1
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2025; 45:349-425. [PMID: 39185567 PMCID: PMC11796338 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic ScienceHigher Education Institute of Rab‐RashidTabrizIran
- Tuberculosis and Lung Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad Amini
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
| | | | | | | |
Collapse
|
2
|
Chrysovergis A, Papanikolaou V, Roukas D, Spyropoulou D, Mastronikoli S, Papouliakos S, Tsiambas E, Pantos P, Fotiades P, Peschos D, Ragos V, Mastronikolis N, Kyrodimos E, Niotis A. Micro-Epigenetic Markers in Viral Genome: SARS-CoV-2 Infection Impact on Host Cell MicroRNA Landscape. MAEDICA 2024; 19:842-847. [PMID: 39974441 PMCID: PMC11834827 DOI: 10.26574/maedica.2024.19.4.842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
INTRODUCTION MicroRNAs (miRs) are crucial micro-genetic markers that significantly manipulate gene expression in neoplastic/malignant and non-neoplastic diseases, as viral infections. Different expression patterns of miRs seem to partially influence the response rates to specific chemo-targeted therapeutic regimens and prognosis in cancer patients. Concerning their nature, miRs are short non-coding RNAs including 20-25 nucleotides hosted in intra- or intergenic regions. Their most important function is the positive regulation of post-transcriptional gene silencing levels. Based on this activity, they enhance normal cell functions, including proliferation, apoptosis and tissue differentiation. Their deregulation in cancerous cells due to epigenetic and transcriptional imbalances is correlated with an excessive production of target mRNA. OBJECTIVE In the current paper, our aim was to generally describe the role of MiRs in cancer genome and we mainly focused on specific host target-cell miRs that are affected by SARS-CoV-2 in the COVID-19 pandemic. MATERIAL AND METHOD A systematic review of the literature was carried out based on the international database PubMed focused on miR nature, origin, structure and function in cancer genome and more recently on the influence of SARS-CoV-2 on affected cells. The following keywords were used: microRNA, SARS-CoV-2, COVID-19, infection, cancer, virus. A pool of 52 important articles were selected for the present review at the basis of exploring the SARS-CoV-2 efficacy in miRs. RESULTS A broad set of miRs, including miR-122, miR-16-2-3p, miR-3605-3p, miR-15b-5p, miR-486-3p, miR-486-5p, miR-447b, miR-3672, miR-325, miR-447b and miR-222, has been identified to be deregulated by SARS-CoV-2 infection. CONCLUSIONS miRs represent significant micro-epigenetic markers frequently deregulated in SARS-CoV-2 mediated infection (COVID-19). Interactions between miRs and SARS-CoV-2 RNA genome are under investigation. miR overexpression/expression loss in SARS-CoV-2 affected epithelia is correlated with specific genetic and by epigenetic signatures in the corresponding patients.
Collapse
Affiliation(s)
| | | | - Dimitrios Roukas
- Department of Psychiatry, 417 Veterans Army Hospital (NIMTS), Athens, Greece
| | - Despoina Spyropoulou
- Department of Radiation Oncology, Medical School, University of Patras, Patras, Greece
| | | | | | - Evangelos Tsiambas
- Department of Cytology, Molecular Unit, 417 Veterans Army Hospital (NIMTS), Athens,Greece
| | - Pavlos Pantos
- Department of Otorhinolaryngology, "HIPPOKRATEION" Hospital, Medical School,National and Kapodistrian University, Athens, Greece
| | | | - Dimitrios Peschos
- Department of Physiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Vasileios Ragos
- Dept of Maxillofacial, Medical School, University of Ioannina, Ioannina, Greece
| | | | - Efthymios Kyrodimos
- Department of Otorhinolaryngology, "HIPPOKRATEION" Hospital, Medical School,National and Kapodistrian University, Athens, Greece
| | - Athanasios Niotis
- Department of Surgery, 417 Veterans Army Hospital (NIMTS), Athens, Greece
| |
Collapse
|
3
|
Jia L, Zhang X, Zhou T, Xie J, Jin J, Zhang D, Zhu C, Wan R. Comprehensive prognostic and immunological analysis of Cullin2 in pan-cancer and its identification in hepatocellular carcinoma. Aging (Albany NY) 2024; 16:8898-8921. [PMID: 38787355 PMCID: PMC11164483 DOI: 10.18632/aging.205848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/18/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND As a member of the Cullin family, Cullin2 (CUL2) is involved in the development and spread of different types of cancers. However, the precise role of CUL2 in human cancer remains largely elusive. METHODS In this study, various databases were applied to observe the CUL2 expression. Kaplan-Meier and Spearman correlation analyses were employed to investigate the potential links between CUL2 level, patient prognosis, and the infiltration of immune cells. In addition, the association between CUL2 and the efficacy of immunotherapy in an immunotherapy cohort was investigated. Moreover, the expression and distribution of CUL2 in cells were observed using the Human Protein Atlas (THPA) database. Finally, clinical tissue specimens and in vitro function assays were conducted to validate the expressions and effects of CUL2 on the biological functions in hepatocellular carcinoma (HCC) cells. RESULTS While there are variations in CUL2 expression across different organs and cell types, it is notably upregulated in a majority of tumor tissues. In addition, CUL2 gene mutations are common in multiple cancers with low mutation rates and CUL2 is closely related to the prognosis of some cancer's patients, some immune regulatory factors, TMB, MSI, MMR genes, and DNA methylation. Further, our results found that downregulating CUL2 inhibits the proliferation, and migration abilities. CONCLUSIONS The expression of CUL2 has an impact on the prognosis of various tumors, and this correlation is particularly noteworthy due to its significant association with the infiltration of immune cells within tumors. CUL2 was an oncogene contributing to the progression of HCC.
