1
|
Qin J, Huang X, Gou S, Zhang S, Gou Y, Zhang Q, Chen H, Sun L, Chen M, Liu D, Han C, Tang M, Feng Z, Niu S, Zhao L, Tu Y, Liu Z, Xuan W, Dai L, Jia D, Xue Y. Ketogenic diet reshapes cancer metabolism through lysine β-hydroxybutyrylation. Nat Metab 2024; 6:1505-1528. [PMID: 39134903 DOI: 10.1038/s42255-024-01093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/02/2024] [Indexed: 08/29/2024]
Abstract
Lysine β-hydroxybutyrylation (Kbhb) is a post-translational modification induced by the ketogenic diet (KD), a diet showing therapeutic effects on multiple human diseases. Little is known how cellular processes are regulated by Kbhb. Here we show that protein Kbhb is strongly affected by the KD through a multi-omics analysis of mouse livers. Using a small training dataset with known functions, we developed a bioinformatics method for the prediction of functionally important lysine modification sites (pFunK), which revealed functionally relevant Kbhb sites on various proteins, including aldolase B (ALDOB) Lys108. KD consumption or β-hydroxybutyrate supplementation in hepatocellular carcinoma cells increases ALDOB Lys108bhb and inhibits the enzymatic activity of ALDOB. A Kbhb-mimicking mutation (p.Lys108Gln) attenuates ALDOB activity and its binding to substrate fructose-1,6-bisphosphate, inhibits mammalian target of rapamycin signalling and glycolysis, and markedly suppresses cancer cell proliferation. Our study reveals a critical role of Kbhb in regulating cancer cell metabolism and provides a generally applicable algorithm for predicting functionally important lysine modification sites.
Collapse
Affiliation(s)
- Junhong Qin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Xinhe Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shengsong Gou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Sitao Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yujie Gou
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Hongyu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Lin Sun
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Miaomiao Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Han
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Min Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zihao Feng
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghui Niu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zexian Liu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weimin Xuan
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Nanjing University Institute of Artificial Intelligence Biomedicine, Nanjing, China.
| |
Collapse
|
2
|
Wu X, Ban C, Deng W, Bao X, Tang N, Wu Y, Deng Z, Xiong J, Zhao Q. Unveiling the PDK4-centered rituximab-resistant mechanism in DLBCL: the potential of the "Smart" exosome nanoparticle therapy. Mol Cancer 2024; 23:144. [PMID: 39004737 PMCID: PMC11247735 DOI: 10.1186/s12943-024-02057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) represents a prevalent malignant tumor, with approximately 40% of patients encountering treatment challenges or relapse attributed to rituximab resistance, primarily due to diminished or absent CD20 expression. Our prior research identified PDK4 as a key driver of rituximab resistance through its negative regulation of CD20 expression. Further investigation into PDK4's resistance mechanism and the development of advanced exosome nanoparticle complexes may unveil novel resistance targets and pave the way for innovative, effective treatment modalities for DLBCL. METHODS We utilized a DLBCL-resistant cell line with high PDK4 expression (SU-DHL-2/R). We infected it with short hairpin RNA (shRNA) lentivirus for RNA sequencing, aiming to identify significantly downregulated mRNA in resistant cells. Techniques including immunofluorescence, immunohistochemistry, and Western blotting were employed to determine PDK4's localization and expression in resistant cells and its regulatory role in phosphorylation of Histone deacetylase 8 (HDAC8). Furthermore, we engineered advanced exosome nanoparticle complexes, aCD20@ExoCTX/siPDK4, through cellular, genetic, and chemical engineering methods. These nanoparticles underwent characterization via Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM), and their cellular uptake was assessed through flow cytometry. We evaluated the nanoparticles' effects on apoptosis in DLBCL-resistant cells and immune cells using CCK-8 assays and flow cytometry. Additionally, their capacity to counteract resistance and exert anti-tumor effects was tested in a resistant DLBCL mouse model. RESULTS We found that PDK4 initiates HDAC8 activation by phosphorylating the Ser-39 site, suppressing CD20 protein expression through deacetylation. The aCD20@ExoCTX/siPDK4 nanoparticles served as effective intracellular delivery mechanisms for gene therapy and monoclonal antibodies, simultaneously inducing apoptosis in resistant DLBCL cells and triggering immunogenic cell death in tumor cells. This dual action effectively reversed the immunosuppressive tumor microenvironment, showcasing a synergistic therapeutic effect in a subcutaneous mouse tumor resistance model. CONCLUSIONS This study demonstrates that PDK4 contributes to rituximab resistance in DLBCL by modulating CD20 expression via HDAC8 phosphorylation. The designed exosome nanoparticles effectively overcome this resistance by targeting the PDK4/HDAC8/CD20 pathway, representing a promising approach for drug delivery and treating patients with Rituximab-resistant DLBCL.
