hold pivotal central roles in the broader network of bacterial taxa (e.g., Bifidobacterium and Massilia). These findings emphasize the importance of a network analysis approach for studying the lung microbiome since it could facilitate identifying key microbial taxa in lung cancer pathogenesis. Relying exclusively on differentially abundant taxa may not be enough to fully grasp the complex interplay between lung cancer and the microbiome. Therefore, a network-based approach can offer deeper insights and a more comprehensive understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Sadaf Najafi
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Applied Virology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Kang EJ, Moon SJ, Lee K, Park IH, Kim JS, Choi YJ. Associations between missing teeth and the risk of cancer in Korea: a nationwide cohort study. BMC Oral Health 2023; 23:418. [PMID: 37353779 PMCID: PMC10288806 DOI: 10.1186/s12903-023-02997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2022] [Accepted: 04/28/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Poor dental health is correlated with an increased risk of cancer. Using a nationwide population cohort database, we investigated which cancer is highly associated with poor dental health and which dental indicator mostly influences cancer risk. METHODS This study was conducted using the National Health Checkups (NHC) and National Health Insurance System (NHIS) database in Korea. NHC in Korea includes dental examinations. We retrieved subjects who underwent NHC between 2002 and 2003 and their medical information in NHIS database was followed until December 31,2015. RESULTS Data for 200,170 who participated in the NHC between 2002 and 2003 were analysed. During the maximum follow-up period of 13 years, 15,506 (7.75%) subjects were diagnosed with cancer. The median time to cancer diagnosis after the dental examination was 87 months (range, 51-119 months). The proportion of people with missing teeth was higher in the cancer-diagnosed group than in the non-diagnosed group (26.27% vs. 22.59%, p < 0.001). Among several dental health factors, missing teeth were significantly associated with higher cancer risk. Subjects with missing teeth showed a 12% increased cancer risk compared to those without missing teeth (odds ratio [OR] 1.12, 95% confidence interval [CI], 1.08-1.16). The risk was significantly higher, especially in lung, head and neck, pancreatic, liver, biliary, and esophageal cancers (OR 1.27 [95% CI, 1.14-1.41], 1.32 [95% CI, 1.13-1.55], 1.27 [95% CI, 1.02-1.58], 1.24 [95% CI, 1.1-1.4], 1.28 [95% CI, 1.03-1.6], 1.4 [95% CI, 1.04-1.88], respectively). CONCLUSIONS Missing teeth were the most important dental indicator associated with cancer risk. Korean adults with missing teeth should be cautious about the risk of several cancers, particularly head and neck, lung, gastrointestinal, hepatobiliary, and pancreatic cancer.
Collapse
Affiliation(s)
- Eun Joo Kang
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, 148, Gurodong-Ro, Guro-Gu, Seoul, 08308, Republic of Korea.
| | - Seok-Joo Moon
- Smart Healthcare Center, Korea University Guro Hospital, 148, Gurodong-Ro, Guro-Gu, Seoul, 08308, Republic of Korea
| | - Kyoungmin Lee
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, 148, Gurodong-Ro, Guro-Gu, Seoul, 08308, Republic of Korea
| | - In Hae Park
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, 148, Gurodong-Ro, Guro-Gu, Seoul, 08308, Republic of Korea
| | - Jung Sun Kim
- Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-Ro, Danwon-Gu, Ansan, Gyeonggi-Do, 15355, Republic of Korea
| | - Yoon Ji Choi
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73 Goryeodae-Ro Seongbuk-Gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
24
|
Sami A, Elimairi I, Ryan CA, Stanton C, Patangia D, Ross RP. Altered oral microbiome in Sudanese Toombak smokeless tobacco users carries a newly emerging risk of squamous cell carcinoma development and progression. Sci Rep 2023; 13:6645. [PMID: 37095112 PMCID: PMC10125980 DOI: 10.1038/s41598-023-32892-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2022] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
There are an estimated 6-10 million smokeless tobacco (Toombak) users in Sudan, the majority being males. Toombak is known to be a carcinogenic product that is likely to modify the oral microbiome spatiality into a high-risk potential for the development and progression of oral cancer, but previous studies are lacking in this field. Here, we endeavour for the first time the exploration of the oral microbiome in key mucosal areas of the oral cavity and assess the microbiome variations in premalignant and oral squamous cell carcinoma (OSCC) samples from both users and non-users of Toombak. 16S rRNA sequencing was performed on DNA obtained from pooled saliva, oral mucosa and supragingival plaque from 78 Sudanese users and non-users of Toombak, aged between 20 and 70 years. In 32 of the pooled saliva samples, the mycobiome (fungal) environment was analysed through ITS sequencing. Then, 46 formalin-fixed paraffin-embedded samples of premalignant and OSCC samples were collected, and their associated microbiomes sequenced. The oral Sudanese microbiome was found to be enriched in Streptococcaceae, but Staphylococcaceae were significantly more abundant amongst Toombak users. Genera enriched in the oral cavity of Toombak users included Corynebacterium_1 and Cardiobacterium while in non-users, Prevotella, Lactobacillus and Bifidobacterium were prominent. Aspergillus was the most abundant fungus in the mouths of Toombak users with a marked loss of Candida. The genus Corynebacterium_1 was abundant in the buccal, floor of the mouth and saliva microbiomes as well as in oral cancer samples from Toombak users indicating a possible role for this genus in the early stages of oral cancer development. An oral cancer microbiome that favours poor survival and metastasis in those who use Toombak also emerged that includes the genera Stenotrophomonas and Schlegelella. Those utilising Toombak carry an altered oral microbiome that may be an additional risk factor for this products carcinogenicity to the oral structures. These significant microbiome modulations are a newly emerging key driving factor in oral cancer development and progression in Toombak users while it is also shown that Toombak users carry an oral cancer microbiome that may increase the potential for a poorer prognosis.
Collapse
Affiliation(s)
- Amel Sami
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, T12 YN60, Ireland
- Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of Dentistry, National Ribat University, Nile street, 1111, Khartoum, Sudan
| | - Imad Elimairi
- Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of Dentistry, National Ribat University, Nile street, 1111, Khartoum, Sudan
| | - C Anthony Ryan
- Department of Paediatrics and Child Health, University College Cork, Cork, T12 DFK4, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland.
| | - Dhrati Patangia
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, T12 YN60, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, T12 YN60, Ireland
| |
Collapse
|
25
|
Shome M, Gao W, Engelbrektson A, Song L, Williams S, Murugan V, Park JG, Chung Y, LaBaer J, Qiu J. Comparative Microbiomics Analysis of Antimicrobial Antibody Response between Patients with Lung Cancer and Control Subjects with Benign Pulmonary Nodules. Cancer Epidemiol Biomarkers Prev 2023; 32:496-504. [PMID: 36066883 PMCID: PMC10494706 DOI: 10.1158/1055-9965.epi-22-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2022] [Revised: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND CT screening can detect lung cancer early but suffers a high false-positive rate. There is a need for molecular biomarkers that can distinguish malignant and benign indeterminate pulmonary nodules (IPN) detected by CT scan. METHODS We profiled antibodies against 901 individual microbial antigens from 27 bacteria and 29 viruses in sera from 127 lung adenocarcinoma (ADC), 123 smoker controls (SMC), 170 benign nodule controls (BNC) individuals using protein microarrays to identify ADC and BNC specific antimicrobial antibodies. RESULTS Analyzing fourth quartile ORs, we found more antibodies with higher prevalence in the three BNC subgroups than in ADC or SMC. We demonstrated that significantly more anti-Helicobacter pylori antibodies showed higher prevalence in ADC relative to SMC. We performed subgroup analysis and found that more antibodies with higher prevalence in light smokers (≤20 pack-years) compared with heavy smokers (>20 pack-years), in BNC with nodule size >1 cm than in those with ≤1 cm nodules, and in stage I ADC than in stage II and III ADC. We performed multivariate analysis and constructed antibody panels that can distinguish ADC versus SMC and ADC versus BNC with area under the ROC curve (AUC) of 0.88 and 0.80, respectively. CONCLUSIONS Antimicrobial antibodies have the potential to reduce the false positive rate of CT screening and provide interesting insight in lung cancer development. IMPACT Microbial infection plays an important role in lung cancer development and the formation of benign pulmonary nodules.