Collapse
Affiliation(s)
- Longmei Jia
- Department of Nuclear Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xiaoqiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Tao Zhou
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang 330006, Jiangxi, China
| | - Jinyan Xie
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang 330006, Jiangxi, China
- Department of Genetic Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jiejing Jin
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang 330006, Jiangxi, China
- Department of Genetic Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Dandan Zhang
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang 330006, Jiangxi, China
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chao Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang 330006, Jiangxi, China
- Department of Genetic Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
4
|
Sriharikrishnaa S, John FE, Bairy M, Shetty S, Suresh PS, Kabekkodu SP. A comprehensive review on the functional role of miRNA clusters in cervical cancer. Epigenomics 2024; 16:493-511. [PMID: 38511231 DOI: 10.2217/epi-2023-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Cervical cancer (CC) poses a significant health threat in women globally. MicroRNA clusters (MCs), comprising multiple miRNA-encoding genes, are pivotal in gene regulation. Various factors, including circular RNA and DNA methylation, govern MC expression. Dysregulated MC expression correlates strongly with CC development via promoting the acquisition of cancer hallmarks. Certain MCs show promise for diagnosis, prognosis and therapy selection due to their distinct expression patterns in normal, premalignant and tumor tissues. This review explains the regulation and biological functions of MCs and highlights the clinical relevance of abnormal MC expression in CC.
Collapse
Affiliation(s)
- Srinath Sriharikrishnaa
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Femi E John
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Medha Bairy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sachin Shetty
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padmanaban S Suresh
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Kerala, India
| | - Shama P Kabekkodu
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
5
|
Vallejo-Ruiz V, Gutiérrez-Xicotencatl L, Medina-Contreras O, Lizano M. Molecular aspects of cervical cancer: a pathogenesis update. Front Oncol 2024; 14:1356581. [PMID: 38567159 PMCID: PMC10985348 DOI: 10.3389/fonc.2024.1356581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Cervical cancer (CC) is a significant health problem, especially in low-income countries. Functional studies on the human papillomavirus have generated essential advances in the knowledge of CC. However, many unanswered questions remain. This mini-review discusses the latest results on CC pathogenesis, HPV oncogenesis, and molecular changes identified through next-generation technologies. Interestingly, the percentage of samples with HPV genome integrations correlates with the degree of the cervical lesions, suggesting a role in the development of CC. Also, new functions have been described for the viral oncoproteins E5, E6, and E7, resulting in the acquisition and maintenance of cancer hallmarks, including proliferation, immune response evasion, apoptosis, and genomic instability. Remarkably, E5 oncoprotein affects signaling pathways involved in the expression of interferon-induced genes and EGFR-induced proliferation, while E6 and E7 oncoproteins regulate the DNA damage repair and cell cycle continuity pathways. Furthermore, next-generation technologies provide vast amounts of information, increasing our knowledge of changes in the genome, transcriptome, proteome, metabolome, and epigenome in CC. These studies have identified novel molecular traits associated with disease susceptibility, degree of progression, treatment response, and survival as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Verónica Vallejo-Ruiz
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Lourdes Gutiérrez-Xicotencatl
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Oscar Medina-Contreras
- Epidemiology, Endocrinology & Nutrition Research Unit, Mexico Children’s Hospital, Mexico City, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Mexico City, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
6
|