Collapse
MESH Headings
- Humans
- Exosomes/metabolism
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/therapy
- Rituximab/pharmacology
- Rituximab/therapeutic use
- Animals
- Mice
- Nanoparticles/chemistry
- Drug Resistance, Neoplasm/drug effects
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
- Apoptosis/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Xin Wu
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunmei Ban
- Department of Hematology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Woding Deng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuewei Bao
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Ning Tang
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yupeng Wu
- Department of Spine Surgery, First Affiliated Hospital of University of South China, Hengyang, Hengyang, Hunan, China
| | - Zhixuan Deng
- Institute of Cell Biology, Hengyang Medical School, University of South China, Hengyang, Hengyang, Hunan, China
| | - Jianbin Xiong
- Department of Orthopaedics, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi, China
| | - Qiangqiang Zhao
- Department of Hematology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, China.
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, Qinghai, China.
| |
Collapse
|
3
|
He X, Chen X, Yang C, Wang W, Sun H, Wang J, Fu J, Dong H. Prognostic value of RNA methylation-related genes in gastric adenocarcinoma based on bioinformatics. PeerJ 2024; 12:e16951. [PMID: 38436027 PMCID: PMC10909369 DOI: 10.7717/peerj.16951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Background Gastric cancer (GC) is a malignant tumor that originates from the epithelium of the gastric mucosa and has a poor prognosis. Stomach adenocarcinoma (STAD) covers 95% of total gastric cancer. This study aimed to identify the prognostic value of RNA methylation-related genes in gastric cancer. Methods In this study, The Cancer Genome Atlas (TCGA)-STAD and GSE84426 cohorts were downloaded from public databases. Patients were classified by consistent cluster analysis based on prognosis-related differentially expressed RNA methylation genes Prognostic genes were obtained by differential expression, univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses. The prognostic model was established and validated in the training set, test set and validation set respectively. Independent prognostic analysis was implemented. Finally, the expression of prognostic genes was affirmed by reverse transcription quantitative PCR (RT-qPCR). Results In total, four prognostic genes (ACTA2, SAPCD2, PDK4 and APOD) related to RNA methylation were identified and enrolled into the risk signature. The STAD patients were divided into high- and low-risk groups based on the medium value of the risk score, and patients in the high-risk group had a poor prognosis. In addition, the RNA methylation-relevant risk signature was validated in the test and validation sets, and was authenticated as a reliable independent prognostic predictor. The nomogram was constructed based on the independent predictors to predict the 1/3/5-year survival probability of STAD patients. The gene set enrichment analysis (GSEA) result suggested that the poor prognosis in the high-risk subgroup may be related to immune-related pathways. Finally, the experimental results indicated that the expression trends of RNA methylation-relevant prognostic genes in gastric cancer cells were in agreement with the result of bioinformatics. Conclusion Our study established a novel RNA methylation-related risk signature for STAD, which was of considerable significance for improving prognosis of STAD patients and offering theoretical support for clinical therapy.
Collapse
Affiliation(s)
- Xionghui He
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Xiang Chen
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Changcheng Yang
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Wei Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Hening Sun
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Junjie Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Jincheng Fu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| |
Collapse
|
4
|
Zhang S, Williams KJ, Verlande-Ferrero A, Chan AP, Su GB, Kershaw EE, Cox JE, Maschek JA, Shapira SN, Christofk HR, de Aguiar Vallim TQ, Masri S, Villanueva CJ. Acute activation of adipocyte lipolysis reveals dynamic lipid remodeling of the hepatic lipidome. J Lipid Res 2024; 65:100434. [PMID: 37640283 PMCID: PMC10839691 DOI: 10.1016/j.jlr.2023.100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/27/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Adipose tissue is the site of long-term energy storage. During the fasting state, exercise, and cold exposure, the white adipose tissue mobilizes energy for peripheral tissues through lipolysis. The mobilization of lipids from white adipose tissue to the liver can lead to excess triglyceride accumulation and fatty liver disease. Although the white adipose tissue is known to release free fatty acids, a comprehensive analysis of lipids mobilized from white adipocytes in vivo has not been completed. In these studies, we provide a comprehensive quantitative analysis of the adipocyte-secreted lipidome and show that there is interorgan crosstalk with liver. Our analysis identifies multiple lipid classes released by adipocytes in response to activation of lipolysis. Time-dependent analysis of the serum lipidome showed that free fatty acids increase within 30 min of β3-adrenergic receptor activation and subsequently decrease, followed by a rise in serum triglycerides, liver triglycerides, and several ceramide species. The triglyceride composition of liver is enriched for linoleic acid despite higher concentrations of palmitate in the blood. To further validate that these findings were a specific consequence of lipolysis, we generated mice with conditional deletion of adipose tissue triglyceride lipase exclusively in adipocytes. This loss of in vivo adipocyte lipolysis prevented the rise in serum free fatty acids and hepatic triglycerides. Furthermore, conditioned media from adipocytes promotes lipid remodeling in hepatocytes with concomitant changes in genes/pathways mediating lipid utilization. Together, these data highlight critical role of adipocyte lipolysis in interorgan crosstalk between adipocytes and liver.