Collapse
Affiliation(s)
- Mahasish Shome
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Weimin Gao
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | | | - Lusheng Song
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Stacy Williams
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Vel Murugan
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Jin G. Park
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Yunro Chung
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Joshua LaBaer
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Ji Qiu
- Biodesign Institute, Arizona State University, Tempe, Arizona
| |
Collapse
|
26
|
Karvela A, Veloudiou OZ, Karachaliou A, Kloukina T, Gomatou G, Kotteas E. Lung microbiome: an emerging player in lung cancer pathogenesis and progression. Clin Transl Oncol 2023:10.1007/s12094-023-03139-z. [PMID: 36995519 DOI: 10.1007/s12094-023-03139-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2023] [Accepted: 02/26/2023] [Indexed: 03/31/2023]
Abstract
The microbiome of the lungs, although until recently neglected, is now emerging as a potential contributor to chronic lung diseases, including cancer. Preclinical evidence suggests that the microbial burden of the lungs shapes the host immunity mechanisms and affects local antitumor immune responses. Studies of cohorts of patients with lung cancer reveal that different microbiome profiles are detected in patients with lung cancer compared to controls. In addition, an association between differential lung microbiome composition and distinct responses to immunotherapy has been suggested, yet, with limited data. Scarce evidence exists on the role of the lung microbiome in the development of metastases in the lungs. Interestingly, the lung microbiome is not isolated and interacts with the gut microbiome through a dynamic axis. Future research on the involvement of the lung microbiome in lung cancer pathogenesis and potential therapeutic implications is greatly anticipated.
Collapse
Affiliation(s)
- Alexandra Karvela
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| | - Orsalia-Zoi Veloudiou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| | - Anastasia Karachaliou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| | - Theoni Kloukina
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| | - Georgia Gomatou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece.
| | - Elias Kotteas
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Messogion Ave 152, 11527, Athens, Greece
| |
Collapse
|
27
|
Sani SN, Zhou W, Ismail BB, Zhang Y, Chen Z, Zhang B, Bao C, Zhang H, Wang X. LC-MS/MS Based Volatile Organic Compound Biomarkers Analysis for Early Detection of Lung Cancer. Cancers (Basel) 2023; 15:cancers15041186. [PMID: 36831528 PMCID: PMC9954752 DOI: 10.3390/cancers15041186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
(1) Background: lung cancer is the world's deadliest cancer, but early diagnosis helps to improve the cure rate and thus reduce the mortality rate. Annual low-dose computed tomography (LD-CT) screening is an efficient lung cancer-screening program for a high-risk population. However, LD-CT has often been characterized by a higher degree of false-positive results. To meet these challenges, a volatolomic approach, in particular, the breath volatile organic compounds (VOCs) fingerprint analysis, has recently received increased attention for its application in early lung cancer screening thanks to its convenience, non-invasiveness, and being well tolerated by patients. (2) Methods: a LC-MS/MS-based volatolomics analysis was carried out according to P/N 5046800 standard based breath analysis of VOC as novel cancer biomarkers for distinguishing early-stage lung cancer from the healthy control group. The discriminatory accuracy of identified VOCs was assessed using subject work characterization and a random forest risk prediction model. (3) Results: the proposed technique has good performance compared with existing approaches, the differences between the exhaled VOCs of the early lung cancer patients before operation, three to seven days after the operation, as well as four to six weeks after operation under fasting and 1 h after the meal were compared with the healthy controls. The results showed that only 1 h after a meal, the concentration of seven VOCs, including 3-hydroxy-2-butanone (TG-4), glycolaldehyde (TG-7), 2-pentanone (TG-8), acrolein (TG-11), nonaldehyde (TG-19), decanal (TG-20), and crotonaldehyde (TG-22), differ significantly between lung cancer patients and control, with the invasive adenocarcinoma of the lung (IAC) having the most significant difference. (4) Conclusions: this novel, non-invasive approach can improve the detection rate of early lung cancer, and LC-MS/MS-based breath analysis could be a promising method for clinical application.
Collapse
Affiliation(s)
- Shuaibu Nazifi Sani
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei Zhou
- Biochemical Analysis Laboratory, Breath (Hangzhou) Technology Co., Ltd., Hangzhou 310000, China
| | - Balarabe B. Ismail
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | | | - Zhijun Chen
- Zhejiang Zhoushan Hospital, Zhoushan 316021, China
| | - Binjie Zhang
- Zhejiang Zhoushan Hospital, Zhoushan 316021, China
| | - Changqian Bao
- Department of Hematology, The Second Affiliated Hospital, College of Medicine Zhejiang University, Hangzhou 310009, China
| | - Houde Zhang
- Department Gastroenterology, Nanshan Hospital, Guandong Medical University, Shenzhen 518052, China
- Correspondence: (H.Z.); (X.W.)
| | - Xiaozhi Wang
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- Correspondence: (H.Z.); (X.W.)
| |
Collapse
|
28
|
Doğan B, Ayar B, Pirim D. Investigation of putative roles of smoking-associated salivary microbiome alterations on carcinogenesis by integrative in silico analysis. Comput Biol Chem 2023; 102:107805. [PMID: 36587566 DOI: 10.1016/j.compbiolchem.2022.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Growing evidence suggests that cigarette smoking alters the salivary microbiome composition and affects the risk of various complex diseases including cancer. However, the potential role of the smoking-associated microbiome in cancer development remains unexplained. Here, the putative roles of smoking-related microbiome alterations in carcinogenesis were investigated by in silico analysis and suggested evidence can be further explored by experimental methodologies. The Disbiome database was used to extract smoking-associated microbial taxa in saliva and taxon set enrichment analysis (TSEA) was conducted to identify the gene sets associated with extracted microbial taxa. We further analyzed the expression profiles of identified genes by using RNA-sequencing data from TCGA and GTEx projects. Associations of the genes with smoking-related phenotypes in cancer datasets were analyzed to prioritize genes for their interplay between smoking-related microbiome and carcinogenesis. Thirty-eight microbial taxa associated with smoking were included in the TSEA and this revealed sixteen genes that were significantly associated with smoking-associated microbial taxa. All genes were found to be differentially expressed in at least one cancer dataset, yet the ELF3 and CTSH were the most common differentially expressed genes giving significant results for several cancer types. Moreover, C2CD3, CTSH, DSC3, ELF3, RHOT2, and WSB2 showed statistically significant associations with smoking-related phenotypes in cancer datasets. This study provides in silico evidence for the potential roles of the salivary microbiome on carcinogenesis. The results shed light on the importance of smoking cessation strategies for cancer management and interventions to stratify smokers for their risk of smoking-induced carcinogenesis.
