1
|
Mohan CD, Shanmugam MK, Gowda SGS, Chinnathambi A, Rangappa KS, Sethi G. c-MET pathway in human malignancies and its targeting by natural compounds for cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155379. [PMID: 38503157 DOI: 10.1016/j.phymed.2024.155379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND c-MET is a receptor tyrosine kinase which is classically activated by HGF to activate its downstream signaling cascades such as MAPK, PI3K/Akt/mTOR, and STAT3. The c-MET modulates cell proliferation, epithelial-mesenchymal transition (EMT), immune response, morphogenesis, apoptosis, and angiogenesis. The c-MET has been shown to serve a prominent role in embryogenesis and early development. The c-MET pathway is deregulated in a broad range of malignancies, due to overexpression of ligands or receptors, genomic amplification, and MET mutations. The link between the deregulation of c-MET signaling and tumor progression has been well-documented. Overexpression or overactivation of c-MET is associated with dismal clinical outcomes and acquired resistance to targeted therapies. Since c-MET activation results in the triggering of oncogenic pathways, abrogating the c-MET pathway is considered to be a pivotal strategy in cancer therapeutics. Herein, an analysis of role of the c-MET pathway in human cancers and its relevance in bone metastasis and therapeutic resistance has been undertaken. Also, an attempt has been made to summarize the inhibitory activity of selected natural compounds towards c-MET signaling in cancers. METHODS The publications related to c-MET pathway in malignancies and its natural compound modulators were obtained from databases such as PubMed, Scopus, and Google Scholar and summarized based on PRISMA guidelines. Some of the keywords used for extracting relevant literature are c-MET, natural compound inhibitors of c-MET, c-MET in liver cancer, c-MET in breast cancer, c-MET in lung cancer, c-MET in pancreatic cancer, c-MET in head and neck cancer, c-MET in bone metastasis, c-MET in therapeutic resistance, and combination of c-MET inhibitors and chemotherapeutic agents. The chemical structure of natural compounds was verified in PubChem database. RESULTS The search yielded 3935 publications, of which 195 reference publications were used for our analysis. Clinical trials were referenced using ClinicalTrials.gov identifier. The c-MET pathway has been recognized as a prominent target to combat the growth, metastasis, and chemotherapeutic resistance in cancers. The key role of the c-MET in bone metastasis as well as therapeutic resistance has been elaborated. Also, suppressive effect of selected natural compounds on the c-MET pathway in clinical/preclinical studies has been discussed.
Collapse
Affiliation(s)
- Chakrabhavi Dhananjaya Mohan
- FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226 001, India
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | | | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kanchugarakoppal S Rangappa
- Institution of Excellence, Vijnana Bhavan, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
2
|
Muraro E, Montico B, Lum B, Colizzi F, Giurato G, Salvati A, Guerrieri R, Rizzo A, Comaro E, Canzonieri V, Anichini A, Del Vecchio M, Mortarini R, Milione M, Weisz A, Pizzichetta MA, Simpson F, Dolcetti R, Fratta E, Sigalotti L. Antibody dependent cellular cytotoxicity-inducing anti-EGFR antibodies as effective therapeutic option for cutaneous melanoma resistant to BRAF inhibitors. Front Immunol 2024; 15:1336566. [PMID: 38510242 PMCID: PMC10950948 DOI: 10.3389/fimmu.2024.1336566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction About 50% of cutaneous melanoma (CM) patients present activating BRAF mutations that can be effectively targeted by BRAF inhibitors (BRAFi). However, 20% of CM patients exhibit intrinsic drug resistance to BRAFi, while most of the others develop adaptive resistance over time. The mechanisms involved in BRAFi resistance are disparate and globally seem to rewire the cellular signaling profile by up-regulating different receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR). RTKs inhibitors have not clearly demonstrated anti-tumor activity in BRAFi resistant models. To overcome this issue, we wondered whether the shared up-regulated RTK phenotype associated with BRAFi resistance could be exploited by using immune weapons as the antibody-dependent cell cytotoxicity (ADCC)-mediated effect of anti-RTKs antibodies, and kill tumor cells independently from the mechanistic roots. Methods and results By using an in vitro model of BRAFi resistance, we detected increased membrane expression of EGFR, both at mRNA and protein level in 4 out of 9 BRAFi-resistant (VR) CM cultures as compared to their parental sensitive cells. Increased EGFR phosphorylation and AKT activation were observed in the VR CM cultures. EGFR signaling appeared dispensable for maintaining resistance, since small molecule-, antibody- and CRISPR-targeting of EGFR did not restore sensitivity of VR cells to BRAFi. Importantly, immune-targeting of EGFR by the anti-EGFR antibody cetuximab efficiently and specifically killed EGFR-expressing VR CM cells, both in vitro and in humanized mouse models in vivo, triggering ADCC by healthy donors' and patients' peripheral blood cells. Conclusion Our data demonstrate the efficacy of immune targeting of RTKs expressed by CM relapsing on BRAFi, providing the proof-of-concept supporting the assessment of anti-RTK antibodies in combination therapies in this setting. This strategy might be expected to concomitantly trigger the crosstalk of adaptive immune response leading to a complementing T cell immune rejection of tumors.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Barbara Montico
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Benedict Lum
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Francesca Colizzi
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, Baronissi, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, Baronissi, Italy
- Molecular Pathology and Medical Genomics Program, AOU 'S. Giovanni di Dio e Ruggi d'Aragona' University of Salerno and Rete Oncologica Campana, Salerno, Italy
| | - Roberto Guerrieri
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Aurora Rizzo
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Elisa Comaro
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Vincenzo Canzonieri
- Division of Pathology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Andrea Anichini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Del Vecchio
- Melanoma Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Roberta Mortarini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Milione
- Pathology Unit 1, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, Baronissi, Italy
- Molecular Pathology and Medical Genomics Program, AOU 'S. Giovanni di Dio e Ruggi d'Aragona' University of Salerno and Rete Oncologica Campana, Salerno, Italy
| | - Maria Antonietta Pizzichetta
- Division of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
- Department of Dermatology, University of Trieste, Trieste, Italy
| | - Fiona Simpson
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Riccardo Dolcetti
- Translational and Clinical Immunotherapy, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Elisabetta Fratta
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Luca Sigalotti
- Oncogenetics and Functional Oncogenomics Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
3
|
Kim S, Park JM, Park S, Jung E, Ko D, Park M, Seo J, Nam KD, Kang YK, Lee K, Farrand L, Kim YJ, Kim JY, Seo JH. Suppression of TNBC metastasis by doxazosin, a novel dual inhibitor of c-MET/EGFR. J Exp Clin Cancer Res 2023; 42:292. [PMID: 37924112 PMCID: PMC10625208 DOI: 10.1186/s13046-023-02866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is characterized by aggressive growth and a high propensity for recurrence and metastasis. Simultaneous overexpression of c-MET and EGFR in TNBC is associated with worse clinicopathological features and unfavorable outcomes. Although the development of new c-MET inhibitors and the emergence of 3rd-generation EGFR inhibitors represent promising treatment options, the high costs involved limit the accessibility of these drugs. In the present study, we sought to investigate the therapeutic potential of doxazosin (DOXA), a generic drug for benign prostate hyperplasia, in targeting TNBC. METHODS The effect of DOXA on TNBC cell lines in vitro was evaluated in terms of cell viability, apoptosis, c-MET/EGFR signaling pathway, molecular docking studies and impact on cancer stem cell (CSC)-like properties. An in vivo metastatic model with CSCs was used to evaluate the efficacy of DOXA. RESULTS DOXA exhibits notable anti-proliferative effects on TNBC cells by inducing apoptosis via caspase activation. Molecular docking studies revealed the direct interaction of DOXA with the tyrosine kinase domains of c-MET and EGFR. Consequently, DOXA disrupts important survival pathways including AKT, MEK/ERK, and JAK/STAT3, while suppressing CSC-like characteristics including CD44high/CD24low subpopulations, aldehyde dehydrogenase 1 (ALDH1) activity and formation of mammospheres. DOXA administration was found to suppress tumor growth, intra- and peri-tumoral angiogenesis and distant metastasis in an orthotopic allograft model with CSC-enriched populations. Furthermore, no toxic effects of DOXA were observed in hepatic or renal function. CONCLUSIONS Our findings highlight the potential of DOXA as a therapeutic option for metastatic TNBC, warranting further investigation.