Zhao W, Wen S, Wang X, Wang J, Zhang L, Wang T. Targeted regulation of miR-154-5p/Cullin2 pathway by hsa_circ_TRIM22 in promoting human papillomavirus 16 positive cervical cancer progression. J Cancer 2024; 15:2137-2146. [PMID: 38495497 PMCID: PMC10937277 DOI: 10.7150/jca.92631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/27/2024] [Indexed: 03/19/2024] Open
Abstract
Background. Tripartite motif-containing 22 (TRIM22) is characterized by a canonical RING domain with ubiquitin E3 ligase activity and is closely associated with tumorigenesis. As a product of TRIM22 transcription, whether hsa_circ_TRIM22 has a function of regulating tumorigenesis is unclear. Thus, we aimed to explore the role and mechanism of hsa_circ_TRIM22 in human papillomavirus (HPV) 16 positive cervical cancer (CC). Methods. We collected HPV16-positive cervical tissues including chronic cervicitis, high-grade squamous intraepithelial lesions (HSIL), low-grade squamous intraepithelial lesions (LSIL), and CC, and along with CC cell lines to detect the hsa_circ_TRIM22 level using real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). Hsa_circ_TRIM22 was silenced using specific short hairpin ribonucleic acid (shRNA) in CC cell lines and functional assays were performed thereafter. Mechanistically, the targeting and regulatory relationship between hsa_circ_TRIM22 and miR-154-5p were confirmed using the luciferase report assay and rescue experiments. Results. We found hsa_circ_TRIM22 expression level was significantly higher in CC cells and tissues. Further, hsa_circ_TRIM22 knockdown inhibited migration, proliferation, invasiveness, enhanced apoptosis, and slowed the cell cycle. Mechanistically, hsa_circ_TRIM22 could bind miR-154-5p and prevent miR-154-5p from reducing the levels of Cullin2 (CUL2). Notably, the application of miR-154-5p inhibitor significantly rescued hsa_circ_TRIM22-mediated tumorigenesis. Conclusions. Our observations suggest hsa_circ_TRIM22 is upregulated in HPV16-positive CC and promotes CC progression by regulating the miR-154-5p/CUL2 axis, thereby serving as a promising candidate for diagnosis and treatments of CC.
Collapse
Affiliation(s)
- Weihong Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Songquan Wen
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Xiuting Wang
- Department of Biochemistry and Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jingfang Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Lili Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Tong Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
7
|
Ibarra-Berumen J, Moreno-Eutimio MA, Rosales-Castro M, Ordaz-Pichardo C. Cytotoxic effect and induction of apoptosis in human cervical cancer cells by a wood extract from Prosopis laevigata. Drug Chem Toxicol 2023; 46:931-943. [PMID: 35950554 DOI: 10.1080/01480545.2022.2109046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 12/31/2022]
Abstract
Cervical cancer ranks fourth in incidence among women worldwide. Cisplatin is currently the first-line drug of treatment for cervical cancer; however, it causes serious adverse effects. Therefore, it is crucial to explore natural products for cervical cancer treatment. Prosopis laevigata is a medicinal plant frequently used for ophthalmological and gastrointestinal infections. In this study, we used the MTT cell viability assay to evaluate the cytotoxic effect of a wood extract from Prosopis laevigata (Extract T7) in SiHa, HeLa, Ca Ski, and C-33 A cancer cell lines. Phosphatidylserine translocation and cell cycle evaluations were performed to determine the mechanism of cellular death. The extract's safety was evaluated using the Ames test with Salmonella typhimurium strains, in vivo acute toxicity assay, and repeated dose toxicity assay in mice. We also identified phenolic compounds of Extract T7 through liquid chromatography/mass spectrometry. Naringin, catechin, and eriodictyol demonstrated a higher concentration in Extract T7. Additionally, Extract T7 exhibited a cytotoxic effect against cervical cancer cells, where C-33 A was the most sensitive (IC50= 22.58 ± 1.10 µg/mL and 14.26 ± 1.11 µg/mL at 24 h and 48 h respectively). Extract T7 induced death by apoptosis and cell cycle arrest in the G2 phase in C-33 A. Extract T7 was not mutagenic. No toxicological effects were observed during acute toxicity and repeated dose toxicity for 28 days. Therefore, further evaluations of Extract T7 should be conducted to identify the complete mechanism of action for potential anti-tumoral activity and safety before conducting studies in animal models.