Collapse
Affiliation(s)
- Sicheng Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Kevin J Williams
- UCLA Lipidomics Lab, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Amandine Verlande-Ferrero
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA, USA
| | - Alvin P Chan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Gino B Su
- UCLA Lipidomics Lab, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Erin E Kershaw
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, PA, USA
| | - James E Cox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - John Alan Maschek
- Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
| | - Suzanne N Shapira
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Heather R Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Thomas Q de Aguiar Vallim
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Division of Cardiology, Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Selma Masri
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA, USA
| | - Claudio J Villanueva
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
5
|
Wei P, Lin D, Luo C, Zhang M, Deng B, Cui K, Chen Z. High glucose promotes benign prostatic hyperplasia by downregulating PDK4 expression. Sci Rep 2023; 13:17910. [PMID: 37863991 PMCID: PMC10589318 DOI: 10.1038/s41598-023-44954-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
As men age, a growing number develop benign prostatic hyperplasia (BPH). According to previous research, diabetes may be a risk factor. Pyruvate dehydrogenase kinase 4 (PDK4) is closely related to glucose metabolism and plays a role in the onset and progression of numerous illnesses. This study aimed to determine the direct effects of high glucose environment on prostate epithelial cells, in particular by altering PDK4 expression levels. In this investigation, normal prostatic epithelial cells (RWPE-1) and human benign prostatic hyperplasia epithelial cells (BPH-1) were treated with 50 mM glucose to show the alteration of high glucose in prostate cells. PDK4-target siRNA, PDK4-expression plasmid were used to investigate the effects of PDK4. Rosiglitazone (RG), a PPARγ agonist, with the potential to up-regulate PDK4 expression was also used for treating prostate cells. The expression of PDK4 in human prostate samples was also analyzed. The effects of high glucose therapy on BPH-1 and RWPE-1 cells were demonstrated to enhance proliferation, epithelial-mesenchymal transition (EMT), suppress apoptosis, and down-regulate PDK4 expression. Additionally, diabetes-related BPH patients had reduced PDK4 expression. Following the application of PDK4-target siRNA, a comparable outcome was seen. The PDK4-expression plasmid therapy, however, produced the opposite results. RG with the ability to elevate PDK4 expression might be used to treat BPH. Changes in the metabolism of lipids and glucose may be the cause of these consequences. These findings showed that high glucose treatment might facilitate BPH development, and may be related to the down-regulation of PDK4. PDK4 might be a potential therapeutic target of BPH.
Collapse
Affiliation(s)
- Pengyu Wei
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongxu Lin
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Changcheng Luo
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Mengyang Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Bolang Deng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Kai Cui
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhong Chen
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
6
|
Lei Y, Shen HF, Li QW, Yang S, Xie HT, Li XF, Chen ML, Xia JW, Wang SC, Dai GQ, Zhou Y, Li YC, Huang SH, He DH, Zhou ZH, Cong JG, Lin XL, Lin TY, Wu AB, Xiao D, Xiao SJ, Zhang XK, Jia JS. Hairy gene homolog increases nasopharyngeal carcinoma cell stemness by upregulating Bmi-1. Aging (Albany NY) 2023; 15:204742. [PMID: 37219449 DOI: 10.18632/aging.204742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) is overexpressed in various cancer types. We found that Bmi-1 mRNA levels were elevated in nasopharyngeal carcinoma (NPC) cell lines. In immunohistochemical analyses, high Bmi-1 levels were observed in not only 5 of 38 non-cancerous nasopharyngeal squamous epithelial biopsies, but also in 66 of 98 NPC specimens (67.3%). High Bmi-1 levels were detected more frequently in T3-T4, N2-N3 and stage III-IV NPC biopsies than in T1-T2, N0-N1 and stage I-II NPC samples, indicating that Bmi-1 is upregulated in advanced NPC. In 5-8F and SUNE1 NPC cells, stable depletion of Bmi-1 using lentiviral RNA interference greatly suppressed cell proliferation, induced G1-phase cell cycle arrest, reduced cell stemness and suppressed cell migration and invasion. Likewise, knocking down Bmi-1 inhibited NPC cell growth in nude mice. Both chromatin immunoprecipitation and Western blotting assays demonstrated that Hairy gene homolog (HRY) upregulated Bmi-1 by binding to its promoter, thereby increasing the stemness of NPC cells. Immunohistochemistry and quantitative real-time PCR analyses revealed that HRY expression correlated positively with Bmi-1 expression in a cohort of NPC biopsies. These findings suggested that HRY promotes NPC cell stemness by upregulating Bmi-1, and that silencing Bmi-1 can suppress NPC progression.