Collapse
Affiliation(s)
- Berkcan Doğan
- Bursa Uludag University, Institute of Health Science, Department of Translational Medicine, 16059 Bursa, Turkey; Bursa Uludag University, Faculty of Medicine, Department of Medical Genetics, 16059 Bursa, Turkey
| | - Berna Ayar
- Bursa Uludag University, Department of Molecular Biology and Genetics, 16059 Bursa, Turkey; Istinye University, Institute of Health Science, Department of Molecular Oncology, 34010 Istanbul, Turkey
| | - Dilek Pirim
- Bursa Uludag University, Institute of Health Science, Department of Translational Medicine, 16059 Bursa, Turkey; Bursa Uludag University, Department of Molecular Biology and Genetics, 16059 Bursa, Turkey.
| |
Collapse
|
29
|
Huang Z, Yang X, Huang Y, Tang Z, Chen Y, Liu H, Huang M, Qing L, Li L, Wang Q, Jie Z, Jin X, Jia B. Saliva - a new opportunity for fluid biopsy. Clin Chem Lab Med 2023; 61:4-32. [PMID: 36285724 DOI: 10.1515/cclm-2022-0793] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 12/15/2022]
Abstract
Saliva is a complex biological fluid with a variety of biomolecules, such as DNA, RNA, proteins, metabolites and microbiota, which can be used for the screening and diagnosis of many diseases. In addition, saliva has the characteristics of simple collection, non-invasive and convenient storage, which gives it the potential to replace blood as a new main body of fluid biopsy, and it is an excellent biological diagnostic fluid. This review integrates recent studies and summarizes the research contents of salivaomics and the research progress of saliva in early diagnosis of oral and systemic diseases. This review aims to explore the value and prospect of saliva diagnosis in clinical application.
Collapse
Affiliation(s)
- Zhijie Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xiaoxia Yang
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ling Qing
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Li Li
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Qin Wang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zhuye Jie
- BGI Genomics, BGI-Shenzhen, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen, P.R. China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xin Jin
- BGI Genomics, BGI-Shenzhen, Shenzhen, P.R. China
- School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
30
|
Ni B, Kong X, Yan Y, Fu B, Zhou F, Xu S. Combined analysis of gut microbiome and serum metabolomics reveals novel biomarkers in patients with early-stage non-small cell lung cancer. Front Cell Infect Microbiol 2023; 13:1091825. [PMID: 36743312 PMCID: PMC9895385 DOI: 10.3389/fcimb.2023.1091825] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the predominant form of lung cancer and is one of the most fatal cancers worldwide. Recently, the International Association for the Study of Lung Cancer (IASLC) proposed a novel grading system based on the predominant and high-grade histological patterns for invasive pulmonary adenocarcinoma (IPA). To improve outcomes for NSCLC patients, we combined serum metabolomics and fecal microbiology to screen biomarkers in patients with early-stage NSCLC and identified characteristic microbial profiles in patients with different grades of IPA. 26 genera and 123 metabolites were significantly altered in the early-stage NSCLC patients. Agathobacter, Blautia, Clostridium, and Muribaculacea were more abundant in the early-stage NSCLC patients compared with healthy controls. For the different grades of IPA, the characteristic microorganisms are as follows: Blautia and Marinobacter in IPA grade type 1; Dorea in IPA grade type 2; and Agathobacter in IPA grade type 3. In the metabolome results, the early-stage NSCLC group mainly included higher levels of sphingolipids (D-erythro-sphingosine 1-phosphate, palmitoyl sphingomyelin), fatty acyl (Avocadyne 1-acetate, 12(S)-HETE, 20-Carboxy-Leukotriene B4, Thromboxane B3, 6-Keto-prostaglandin f1alpha, Sebacic acid, Tetradecanedioic acid) and glycerophospholipids (LPC 20:2, LPC 18:0, LPC 18:4, LPE 20:2, LPC 20:1, LPC 16:1, LPC 20:0, LPA 18:2, LPC 17:1, LPC 17:2, LPC 19:0). Dysregulation of pathways, such as sphingolipid metabolism and sphingolipid signaling pathway may become an emerging therapeutic strategy for early-NSCLC. Correlation analysis showed that gut microbiota and serum metabolic profiles were closely related, while Muribaculacea and Clostridium were the core genera. These findings provide new biomarkers for the diagnosis of early-stage NSCLC and the precise grading assessment of prognostic-related IPAs, which are of clinical importance and warrant further investigation of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Boxiong Ni
- Department of Thoracic Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xianglong Kong
- Department of Thoracic Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yubo Yan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bicheng Fu
- Department of Thoracic Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fucheng Zhou
- Department of Thoracic Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | | |
Collapse
|
31
|
Li X, Zhao C, Li C, Zhang M, Xie Y, Feng F, Yao W, Wang N. Detection and analysis of lung microbiota in mice with lung cancer lacking the NLRP3 gene. Biochem Biophys Res Commun 2023; 639:117-125. [PMID: 36481355 DOI: 10.1016/j.bbrc.2022.11.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
To explore whether the lung microbiota have changed in the process of NLRP3 inflammasome promoting cancer, we constructed a murine lung cancer model using tracheal instillation of benzo(a)pyrene and an equal volume of tricaprylin, and characterized lung microbiota in bronchoalveolar lavage fluid from 24 SPF wild-type and NLRP3 gene knockout (NLRP3-/-) C57BL/6 mice. 16SrDNA sequencing was used to analyze the changes in the microbiota. The wild-type and the NLRP3-/- lung cancer group had statistically significant differences in tumor formation rate, tumor number, and tumor size. At the phylum and the genus level, the relative abundance of Proteobacteria and Sphingomonas were the highest in each group respectively. Simpson (P = 0.002) and Shannon (P = 0.008) indexes showed that the diversity of microbiota in the lung cancer group was lower than that in the control group under the NLRP3-/- background. According to the ANOSIM and MRPP analysis, there was a difference between the NLRP3-/- lung cancer group and the NLRP3-/- control group (P < 0.05). The knockout of the NLRP3 gene caused changes in the lung microbiota of mice. There may be a regulatory relationship between the NLRP3 inflammasome and the lung microbiota, which affects the occurrence and development of lung cancer.
Collapse
Affiliation(s)
- Xinyan Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Congcong Zhao
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chao Li
- President's Office, Shandong Cancer Hospital, Jinan, 250117, China
| | - Mengmeng Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuanchen Xie
- Henan Red Cross Blood Center, Zhengzhou, 450053, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Wu Yao
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Na Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
32
|
Huang J, Huang J. Microbial Biomarkers for Lung Cancer: Current Understandings and Limitations. J Clin Med 2022; 11:jcm11247298. [PMID: 36555915 PMCID: PMC9782454 DOI: 10.3390/jcm11247298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
As our "hidden organ", microbes widely co-exist at various sites on the human body. These microbes are collectively referred to as the microbiome. A considerable number of studies have already proven that the microbiome has significant impacts on human health and disease progression, including cancers. The recent discovery of cancer-specific microbiomes renders these cancer-associated microbes as potential biomarkers and therapeutic targets. While at low biomass levels, the lung microbiome still dramatically influences the initiation, progression and treatment of lung cancers. However, research on lung cancer-associated microbiomes is emerging, and most profiling studies are performed within three years. Unfortunately, there are substantial inconsistencies across these studies. Variations in microbial diversity were observed, and different microbial biomarkers for lung cancer have been proposed. In this review, we summarized the current findings of lung cancer microbiome studies and attempt to explain the potential reasons for the dissimilarities. Other than lung microbiomes, oral and airway microbiomes are highly related to lung microbiomes and are therefore included as well. In addition, several lung cancer-associated bacterial genera have been detected by different independent studies. These bacterial genera may not be perfect biomarkers, but they still serve as promising risk factors for lung cancers and show great prognostic value.