Collapse
Affiliation(s)
- Jorge Ibarra-Berumen
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional - Unidad Durango, Instituto Politécnico Nacional, Durango, Dgo, México
| | - Mario Adán Moreno-Eutimio
- Facultad de Química, Universidad Nacional Autónoma de México, Alc. Coyoacán, Ciudad de México, México
| | - Martha Rosales-Castro
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional - Unidad Durango, Instituto Politécnico Nacional, Durango, Dgo, México
| | - Cynthia Ordaz-Pichardo
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Alc. Gustavo A. Madero, Ciudad de México, México
| |
Collapse
|
8
|
Li Y, Wei Y, Zhang H, Bai Y, Wang X, Li Q, Liu Y, Wang S, Wang J, Wen S, Li J, Zhao W. MicroRNA-154-5p suppresses cervical carcinoma growth and metastasis by silencing Cullin2 in vitro and in vivo. PeerJ 2023; 11:e15641. [PMID: 37397007 PMCID: PMC10312157 DOI: 10.7717/peerj.15641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Background MicroRNA-154-5p (miR-154-5p) plays a role in tumorigenesis in diverse human malignancies. Nevertheless, little is known about the mechanism by which miR-154-5p alters the growth and metastasis of cervical cancer. This research aimed to analyze the role of miR-154-5p in the pathology of cervical cancer in vitro and in vivo. Methods The level of miR-154-5p in human papillomavirus 16 positive cervical cancer cells was examined by real-time quantitative polymerase chain reaction. Bioinformatics predicted the downstream targets and potential functions of miR-154-5p. Furthermore, lentiviral technology was used to construct SiHa cell lines with stable up- and down-expression levels of miR-154-5p. Its differential expression effects on the progress and metastasis of cervical cancer were analyzed using cell culture and animal models. Results MiR-154-5p showed low expression in cervical cancer cells. Overexpression of miR-154-5p could markedly inhibit the proliferation, migration, and colony formation ability of SiHa cells, concomitantly leading to G1 arrest of the cell cycle, while silencing miR-154-5p triggered the opposite results. Meanwhile, overexpression of miR-154-5p restrained the growth and metastasis of cervical cancer by silencing CUL2 in vivo. Additionally, miR-154-5p reduced CUL2 level, and overexpression of CUL2 influenced the effect of miR-154-5p in cervical cancer. In conclusion, miR-154-5p restrained the growth and metastasis of cervical cancer by directly silencing CUL2.
Collapse
Affiliation(s)
- Yaqin Li
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
| | - Yimiao Wei
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Honglei Zhang
- Department of Pathology and Pathophysiology,Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Ying Bai
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Xiuting Wang
- Department of Biochemistry and Molecular Biology,Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Qi Li
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yatao Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Shuling Wang
- Department of Epidemiology,School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jiapu Wang
- Scientific Research Experiment Center, Central laboratory, The Affiliated Cardiovascular Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Songquan Wen
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jiarong Li
- Department of Epidemiology,School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Weihong Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
9
|
Kniazeva M, Zabegina L, Shalaev A, Smirnova O, Lavrinovich O, Berlev I, Malek A. NOVAprep-miR-Cervix: New Method for Evaluation of Cervical Dysplasia Severity Based on Analysis of Six miRNAs. Int J Mol Sci 2023; 24:ijms24119114. [PMID: 37298066 DOI: 10.3390/ijms24119114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Cervical cancer is one of the most common gynecological malignancies and it is preventable through the yearly diagnosis and management of pre-cancerous cervical disease. The profile of miRNA expression in cervical epithelium cells is altered with cervical dysplasia development and further progression. The NOVAprep-miR-CERVIX is a new approach for the assessment of cervical dysplasia through the analysis of six marker miRNAs. This study aims to evaluate theperformance and diagnostic potency of the new method. Cytological smears from 226 women (NILM, n.114; HSIL, n.112) were included in the study. A VPH test was performed with RealBest DNAHPV HR screen Kit, six marker miRNAs (miR-21, -29b, -145, -451a, -1246, -1290) were assayed using NOVAprep-miR-CERVIX kit. Obtained data were analyzed using the Delta Ct method and random forest machine learning algorithm. The results of the quantitative analysis of six microRNAs were expressed as a miR-CERVIX parameter, which ranged from 0 to 1, where "0" corresponded to the healthy cervical epithelium, while "1" corresponded to high-grade squamous intraepithelial dysplasia. The average value of miR-CERVIX differed in groups of NILM and HSIL samples (0.34 vs. 0.72; p < 0.000005). An estimation of miR-CERVIX allowed for the differentiation between healthy and pre-cancerous samples with sensitivity of 0.79 and specificity of 0.79, as well as to confirm HSIL with specificity of 0.98. Interestingly, the HSIL group included HPV(+) and HPV(-) samples, which were statistically significantly different in terms of miR-CERVIX value. Analysis of CC-associated miRNAs in material of cervical smear might serve as an additional method for the evaluation of cervical dysplasia severity.