Collapse
Affiliation(s)
- Seongjae Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jung Min Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Soeun Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Eunsun Jung
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Dongmi Ko
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Minsu Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Juyeon Seo
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Kee Dal Nam
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea
| | - Yong Koo Kang
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea
| | - Kyoungmin Lee
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea
| | - Lee Farrand
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Yoon-Jae Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea.
| | - Ji Young Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea.
| | - Jae Hong Seo
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea.
| |
Collapse
|
4
|
Ang HX, Sutiman N, Deng XL, Liu A, Cerda-Smith CG, Hutchinson HM, Kim H, Bartelt LC, Chen Q, Barrera A, Lin J, Sheng Z, McDowell IC, Reddy TE, Nicchitta CV, Wood KC. Cooperative regulation of coupled oncoprotein synthesis and stability in triple-negative breast cancer by EGFR and CDK12/13. Proc Natl Acad Sci U S A 2023; 120:e2221448120. [PMID: 37695916 PMCID: PMC10515179 DOI: 10.1073/pnas.2221448120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/19/2023] [Indexed: 09/13/2023] Open
Abstract
Evidence has long suggested that epidermal growth factor receptor (EGFR) may play a prominent role in triple-negative breast cancer (TNBC) pathogenesis, but clinical trials of EGFR inhibitors have yielded disappointing results. Using a candidate drug screen, we identified that inhibition of cyclin-dependent kinases 12 and 13 (CDK12/13) dramatically sensitizes diverse models of TNBC to EGFR blockade. This combination therapy drives cell death through the 4E-BP1-dependent suppression of the translation and translation-linked turnover of driver oncoproteins, including MYC. A genome-wide CRISPR/Cas9 screen identified the CCR4-NOT complex as a major determinant of sensitivity to the combination therapy whose loss renders 4E-BP1 unresponsive to drug-induced dephosphorylation, thereby rescuing MYC translational suppression and promoting MYC stability. The central roles of CCR4-NOT and 4E-BP1 in response to the combination therapy were further underscored by the observation of CNOT1 loss and rescue of 4E-BP1 phosphorylation in TNBC cells that naturally evolved therapy resistance. Thus, pharmacological inhibition of CDK12/13 reveals a long-proposed EGFR dependence in TNBC that functions through the cooperative regulation of translation-coupled oncoprotein stability.
Collapse
Affiliation(s)
- Hazel X. Ang
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Natalia Sutiman
- Duke-National University of Singapore Medical School,Singapore169857, Singapore
| | - Xinyue L. Deng
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Annie Liu
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
- Department of Surgery, Duke University School of Medicine, Durham, NC22710
| | - Christian G. Cerda-Smith
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Haley M. Hutchinson
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Holly Kim
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| | - Luke C. Bartelt
- Duke Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
| | - Qiang Chen
- Department of Cell Biology, Duke University School of Medicine, Durham, NC22710
| | - Alejandro Barrera
- Duke Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
| | - Jiaxing Lin
- Bioinformatics Shared Resources, Duke Cancer Institute, Duke University Medical Center, Durham, NC27705
| | - Zhecheng Sheng
- Bioinformatics Shared Resources, Duke Cancer Institute, Duke University Medical Center, Durham, NC27705
| | - Ian C. McDowell
- Duke Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
| | - Timothy E. Reddy
- Duke Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27708
| | | | - Kris C. Wood
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC22710
| |
Collapse
|
5
|
Albers J, Friese-Hamim M, Clark A, Schadt O, Walter-Bausch G, Stroh C, Johne A, Karachaliou N, Blaukat A. The Preclinical Pharmacology of Tepotinib-A Highly Selective MET Inhibitor with Activity in Tumors Harboring MET Alterations. Mol Cancer Ther 2023; 22:833-843. [PMID: 36999986 PMCID: PMC10320478 DOI: 10.1158/1535-7163.mct-22-0537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/16/2022] [Accepted: 03/29/2023] [Indexed: 04/01/2023]
Abstract
The mesenchymal-epithelial transition factor (MET) proto-oncogene encodes the MET receptor tyrosine kinase. MET aberrations drive tumorigenesis in several cancer types through a variety of molecular mechanisms, including MET mutations, gene amplification, rearrangement, and overexpression. Therefore, MET is a therapeutic target and the selective type Ib MET inhibitor, tepotinib, was designed to potently inhibit MET kinase activity. In vitro, tepotinib inhibits MET in a concentration-dependent manner irrespective of the mode of MET activation, and in vivo, tepotinib exhibits marked, dose-dependent antitumor activity in MET-dependent tumor models of various cancer indications. Tepotinib penetrates the blood-brain barrier and demonstrates strong antitumor activity in subcutaneous and orthotopic brain metastasis models, in-line with clinical activity observed in patients. MET amplification is an established mechanism of resistance to EGFR tyrosine kinase inhibitors (TKI), and preclinical studies show that tepotinib in combination with EGFR TKIs can overcome this resistance. Tepotinib is currently approved for the treatment of adult patients with advanced or metastatic non-small cell lung cancer harboring MET exon 14 skipping alterations. This review focuses on the pharmacology of tepotinib in preclinical cancer models harboring MET alterations and demonstrates that strong adherence to the principles of the Pharmacological Audit Trail may result in a successful discovery and development of a precision medicine.
Collapse
Affiliation(s)
- Joachim Albers
- Research Unit Oncology, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Manja Friese-Hamim
- Corporate Animal Using Vendor and Vivarium Governance (SQ-AV), Corporate Sustainability, Quality, Trade Compliance (SQ), Animal Affairs (SQ-A), the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Anderson Clark
- Research Unit Oncology, EMD Serono Research and Development Institute, Inc., Billerica, Massachusetts
| | - Oliver Schadt
- Global Medicinal Chemistry, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Gina Walter-Bausch
- Research Unit Oncology, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Christopher Stroh
- Clinical Biomarkers and Companion Diagnostics, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Andreas Johne
- Global Clinical Development Unit, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Niki Karachaliou
- Global Clinical Development Unit, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Andree Blaukat
- Research Unit Oncology, the healthcare business of Merck KGaA, Darmstadt, Germany
| |
Collapse
|
6
|
Nonaka T. Application of engineered extracellular vesicles to overcome drug resistance in cancer. Front Oncol 2022; 12:1070479. [PMID: 36591444 PMCID: PMC9797956 DOI: 10.3389/fonc.2022.1070479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Targeted therapies have significantly improved survival rates and quality of life for many cancer patients. However, on- and off-target side toxicities in normal tissues, and precocious activation of the immune response remain significant issues that limit the efficacy of molecular targeted agents. Extracellular vesicles (EVs) hold great promise as the mediators of next-generation therapeutic payloads. Derived from cellular membranes, EVs can be engineered to carry specific therapeutic agents in a targeted manner to tumor cells. This review highlights the progress in our understanding of basic EV biology, and discusses how EVs are being chemically and genetically modified for use in clinical and preclinical studies.
Collapse
Affiliation(s)
- Taichiro Nonaka
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States,Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA, United States,*Correspondence: Taichiro Nonaka,
| |
Collapse
|
7
|
Zhang Z, Li D, Yun H, Tong J, Liu W, Chai K, Zeng T, Gao Z, Xie Y. Opportunities and challenges of targeting c-Met in the treatment of digestive tumors. Front Oncol 2022; 12:923260. [PMID: 35978812 PMCID: PMC9376446 DOI: 10.3389/fonc.2022.923260] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
At present, a large number of studies have demonstrated that c-Met generally exerts a crucial function of promoting tumor cells proliferation and differentiation in digestive system tumors. c-Met also mediates tumor progression and drug resistance by signaling interactions with other oncogenic molecules and then activating downstream pathways. Therefore, c-Met is a promising target for the treatment of digestive system tumors. Many anti-tumor therapies targeting c-Met (tyrosine kinase inhibitors, monoclonal antibodies, and adoptive immunotherapy) have been developed in treating digestive system tumors. Some drugs have been successfully applied to clinic, but most of them are defective due to their efficacy and complications. In order to promote the clinical application of targeting c-Met drugs in digestive system tumors, it is necessary to further explore the mechanism of c-Met action in digestive system tumors and optimize the anti-tumor treatment of targeting c-Met drugs. Through reading a large number of literatures, the author systematically reviewed the biological functions and molecular mechanisms of c-Met associated with tumor and summarized the current status of targeting c-Met in the treatment of digestive system tumors so as to provide new ideas for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Zhengchao Zhang
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Dong Li
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Heng Yun
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Jie Tong
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Wei Liu
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Keqiang Chai
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Tongwei Zeng
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Zhenghua Gao
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- *Correspondence: Yongqiang Xie, ; Zhenghua Gao,
| | - Yongqiang Xie
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- *Correspondence: Yongqiang Xie, ; Zhenghua Gao,
| |
Collapse
|
8
|
Zhang Z, Miao L, Wang S, Zhao Y, Xie Y, Yun H, Ren Z, Wang G, Teng M, Li Y. Study on the expression of c-Met in gastric cancer and its correlation with preoperative serum tumor markers and prognosis. World J Surg Oncol 2022; 20:204. [PMID: 35710379 PMCID: PMC9202172 DOI: 10.1186/s12957-022-02659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/28/2022] [Indexed: 12/04/2022] Open
Abstract
Background Studies have found that c-Met plays a critical role in the progression of solid tumors. This study aimed to investigate the expression of c-Met in gastric cancer (GC) and its correlation with preoperative serum tumor markers and prognosis, in order to provide a more theoretical basis for targeting c-Met in the treatment of GC. Methods Ninety-seven patients who underwent curative gastrectomy in our hospital from December 2013 to September 2015 were included in this study. The tissue microarray was constructed by paraffin-embedded tumor tissue of enrolled patients, including 97 GC points and 83 paracancerous points. Then, it was used for c-Met immunohistochemical staining, followed by an immunological H-score. The clinical baseline data and 5-year survival of patients with low and high c-Met expression were compared. Besides, the correlation between the expression of c-Met in tumor tissues and preoperative serum tumor markers was investigated. Finally, multivariate Cox regression analysis was used to explore the survival risk factors of patients. Results c-Met has a high expression rate in GC tissues 64.95% (63/97). The expression of c-Met was significantly different in different clinicopathological stages (p < 0.05); the high expression group also had a higher M stage and clinicopathological stage of GC. The correlation test between the c-Met H-score and CA125 was statistically significant (p = 0.004), indicating a positive correlation. Furthermore, high c-Met expression correlated with poor overall survival (OS) for 5 years (p = 0.005). It was also found that the high expression of c-Met in stage I–II patients was correlative with poor OS for 5 years (p = 0.026), while stage III–IV patients had no statistical significance (p > 0.05). Multivariate Cox regression analysis showed that c-Met might be an independent risk factor for survival 5 years after surgery. Conclusion This study found that the high expression of c-Met in GC tissues was associated with poor 5-year OS in GC patients and was an independent risk factor for 5-year survival after curative gastrectomy. The expression of c-Met in GC tissues was also positively correlated with preoperative serum CA125.