Collapse
Affiliation(s)
| | - Juan Huang
- Correspondence: ; Tel.: +86-181-0818-9376
| |
Collapse
|
33
|
Ciernikova S, Sevcikova A, Stevurkova V, Mego M. Tumor microbiome - an integral part of the tumor microenvironment. Front Oncol 2022; 12:1063100. [PMID: 36505811 PMCID: PMC9730887 DOI: 10.3389/fonc.2022.1063100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
The tumor microenvironment (TME) plays a significant role in tumor progression and cancer cell survival. Besides malignant cells and non-malignant components, including immune cells, elements of the extracellular matrix, stromal cells, and endothelial cells, the tumor microbiome is considered to be an integral part of the TME. Mounting evidence from preclinical and clinical studies evaluated the presence of tumor type-specific intratumoral bacteria. Differences in microbiome composition between cancerous tissues and benign controls suggest the importance of the microbiome-based approach. Complex host-microbiota crosstalk within the TME affects tumor cell biology via the regulation of oncogenic pathways, immune response modulation, and interaction with microbiota-derived metabolites. Significantly, the involvement of tumor-associated microbiota in cancer drug metabolism highlights the therapeutic implications. This review aims to summarize current knowledge about the emerging role of tumor microbiome in various types of solid malignancies. The clinical utility of tumor microbiome in cancer progression and treatment is also discussed. Moreover, we provide an overview of clinical trials evaluating the role of tumor microbiome in cancer patients. The research focusing on the communication between the gut and tumor microbiomes may bring new opportunities for targeting the microbiome to increase the efficacy of cancer treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia,*Correspondence: Sona Ciernikova,
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
34
|
Stasiewicz M, Karpiński TM. The oral microbiota and its role in carcinogenesis. Semin Cancer Biol 2022; 86:633-642. [PMID: 34743032 DOI: 10.1016/j.semcancer.2021.11.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/27/2023]
Abstract
Despite decades of research, cancer continues to be a major global health concern. In recent years, the role played by microorganisms in the development and progression of cancer has come under increased scrutiny. The aim of the present review is to highlight the main associations between members of the human oral microbiota and various cancers. The PubMed database was searched for available literature to outline the current state of understanding regarding the role of the oral microbiota and a variety of human cancers. Oral squamous cell carcinoma (OSCC) is associated with carriage of a number of oral bacteria (e.g., Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus sp.), certain viruses (e.g., human papilloma virus, human herpes virus 8, herpes simplex virus 1 and Epstein-Barr virus) and yeast (Candida albicans). Moreover, members of the oral microbiota are associated with cancers of the esophagus, stomach, pancreas, colon/rectum and lung. Furthermore, the present review outlines a number of the carcinogenic mechanisms underlying the presented microbial associations with cancer. Such information may one day help clinicians to diagnose neoplastic diseases at earlier stages and prescribe treatments that take into account the possible microbial nature of carcinogenesis.
Collapse
Affiliation(s)
- Mark Stasiewicz
- Research Group of Medical Microbiology, Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland.
| | - Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland.
| |
Collapse
|
35
|
Baranova E, Druzhinin V, Matskova L, Demenkov P, Volobaev V, Minina V, Larionov A, Titov V. Sputum Microbiome Composition in Patients with Squamous Cell Lung Carcinoma. Life (Basel) 2022; 12:life12091365. [PMID: 36143401 PMCID: PMC9501211 DOI: 10.3390/life12091365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Recent findings indicate that the host microbiome can have a significant impact on the development of lung cancer by inducing an inflammatory response, causing dysbiosis, and generating genome damage. The aim of this study was to search for bacterial communities specifically associated with squamous cell carcinoma (LUSC). Methods: In this study, the taxonomic composition of the sputum microbiome of 40 men with untreated LUSC was compared with that of 40 healthy controls. Next-Generation sequencing of bacterial 16S rRNA genes was used to determine the taxonomic composition of the respiratory microbiome. Results: There were no differences in alpha diversity between the LUSC and control groups. Meanwhile, differences in the structure of bacterial communities (β diversity) among patients and controls differed significantly in sputum samples (pseudo-F = 1.53; p = 0.005). Genera of Streptococcus, Bacillus, Gemella, and Haemophilus were found to be significantly enriched in patients with LUSC compared to the control subjects, while 19 bacterial genera were significantly reduced, indicating a decrease in beta diversity in the microbiome of patients with LUSC. Conclusions: Among other candidates, Streptococcus (Streptococcus agalactiae) emerges as the most likely LUSC biomarker, but more research is needed to confirm this assumption.
Collapse
Affiliation(s)
- Elizaveta Baranova
- Department of Genetics and Fundamental Medicine, Kemerovo State University, Kemerovo 650000, Russia
| | - Vladimir Druzhinin
- Department of Genetics and Fundamental Medicine, Kemerovo State University, Kemerovo 650000, Russia
- Correspondence:
| | - Ludmila Matskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia
- Department of Microbiology, Tumor Biology and Cell Biology (MTC), 171 65 Stockholm, Sweden
| | - Pavel Demenkov
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Valentin Volobaev
- Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Varvara Minina
- Department of Genetics and Fundamental Medicine, Kemerovo State University, Kemerovo 650000, Russia
- Institute of Human Ecology, Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russia Academy of Sciences, Kemerovo 650065, Russia
| | - Alexey Larionov
- Department of Genetics and Fundamental Medicine, Kemerovo State University, Kemerovo 650000, Russia
| | - Victor Titov
- Kemerovo Regional Oncology Center, Kemerovo 654005, Russia
| |
Collapse
|
36
|
Wu Z, Tang J, Zhuang R, Meng D, Zhang L, Gu C, Teng X, Zhu Z, Liu J, Pang J, Hu J, Lv X. The microbiome of lower respiratory tract and tumor tissue in lung cancer manifested as radiological ground-glass opacity. Front Bioeng Biotechnol 2022; 10:892613. [PMID: 36091439 PMCID: PMC9455596 DOI: 10.3389/fbioe.2022.892613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have confirmed the existence of microbiota in the lungs. The relationship between lung ground-glass opacity (GGO) and microbiota in the lung microenvironment is not clear. In this study, we investigated the microbial composition and diversity in bronchoalveolar lavage fluid (BALF) of diseased lung segments and paired contralateral healthy lung segments from 11 GGO patients. Furthermore, lung GGO and paired normal tissues of 26 GGO patients were explored whether there are microbial characteristics related to GGO. Compared with the control group, the community richness of GGO tissue and BALF of GGO lung segment (α-diversity) and overall microbiome difference (β-diversity) had no significant difference. The microbiome composition of BALF of GGO segments is distinct from that of paired healthy lung segments [genus (Rothia), order (Lachnospiraceae), family (Lachnospiraceae), genus (Lachnospiraceae_NK4A136_group, Faecalibacterium), and species (Faecalibacterium prausnitzii, Bacteroides uniforms)]. GGO tissue and adjacent lung tissue had more significant differences at the levels of class, order, family, genus, and species level, and most of them are enriched in normal lung tissue. The area under the curve (AUC) using 10 genera-based biomarkers to predict GGO was 91.05% (95% CI: 81.93–100%). In conclusion, this study demonstrates there are significant differences in the lower respiratory tract and lung microbiome between GGO and the non-malignant control group through the BALF and lung tissues. Furthermore, some potential bacterial biomarkers showed good performance to predict GGO.