Collapse
Affiliation(s)
- Margarita Kniazeva
- Subcellular Technology Lab., N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| | - Lidia Zabegina
- Subcellular Technology Lab., N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| | - Andrey Shalaev
- Subcellular Technology Lab., N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| | - Olga Smirnova
- Department of Gynecological Oncology, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| | - Olga Lavrinovich
- Department of Gynecological Oncology, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| | - Igor Berlev
- Department of Gynecological Oncology, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| | - Anastasia Malek
- Subcellular Technology Lab., N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia
| |
Collapse
|
10
|
Zhang H, Wang X, Li Y, Bai Y, Li Q, Wang S, Wei Y, Li J, Wen S, Zhao W. The hsa_circ_0000276-ceRNA regulatory network and immune infiltration in cervical cancer. BMC Cancer 2023; 23:222. [PMID: 36894874 PMCID: PMC9999601 DOI: 10.1186/s12885-023-10636-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Our previous studies have confirmed that miR-154-5p can regulate pRb expression, and thus, play a tumor suppressor role in HPV16 E7-induced cervical cancer. However, its upstream molecules have not been elucidated in the progression of cervical cancer. This study aimed to explore the role of the miR-154-5p upstream molecule, hsa_circ_0000276 in cervical cancer development and its possible mechanisms of action. METHODS We detected differences in whole transcriptome expression profiles of cervical squamous carcinoma and tissues adjacent to cervical cancer tissues from patients using microarray technology to predict circular RNAs (circRNAs) with binding sites to miR-154-5p. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the expression of hsa_circ_0000276 (which had the strongest binding capacity to miR-154 and was selected as the target molecule) in cervical cancer tissues, followed by in vitro functional assays. Downstream microRNAs (miRNAs) and mRNAs of hsa_circ_0000276 were identified using transcriptome microarray data and databases, while the protein-protein interaction networks were obtained using STRING. A competing endogenous RNA (ceRNA) network centered on hsa_circ_0000276 was constructed using Cytoscape and GO and KEGG databases. Abnormal expression and prognosis of critical downstream molecules were analyzed using gene databases and molecular experiments. qRT-PCR and western blot analysis was performed to verify the expression of candidate genes. RESULTS We identified 4,001 differentially expressed circRNAs between HPV16-positive cervical squamous carcinoma and benign cervical tissues and 760 circRNAs targeting miR-154-5p, including hsa_circ_0000276. hsa_circ_0000276 and miR-154-5p directly bound, and hsa_circ_0000276 was upregulated, in cervical precancerous lesions and cervical cancer tissues and cells. Silencing hsa_circ_0000276 inhibited G1/S transition and cell proliferation and promoted apoptosis in SiHa and CaSki cells. Bioinformatics analysis showed that the hsa_circ_0000276 ceRNA network included 17 miRNAs and seven mRNAs, and downstream molecules of hsa_circ_0000276 were upregulated in cervical cancer tissues. These downstream molecules were associated with a poor prognosis and affected cervical cancer-associated immune infiltration. Of these, expression of CD47, LDHA, PDIA3, and SLC16A1 was downregulated in sh_hsa_circ_0000276 cells. CONCLUSIONS Our findings show that hsa_circ_0000276 exerts cancer-promoting effects in cervical cancer and is an underlying biomarker for cervical squamous cell carcinoma.
Collapse
Affiliation(s)
- Honglei Zhang
- Pathology and Pathophysiology Department, Basic Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiuting Wang
- Biochemistry and Molecular Biology Department, Basic Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Yaqin Li
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Ying Bai
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Qi Li
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Shuling Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Yimiao Wei
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Jiarong Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Songquan Wen
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Weihong Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
11
|
Zhou J, Li Y, Xu K, Rong Y, Huang S, Wu H, Yi X, Liu C. Transcription factor c-Rel regulated by E5 affects the whole process after HPV16 infection through miR-133a-modulated feedback loop aim at mir-379-369 cluster. Cancer Cell Int 2022; 22:375. [PMID: 36457028 PMCID: PMC9714012 DOI: 10.1186/s12935-022-02794-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND During the development of cervical cancer, HPV infection causes a series of changes in transcription factors and microRNAs. But their relationships with pathogenic processes are not clear. METHODS Base on previous study, to analyse the relationship among HPV16 infection and the related transcription factors, related miRNAs, so as to further understand the molecular mechanism of HPV16 infection to cervical cancer, around the HPV16 related miRNAs we have reported, the methods of bioinformatics prediction, histology, cell model in vitro and molecular interaction were used for prediction and validation respectively RESULTS: The results showed that NF-κB family members(c-Rel, p65 and p50) were identified as main HPV16rmiR-transcription factors. They have different expressive characteristics in cervical lesions and play tumorigenesis or progression roles in different periods of HPV16 infection. c-Rel, p65 and p50 act as mediators which link the HPV16 E5 and HPV16 related miRNAs. Among them, c-Rel affects the occurrence and progression of cervical cancer during whole HPV16 infection stage through miR133a-3p-modulated mir-379-369 cluster with a positive feedback way which targeted c-Rel itself and its positive regulator AKT3. CONCLUSION So in the course of HPV16 infection, the E5, c-Rel, and miR-133a-3p form a positive feedback system which aim at mir-379-369 cluster for the whole process from HPV16 infection to cervical cancer.