Collapse
Affiliation(s)
- Ye Lei
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci and Tech Co. Ltd., Guangzhou 510515, China
| | - Hong-Fen Shen
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qi-Wen Li
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng Yang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hong-Ting Xie
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xu-Feng Li
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530000, China
| | - Mei-Ling Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jia-Wei Xia
- The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Sheng-Chun Wang
- Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Guan-Qi Dai
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying Zhou
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying-Chun Li
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shi-Hao Huang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dan-Hua He
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhi-Hao Zhou
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin-Ge Cong
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci and Tech Co. Ltd., Guangzhou 510515, China
| | - Xiao-Lin Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Tao-Yan Lin
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ai-Bing Wu
- Central People’s Hospital of Zhanjiang, Zhanjiang 524000, China
| | - Dong Xiao
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci and Tech Co. Ltd., Guangzhou 510515, China
- National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng-Jun Xiao
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin 541199, China
| | - Xin-Ke Zhang
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jun-Shuang Jia
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Woolbright BL, Rajendran G, Abbott E, Martin A, Didde R, Dennis K, Harris RA, Taylor JA. Pyruvate Dehydrogenase Kinase 4 Deficiency Increases Tumorigenesis in a Murine Model of Bladder Cancer. Cancers (Basel) 2023; 15:1654. [PMID: 36980540 PMCID: PMC10046149 DOI: 10.3390/cancers15061654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
Pyruvate dehydrogenase kinase 4 (PDK4) is a mitochondrial isozyme in the PDK family (PDK1-4) partially responsible for phosphorylation of pyruvate dehydrogenase (PDH). Phosphorylation of PDH is thought to result in a pro-proliferative shift in metabolism that sustains growth of cancer cells. Previous data from our lab indicate the pan-PDK inhibitor dichloroacetate (DCA) or acute genetic knockdown of PDK4 blocks proliferation of bladder cancer (BCa) cells. The goal of this study was to determine the role of PDK4 in an in vivo BCa model, with the hypothesis that genetic depletion of PDK4 would impair formation of BCa. PDK4-/- or WT animals were exposed to N-Butyl-N-(4-hydroxybutyl) nitrosamine (BBN) for 16 weeks, and tumors were allowed to develop for up to 7 additional weeks. PDK4-/- mice had significantly larger tumors at later time points. When animals were treated with cisplatin, PDK4-/- animals still had larger tumors than WT mice. PDK4 expression was assessed in human tissue and in mice. WT mice lost expression of PDK4 as tumors became muscle-invasive. Similar results were observed in human samples, wherein tumors had less expression of PDK4 than benign tissue. In summary, PDK4 has a complex, multifunctional role in BCa and may represent an underrecognized tumor suppressor.
Collapse
Affiliation(s)
| | - Ganeshkumar Rajendran
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Erika Abbott
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Austin Martin
- School of Medicine, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Ryan Didde
- School of Medicine, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Katie Dennis
- Department of Pathology, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Robert A. Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John A. Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
8
|
Ye T, Lin L, Cao L, Huang W, Wei S, Shan Y, Zhang Z. Novel Prognostic Signatures of Hepatocellular Carcinoma Based on Metabolic Pathway Phenotypes. Front Oncol 2022; 12:863266. [PMID: 35677150 PMCID: PMC9168273 DOI: 10.3389/fonc.2022.863266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/06/2022] [Indexed: 12/03/2022] Open
Abstract
Hepatocellular carcinoma is a disastrous cancer with an aberrant metabolism. In this study, we aimed to assess the role of metabolism in the prognosis of hepatocellular carcinoma. Ten metabolism-related pathways were identified to classify the hepatocellular carcinoma into two clusters: Metabolism_H and Metabolism_L. Compared with Metabolism_L, patients in Metabolism_H had lower survival rates with more mutated TP53 genes and more immune infiltration. Moreover, risk scores for predicting overall survival based on eleven differentially expressed metabolic genes were developed by the least absolute shrinkage and selection operator (LASSO)-Cox regression model in The Cancer Genome Atlas (TCGA) dataset, which was validated in the International Cancer Genome Consortium (ICGC) dataset. The immunohistochemistry staining of liver cancer patient specimens also identified that the 11 genes were associated with the prognosis of liver cancer patients. Multivariate Cox regression analyses indicated that the differentially expressed metabolic gene-based risk score was also an independent prognostic factor for overall survival. Furthermore, the risk score (AUC = 0.767) outperformed other clinical variables in predicting overall survival. Therefore, the metabolism-related survival-predictor model may predict overall survival excellently for HCC patients.