Collapse
Affiliation(s)
- Zhengchao Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730000, China.,Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, 730900, China
| | - Lele Miao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730000, China
| | - Song Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730000, China
| | - Yang Zhao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730000, China
| | - Yongqiang Xie
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, 730900, China
| | - Heng Yun
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, 730900, China
| | - Zhijian Ren
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730000, China
| | - Guan Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730000, China
| | - Muzhou Teng
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China. .,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730000, China.
| | - Yumin Li
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China. .,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730000, China.
| |
Collapse
|
9
|
Duan L, Calhoun S, Perez RE, Macias V, Mir F, Pergande MR, Gattuso P, Borgia JA, Maki CG. Prolyl Carboxypeptidase Maintains Receptor Tyrosine Kinase Signaling and Is a Potential Therapeutic Target in Triple Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14030739. [PMID: 35159006 PMCID: PMC8833515 DOI: 10.3390/cancers14030739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Triple negative breast cancer (TNBC) is an aggressive cancer type with limited treatment options and poor prognosis. Our research has revealed that a protein called prolylcarboxypeptidase (PRCP) is a potential therapy target for TNBC. We found that high levels of PRCP in tumors coincides with worse prognosis in TNBC patients. Inhibition of PRCP with a small molecule inhibitor blocked TNBC cell and tumor growth and inhibited the activity of several receptor tyrosine kinases (RTKs), proteins that are located on the surface of cells and that are important for cancer development and progression. Our findings suggest that PRCP is a novel prognostic factor for TNBC and that specific inhibitors of PRCP could be developed for TNBC treatment. Abstract TNBC is an aggressive cancer sub-type with limited treatment options and poor prognosis. New therapeutic targets are needed to improve outcomes in TNBC patients. PRCP is a lysosomal serine protease that cleaves peptide substrates when the penultimate amino acid is proline. A role for PRCP in TNBC or other cancers, and its potential as a therapy target has not yet been tested. In the current study, we found high tumor expression of PRCP associates with worse outcome and earlier recurrence in TNBC patients. Knockdown of PRCP or treatment with a small molecule PRCP inhibitor blocked proliferation and survival in TNBC cell lines and inhibited growth of TNBC tumors in mice. Mechanistically, we found PRCP maintains signaling from multiple receptor tyrosine kinases (RTKs), potentially by promoting crosstalk between RTKs and G-protein coupled receptors (GPCRs). Lastly, we found that the PRCP inhibitor caused synergistic killing of TNBC cells when combined with the EGFR and ErbB2 inhibitor lapatinib. Our results suggest that PRCP is potential prognostic marker for TNBC patient outcome and a novel therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- Lei Duan
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac 507, Chicago, IL 60612, USA; (L.D.); (S.C.); (R.E.P.); (M.R.P.); (J.A.B.)
| | - Sarah Calhoun
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac 507, Chicago, IL 60612, USA; (L.D.); (S.C.); (R.E.P.); (M.R.P.); (J.A.B.)
| | - Ricardo E. Perez
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac 507, Chicago, IL 60612, USA; (L.D.); (S.C.); (R.E.P.); (M.R.P.); (J.A.B.)
| | - Virgilia Macias
- Department of Pathology, University of Illinois at Chicago, 909 S. Wolcott St, Rm 6128, Chicago, IL 60612, USA;
| | - Fatima Mir
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA; (F.M.); (P.G.)
| | - Melissa R. Pergande
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac 507, Chicago, IL 60612, USA; (L.D.); (S.C.); (R.E.P.); (M.R.P.); (J.A.B.)
| | - Paolo Gattuso
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA; (F.M.); (P.G.)
| | - Jeffrey A. Borgia
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac 507, Chicago, IL 60612, USA; (L.D.); (S.C.); (R.E.P.); (M.R.P.); (J.A.B.)
| | - Carl G. Maki
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac 507, Chicago, IL 60612, USA; (L.D.); (S.C.); (R.E.P.); (M.R.P.); (J.A.B.)
- Correspondence: ; Tel.: +312-563-3380
| |
Collapse
|
10
|
The Emerging Role of c-Met in Carcinogenesis and Clinical Implications as a Possible Therapeutic Target. JOURNAL OF ONCOLOGY 2022; 2022:5179182. [PMID: 35069735 PMCID: PMC8776431 DOI: 10.1155/2022/5179182] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023]
Abstract
Background c-MET is a receptor tyrosine kinase receptor (RTK) for the hepatocyte growth factor (HGF). The binding of HGF to c-MET regulates several cellular functions: differentiation, proliferation, epithelial cell motility, angiogenesis, and epithelial-mesenchymal transition (EMT). Moreover, it is known to be involved in carcinogenesis. Comprehension of HGF-c-MET signaling pathway might have important clinical consequences allowing to predict prognosis, response to treatment, and survival rates based on its expression and dysregulation. Discussion. c-MET represents a useful molecular target for novel engineered drugs. Several clinical trials are underway for various solid tumors and the development of new specific monoclonal antibodies depends on the recent knowledge about the definite c-MET role in each different malignance. Recent clinical trials based on c-MET molecular targets result in good safety profile and represent a promising therapeutic strategy for solid cancers, in monotherapy or in combination with other target drugs. Conclusion The list of cell surface receptors crosslinking with the c-MET signaling is constantly growing, highlighting the importance of this pathway for personalized target therapy. Research on the combination of c-MET inhibitors with other drugs will hopefully lead to discovery of new effective treatment options.
Collapse
|
11
|
Skarżyńska A, Kowalczyk M, Majchrzak M, Piętka M, Augustyniak AW, Siczek M, Włodarczyk K, Simiczyjew A, Nowak D. The two faces of platinum hydrospirophosphorane complexes—Not only relevant catalysts but cytotoxic compounds as well. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Mariusz Majchrzak
- Faculty of Chemistry Adam Mickiewicz University in Poznań Poznań Poland
| | - Marta Piętka
- Faculty of Chemistry Adam Mickiewicz University in Poznań Poznań Poland
| | | | - Miłosz Siczek
- Faculty of Chemistry University of Wrocław Wrocław Poland
| | | | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology University of Wrocław Wrocław Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology University of Wrocław Wrocław Poland
| |
Collapse
|
12
|
Huang J, Lai W, Wang Q, Tang Q, Hu C, Zhou M, Wang F, Xie D, Zhang Q, Liu W, Zhang Z, Zhang R. Effective Triple-Negative Breast Cancer Targeted Treatment Using iRGD-Modified RBC Membrane-Camouflaged Nanoparticles. Int J Nanomedicine 2021; 16:7497-7515. [PMID: 34803378 PMCID: PMC8596023 DOI: 10.2147/ijn.s321071] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) has the high degree of malignancy and aggressiveness. There is no targeted therapy drug. Many studies have shown that RBC membrane-coated nanoparticles achieve biological camouflage. In addition, the RGD module in the iRGD mediates the penetration of the vector across the tumor blood vessels to the tumor tissue space. Therefore, we developed iRGD-RM-(DOX/MSNs) by preparing MSNs loaded with doxorubicin as the core, and coating the surface of the MSNs with iRGD-modified RBC membranes. Methods iRGD-RM-(DOX/MSNs) were fabricated using physical extrusion. In addition, their physical and chemical characterization, hemolytic properties, in vivo acute toxicity and inflammatory response, in vitro and in vivo safety, and qualitative and quantitative cellular uptake by RAW 264.7 cells and MDA-MB-231 cells were evaluated and compared. Furthermore, we examined the antitumor efficacy of iRGD-RM-(DOX/MSN) nanoparticles in vitro and in vivo. Results iRGD-RM-(DOX/MSNs) have reasonable physical and chemical properties. iRGD-RM-(DOX/MSNs) escaped the phagocytosis of immune cells and achieved efficient targeting of nanoparticles at the tumor site. The nanoparticles showed excellent antitumor effects in vivo and in vitro. Conclusion In this study, we successfully developed biomimetic iRGD-RM-(DOX/MSNs) that could effectively target tumors and provide a promising strategy for the effective treatment of TNBC.
Collapse
Affiliation(s)
- Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Qing Wang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Qin Tang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Min Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Fengling Wang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Dandan Xie
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Qian Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Zhe Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, ChongQing, People's Republic of China
| |
Collapse
|
13
|
You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:589. [PMID: 34207383 PMCID: PMC8233743 DOI: 10.3390/ph14060589] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancer with aggressive characteristics and few therapeutic options. The lack of an appropriate therapeutic target is a challenging issue in treating TNBC. Although a high level expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis among patients with TNBC, targeted anti-EGFR therapies have demonstrated limited efficacy for TNBC treatment in both clinical and preclinical settings. However, with the advantage of a number of clinically approved EGFR inhibitors (EGFRis), combination strategies have been explored as a promising approach to overcome the intrinsic resistance of TNBC to EGFRis. In this review, we analyzed the literature on the combination of EGFRis with other molecularly targeted therapeutics or conventional chemotherapeutics to understand the current knowledge and to provide potential therapeutic options for TNBC treatment.