Collapse
Affiliation(s)
- Juan Zhou
- grid.256607.00000 0004 1798 2653Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021 Guangxi China ,grid.33199.310000 0004 0368 7223Department of Gynaecology and Obstetrics, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, Hubei, China
| | - Yongpeng Li
- grid.256607.00000 0004 1798 2653Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, 530021 Guangxi China
| | - Ke Xu
- grid.256607.00000 0004 1798 2653Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021 Guangxi China
| | - Yan Rong
- grid.256607.00000 0004 1798 2653Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021 Guangxi China
| | - Siting Huang
- grid.256607.00000 0004 1798 2653Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021 Guangxi China
| | - Hailun Wu
- grid.256607.00000 0004 1798 2653Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021 Guangxi China
| | - Xianlin Yi
- grid.256607.00000 0004 1798 2653Department of Urology, Wuming Hospital of Guangxi Medical University, Nanning, 530199 GuangXi China
| | - Chanzhen Liu
- grid.256607.00000 0004 1798 2653Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021 Guangxi China
| |
Collapse
|
12
|
Choi PW, Liu TL, Wong CW, Liu SK, Lum YL, Ming WK. The Dysregulation of MicroRNAs in the Development of Cervical Pre-Cancer—An Update. Int J Mol Sci 2022; 23:ijms23137126. [PMID: 35806128 PMCID: PMC9266862 DOI: 10.3390/ijms23137126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Globally in 2020, an estimated ~600,000 women were diagnosed with and 340,000 women died from cervical cancer. Compared to 2012, the number of cases increased by 7.5% and the number of deaths increased by 17%. MiRNAs are involved in multiple processes in the pathogenesis of cervical cancer. Dysregulation of miRNAs in the pre-stage of cervical cancer is the focus of this review. Here we summarize the dysregulated miRNAs in clinical samples from cervical pre-cancer patients and relate them to the early transformation process owing to human papillomavirus (HPV) infection in the cervical cells. When HPV infects the normal cervical cells, the DNA damage response is initiated with the involvement of HPV’s E1 and E2 proteins. Later, cell proliferation and cell death are affected by the E6 and E7 proteins. We find that the expressions of miRNAs in cervical pre-cancerous tissue revealed by different studies seldom agreed with each other. The discrepancy in sample types, samples’ HPV status, expression measurement, and methods for analysis contributed to the non-aligned results across studies. However, several miRNAs (miR-34a, miR-9, miR-21, miR-145, and miR-375) were found to be dysregulated across multiple studies. In addition, there are hints that the DNA damage response and cell growth response induced by HPV during the early transformation of the cervical cells are related to these miRNAs. Currently, no review articles analyse the relationship between the dysregulated miRNAs in cervical pre-cancerous tissue and their possible roles in the early processes involving HPV’s protein encoded by the early genes and DNA damage response during normal cell transformation. Our review provides insight on spotting miRNAs involved in the early pathogenic processes and pointing out their potential as biomarker targets of cervical pre-cancer.