Collapse
Affiliation(s)
- Tingbo Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Leilei Lin
- Department of Ultrasound, Wenzhou People's Hospital, Wenzhou, China
| | - Lulu Cao
- Department of Pathology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Weiguo Huang
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shengzhe Wei
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunfeng Shan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongjing Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
The Epithelial-Mesenchymal Transition at the Crossroads between Metabolism and Tumor Progression. Int J Mol Sci 2022; 23:ijms23020800. [PMID: 35054987 PMCID: PMC8776206 DOI: 10.3390/ijms23020800] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
The transition between epithelial and mesenchymal phenotype is emerging as a key determinant of tumor cell invasion and metastasis. It is a plastic process in which epithelial cells first acquire the ability to invade the extracellular matrix and migrate into the bloodstream via transdifferentiation into mesenchymal cells, a phenomenon known as epithelial–mesenchymal transition (EMT), and then reacquire the epithelial phenotype, the reverse process called mesenchymal–epithelial transition (MET), to colonize a new organ. During all metastatic stages, metabolic changes, which give cancer cells the ability to adapt to increased energy demand and to withstand a hostile new environment, are also important determinants of successful cancer progression. In this review, we describe the complex interaction between EMT and metabolism during tumor progression. First, we outline the main connections between the two processes, with particular emphasis on the role of cancer stem cells and LncRNAs. Then, we focus on some specific cancers, such as breast, lung, and thyroid cancer.
Collapse
|
10
|
Jane EP, Premkumar DR, Rajasundaram D, Thambireddy S, Reslink MC, Agnihotri S, Pollack IF. Reversing tozasertib resistance in glioma through inhibition of pyruvate dehydrogenase kinases. Mol Oncol 2022; 16:219-249. [PMID: 34058053 PMCID: PMC8732347 DOI: 10.1002/1878-0261.13025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/23/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Acquired resistance to conventional chemotherapeutic agents limits their effectiveness and can cause cancer treatment to fail. Because enzymes in the aurora kinase family are vital regulators of several mitotic events, we reasoned that targeting these kinases with tozasertib, a pan-aurora kinase inhibitor, would not only cause cytokinesis defects, but also induce cell death in high-grade pediatric and adult glioma cell lines. We found that tozasertib induced cell cycle arrest, increased mitochondrial permeability and reactive oxygen species generation, inhibited cell growth and migration, and promoted cellular senescence and pro-apoptotic activity. However, sustained exposure to tozasertib at clinically relevant concentrations conferred resistance, which led us to examine the mechanistic basis for the emergence of drug resistance. RNA-sequence analysis revealed a significant upregulation of the gene encoding pyruvate dehydrogenase kinase isoenzyme 4 (PDK4), a pyruvate dehydrogenase (PDH) inhibitory kinase that plays a crucial role in the control of metabolic flexibility under various physiological conditions. Upregulation of PDK1, PDK2, PDK3, or PDK4 protein levels was positively correlated with tozasertib-induced resistance through inhibition of PDH activity. Tozasertib-resistant cells exhibited increased mitochondrial mass as measured by 10-N-nonyl-Acridine Orange. Inhibition of PDK with dichloroacetate resulted in increased mitochondrial permeability and cell death in tozasertib-resistant glioma cell lines. Based on these results, we believe that PDK is a selective target for the tozasertib resistance phenotype and should be considered for further preclinical evaluations.