Collapse
Affiliation(s)
- Zhigang Wu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Tang
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Runzhou Zhuang
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Di Meng
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lichen Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Gu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Teng
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ziyue Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiacong Liu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinghua Pang
- Department of Thoracic Surgery, Fenghua People’s Hospital, Ningbo, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Jian Hu, ; Xiayi Lv,
| | - Xiayi Lv
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Jian Hu, ; Xiayi Lv,
| |
Collapse
|
37
|
Jiao J, Zheng Y, Zhang Q, Xia D, Zhang L, Ma N. Saliva microbiome changes in thyroid cancer and thyroid nodules patients. Front Cell Infect Microbiol 2022; 12:989188. [PMID: 36034695 PMCID: PMC9403763 DOI: 10.3389/fcimb.2022.989188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Thyroid disease has been reported to associate with gut microbiota, but the effects of thyroid cancer and thyroid nodules on the oral microbiota are still largely unknown. This study aimed to identify the variation in salivary microbiota and their potential association with thyroid cancer and thyroid nodules. Methods We used 16S rRNA high-throughput sequencing to examine the salivary microbiota of thyroid cancer patients (n = 14), thyroid nodules patients (n = 9), and healthy controls (n = 15). Results The alpha-diversity indices Chao1 and ACE were found to be relatively higher in patients with thyroid cancer and thyroid nodules compared to healthy controls. The beta diversity in both the thyroid cancer and thyroid nodules groups was divergent from the healthy control group. The genera Alloprevotella, Anaeroglobus, Acinetobacter, unclassified Bacteroidales, and unclassified Cyanobacteriales were significantly enriched in the thyroid cancer group compared with the healthy control group. In contrast, the microbiome of the healthy controls was mainly composed of the genera Haemophilus, Lautropia, Allorhizobium Neorhizobium Pararhizobium Rhizobium, Escherichia Shigella, and unclassified Rhodobacteraceae. The thyroid nodules group was dominated by genre uncultured Candidatus Saccharibacteria bacterium, unclassified Clostridiales bacterium feline oral taxon 148, Treponema, unclassified Prevotellaceae, Mobiluncus, and Acholeplasma. In contrast, the genera unclassified Rhodobacteraceae and Aggregatibacter dominated the healthy control group. The study also found that clinical indicators were correlated with the saliva microbiome. Conclusion The salivary microbiota variation may be connected with thyroid cancer and thyroid nodules.
Collapse
Affiliation(s)
- Junjun Jiao
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Youli Zheng
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Qingyu Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Degeng Xia
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Li Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
- *Correspondence: Ning Ma, ; Li Zhang,
| | - Ning Ma
- Hospital of Stomatology, Jilin University, Changchun, China
- *Correspondence: Ning Ma, ; Li Zhang,
| |
Collapse
|
38
|
Vogtmann E, Hua X, Yu G, Purandare V, Hullings AG, Shao D, Wan Y, Li S, Dagnall CL, Jones K, Hicks BD, Hutchinson A, Caporaso JG, Wheeler W, Sandler DP, Beane Freeman LE, Liao LM, Huang WY, Freedman ND, Caporaso NE, Sinha R, Gail MH, Shi J, Abnet CC. The Oral Microbiome and Lung Cancer Risk: An Analysis of 3 Prospective Cohort Studies. J Natl Cancer Inst 2022; 114:1501-1510. [PMID: 35929779 PMCID: PMC9664178 DOI: 10.1093/jnci/djac149] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/26/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Previous studies suggested associations between the oral microbiome and lung cancer, but studies were predominantly cross-sectional and underpowered. METHODS Using a case-cohort design, 1306 incident lung cancer cases were identified in the Agricultural Health Study; National Institutes of Health-AARP Diet and Health Study; and Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Referent subcohorts were randomly selected by strata of age, sex, and smoking history. DNA was extracted from oral wash specimens using the DSP DNA Virus Pathogen kit, the 16S rRNA gene V4 region was amplified and sequenced, and bioinformatics were conducted using QIIME 2. Hazard ratios and 95% confidence intervals were calculated using weighted Cox proportional hazards models. RESULTS Higher alpha diversity was associated with lower lung cancer risk (Shannon index hazard ratio = 0.90, 95% confidence interval = 0.84 to 0.96). Specific principal component vectors of the microbial communities were also statistically significantly associated with lung cancer risk. After multiple testing adjustment, greater relative abundance of 3 genera and presence of 1 genus were associated with greater lung cancer risk, whereas presence of 3 genera were associated with lower risk. For example, every SD increase in Streptococcus abundance was associated with 1.14 times the risk of lung cancer (95% confidence interval = 1.06 to 1.22). Associations were strongest among squamous cell carcinoma cases and former smokers. CONCLUSIONS Multiple oral microbial measures were prospectively associated with lung cancer risk in 3 US cohort studies, with associations varying by smoking history and histologic subtype. The oral microbiome may offer new opportunities for lung cancer prevention.
Collapse
Affiliation(s)
- Emily Vogtmann
- Correspondence to: Emily Vogtmann, PhD, MPH, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Dr, MSC 9768, Bethesda, MD 20892, USA (e-mail: )
| | | | - Guoqin Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Vaishnavi Purandare
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Autumn G Hullings
- Nutrition Department, University of North Carolina, Chapel Hill, NC, USA
| | - Dantong Shao
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yunhu Wan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA,Frederick National Laboratory for Cancer Research/Leidos Biomedical Research Laboratory, Inc, Frederick, MD, USA
| | - Shilan Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA,Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington, DC, USA
| | - Casey L Dagnall
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA,Frederick National Laboratory for Cancer Research/Leidos Biomedical Research Laboratory, Inc, Frederick, MD, USA
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA,Frederick National Laboratory for Cancer Research/Leidos Biomedical Research Laboratory, Inc, Frederick, MD, USA
| | - Belynda D Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA,Frederick National Laboratory for Cancer Research/Leidos Biomedical Research Laboratory, Inc, Frederick, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA,Frederick National Laboratory for Cancer Research/Leidos Biomedical Research Laboratory, Inc, Frederick, MD, USA
| | - J Gregory Caporaso
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Dale P Sandler
- Epidemiology Branch, Chronic Disease Epidemiology Group, National Institute for Environmental Health Science, Research Triangle Park, NC, USA
| | - Laura E Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Linda M Liao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Rashmi Sinha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mitchell H Gail
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Christian C Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
39
|
Chattopadhyay I, Lu W, Manikam R, Malarvili MB, Ambati RR, Gundamaraju R. Can metagenomics unravel the impact of oral bacteriome in human diseases? Biotechnol Genet Eng Rev 2022; 39:85-117. [PMID: 35861776 DOI: 10.1080/02648725.2022.2102877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/02/2022]
Abstract
Oral microbial ecosystems are vital in maintaining the health of the oral cavity and the entire body. Oral microbiota is associated with the progression of oral diseases such as dental caries, periodontal diseases, head and neck cancer, and several systemic diseases such as cardiovascular disease, rheumatoid arthritis, adverse pregnancy outcomes, diabetes, lung infection, colorectal cancer, and pancreatic cancer. Buccal mucosa, tongue dorsum, hard palate, saliva, palatine tonsils, throat, keratinized gingiva, supra-gingival plaque, subgingival plaque, dentures, and lips are microbial habitats of the oral cavity. Porphyromonas gingivalis may have a role in the development of periodontal diseases, oral cancer, diabetes, and atherosclerotic disease. Fusobacterium nucleatum showed a higher abundance in periodontal diseases, oral and colon cancer, adverse pregnancy outcomes, diabetes, and rheumatoid arthritis. The higher abundance of Prevotella intermedia is typical in periodontal diseases, rheumatoid arthritis, and adverse pregnancy outcome. S. salivarius displayed higher abundance in both dental caries and OSCC. Oral bacteria may influence systemic diseases through inflammation by releasing pro inflammatory cytokines. Identification of oral bacteria using culture-dependent approaches and next-generation sequencing-based metagenomic approaches is believed to significantly identify the therapeutic targets and non-invasive diagnostic indicators in different human diseases. Oral bacteria in saliva could be exploited as a non-invasive diagnostic indicator for the early detection of oral and systemic disorders. Other therapeutic approaches such as the use of probiotics, green tea polyphenol, cold atmospheric plasma (CAP) therapy, antimicrobial photodynamic therapy, and antimicrobial peptides are used to inhibit the growth of biofilm formation by oral bacteria.