Collapse
Affiliation(s)
- Pui-Wah Choi
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Tin Lun Liu
- International School, Jinan University, Guangzhou 510632, China;
| | - Chun Wai Wong
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Sze Kei Liu
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Yick-Liang Lum
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Wai-Kit Ming
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
- Correspondence: ; Tel.: +852-3442-6956
| |
Collapse
|
13
|
Tomaszewska W, Kozłowska-Masłoń J, Baranowski D, Perkowska A, Szałkowska S, Kazimierczak U, Severino P, Lamperska K, Kolenda T. miR-154 Influences HNSCC Development and Progression through Regulation of the Epithelial-to-Mesenchymal Transition Process and Could Be Used as a Potential Biomarker. Biomedicines 2021; 9:1894. [PMID: 34944712 PMCID: PMC8698850 DOI: 10.3390/biomedicines9121894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs and their role in cancer have been extensively studied for the past decade. Here, we analyzed the biological role and diagnostic potential of miR-154-5p and miR-154-3p in head and neck squamous cell carcinoma (HNSCC). miRNA expression analyses were performed using The Cancer Genome Atlas (TCGA) data accessed from cBioPortal, UALCAN, Santa Cruz University, and Gene Expression Omnibus (GEO). The expression data were correlated with clinicopathological parameters. The functional enrichment was assessed with Gene Set Enrichment Analysis (GSEA). The immunological profiles were assessed using the ESTIMATE tool and RNAseq data from TCGA. All statistical analyses were performed with GraphPad Prism and Statistica. The study showed that both miR-154-5p and miR-154-3p were downregulated in the HNSCC samples and their expression levels correlated with tumor localization, overall survival, cancer stage, tumor grade, and HPV p16 status. GSEA indicated that individuals with the increased levels of miR-154 had upregulated AKT-MTOR, CYCLIN D1, KRAS, EIF4E, RB, ATM, and EMT gene sets. Finally, the elevated miR-154 expression correlated with better immune response. This study showed that miR-154 is highly involved in HNSCC pathogenesis, invasion, and immune response. The implementation of miR-154 as a biomarker may improve the effectiveness of HNSCC treatment.
Collapse
Affiliation(s)
- Weronika Tomaszewska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (D.B.); (A.P.); (S.S.); (U.K.)
| | - Joanna Kozłowska-Masłoń
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (J.K.-M.); (K.L.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
- Faculty of Biology, Institute of Human Biology and Evolution, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Dawid Baranowski
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (D.B.); (A.P.); (S.S.); (U.K.)
| | - Anna Perkowska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (D.B.); (A.P.); (S.S.); (U.K.)
| | - Sandra Szałkowska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (D.B.); (A.P.); (S.S.); (U.K.)
| | - Urszula Kazimierczak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (D.B.); (A.P.); (S.S.); (U.K.)
| | - Patricia Severino
- Centro de Pesquisa Experimental, Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627-Jardim Leonor, São Paulo 05652-900, SP, Brazil;
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (J.K.-M.); (K.L.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (J.K.-M.); (K.L.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| |
Collapse
|
14
|
Wang Q, Cai Y, Fu X, Chen L. High RPS27A Expression Predicts Poor Prognosis in Patients With HPV Type 16 Cervical Cancer. Front Oncol 2021; 11:752974. [PMID: 34796111 PMCID: PMC8593198 DOI: 10.3389/fonc.2021.752974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, the incidence and the mortality rate of cervical cancer have been gradually increasing, becoming one of the major causes of cancer-related death in women. In particular, patients with advanced and recurrent cervical cancers present a very poor prognosis. In addition, the vast majority of cervical cancer cases are caused by human papillomavirus (HPV) infection, of which HPV16 infection is the main cause and squamous cell carcinoma is the main presenting type. In this study, we performed screening of differentially expressed genes (DEGs) based on The Cancer Genome Atlas (TCGA) database and GSE6791, constructed a protein–protein interaction (PPI) network to screen 34 hub genes, filtered to the remaining 10 genes using the CytoHubba plug-in, and used survival analysis to determine that RPS27A was most associated with the prognosis of cervical cancer patients and has prognostic and predictive value for cervical cancer. The most significant biological functions and pathways of RPS27A enrichment were subsequently investigated with gene set enrichment analysis (GSEA), and integration of TCGA and GTEx database analyses revealed that RPS27A was significantly expressed in most cancer types. In this study, our analysis revealed that RPS27A can be used as a prognostic biomarker for HPV16 cervical cancer and has biological significance for the growth of cervical cancer cells.