Collapse
Affiliation(s)
- Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| |
Collapse
|
14
|
You KS, Yi YW, Cho J, Seong YS. Dual Inhibition of AKT and MEK Pathways Potentiates the Anti-Cancer Effect of Gefitinib in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2021; 13:1205. [PMID: 33801977 PMCID: PMC8000364 DOI: 10.3390/cancers13061205] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/28/2021] [Accepted: 03/07/2021] [Indexed: 12/14/2022] Open
Abstract
There is an unmet medical need for the development of new targeted therapeutic strategies for triple-negative breast cancer (TNBC). With drug combination screenings, we found that the triple combination of the protein kinase inhibitors (PKIs) of the epidermal growth factor receptor (EGFR), v-akt murine thymoma viral oncogene homolog (AKT), and MAPK/ERK kinase (MEK) is effective in inducing apoptosis in TNBC cells. A set of PKIs were first screened in combination with gefitinib in the TNBC cell line, MDA-MB-231. The AKT inhibitor, AT7867, was identified and further analyzed in two mesenchymal stem-like (MSL) subtype TNBC cells, MDA-MB-231 and HS578T. A combination of gefitinib and AT7867 reduced the proliferation and long-term survival of MSL TNBC cells. However, gefitinib and AT7867 induced the activation of the rat sarcoma (RAS)/ v-raf-1 murine leukemia viral oncogene homolog (RAF)/MEK/ extracellular signal-regulated kinase (ERK) pathway. To inhibit this pathway, MEK/ERK inhibitors were further screened in MDA-MB-231 cells in the presence of gefitinib and AT7867. As a result, we identified that the MEK inhibitor, PD-0325901, further enhanced the anti-proliferative and anti-clonogenic effects of gefitinib and AT7867 by inducing apoptosis. Our results suggest that the dual inhibition of the AKT and MEK pathways is a novel potential therapeutic strategy for targeting EGFR in TNBC cells.
Collapse
Affiliation(s)
- Kyu Sic You
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Korea;
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea;
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea;
| | - Yeon-Sun Seong
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Korea;
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea;
| |
Collapse
|
15
|
Sinevici N, Ataeinia B, Zehnder V, Lin K, Grove L, Heidari P, Mahmood U. HER3 Differentiates Basal From Claudin Type Triple Negative Breast Cancer and Contributes to Drug and Microenvironmental Induced Resistance. Front Oncol 2020; 10:554704. [PMID: 33330026 PMCID: PMC7715030 DOI: 10.3389/fonc.2020.554704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/23/2020] [Indexed: 01/23/2023] Open
Abstract
Triple Negative Breast Cancer (TNBC) is an aggressive form of Breast Cancer (BC). Numerous kinase inhibitors (KI) targeting different pathway nodes have shown limited benefit in the clinical setting. In this study, we aim to characterize the extent of HER3 reliance and to define the effect of Neuregulin (NRG) isoforms in TNBCs. Basal and Claudin type TNBC cell lines were treated with a range of small molecule inhibitors, in the presence or absence of the HER3 ligand NRG. Single agent and combination therapy was also evaluated in human cancer cell lines through viability and biochemical assessment of the AKT/MAPK signaling pathway. We show that Basal (BT20, HCC-70, and MDA-MB-468) and Claudin type (MDA-MB-231, BT-549) TNBC cell lines displayed differential reliance on the HER family of receptors. Expression and dynamic HER3 upregulation was predominant in the Basal TNBC subtype. Furthermore, the presence of the natural ligand NRG showed potent signaling through the HER3-AKT pathway, significantly diminishing the efficacy of the AKT and PI3K inhibitors tested. We report that NRG augments the HER3 feedback mechanism for continued cell survival in TNBC. We demonstrate that combination strategies to effectively block the EGFR-HER3-AKT pathway are necessary to overcome compensatory mechanisms to NRG dependent and independent resistance mechanisms. Our findings suggests that the EGFR-HER3 heterodimer forms a major signaling hub and is a key player in tumorigenesis in Basal but not Claudin type TNBC tested. Thus, HER3 could potentially serve as a biomarker for identifying patients in which targeted therapy against the EGFR-HER3-AKT axis would be most valuable.
Collapse
Affiliation(s)
- Nicoleta Sinevici
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Bahar Ataeinia
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Veronica Zehnder
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Kevin Lin
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lauren Grove
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Pedram Heidari
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
McCullough D, Atofanei C, Knight E, Trim SA, Trim CM. Kinome scale profiling of venom effects on cancer cells reveals potential new venom activities. Toxicon 2020; 185:129-146. [PMID: 32682827 DOI: 10.1016/j.toxicon.2020.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023]
Abstract
The search for novel and relevant cancer therapeutics is continuous and ongoing. Cancer adaptations, resulting in therapeutic treatment failures, fuel this continuous necessity for new drugs to novel targets. Recently, researchers have started to investigate the effect of venoms and venom components on different types of cancer, investigating their mechanisms of action. Receptor tyrosine kinases (RTKs) comprise a family of highly conserved and functionally important druggable targets for cancer therapy. This research exploits the novelty of complex venom mixtures to affect phosphorylation of the epidermal growth factor receptor (EGFR) and related RTK family members, dually identifying new activities and unexplored avenues for future cancer and venom research. Six whole venoms from diverse species taxa, were evaluated for their ability to illicit changes in the phosphorylated expression of a panel of 49 commonly expressed RTKs. The triple negative breast cancer cell line MDA-MB-468 was treated with optimised venom doses, pre-determined by SDS PAGE and Western blot analysis. The phosphorylated expression levels of 49 RTKs in response to the venoms were assessed with the use of Human Phospho-RTK Arrays and analysed using ImageLab 5.2.1 analysis software (BioRad). Inhibition of EGFR phosphorylation occurred with treatment of venom from Acanthoscurria geniculata (Theraphosidae), Heterometrus swammerdami (Scorpionidae), Crotalus durissus vegrandis (Crotalidae) and Naja naja (Elapidae). Western green mamba Dendroaspis viridis venom increased EGFR phosphorylation. Eph, HGFR and HER were the most affected receptor families by venoms. Whilst the importance of these changes in terms of effect on MDA-MB-468 cells' long-term viability and functionality are still unclear, the findings present exciting opportunities for further investigation as potential drug targets in cancer and as tools to understand better how these pathways interact.
Collapse
Affiliation(s)
- Danielle McCullough
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Cristina Atofanei
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Emily Knight
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK; Life Sciences Industry Liaison laboratory, Canterbury Christ Church University, Discovery Park, Sandwich, Kent, CT13 9FF, UK
| | - Steven A Trim
- Venomtech Ltd., Discovery Park, Sandwich, Kent, CT13 9FF, UK
| | - Carol M Trim
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK.
| |
Collapse
|
17
|
Li S, Wu Y, Ding F, Yang J, Li J, Gao X, Zhang C, Feng J. Engineering macrophage-derived exosomes for targeted chemotherapy of triple-negative breast cancer. NANOSCALE 2020; 12:10854-10862. [PMID: 32396590 DOI: 10.1039/d0nr00523a] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most metastatic and recurrent subtype of all breast cancers. Owing to the lack of therapeutic targets, chemotherapy and surgical intervention are the only treatments for TNBC. However, the effectiveness of chemotherapeutics is limited by its shortcomings such as poor targeting, easy removal and high toxicity. Recently, exosomes have attracted more and more attention as a drug delivery system. As endogenous vesicles, exosomes ensure low immunogenicity, nontoxicity, and long blood circulation time. In addition, immune cell-derived exosomes can mimic the immune cell to target tumor cells. Herein, we developed a macrophage-derived exosome-coated poly(lactic-co-glycolic acid) nanoplatform for targeted chemotherapy of TNBC. To further improve the tumor targetability, the surface of the exosome was modified with a peptide to target the mesenchymal-epithelial transition factor (c-Met), which is overexpressed by TNBC cells. The results showed that the engineered exosome-coated nanoparticles significantly improved the cellular uptake efficiency and the antitumor efficacy of doxorubicin. In vivo study demonstrated that the nanocarriers exhibited remarkable tumor-targeting efficacy, led to increased inhibition of tumor growth and induced intense tumor apoptosis. These results indicated that the engineered macrophage exosome-coated nanoparticles were a promising drug delivery strategy for TNBC treatment.