Collapse
Affiliation(s)
- Esther P Jane
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
| | - Daniel R Premkumar
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
- Department of Neurosurgery, UPMC Hillman Cancer Center, PA, USA
| | | | - Swetha Thambireddy
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
| | - Matthew C Reslink
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
| | - Sameer Agnihotri
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
- Department of Neurosurgery, UPMC Hillman Cancer Center, PA, USA
| | - Ian F Pollack
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
- Department of Neurosurgery, UPMC Hillman Cancer Center, PA, USA
| |
Collapse
|
11
|
Tang Q, Liu L, Guo Y, Zhang X, Zhang S, Jia Y, Du Y, Cheng B, Yang L, Huang Y, Chen X. Optical Cell Tagging for Spatially Resolved Single‐Cell RNA Sequencing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qi Tang
- College of Chemistry and Molecular Engineering Peking-Tsinghua Center for Life Sciences Beijing National Laboratory for Molecular Sciences Synthetic and Functional Biomolecules Center Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Lu Liu
- Biomedical Pioneering Innovation Center (BIOPIC) School of Life Sciences College of Chemistry and Molecular Engineering Beijing Advanced Innovation Center for Genomics (ICG) Peking-Tsinghua Center for Life Science and Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Yilan Guo
- College of Chemistry and Molecular Engineering Peking-Tsinghua Center for Life Sciences Beijing National Laboratory for Molecular Sciences Synthetic and Functional Biomolecules Center Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Xu Zhang
- College of Chemistry and Molecular Engineering Peking-Tsinghua Center for Life Sciences Beijing National Laboratory for Molecular Sciences Synthetic and Functional Biomolecules Center Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Shaoran Zhang
- College of Chemistry and Molecular Engineering Peking-Tsinghua Center for Life Sciences Beijing National Laboratory for Molecular Sciences Synthetic and Functional Biomolecules Center Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yan Jia
- Renal Division Peking University First Hospital Beijing 100034 China
- Institute of Nephrology Key Laboratory of CKD Prevention and Treatment of Ministry of Education of China Peking University Beijing 100871 China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases Chinese Academy of Medical Sciences Beijing 100730 China
| | - Yifei Du
- College of Chemistry and Molecular Engineering Peking-Tsinghua Center for Life Sciences Beijing National Laboratory for Molecular Sciences Synthetic and Functional Biomolecules Center Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Bo Cheng
- College of Chemistry and Molecular Engineering Peking-Tsinghua Center for Life Sciences Beijing National Laboratory for Molecular Sciences Synthetic and Functional Biomolecules Center Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Li Yang
- Renal Division Peking University First Hospital Beijing 100034 China
- Institute of Nephrology Key Laboratory of CKD Prevention and Treatment of Ministry of Education of China Peking University Beijing 100871 China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases Chinese Academy of Medical Sciences Beijing 100730 China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Center (BIOPIC) School of Life Sciences College of Chemistry and Molecular Engineering Beijing Advanced Innovation Center for Genomics (ICG) Peking-Tsinghua Center for Life Science and Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Xing Chen
- College of Chemistry and Molecular Engineering Peking-Tsinghua Center for Life Sciences Beijing National Laboratory for Molecular Sciences Synthetic and Functional Biomolecules Center Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| |
Collapse
|
12
|
Tang Q, Liu L, Guo Y, Zhang X, Zhang S, Jia Y, Du Y, Cheng B, Yang L, Huang Y, Chen X. Optical Cell Tagging for Spatially Resolved Single-Cell RNA Sequencing. Angew Chem Int Ed Engl 2021; 61:e202113929. [PMID: 34970821 DOI: 10.1002/anie.202113929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 01/13/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for profiling gene expression of distinct cell populations at the single-cell level. However, the information of the positions of cells within the multicellular samples is missing in scRNA-seq datasets. To overcome this limitation, we herein develop OpTAG (optical cell tagging) as a new chemical platform for attaching functional tags onto cell surfaces in a spatially resolved manner. With OpTAG, we establish OpTAG-seq, which enables spatially resolved scRNA-seq. We apply OpTAG-seq to investigate the spatially defined transcriptional program in migrating cancer cells and identified a list of genes that are potential regulators for cancer cell migration and invasion. OpTAG-seq provides a convenient method for mapping cellular heterogeneity with spatial information within multicellular biological systems.