Collapse
Affiliation(s)
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Rishya Manikam
- Trauma and Emergency, University of Malaya, Kuala Lumpur, Malaysia
| | - M B Malarvili
- School of Biomedical and Health Science, Universiti Teknologi Malaysia, Skudai, Johor Bahru, Malaysia
| | - Ranga Rao Ambati
- Department of Biotechnology, Vignan`s Foundation for Science, Technology and Research (Deemed to be University), Guntur, Andhra Pradesh, India
| | - Rohit Gundamaraju
- ER stress and Mucosal immunology lab, School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
40
|
Qin X, Bi L, Yang W, He Y, Gu Y, Yang Y, Gong Y, Wang Y, Yan X, Xu L, Xiao H, Jiao L. Dysbiosis of the Gut Microbiome Is Associated With Histopathology of Lung Cancer. Front Microbiol 2022; 13:918823. [PMID: 35774470 PMCID: PMC9237568 DOI: 10.3389/fmicb.2022.918823] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Lung cancer is a malignancy with high incidence and mortality worldwide. Previous studies have shown that the gut microbiome plays an important role in the development and progression of metabolic cancers. However, data on the characteristics of the gut microbiome with different histopathology types of lung cancer remain scant. We collected stool samples from 28 healthy people (HP) and 61 lung cancer patients. The lung cancer patients were classified into three types according to their histopathology: Atypical Adenomatous Hyperplasia/Adenocarcinoma in situ (AAH/AIS), Minimally Invasive Adenocarcinoma (MIA), and Invasive Adenocarcinoma (IA). In addition, we employed 16S rRNA gene amplicon sequencing to analyze the characteristics of the gut microbiome in these patients. Our analysis revealed that the categorized cancer patients had unique intestinal flora characteristics, and had lower density and flora diversity compared to healthy people. Besides, the structure of the flora families and genera was more complex, and each group presented specific pathogenic microbiota. The patients in the AAH/AIS group and HP group had relatively similar flora structure compared with the IA and MIA groups. In addition, we identified several flora markers that showed significant changes with the development of lung cancer. Lung cancer gut microbiota showed a decrease in short-chain fatty acids (SCFAs) producing and anti-inflammatory bacteria compared to healthy people, while some pathogenic bacteria such as proinflammatory or tumor-promoting bacteria were more abundant in lung cancer patients. On the other hand, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Clusters of Orthologous Group (COG) annotation demonstrated suppression of some dominant metabolism-related pathways in lung cancer. These findings provide new biomarkers for the diagnosis and prognostic assessment of lung cancer and lay the basis for novel targeted therapeutic strategies for the prevention and treatment of lung cancer.
Collapse
Affiliation(s)
- Xiong Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiao Yang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyun He
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifeng Gu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yabin Gong
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichao Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxia Yan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haibo Xiao
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Haibo Xiao,
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Clinical Immunology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Lijing Jiao,
| |
Collapse
|
41
|
Druzhinin VG, Baranova ED, Matskova LV, Demenkov PS, Volobaev VP, Minina VI, Larionov AV, Paradnikova SA. Sputum Microbiota in Coal Workers Diagnosed with Pneumoconiosis as Revealed by 16S rRNA Gene Sequencing. Life (Basel) 2022; 12:830. [PMID: 35743861 PMCID: PMC9224638 DOI: 10.3390/life12060830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Coal worker's pneumoconiosis (CWP) is an occupationally induced progressive fibrotic lung disease. This irreversible but preventable disease currently affects millions across the world, mainly in countries with developed coal mining industries. Here, we report a pilot study that explores the sputum microbiome as a potential non-invasive bacterial biomarker of CWP status. Sputum samples were collected from 35 former and active coal miners diagnosed with CWP and 35 healthy controls. Sequencing of bacterial 16S rRNA genes was used to study the taxonomic composition of the respiratory microbiome. There was no difference in alpha diversity between CWP and controls. The structure of bacterial communities in sputum samples (β diversity) differed significantly between cases and controls (pseudo-F = 3.61; p = 0.004). A significant increase in the abundance of Streptococcus (25.12 ± 11.37 vs. 16.85 ± 11.35%; p = 0.0003) was detected in samples from CWP subjects as compared to controls. The increased representation of Streptococcus in sputum from CWP patients was associated only with the presence of occupational pulmonary fibrosis, but did not depend on age, and did not differ between former and current miners. The study shows, for the first time, that the sputum microbiota of CWP subjects differs from that of controls. The results of our present exploratory study warrant further investigations on a larger cohort.
Collapse
Affiliation(s)
- Vladimir G. Druzhinin
- Department of Genetics and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia; (E.D.B.); (V.I.M.); (A.V.L.); (S.A.P.)
| | - Elizaveta D. Baranova
- Department of Genetics and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia; (E.D.B.); (V.I.M.); (A.V.L.); (S.A.P.)
| | - Ludmila V. Matskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia;
- Department of Microbiology, Tumor Biology and Cell Biology (MTC), Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Pavel S. Demenkov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
| | - Valentin P. Volobaev
- Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Varvara I. Minina
- Department of Genetics and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia; (E.D.B.); (V.I.M.); (A.V.L.); (S.A.P.)
| | - Alexey V. Larionov
- Department of Genetics and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia; (E.D.B.); (V.I.M.); (A.V.L.); (S.A.P.)
| | - Snezana A. Paradnikova
- Department of Genetics and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia; (E.D.B.); (V.I.M.); (A.V.L.); (S.A.P.)
| |
Collapse
|
42
|
Klein M, Pragman AA, Wendt C. Biomarkers and the microbiome in the detection and treatment of early-stage non-small cell lung cancer. Semin Oncol 2022; 49:285-297. [PMID: 35914981 DOI: 10.1053/j.seminoncol.2022.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/03/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 11/11/2022]
Abstract
Lung cancer is one of the most common and deadly cancers in the world. However, over the last several years, research into lung cancer screening and novel therapeutic approaches have provided promise that earlier detection combined with new treatment strategies may result in significantly improved outcomes. Biomarkers will most certainly play a major role in identifying those who may benefit from, and how to apply, these new treatment strategies. Here we discuss potential biomarkers, including the microbiome, in both detection and treatment strategies for early stage lung cancer.
Collapse
Affiliation(s)
- Mark Klein
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, Minnesota; Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.
| | - Alexa A Pragman
- Infectious Disease Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, Minnesota; Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Christine Wendt
- Pulmonary, Allergy, Critical Care and Sleep Medicine Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, Minnesota; Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
43
|
Abstract
The identification of microbes enriched in the healthy lung has led to the compelling discovery that microbes may contribute to lung cancer pathogenesis. Here, we review the recent literature showing microbial associations with lung cancer as well as the functional features that have been identified in human and murine studies. Most biomarker data remain limited due to variable findings. However, multiple studies have found that lung tumors or ipsilateral airway samples have decreased α diversity compared to normal tissue. Specific genera, such as Veillonella and Streptococcus, were also found in association with lung tumors using multiple sampling methodologies. These microbes, which are generally found in the upper respiratory track, are associated with an IL-17 signature in the lung, potentially resulting in a pro-tumorigenic environment. Studies detailing these immune mechanisms are limited, and further investigation is necessary to delineate how these bacteria, their metabolites, and potentially tumor-associated neoantigens modulate the immune response in cancer.