Collapse
Affiliation(s)
- Sha Li
- Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China and Medical College, Anhui University of Science and Technology, 168 Taifeng Road, Huainan, 232001, China
| | - Yijing Wu
- Zhiyuan College, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fei Ding
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Jiapei Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Jing Li
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China. and Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China and Shanghai University of Medicine & Health Sciences affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| | - Xihui Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China. and Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China. and Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| | - Jing Feng
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China. and Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China and Shanghai University of Medicine & Health Sciences affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| |
Collapse
|
18
|
Breen L, Gaule PB, Canonici A, Walsh N, Collins DM, Cremona M, Hennessy BT, Duffy MJ, Crown J, Donovan NO, Eustace AJ. Targeting c-Met in triple negative breast cancer: preclinical studies using the c-Met inhibitor, Cpd A. Invest New Drugs 2020; 38:1365-1372. [PMID: 32318883 DOI: 10.1007/s10637-020-00937-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/07/2020] [Indexed: 11/26/2022]
Abstract
Introduction Triple negative breast cancer (TNBC) represents a heterogeneous subtype of breast cancer that carries a poorer prognosis. There remains a need to identify novel drivers of TNBC, which may represent targets to treat the disease. c-Met overexpression is linked with decreased survival and is associated with the basal subtype of breast cancer. Cpd A, a kinase inhibitor selective/specific for Met kinase has demonstrated preclinical anti-cancer efficacy in TNBC. We aimed to assess the anti-cancer efficacy of Cpd A when combined with Src kinase, ErbB-family or hepatocyte growth factor (HGF) inhibitors in TNBC cell lines. Methods We determined the anti-proliferative effects of Cpd A, rilotumumab, neratinib and saracatinib tested alone and in combination in a panel of TNBC cells by acid phosphatase assays. We performed reverse phase protein array analysis of c-Met and IGF1Rβ expression and phosphorylation of c-Met (Y1234/1235) in TNBC cells and correlated their expression/phosphorylation with Cpd A sensitivity. We examined the impact of Cpd A, neratinib and saracatinib tested alone and in combination on invasive potential and colony formation.Results TNBC cells are not inherently sensitive to Cpd A, and neither c-Met expression nor phosphorylation are biomarkers of sensitivity to Cpd A. Cpd A enhanced the anti-proliferative effects of neratinib in vitro; however, this effect was limited to cell lines with innate sensitivity to Cpd A. Cpd A had limited anti-invasive effects but it reduced colony formation in the TNBC cell line panel.Conclusions Despite Cpd A having a potential role in reducing cancer cell metastasis, identification of strong predictive biomarkers of c-Met sensitivity would be essential to the development of a c-Met targeted treatment for an appropriately selected cohort of TNBC patients.
Collapse
Affiliation(s)
- Laura Breen
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Patricia B Gaule
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Alexandra Canonici
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Naomi Walsh
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Denis M Collins
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Mattia Cremona
- Medical Oncology Group, Department of Molecular Medicine, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Bryan T Hennessy
- Medical Oncology Group, Department of Molecular Medicine, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael J Duffy
- UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin, Ireland
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - John Crown
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| | - Norma O' Donovan
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Alex J Eustace
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
19
|
Johne A, Scheible H, Becker A, van Lier JJ, Wolna P, Meyring M. Open-label, single-center, phase I trial to investigate the mass balance and absolute bioavailability of the highly selective oral MET inhibitor tepotinib in healthy volunteers. Invest New Drugs 2020; 38:1507-1519. [PMID: 32221754 PMCID: PMC7497692 DOI: 10.1007/s10637-020-00926-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
Abstract
Tepotinib (MSC2156119J) is an oral, potent, highly selective MET inhibitor. This open-label, phase I study in healthy volunteers (EudraCT 2013-003226-86) investigated its mass balance (part A) and absolute bioavailability (part B). In part A, six participants received tepotinib orally (498 mg spiked with 2.67 MBq [14C]-tepotinib). Blood, plasma, urine, and feces were collected up to day 25 or until excretion of radioactivity was <1% of the administered dose. In part B, six participants received 500 mg tepotinib orally as a film-coated tablet, followed by an intravenous [14C]-tepotinib tracer dose (53–54 kBq) 4 h later. Blood samples were collected until day 14. In part A, a median of 92.5% (range, 87.1–96.9%) of the [14C]-tepotinib dose was recovered in excreta. Radioactivity was mainly excreted via feces (median, 78.7%; range, 69.4–82.5%). Urinary excretion was a minor route of elimination (median, 14.4% [8.8–17.7%]). Parent compound was the main constituent in excreta (45% [feces] and 7% [urine] of the radioactive dose). M506 was the only major metabolite. In part B, absolute bioavailability was 72% (range, 62–81%) after oral administration of 500 mg tablets (the dose and formulation used in phase II trials). In conclusion, tepotinib and its metabolites are mainly excreted via feces; parent drug is the major eliminated constituent. Oral bioavailability of tepotinib is high, supporting the use of the current tablet formulation in clinical trials. Tepotinib was well tolerated in this study with healthy volunteers.
Collapse
Affiliation(s)
- Andreas Johne
- Global Clinical Development, Merck KGaA, Frankfurter Strasse 250, 64293, Darmstadt, Germany.
| | - Holger Scheible
- Institute of Drug Metabolism and Pharmacokinetics, Merck KGaA, Grafing, Germany
| | - Andreas Becker
- Global Clinical Development, Merck KGaA, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Jan Jaap van Lier
- Pharmaceutical Research Association (PRA), Groningen, The Netherlands
| | - Peter Wolna
- Global Clinical Development, Merck KGaA, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Michael Meyring
- Institute of Drug Metabolism and Pharmacokinetics, Merck KGaA, Grafing, Germany
| |
Collapse
|
20
|
EGFL9 promotes breast cancer metastasis by inducing cMET activation and metabolic reprogramming. Nat Commun 2019; 10:5033. [PMID: 31695034 PMCID: PMC6834558 DOI: 10.1038/s41467-019-13034-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
The molecular mechanisms driving metastatic progression in triple-negative breast cancer (TNBC) patients are poorly understood. In this study, we demonstrate that epidermal growth factor-like 9 (EGFL9) is significantly upregulated in basal-like breast cancer cells and associated with metastatic progression in breast tumor samples. Functionally, EGFL9 is both necessary and sufficient to enhance cancer cell migration and invasion, as well as distant metastasis. Mechanistically, we demonstrate that EGFL9 binds cMET, activating cMET-mediated downstream signaling. EGFL9 and cMET co-localize at both the cell membrane and within the mitochondria. We further identify an interaction between EGFL9 and the cytochrome c oxidase (COX) assembly factor COA3. Consequently, EGFL9 regulates COX activity and modulates cell metabolism, promoting a Warburg-like metabolic phenotype. Finally, we show that combined pharmacological inhibition of cMET and glycolysis reverses EGFL9-driven stemness. Our results identify EGFL9 as a therapeutic target for combating metastatic progression in TNBC. Triple-negative breast cancer is an aggressive form of the disease. Here, the authors identify EGFL9 as a mediator of metastasis in TNBC through interactions with cMET.
Collapse
|
21
|
Jo J, Kim H, Oh JY, Kim S, Park YH, Choi H, Jeong JY, Jung YS, Yun H. SAR optimization studies on a novel series of 2-anilinopyrimidines as selective inhibitors against triple-negative breast cancer cell line MDA-MB-468. Bioorg Med Chem Lett 2019; 29:126752. [PMID: 31711784 DOI: 10.1016/j.bmcl.2019.126752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 01/12/2023]
Abstract
Triple-negative breast cancers (TNBCs) account for approximately 15% of breast cancer cases and exhibit an aggressive clinical behavior. In this study, we designed and synthesized two series of 2-anilinopyrimidines based on the structure of our previously reported compound 1 that act as a selective inhibitor of the basal-like TNBC cell line MDA-MB-468. Through the fine-tuning of 1, cyclic and acyclic amines at 4-position of the pyrimidine core were turned out to be crucial for the selectivity. An extensive analysis of structure-activity relationships of the analogs revealed that aminoalkyl groups at the end of the propyl chain are amenable to modification. Among the newly synthesized analogs, compound 38, bearing 4-chloropiperidinyl and cyclohexyl groups, was found to be the most potent and selective, and was about three times more potent and selective than 1 was against the TNBC cells.
Collapse
Affiliation(s)
- Jeyun Jo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Heegyu Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Ji Youn Oh
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Soyeong Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Yeong Hye Park
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Hyeonjin Choi
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jee-Yeong Jeong
- Department of Biochemistry, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
22
|
Wright TD, Raybuck C, Bhatt A, Monlish D, Chakrabarty S, Wendekier K, Gartland N, Gupta M, Burow ME, Flaherty PT, Cavanaugh JE. Pharmacological inhibition of the MEK5/ERK5 and PI3K/Akt signaling pathways synergistically reduces viability in triple-negative breast cancer. J Cell Biochem 2019; 121:1156-1168. [PMID: 31464004 DOI: 10.1002/jcb.29350] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023]
Abstract
Triple-negative breast cancers (TNBCs) represent 15% to 20% of all breast cancers and are often associated with poor prognosis. The lack of targeted therapies for TNBCs contributes to higher mortality rates. Aberrations in the phosphoinositide-3-kinase (PI3K) and mitogen-activated protein kinase pathways have been linked to increased breast cancer proliferation and survival. It has been proposed that these survival characteristics are enhanced through compensatory signaling and crosstalk mechanisms. While the crosstalk between PI3K and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways has been characterized in several systems, new evidence suggests that MEK5/ERK5 signaling is a key component in the proliferation and survival of several aggressive cancers. In this study, we examined the effects of dual inhibition of PI3K/protein kinase B (Akt) and MEK5/ERK5 in the MDA-MB-231, BT-549, and MDA-MB-468 TNBC cell lines. We used the Akt inhibitor ipatasertib, ERK5 inhibitors XMD8-92 and AX15836, and the novel MEK5 inhibitor SC-1-181 to investigate the effects of dual inhibition. Our results indicated that dual inhibition of PI3K/Akt and MEK5/ERK5 signaling was more effective at reducing the proliferation and survival of TNBCs than single inhibition of either pathway alone. In particular, a loss of Bad phosphorylation at two distinct sites was observed with dual inhibition. Furthermore, the inhibition of both pathways led to p21 restoration, decreased cell proliferation, and induced apoptosis. In addition, the dual inhibition strategy was determined to be synergistic in MDA-MB-231 and BT-549 cells and was relatively nontoxic in the nonneoplastic MCF-10 cell line. In summary, the results from this study provide a unique prospective into the utility of a novel dual inhibition strategy for targeting TNBCs.