Collapse
Affiliation(s)
- Qi Tang
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Lu Liu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, College of Chemistry and Molecular Engineering, Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Science, and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Yilan Guo
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Xu Zhang
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Shaoran Zhang
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Yan Jia
- Renal Division, Peking University First Hospital, Beijing, 100034, China.,Institute of Nephrology, Key Laboratory of CKD Prevention and Treatment of Ministry of Education of China, Peking University, Beijing, 100871, China.,Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yifei Du
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Bo Cheng
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Li Yang
- Renal Division, Peking University First Hospital, Beijing, 100034, China.,Institute of Nephrology, Key Laboratory of CKD Prevention and Treatment of Ministry of Education of China, Peking University, Beijing, 100871, China.,Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, College of Chemistry and Molecular Engineering, Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Science, and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
13
|
Li X, Wang L, Wang L, Feng Z, Peng C. Single-Cell Sequencing of Hepatocellular Carcinoma Reveals Cell Interactions and Cell Heterogeneity in the Microenvironment. Int J Gen Med 2021; 14:10141-10153. [PMID: 34992435 PMCID: PMC8711111 DOI: 10.2147/ijgm.s338090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the main histological subtype of liver cancer, which has the characteristics of poor prognosis and high fatality rate. Single-cell sequencing can provide quantitative and unbiased characterization of cell heterogeneity by analyzing the molecular profile of the whole genome of thousands of single cells. Thus, the purpose of this study was to identify novel prognostic markers for HCC based on single-cell sequencing data. METHODS Single-cell sequencing of 21 HCC samples and 256 normal liver tissue samples in the GSE124395 dataset was collected from the Gene Expression Omnibus (GEO) database. The quality-controlled cells were grouped by unsupervised cluster analysis and identified the marker genes of each cell cluster. Hereafter, these cell clusters were annotated by singleR and CellMarker according to the expression patterns of the marker genes. Pseudotime analysis was performed to construct the trajectory of cell evolution and to define hub genes in the evolution process. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to explore the potential regulatory mechanism of hub genes in HCC. Next, the differential expression of hub genes and the correlation of the expression of these genes with patients' survival and diagnosis were investigated in The Cancer Genome Atlas (TCGA) database. RESULTS A total of 9 clusters corresponding to 9 cell types, including NKT cells, hepatocytes, endothelial cells, Kupffer cells, EPCAM+ cells, cancer cells, plasma cells (B cells), immature B cells, and myofibroblasts were identified. We screened 63 key genes related to cell differentiation through trajectory analysis, which were enriched in the process of coagulation. Ultimately, we identified 10 survival-related hub genes in the TCGA database, namely ALDOB, APOC3, APOH, CYP2E1, CYP3A4, GC, HRG, LINC01554, PDK4, and TXN. CONCLUSION In conclusion, ALDOB, APOC3, APOH, CYP2E1, CYP3A4, GC, HRG, LINC01554, PDK4, and TXN may serve as hub genes in the diagnosis and prognosis for HCC.
Collapse
Affiliation(s)
- Xinyao Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Lei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Liusong Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Zanjie Feng
- Department of Biochemistry and Molecular Biology, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Cijun Peng
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| |
Collapse
|
14
|
Liu Y, Li YQ, Huang SH, Li YL, Xia JW, Jia JS, Wei F, Wang JH, Dai GQ, Wang YC, Li XY, Han LX, Zhang XL, Xiang XD, Zhao WT, Xiao D, Lin XL. Liver-specific over-expression of Cripto-1 in transgenic mice promotes hepatocyte proliferation and deregulated expression of hepatocarcinogenesis-related genes and signaling pathways. Aging (Albany NY) 2021; 13:21155-21190. [PMID: 34517344 PMCID: PMC8457585 DOI: 10.18632/aging.203402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022]
Abstract
In this study, we investigated the role of embryonic gene Cripto-1 (CR-1) in hepatocellular carcinoma (HCC) using hepatocyte-specific CR-1-overexpressing transgenic mice. The expression of truncated 1.7-kb CR-1 transcript (SF-CR-1) was significantly higher than the full-length 2.0-kb CR-1 transcript (FL-CR-1) in a majority of HCC tissues and cell lines. Moreover, CR-1 mRNA and protein levels were significantly higher in HCC tissues than adjacent normal liver tissues. Hepatocyte-specific over-expression of CR-1 in transgenic mice enhanced hepatocyte proliferation after 2/3 partial hepatectomy (2/3 PHx). CR-1 over-expression significantly increased in vivo xenograft tumor growth of HCC cells in nude mice and in vitro HCC cell proliferation, migration, and invasion. CR-1 over-expression in the transgenic mouse livers deregulated HCC-related signaling pathways such as AKT, Wnt/β-catenin, Stat3, MAPK/ERK, JNK, TGF-β and Notch, as well as expression of HCC-related genes such as CD5L, S100A8, S100A9, Timd4, Orm2, Orm3, PDK4, DMBT1, G0S2, Plk2, Plk3, Gsta1 and Gsta2. However, histological signs of precancerous lesions, hepatocyte dysplasia or HCC formation were not observed in the livers of 3-, 6- or 8-month-old hepatocyte-specific CR-1-overexpressing transgenic mice. These findings demonstrate that liver-specific CR-1 overexpression in transgenic mice deregulates signaling pathways and genes associated with HCC.