Collapse
Affiliation(s)
- Pakhi Birla
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street CRB1 Bldg, Suite 4M 441, Baltimore, MD, 21231, USA
| | - Fyza Y Shaikh
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street CRB1 Bldg, Suite 4M 441, Baltimore, MD, 21231, USA.
| |
Collapse
|
44
|
Kato-Kogoe N, Sakaguchi S, Kamiya K, Omori M, Gu YH, Ito Y, Nakamura S, Nakano T, Tamaki J, Ueno T, Hoshiga M. Characterization of Salivary Microbiota in Patients with Atherosclerotic Cardiovascular Disease: A Case-Control Study. J Atheroscler Thromb 2022; 29:403-421. [PMID: 33612553 PMCID: PMC8894113 DOI: 10.5551/jat.60608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2020] [Accepted: 01/12/2021] [Indexed: 11/11/2022] Open
Abstract
AIMS Oral bacteria have been reported to be associated with the pathogenesis of atherosclerosis; however, the relationship between the oral microbiota and atherosclerosis remains unclear. The present study aimed to investigate whether or not salivary microbiota of patients with atherosclerotic cardiovascular disease (ACVD) differs from that of subjects without ACVD, and to characterize the salivary microbiota of patients with ACVD. METHODS This study included 43 patients with ACVD and 86 age- and sex-matched non-ACVD individuals. 16S rRNA metagenomic analysis were performed using DNA isolated from the saliva samples of the participants. To select unique operational taxonomic unit (OTU) sets of ACVD, we conducted the random forest algorithm in machine learning, followed by confirmation via 10-fold cross-validation Results: There was no difference in richness or evenness between the ACVD and non-ACVD groups (alpha diversity; observed OTU index, p=0.503; Shannon's index, p=0.478). However, significant differences were found in the overall salivary microbiota structure (beta diversity; unweighted UniFrac distances, p=0.001; weighted UniFrac distances, p=0.001). The Actinobacteria phylum was highly abundant in patients with ACVD, while the Bacteroidetes phylum was less abundant. The random forest classifier identified 43 OTUs as an optimal marker set of ACVD. In a 10-fold cross validation using the validation data, an area under the curve (AUC) of 0.933 (95% CI, 0.855-1.000) was obtained. CONCLUSIONS The salivary microbiota in patients with ACVD was distinct from that of non-ACVD individuals, indicating that the salivary microbiota may be related to ACVD.
Collapse
Affiliation(s)
- Nahoko Kato-Kogoe
- Department of Dentistry and Oral Surgery, Osaka Medical College, Osaka, Japan
| | - Shoichi Sakaguchi
- Department of Microbiology and Infection Control, Osaka Medical College, Osaka, Japan
| | - Kuniyasu Kamiya
- Department of Hygiene and Public Health, Osaka Medical College, Osaka, Japan
| | - Michi Omori
- Department of Dentistry and Oral Surgery, Osaka Medical College, Osaka, Japan
| | - Yan-Hong Gu
- Department of Hygiene and Public Health, Osaka Medical College, Osaka, Japan
| | - Yuri Ito
- Research and Development Center, Osaka Medical College, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Osaka Medical College, Osaka, Japan
| | - Junko Tamaki
- Department of Hygiene and Public Health, Osaka Medical College, Osaka, Japan
| | - Takaaki Ueno
- Department of Dentistry and Oral Surgery, Osaka Medical College, Osaka, Japan
| | - Masaaki Hoshiga
- Department of Cardiology, Osaka Medical College, Osaka, Japan
| |
Collapse
|
45
|
Takamori S, Ishikawa S, Suzuki J, Oizumi H, Uchida T, Ueda S, Edamatsu K, Iino M, Sugimoto M. Differential diagnosis of lung cancer and benign lung lesion using salivary metabolites: A preliminary study. Thorac Cancer 2021; 13:460-465. [PMID: 34918488 PMCID: PMC8807259 DOI: 10.1111/1759-7714.14282] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
Background Saliva is often used as a biomarker for the diagnosis of some oral and systematic diseases, owing to the non‐invasive attribute of the fluid. In this study, we aimed to identify salivary biomarkers for distinguishing lung cancer (LC) from benign lung lesion (BLL). Materials and Methods Unstimulated saliva samples were collected from 41 patients with LC and 21 with BLL. Salivary metabolites were comprehensively analyzed using capillary electrophoresis mass spectrometry. To differentiate between patients with LCs and BLLs, the discriminatory ability of each biomarker was assessed. Furthermore, a multiple logistic regression (MLR) model was developed for evaluating discriminatory ability of each salivary metabolite. Results The profiles of 10 salivary metabolites were remarkably different between the LC and BLL samples. Among them, the concentration of salivary tryptophan was significantly lower in the samples from patients with LC than in those from patients with BLL, and the area under the curve (AUC) for discriminating patients with LC from those with BLL was 0.663 (95% confidence interval [CI] = 0.516–0.810, p = 0.036). Furthermore, from the MLR model developed using these metabolites, diethanolamine, cytosine, lysine, and tyrosine, were selected using the back‐selection regression method. The MLR model based on these four metabolites had a high discriminatory ability for patients with LC and those with BLL (AUC = 0.729, 95% CI = 0.598–0.861, p = 0.003). Conclusion The four salivary metabolites can serve as potential non‐invasive biomarkers for distinguishing LC from BLL.
Collapse
Affiliation(s)
- Satoshi Takamori
- Department of Surgery II, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Shigeo Ishikawa
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Jun Suzuki
- Department of Surgery II, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Hiroyuki Oizumi
- Department of Surgery II, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Tetsuro Uchida
- Department of Surgery II, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Shohei Ueda
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Kaoru Edamatsu
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Mitsuyoshi Iino
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Masahiro Sugimoto
- Health Promotion and Pre-Emptive Medicine, Research and Development Center for Minimally Invasive Therapies, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
46
|
Abstract
El cuerpo humano está expuesto continuamente a microorganismos tanto fijos como transitorios, así como sus metabolitos tóxicos, lo cual puede conducir a la aparición y progresión del cáncer en sitios distantes al hábitat particular de cada microbio. Diversos estudios científicos han hecho posible entender la relación estrecha que existe entre microbioma y cáncer, ya que los componentes del primero, al tener la capacidad de migrar a diferentes zonas del cuerpo, pueden contribuir al desarrollo de diversas enfermedades crónicas. Los estudios de metagenómica sugieren que la disbiosis, en la microbiota comensal, está asociada con trastornos inflamatorios y varios tipos de cáncer, los cuales pueden ocurrir por sus efectos sobre el metabolismo, la proliferación celular y la inmunidad. La microbiota puede producir el cáncer cuando existen condiciones predisponentes, como en la etapa inicial de la progresión tumoral (iniciación), inestabilidad genética, susceptibilidad a la respuesta inmune del huésped, a la progresión y la respuesta a la terapia. La relación más estrecha, entre el microbioma y el cáncer, es a través de la desregulación del sistema inmune. En este trabajo revisamos las actuales evidencias sobre la asociación entre la microbiota y algunos tipos de cáncer como el cáncer gástrico, colorrectal, próstata, ovario, oral, pulmón y mama.