Collapse
Affiliation(s)
- Qiming Wang
- Department of Gynecology, Ningbo Women & Children's Hospital, Ningbo, China
| | - Yan Cai
- Department of Gynecology, Ningbo Women & Children's Hospital, Ningbo, China
| | - Xuewen Fu
- School of Medicine, Ningbo University, Ningbo, China
| | - Liang Chen
- Department of Gynecology, Ningbo Women & Children's Hospital, Ningbo, China
| |
Collapse
|
15
|
Luo H, Li Y, Zhao Y, Chang J, Zhang X, Zou B, Gao L, Wang W. Comprehensive Analysis of circRNA Expression Profiles During Cervical Carcinogenesis. Front Oncol 2021; 11:676609. [PMID: 34532284 PMCID: PMC8438239 DOI: 10.3389/fonc.2021.676609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/03/2021] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs) are regulatory molecules that participate in the occurrence, development and progression of tumors. To obtain a complete blueprint of cervical carcinogenesis, we analyzed the temporal transcriptomic landscapes of mRNAs and circRNAs. Microarrays were performed to identify the circRNA and mRNA expression profiles of cervical squamous cell carcinoma (CSCC) and high-grade squamous intraepithelial lesion (HSIL) patients compared with normal controls (NC). Short time-series expression miner (STEM) was utilized to characterize the time-course expression patterns of circRNAs and mRNAs from NC to HSIL and CSCC. A total of 3 circRNA profiles and 3 mRNA profiles with continuous upregulated patterns were identified and selected for further analysis. Furthermore, functional annotation showed that the mRNAs were associated with DNA repair and cell division. The protein-protein interaction (PPI) network analysis revealed that the ten highest-degree genes were considered to be hub genes. Subsequently, a competing endogenous RNA (ceRNA) network analysis and real-time PCR validation indicated that hsa_circ_0001955/hsa-miR-6719-3p/CDK1, hsa_circ_0001955/hsa-miR-1277-5p/NEDD4L and hsa_circ_0003954/hsa-miR-15a-3p/SYCP2 were highly correlated with cervical carcinogenesis. Silencing of hsa_circ_0003954 inhibited SiHa cell proliferation and perturb the cell cycle in vitro. This study provides insight into the molecular events regulating cervical carcinogenesis, identifies functional circRNAs in CSCC, and improves the understanding of the pathogenesis and molecular biomarkers of CSCC and HSIL.
Collapse
Affiliation(s)
- Haixia Luo
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuanxing Li
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yueyang Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jingjing Chang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiu Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Binbin Zou
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, China
| | - Lifang Gao
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
16
|
Zhang S, Amahong K, Sun X, Lian X, Liu J, Sun H, Lou Y, Zhu F, Qiu Y. The miRNA: a small but powerful RNA for COVID-19. Brief Bioinform 2021; 22:1137-1149. [PMID: 33675361 PMCID: PMC7989616 DOI: 10.1093/bib/bbab062] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a severe and rapidly evolving epidemic. Now, although a few drugs and vaccines have been proved for its treatment and prevention, little systematic comments are made to explain its susceptibility to humans. A few scattered studies used bioinformatics methods to explore the role of microRNA (miRNA) in COVID-19 infection. Combining these timely reports and previous studies about virus and miRNA, we comb through the available clues and seemingly make the perspective reasonable that the COVID-19 cleverly exploits the interplay between the small miRNA and other biomolecules to avoid being effectively recognized and attacked from host immune protection as well to deactivate functional genes that are crucial for immune system. In detail, SARS-CoV-2 can be regarded as a sponge to adsorb host immune-related miRNA, which forces host fall into dysfunction status of immune system. Besides, SARS-CoV-2 encodes its own miRNAs, which can enter host cell and are not perceived by the host's immune system, subsequently targeting host function genes to cause illnesses. Therefore, this article presents a reasonable viewpoint that the miRNA-based interplays between the host and SARS-CoV-2 may be the primary cause that SARS-CoV-2 accesses and attacks the host cells.
Collapse
Affiliation(s)
- Song Zhang
- College of Pharmaceutical Sciences in Zhejiang University and the First Affiliated Hospital of Zhejiang University School of Medicine, China
| | | | - Xiuna Sun
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Xichen Lian
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Jin Liu
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Yan Lou
- Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, the First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Feng Zhu
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, the First Affiliated Hospital, Zhejiang University School of Medicine, China
| |
Collapse
|
17
|
Li Y, Li C, Liu S, Yang J, Shi L, Yao Y. The associations and roles of microRNA single-nucleotide polymorphisms in cervical cancer. Int J Med Sci 2021; 18:2347-2354. [PMID: 33967611 PMCID: PMC8100648 DOI: 10.7150/ijms.57990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/26/2021] [Indexed: 11/05/2022] Open
Abstract
Cervical cancer is one of the fourth most common gynecological malignancies and has been identified as the fourth leading cause of cancer death in women worldwide. MicroRNAs (miRNAs) are single-stranded sequences of noncoding RNAs that are approximately 22-24 nucleotides in length. They modulate posttranscriptional mRNA expression and play critical roles in cervical cancer. Single nucleotide polymorphisms (SNPs) in miRNA genes may alter miRNA expression and maturation and have been associated with various cancers. This review mainly focuses on the roles of SNPs in miRNA genes in the development of cervical cancer and summarizes the research progress of miRNA SNPs in cervical cancer and their molecular regulation mechanisms.
Collapse
Affiliation(s)
- Yaheng Li
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Chuanyin Li
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Shuyuan Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Jia Yang
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Li Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Yufeng Yao
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| |
Collapse
|