Collapse
Affiliation(s)
- Yu Liu
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
- Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Yan-Qing Li
- Department of Hematology, Central Hospital of Xuhui District, Shanghai 200030, China
| | - Shi-Hao Huang
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Yong-Long Li
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
- Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Jia-Wei Xia
- The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Jun-Shuang Jia
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Fang Wei
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Jia-Hong Wang
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Guan-Qi Dai
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Yu-Cai Wang
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Yan Li
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
- Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Liu-Xin Han
- The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Xiao-Ling Zhang
- Department of Physiology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China
| | - Xu-Dong Xiang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, China
| | - Wen-Tao Zhao
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, China
| | - Dong Xiao
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
- Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Lin Lin
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
15
|
Xiao D, Fang TX, Lei Y, Xiao SJ, Xia JW, Lin TY, Li YL, Zhai JX, Li XY, Huang SH, Jia JS, Tian YG, Lin XL, Cai KC, Sun Y. m 6A demethylase ALKBH5 suppression contributes to esophageal squamous cell carcinoma progression. Aging (Albany NY) 2021; 13:21497-21512. [PMID: 34491904 PMCID: PMC8457604 DOI: 10.18632/aging.203490] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly malignant gastrointestinal cancer with a high recurrence rate and poor prognosis. Although N6-methyladenosine (m6A), the most abundant epitranscriptomic modification of mRNAs, has been implicated in several cancers, little is known about its participation in ESCC progression. We found reduced expression of ALKBH5, an m6A demethylase, in ESCC tissue specimens with a more pronounced effect in T3-T4, N1-N3, clinical stages III-IV, and histological grade III tumors, suggesting its involvement in advanced stages of ESCC. Exogenous expression of ALKBH5 inhibited the in vitro proliferation of ESCC cells, whereas depletion of endogenous ALKBH5 markedly enhanced ESCC cell proliferation in vitro. This suggests ALKBH5 exerts anti-proliferative effects on ESCC growth. Furthermore, ALKBH5 overexpression suppressed tumor growth of Eca-109 cells in nude mice; conversely, depletion of endogenous ALKBH5 accelerated tumor growth of TE-13 cells in vivo. The growth-inhibitory effects of ALKBH5 overexpression are partly attributed to a G1-phase arrest. In addition, ALKBH5 overexpression reduced the in vitro migration and invasion of ESCC cells. Altogether, our findings demonstrate that the loss of ALKBH5 expression contributes to ESCC malignancy.
Collapse
Affiliation(s)
- Dong Xiao
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci. & Tech. Co., Ltd., Guangzhou 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ting-Xiao Fang
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ye Lei
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci. & Tech. Co., Ltd., Guangzhou 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng-Jun Xiao
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin 541199, China
| | - Jia-Wei Xia
- The Third People’s Hospital of Kunming, The Sixth Affiliated Hospital of Dali University, Kunming 650041, China
| | - Tao-Yan Lin
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yong-Long Li
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci. & Tech. Co., Ltd., Guangzhou 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian-Xue Zhai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Yan Li
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci. & Tech. Co., Ltd., Guangzhou 510515, China
| | - Shi-Hao Huang
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jun-Shuang Jia
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yu-Guang Tian
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci. & Tech. Co., Ltd., Guangzhou 510515, China
| | - Xiao-Lin Lin
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kai-Can Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yan Sun
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
16
|
Pyruvate dehydrogenase kinases (PDKs): an overview toward clinical applications. Biosci Rep 2021; 41:228121. [PMID: 33739396 PMCID: PMC8026821 DOI: 10.1042/bsr20204402] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 01/01/2023] Open
Abstract
Pyruvate dehydrogenase kinase (PDK) can regulate the catalytic activity of pyruvate decarboxylation oxidation via the mitochondrial pyruvate dehydrogenase complex, and it further links glycolysis with the tricarboxylic acid cycle and ATP generation. This review seeks to elucidate the regulation of PDK activity in different species, mainly mammals, and the role of PDK inhibitors in preventing increased blood glucose, reducing injury caused by myocardial ischemia, and inducing apoptosis of tumor cells. Regulations of PDKs expression or activity represent a very promising approach for treatment of metabolic diseases including diabetes, heart failure, and cancer. The future research and development could be more focused on the biochemical understanding of the diseases, which would help understand the cellular energy metabolism and its regulation by pharmacological effectors of PDKs.
Collapse
|