Collapse
Affiliation(s)
- Francisco Arvelo
- Centro de Biociencias, Fundación Instituto de Estudios Avanzados-IDEA, Caracas, Venezuela
| | - Felipe Sojo
- Centro de Biociencias, Fundación Instituto de Estudios Avanzados-IDEA, Caracas, Venezuela
| | - Carlos Cotte
- Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
47
|
Najafi S, Abedini F, Azimzadeh Jamalkandi S, Shariati P, Ahmadi A, Gholami Fesharaki M. The composition of lung microbiome in lung cancer: a systematic review and meta-analysis. BMC Microbiol 2021; 21:315. [PMID: 34763672 PMCID: PMC8582175 DOI: 10.1186/s12866-021-02375-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Background Although recent studies have indicated that imbalance in the respiratory microbiome composition is linked to several chronic respiratory diseases, the association between the lung microbiome and lung cancer has not been extensively studied. Conflicting reports of individual studies on respiratory microbiome alterations in lung cancer complicate the matter for specifying how the lung microbiome is linked to lung cancer. Consequently, as the first meta-analysis on this topic, we integrate publicly available 16S rRNA gene sequence data on lung tissue samples of lung cancer patients to identify bacterial taxa which differ consistently between case and control groups. Results The findings of the current study suggest that the relative abundance of several bacterial taxa including Actinobacteria phylum, Corynebacteriaceae and Halomonadaceae families, and Corynebacterium, Lachnoanaerobaculum, and Halomonas genera is significantly decreased (p < 0.05) in lung tumor tissues of lung cancer patients in comparison with tumor-adjacent normal tissues. Conclusions Despite the underlying need for scrutinizing the findings further, the present study lays the groundwork for future research and adds to our limited understanding of the key role of the lung microbiome and its complex interaction with lung cancer. More data on demographic factors and tumor tissue types would help establish a greater degree of accuracy in characterizing the lung microbial community which accords with subtypes and stages of the disease and fully capturing the changes of the lung microbiome in lung cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02375-z.
Collapse
Affiliation(s)
- Sadaf Najafi
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Abedini
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Parvin Shariati
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
48
|
Skallevold HE, Vallenari EM, Sapkota D. Salivary Biomarkers in Lung Cancer. Mediators Inflamm 2021; 2021:6019791. [PMID: 34690552 PMCID: PMC8528626 DOI: 10.1155/2021/6019791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022] Open
Abstract
A very low percentage of lung cancer (LC) cases are discovered at an early and treatable stage of the disease, leading to an abysmally low 5-year survival rate. This underscores the immediate necessity for improved diagnostic, prognostic, and predictive biomarkers for LC. Biopsied lung tissue, blood, and plasma are common sources used for LC diagnosis and monitoring of the disease. A growing number of studies have reported saliva to be a useful biological sample for early and noninvasive detection of oral and systemic diseases. Nevertheless, salivary biomarker discovery remains underresearched. Here, we have compiled the available literature to provide an overview of the current understanding of salivary markers for LC detection and provided perspectives for future clinical significance. Valuable markers with diagnostic and prognostic potentials in LC have been discovered in saliva, including metabolic (catalase activity, triene conjugates, and Schiff bases), inflammatory (interleukin 10, C-X-C motif chemokine ligand 10), proteomic (haptoglobin, zinc-α-2-glycoprotein, and calprotectin), genomic (epidermal growth factor receptor), and microbial candidates (Veillonella and Streptococcus). In combination, with each other and with other established screening methods, these salivary markers could be useful for improving early detection of the disease and ultimately improve the survival odds of LC patients. The existing literature suggests that saliva is a promising biological sample for identification and validation of biomarkers in LC, but how saliva can be utilized most effectively in a clinical setting for LC management is still under investigation.
Collapse
Affiliation(s)
- Hans E. Skallevold
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo 0316, Norway
| | - Evan M. Vallenari
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo 0316, Norway
| | - Dipak Sapkota
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo 0316, Norway
| |
Collapse
|
49
|
Radaic A, Ganther S, Kamarajan P, Grandis J, Yom SS, Kapila YL. Paradigm shift in the pathogenesis and treatment of oral cancer and other cancers focused on the oralome and antimicrobial-based therapeutics. Periodontol 2000 2021; 87:76-93. [PMID: 34463982 PMCID: PMC8415008 DOI: 10.1111/prd.12388] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
The oral microbiome is a community of microorganisms, comprised of bacteria, fungi, viruses, archaea, and protozoa, that form a complex ecosystem within the oral cavity. Although minor perturbations in the environment are frequent and compensable, major shifts in the oral microbiome can promote an unbalanced state, known as dysbiosis. Dysbiosis can promote oral diseases, including periodontitis. In addition, oral dysbiosis has been associated with other systemic diseases, including cancer. The objective of this review is to evaluate the epidemiologic evidence linking periodontitis to oral, gastrointestinal, lung, breast, prostate, and uterine cancers, as well as describe new evidence and insights into the role of oral dysbiosis in the etiology and pathogenesis of the cancer types discussed. Finally, we discuss how antimicrobials, antimicrobial peptides, and probiotics may be promising tools to prevent and treat these cancers, targeting both the microbes and associated carcinogenesis processes. These findings represent a novel paradigm in the pathogenesis and treatment of cancer focused on the oral microbiome and antimicrobial‐based therapies.
Collapse
Affiliation(s)
- Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Jennifer Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
50
|
Li CX, Zhang L, Yan YR, Ding YJ, Lin YN, Zhou JP, Li N, Li HP, Li SQ, Sun XW, Li QY. A narrative review of exploring potential salivary biomarkers in respiratory diseases: still on its way. J Thorac Dis 2021; 13:4541-4553. [PMID: 34422380 PMCID: PMC8339781 DOI: 10.21037/jtd-21-202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2021] [Accepted: 05/25/2021] [Indexed: 01/19/2023]
Abstract
Saliva is abundant with proteins, metabolites, DNA, and a diverse range of bacterial species. During the past two decades, saliva has emerged as a novel diagnostic and evaluation medium for several diseases. Collection of saliva samples is simple, minimally invasive, and convenient even in infants, children, and patients with anxious. Furthermore, with the development of hypersensitive techniques [e.g., microsensor arrays, enzyme-labeled immunosensors, nanoparticle-labeled immunosensors, capacitive or impedimetric immunosensors, magneto immunosensors, field effect transistor immunosensors, and surface enhanced Raman spectroscopy (SERS)], the sensitivity and accuracy of saliva diagnostic procedures have been improved. Nowadays, saliva has been used as a potential medium for several disease diagnosis and assessment, such as periodontitis, caries, cancers, diabetes mellitus, and cardiovascular diseases. Saliva has been used widely for studying microbiomics, genomics, transcriptomics, proteomics, and metabolomics of respiratory diseases, however, the use of salivary biomarkers for the diagnosis, prognosis, and monitoring of respiratory disease is still in its infancy. Herein, we review the progress of research on salivary biomarkers related to several respiratory diseases, including bronchial asthma, chronic obstructive pulmonary disease (COPD), obstructive sleep apnea (OSA), pneumonia, tuberculosis (TB), Langerhans cell histiocytosis (LCH) and cystic fibrosis (CF). Furthermore, several limitations of saliva test such as the lack of standard protocol for saliva collection and reasonable reference values for saliva test are also mentioned in this review.
Collapse
Affiliation(s)
- Chuan-Xiang Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Respiratory and Critical Care Medicine, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, Wuhan, China
| | - Liu Zhang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya-Ru Yan
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Jie Ding
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Ni Lin
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Ping Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Peng Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Qi Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian-Wen Sun
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Yun Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|