Collapse
Affiliation(s)
- Thomas D Wright
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Christopher Raybuck
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Akshita Bhatt
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Darlene Monlish
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania.,Department of Pediatrics, Washington University in St Louis, St Louis, Missouri
| | - Suravi Chakrabarty
- Department of Medicinal Chemistry, Duquesne University, Pittsburgh, Pennsylvania.,Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Katy Wendekier
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Nathan Gartland
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Mohit Gupta
- Department of Medicinal Chemistry, Duquesne University, Pittsburgh, Pennsylvania
| | - Matthew E Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Patrick T Flaherty
- Department of Medicinal Chemistry, Duquesne University, Pittsburgh, Pennsylvania
| | - Jane E Cavanaugh
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Gurdal H, Tuglu M, Bostanabad S, Dalkili� B. Partial agonistic effect of cetuximab on epidermal growth factor receptor and Src kinase activation in triple‑negative breast cancer cell lines. Int J Oncol 2019; 54:1345-1356. [DOI: 10.3892/ijo.2019.4697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/15/2019] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hakan Gurdal
- Department of Medical Pharmacology, Faculty of Medicine, University of Ankara, 06100�Ankara, Turkey
| | - Matilda Tuglu
- Department of Medical Pharmacology, Faculty of Medicine, University of Ankara, 06100 Ankara, Turkey
| | - Saber Bostanabad
- Biotechnology Institute of Ankara University, 06110 Ankara, Turkey
| | - Başak Dalkili�
- Department of Medical Pharmacology, Faculty of Medicine, University of Ankara, 06100 Ankara, Turkey
| |
Collapse
|
24
|
Simiczyjew A, Dratkiewicz E, Van Troys M, Ampe C, Styczeń I, Nowak D. Combination of EGFR Inhibitor Lapatinib and MET Inhibitor Foretinib Inhibits Migration of Triple Negative Breast Cancer Cell Lines. Cancers (Basel) 2018; 10:cancers10090335. [PMID: 30227653 PMCID: PMC6162814 DOI: 10.3390/cancers10090335] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most challenging subtype to treat due to the lack of estrogen receptor, progesterone receptor, and HER2 expression, which excludes the usage of directed targeted therapy against them. Promising therapeutic targets are the hepatocyte growth factor receptor (MET) and epidermal growth factor receptor (EGFR), which expression is frequently elevated in TNBC. Inhibitors of these receptors used as monotherapy are often ineffective. Due to that, we studied the efficacy of combined therapy targeting MET and EGFR simultaneously. Two TNBC cell lines were treated with lapatinib (a dual EGFR and HER2 inhibitor), foretinib (a MET inhibitor), or a combination of the two. After the inhibitors treatment, we verified the cell viability (XTT assay), distribution of the cell cycle phases, the activation of signaling pathways (Western blotting), distribution of invadopodia, fluorescent gelatin digestion (immunofluorescence), and the invasion capacity of cells. A combination of foretinib and lapatinib effectively reduced the viability of examined cells, led to G2/M arrest and reduction of pAKT. There was also a decreasein number of invadopodia formed by cells, their ability to digest gelatin and reduction of cells migration/invasion capacity. Therapy targeting of both EGFR and MET receptors was much more effective against tested cells than monotherapy. We selected a combination of drugs that could be successfully used against this breast cancer subtype.
Collapse
Affiliation(s)
- Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Ewelina Dratkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Marleen Van Troys
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.
| | - Christophe Ampe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.
| | - Ilona Styczeń
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
25
|
EGFR conjunct FSCN1 as a Novel Therapeutic Strategy in Triple-Negative Breast Cancer. Sci Rep 2017; 7:15654. [PMID: 29142206 PMCID: PMC5688137 DOI: 10.1038/s41598-017-15939-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 11/05/2017] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence indicates that Fascin-1 (FSCN1) may possess a causal role in the development of several types of cancers and serves as a novel biomarker of aggressiveness in certain carcinomas. However, the regulatory mechanism of FSCN1 in triple-negative breast cancer (TNBC) cell invasion and migration is still largely unknown. In our study, we observed that the FSCN1 expression rates were significantly higher in invasive ductal carcinoma, compared with both usual ductal hyperplasia and ductal carcinoma in situ. FSCN1 expression was significantly higher in cases of TNBC compared with the non-TNBC subtype. Overexpression of FSCN1 promoted TNBC cell migration and invasion. Epidermal growth factor induced the expression of FSCN1 through activation of MAPK, which subsequently promoted cell migration and invasion. A significant decrease in FSCN1 expression following the co-treatment of FSCN1 siRNA and Gefitinib, compared with the separate treatment of FSCN1 siRNA or Gefitinib. Furthermore, we found that there was a significant association between FSCN1 expression and poor relapse-free survival and overall survival. Therefore, we suggest that co-targeting epidermal growth factor receptor and FSCN1 dual biomarker may be used as a novel therapeutic strategy for TNBC.
Collapse
|
26
|
Ebelt ND, Kaoud TS, Edupuganti R, Van Ravenstein S, Dalby KN, Van Den Berg CL. A c-Jun N-terminal kinase inhibitor, JNK-IN-8, sensitizes triple negative breast cancer cells to lapatinib. Oncotarget 2017; 8:104894-104912. [PMID: 29285221 PMCID: PMC5739608 DOI: 10.18632/oncotarget.20581] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022] Open
Abstract
Triple negative breast cancers (TNBC) have poor prognosis compared to other breast cancer subtypes and represent 15-20% of breast cancers diagnosed. Unique targets and new molecularly-targeted therapies are urgently needed for this subtype. Despite high expression of Epidermal Growth Factor Receptor, inhibitors such as lapatinib have not shown therapeutic efficacy in TNBC patients. Herein, we report that treatment with the covalent JNK inhibitor, JNK-IN-8, synergizes with lapatinib to cause cell death, while these compounds as single agents have little effect. The combination significantly increases survival of mice bearing xenografts of MDA-MB-231 human TNBC cells. Our studies demonstrate that lapatinib treatment increases c-Jun and JNK phosphorylation indicating a mechanism of resistance. Combined, these compounds significantly reduce transcriptional activity of Nuclear Factor kappa B, Activating Protein 1, and Nuclear factor erythroid 2-Related Factor 2. As master regulators of antioxidant response, their decreased activity induces a 10-fold increase in reactive oxygen species that is cytotoxic, and is rescued by addition of exogenous antioxidants. Over expression of p65 or Nrf2 also significantly rescues viability during JNK-IN-8 and lapatinib treatment. Further studies combining JNK-IN-8 and lapatinib may reveal a benefit for patients with TNBC, fulfilling a critical medical need.
Collapse
Affiliation(s)
- Nancy D Ebelt
- Institute of Cellular & Molecular Biology, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA.,Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Tamer S Kaoud
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA.,Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, El-Minia 61519, Egypt
| | - Ramakrishna Edupuganti
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Sabrina Van Ravenstein
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Carla L Van Den Berg
- Institute of Cellular & Molecular Biology, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA.,Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| |
Collapse
|
27
|
Kaur S, Elkahloun AG, Singh SP, Chen QR, Meerzaman DM, Song T, Manu N, Wu W, Mannan P, Garfield SH, Roberts DD. A function-blocking CD47 antibody suppresses stem cell and EGF signaling in triple-negative breast cancer. Oncotarget 2017; 7:10133-52. [PMID: 26840086 PMCID: PMC4891109 DOI: 10.18632/oncotarget.7100] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 12/18/2022] Open
Abstract
CD47 is a signaling receptor for thrombospondin-1 and the counter-receptor for signal-regulatory protein-α (SIRPα). By inducing inhibitory SIRPα signaling, elevated CD47 expression by some cancers prevents macrophage phagocytosis. The anti-human CD47 antibody B6H12 inhibits tumor growth in several xenograft models, presumably by preventing SIRPα engagement. However, CD47 signaling in nontransformed and some malignant cells regulates self-renewal, suggesting that CD47 antibodies may therapeutically target cancer stem cells (CSCs). Treatment of MDA-MB-231 breast CSCs with B6H12 decreased proliferation and asymmetric cell division. Similar effects were observed in T47D CSCs but not in MCF7 breast carcinoma or MCF10A breast epithelial cells. Gene expression analysis in breast CSCs treated with B6H12 showed decreased expression of epidermal growth factor receptor (EGFR) and the stem cell transcription factor KLF4. EGFR and KLF4 mRNAs are known targets of microRNA-7, and B6H12 treatment correspondingly enhanced microRNA-7 expression in breast CSCs. B6H12 treatment also acutely inhibited EGF-induced EGFR tyrosine phosphorylation. Expression of B6H12-responsive genes correlated with CD47 mRNA expression in human breast cancers, suggesting that the CD47 signaling pathways identified in breast CSCs are functional in vivo. These data reveal a novel SIRPα-independent mechanism by which therapeutic CD47 antibodies could control tumor growth by autonomously forcing differentiation of CSC.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Abdel G Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Satya P Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qing-Rong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daoud M Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Timothy Song
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nidhi Manu
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Weiwei Wu
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Poonam Mannan
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susan H Garfield
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Verma N, Müller AK, Kothari C, Panayotopoulou E, Kedan A, Selitrennik M, Mills GB, Nguyen LK, Shin S, Karn T, Holtrich U, Lev S. Targeting of PYK2 Synergizes with EGFR Antagonists in Basal-like TNBC and Circumvents HER3-Associated Resistance via the NEDD4–NDRG1 Axis. Cancer Res 2016; 77:86-99. [DOI: 10.1158/0008-5472.can-16-1797] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/22/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022]
|
29
|
Grugan KD, Dorn K, Jarantow SW, Bushey BS, Pardinas JR, Laquerre S, Moores SL, Chiu ML. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs 2016; 9:114-126. [PMID: 27786612 PMCID: PMC5240640 DOI: 10.1080/19420862.2016.1249079] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) mutant non-small cell lung cancers acquire resistance to EGFR tyrosine kinase inhibitors through multiple mechanisms including c-Met receptor pathway activation. We generated a bispecific antibody targeting EGFR and c-Met (JNJ-61186372) demonstrating anti-tumor activity in wild-type and mutant EGFR settings with c-Met pathway activation. JNJ-61186372 was engineered with low fucosylation (<10 %), resulting in enhanced antibody-dependent cell-mediated cytotoxicity and FcγRIIIa binding. In vitro and in vivo studies with the single-arm EGFR or c-Met versions of JNJ-61186372 identified that the Fc-activity of JNJ-61186372 is mediated by binding of the anti-EGFR arm and required for inhibition of EGFR-driven tumor cells. In a tumor model driven by both EGFR and c-Met, treatment with Fc-silent JNJ-61186372 or with c-Met single-arm antibody reduced tumor growth inhibition compared to treatment with JNJ-61186372, suggesting that the Fc function of JNJ-61186372 is essential for maximal tumor inhibition. Moreover in this same model, downregulation of both EGFR and c-Met receptors was observed upon treatment with Fc-competent JNJ-61186372, suggesting that the Fc interactions are necessary for down-modulation of the receptors in vivo and for efficacy. These Fc-mediated activities, in combination with inhibition of both the EGFR and c-Met signaling pathways, highlight the multiple mechanisms by which JNJ-61186372 combats therapeutic resistance in EGFR mutant patients.
Collapse
Affiliation(s)
- Katharine D Grugan
- a Biologics Research, Janssen Research and Development, LLC , Spring House , PA , USA
| | - Keri Dorn
- a Biologics Research, Janssen Research and Development, LLC , Spring House , PA , USA
| | - Stephen W Jarantow
- a Biologics Research, Janssen Research and Development, LLC , Spring House , PA , USA
| | - Barbara S Bushey
- b Oncology, Janssen Research and Development, LLC , Spring House , PA , USA
| | - Jose R Pardinas
- a Biologics Research, Janssen Research and Development, LLC , Spring House , PA , USA
| | - Sylvie Laquerre
- b Oncology, Janssen Research and Development, LLC , Spring House , PA , USA
| | - Sheri L Moores
- b Oncology, Janssen Research and Development, LLC , Spring House , PA , USA
| | - Mark L Chiu
- a Biologics Research, Janssen Research and Development, LLC , Spring House , PA , USA
| |
Collapse
|
30
|
De La Cruz LM, Nocera NF, Czerniecki BJ. Restoring anti-oncodriver Th1 responses with dendritic cell vaccines in HER2/neu-positive breast cancer: progress and potential. Immunotherapy 2016; 8:1219-32. [PMID: 27605070 PMCID: PMC5967360 DOI: 10.2217/imt-2016-0052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/23/2016] [Indexed: 12/16/2022] Open
Abstract
HER2/neu is expressed in the majority of in situ breast cancers, but maintained in 20-30% of invasive breast cancer (IBC). During breast tumorigenesis, there is a progressive loss of anti-HER2 CD4(pos) Th1 (anti-HER2Th1) from benign to ductal carcinoma in situ, with almost complete loss in IBC. This anti-HER2Th1 response can predict response to neoadjuvant therapy, risk of recurrence and disease-free survival. Vaccines consisting of HER2-pulsed type I polarized dendritic cells (DC1) administered during ductal carcinoma in situ and early IBC can efficiently correct anti-HER2Th1 response and have clinical impact on the disease. In this review, we will discuss the role of anti-HER2Th1 response in the three phases of immunoediting during HER2 breast cancer development and opportunities for reversing these processes using DC1 vaccines alone or in combination with standard therapies. Correcting the anti-HER2Th1 response may represent an opportunity for improving outcomes and providing a path to eliminate escape variants.
Collapse
Affiliation(s)
- Lucy M De La Cruz
- Department of Endocrine & Oncologic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nadia F Nocera
- Department of Endocrine & Oncologic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Brian J Czerniecki
- Department of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33617, USA
| |
Collapse
|
31
|
Gilani RA, Phadke S, Bao LW, Lachacz EJ, Dziubinski ML, Brandvold KR, Steffey ME, Kwarcinski FE, Graveel CR, Kidwell KM, Merajver SD, Soellner MB. UM-164: A Potent c-Src/p38 Kinase Inhibitor with In Vivo Activity against Triple-Negative Breast Cancer. Clin Cancer Res 2016; 22:5087-5096. [DOI: 10.1158/1078-0432.ccr-15-2158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/16/2016] [Indexed: 11/16/2022]
|
32
|
Li S, Wei Q, Li Q, Zhang B, Xiao Q. Down-regulating HIF-1α by lentivirus-mediated shRNA for therapy of triple negative breast cancer. Cancer Biol Ther 2016; 16:866-75. [PMID: 25920936 DOI: 10.1080/15384047.2015.1040958] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hypoxia is associated with poor response to treatment in various cancers. Hypoxia inducible factor 1 (HIF-1) is a major transcription factor that mediates adaptation of cancer cells to a hypoxic environment and regulates many genes that are involved in key cellular functions, including cell immortalization, stem cell maintenance, autocrine growth/survival, angiogenesis, invasion/metastasis, and resistance to chemotherapy. HIF-1α has been considered as an attractive therapeutic target for cancer treatment, but there is limited success in this research field. In the present study, we designed a recombinant lentivirus containing HIF-1α siRNA, developed stably transfected cell lines, and tested the anticancer effects of the siRNA on cancer cells in vitro and in vivo. Our results indicated that the stable downregulation of HIF-1α reversed chemoresistance, inhibited proliferation, migration and invasion of cancer cells, and slowed down the tumor growth in breast cancer xenograft models. In conclusion, the recombinant lentivirus containing HIF-1α siRNA provides a new avenue for developing novel therapy for triple negative breast cancer.
Collapse
Affiliation(s)
- Shuang Li
- a Graduate School of Southern Medical University ; Guangzhou , China
| | | | | | | | | |
Collapse
|
33
|
Rodems TS, Iida M, Brand TM, Pearson HE, Orbuch RA, Flanigan BG, Wheeler DL. Adaptive responses to antibody based therapy. Semin Cell Dev Biol 2016; 50:153-63. [PMID: 26808665 DOI: 10.1016/j.semcdb.2016.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 11/25/2022]
Abstract
Receptor tyrosine kinases (RTKs) represent a large class of protein kinases that span the cellular membrane. There are 58 human RTKs identified which are grouped into 20 distinct families based upon their ligand binding, sequence homology and structure. They are controlled by ligand binding which activates intrinsic tyrosine-kinase activity. This activity leads to the phosphorylation of distinct tyrosines on the cytoplasmic tail, leading to the activation of cell signaling cascades. These signaling cascades ultimately regulate cellular proliferation, apoptosis, migration, survival and homeostasis of the cell. The vast majority of RTKs have been directly tied to the etiology and progression of cancer. Thus, using antibodies to target RTKs as a cancer therapeutic strategy has been intensely pursued. Although antibodies against the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) have shown promise in the clinical arena, the development of both intrinsic and acquired resistance to antibody-based therapies is now well appreciated. In this review we provide an overview of the RTK family, the biology of EGFR and HER2, as well as an in-depth review of the adaptive responses undertaken by cells in response to antibody based therapies directed against these receptors. A greater understanding of these mechanisms and their relevance in human models will lead to molecular insights in overcoming and circumventing resistance to antibody based therapy.
Collapse
Affiliation(s)
- Tamara S Rodems
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Toni M Brand
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Hannah E Pearson
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Rachel A Orbuch
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Bailey G Flanigan
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Deric L Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| |
Collapse
|
34
|
Wang Y, Zhang T, Kwiatkowski N, Abraham BJ, Lee TI, Xie S, Yuzugullu H, Von T, Li H, Lin Z, Stover DG, Lim E, Wang ZC, Iglehart JD, Young RA, Gray NS, Zhao JJ. CDK7-dependent transcriptional addiction in triple-negative breast cancer. Cell 2015; 163:174-86. [PMID: 26406377 DOI: 10.1016/j.cell.2015.08.063] [Citation(s) in RCA: 329] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/27/2015] [Accepted: 08/12/2015] [Indexed: 12/19/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer that exhibits extremely high levels of genetic complexity and yet a relatively uniform transcriptional program. We postulate that TNBC might be highly dependent on uninterrupted transcription of a key set of genes within this gene expression program and might therefore be exceptionally sensitive to inhibitors of transcription. Utilizing kinase inhibitors and CRISPR/Cas9-mediated gene editing, we show here that triple-negative but not hormone receptor-positive breast cancer cells are exceptionally dependent on CDK7, a transcriptional cyclin-dependent kinase. TNBC cells are unique in their dependence on this transcriptional CDK and suffer apoptotic cell death upon CDK7 inhibition. An "Achilles cluster" of TNBC-specific genes is especially sensitive to CDK7 inhibition and frequently associated with super-enhancers. We conclude that CDK7 mediates transcriptional addiction to a vital cluster of genes in TNBC and CDK7 inhibition may be a useful therapy for this challenging cancer.
Collapse
Affiliation(s)
- Yubao Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Kwiatkowski
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Tong Ihn Lee
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Shaozhen Xie
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Haluk Yuzugullu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Thanh Von
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Heyuan Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Ziao Lin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Daniel G Stover
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Elgene Lim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Zhigang C Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - J Dirk Iglehart
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Guestini F, McNamara KM, Ishida T, Sasano H. Triple negative breast cancer chemosensitivity and chemoresistance: current advances in biomarkers indentification. Expert Opin Ther Targets 2015; 20:705-20. [PMID: 26607563 DOI: 10.1517/14728222.2016.1125469] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Triple negative breast cancer (TNBC) is a heterogeneous clinicopathological entity constituting approximately 15 - 20% of all breast cancer (BC) patients. It shows high recurrence rate and poor prognosis. At this juncture, because of the lack of specific targeted therapies available and the development in patients of resistance to some therapeutic agents, clinical and translational settings have gained importance over the past decades. AREAS COVERED The development of novel, safe and effective alternatives for the treatment of TNBC are in high demand. Therefore, this review aims to summarize the state of the art of TNBC, its current therapies and potential therapeutic targets. In particular, focus is put on recent advances regarding the identification of emerging biomarkers as prognostic and/or predictive markers, including surrogate markers for molecular tumor subtyping and identifying potential responders to new therapies. EXPERT OPINION Effective development of informative markers could constitute an important armamentarium tool for identifying appropriate therapies to challenge the aggressiveness of TNBC.
Collapse
Affiliation(s)
- Fouzia Guestini
- a Department of Anatomic Pathology , Tohoku University School of Medicine , Aoba-ku, Sendai , Japan
| | - Keely May McNamara
- a Department of Anatomic Pathology , Tohoku University School of Medicine , Aoba-ku, Sendai , Japan
| | - Takanori Ishida
- b Department of Surgical Oncology , Tohoku University Graduate School of Medicine , Aoba-ku , Sendai , Japan
| | - Hironobu Sasano
- a Department of Anatomic Pathology , Tohoku University School of Medicine , Aoba-ku, Sendai , Japan
| |
Collapse
|
36
|
Kim H, Youk J, Yang Y, Kim TY, Min A, Ham HS, Cho S, Lee KH, Keam B, Han SW, Oh DY, Ryu HS, Han W, Park IA, Kim TY, Noh DY, Im SA. Prognostic implication of serum hepatocyte growth factor in stage II/III breast cancer patients who received neoadjuvant chemotherapy. J Cancer Res Clin Oncol 2015; 142:707-14. [PMID: 26577828 DOI: 10.1007/s00432-015-2072-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Abstract
PURPOSE In stage II/III breast cancer, neoadjuvant chemotherapy (NAC) is a standard treatment. Although several biomarkers are used to predict prognosis in breast cancer, there is no reliable predictive biomarker for NAC success. Recently, the hepatocyte growth factor (HGF) and cMet signaling pathway demonstrated to be involved in breast cancer tumor progression, and its potential as a biomarker is under active investigation. In this study, we assessed the potential of serum HGF as a prognostic biomarker for NAC efficacy. METHODS Venous blood samples were drawn from patients diagnosed with stage II/III breast cancer and treated with NAC in Seoul National University Hospital from August 2004 to November 2009. Serum HGF level was determined using an ELISA system. We reviewed the medical records of the patients and investigated the association of HGF level with patients' clinicopathologic characteristics. RESULTS A total of 121 female patients (median age = 45 years old) were included. Median level of HGF was 934 pg/ml (lower quartile: 772, upper quartile: 1145 pg/ml). Patients with higher HGF level than median value were significantly more likely to have clinically detectable regional node metastasis (p = 0.017, Fisher's exact test). Patients with complete and partial response according to the American Joint Committee on Cancer 7th Edition criteria tended to have higher HGF level (p = 0.105 by t test). Patients with an HGF level higher than the upper quartile value had longer relapse-free survival than the other patients (106 vs. 85 months, p = 0.008). CONCLUSIONS High serum HGF levels in breast cancer patients are associated with clinically detectable regional node metastasis and, paradoxically, with longer relapse-free survival in stage II/III breast cancer.
Collapse
Affiliation(s)
- Hyori Kim
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea
| | - Jeonghwan Youk
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Yaewon Yang
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Tae-Yong Kim
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea. .,Department of Internal Medicine, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea.
| | - Ahrum Min
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea
| | - Hye-Seon Ham
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea
| | - Seongcheol Cho
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Kyung-Hun Lee
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea.,Department of Internal Medicine, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Bhumsuk Keam
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea.,Department of Internal Medicine, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Sae-Won Han
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea.,Department of Internal Medicine, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea.,Department of Internal Medicine, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Wonshik Han
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea.,Department of Surgery, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - In Ae Park
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea.,Department of Pathology, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Tae-You Kim
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea.,Department of Internal Medicine, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Dong-Young Noh
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea.,Department of Surgery, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea. .,Department of Internal Medicine, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea.
| |
Collapse
|
37
|
Kalimutho M, Parsons K, Mittal D, López JA, Srihari S, Khanna KK. Targeted Therapies for Triple-Negative Breast Cancer: Combating a Stubborn Disease. Trends Pharmacol Sci 2015; 36:822-846. [PMID: 26538316 DOI: 10.1016/j.tips.2015.08.009] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 11/17/2022]
Abstract
Triple-negative breast cancers (TNBCs) constitute a heterogeneous subtype of breast cancers that have a poor clinical outcome. Although no approved targeted therapy is available for TNBCs, molecular-profiling efforts have revealed promising molecular targets, with several candidate compounds having now entered clinical trials for TNBC patients. However, initial results remain modest, thereby highlighting challenges potentially involving intra- and intertumoral heterogeneity and acquisition of therapy resistance. We present a comprehensive review on emerging targeted therapies for treating TNBCs, including the promising approach of immunotherapy and the prognostic value of tumor-infiltrating lymphocytes. We discuss the impact of pathway rewiring in the acquisition of drug resistance, and the prospect of employing combination therapy strategies to overcome challenges towards identifying clinically-viable targeted treatment options for TNBC.
Collapse
Affiliation(s)
- Murugan Kalimutho
- Signal Transduction Laboratory, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia.
| | - Kate Parsons
- Signal Transduction Laboratory, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; School of Natural Sciences, Griffith University, Nathan, QLD 411, Australia
| | - Deepak Mittal
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - J Alejandro López
- School of Natural Sciences, Griffith University, Nathan, QLD 411, Australia; Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Sriganesh Srihari
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kum Kum Khanna
- Signal Transduction Laboratory, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; School of Natural Sciences, Griffith University, Nathan, QLD 411, Australia.
| |
Collapse
|
38
|
Advances in small-molecule drug discovery for triple-negative breast cancer. Future Med Chem 2015; 7:2019-39. [PMID: 26495746 DOI: 10.4155/fmc.15.129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of poor prognosis, highly invasive and difficult-to-treat breast cancers accounting for approximately 15% of clinical cases. Given the poor outlook and lack of sustained response to conventional therapies, TNBC has been the subject of intense studies on new therapeutic approaches in recent years. The development of targeted cancer therapies, often in combination with established chemotherapy, has been applied to a number of new clinical studies in this setting in recent years. This review will highlight recent therapeutic advances in TNBC, focusing on small-molecule drugs and their associated biological mechanisms of action, and offering the possibility of improved prospects for this patient group in the near future.
Collapse
|
39
|
Haines E, Schlienger S, Claing A. The small GTPase ADP-Ribosylation Factor 1 mediates the sensitivity of triple negative breast cancer cells to EGFR tyrosine kinase inhibitors. Cancer Biol Ther 2015; 16:1535-47. [PMID: 26176330 DOI: 10.1080/15384047.2015.1071737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The clinical use of EGFR-targeted therapy, in triple negative breast cancer patients, has been limited by the development of resistance to these drugs. Although activated signaling molecules contribute to this process, the molecular mechanisms remain relatively unknown. We have previously reported that the small GTPase ADP-Ribosylation Factor 1 (ARF1) is highly expressed in invasive breast cancer cells and acts as a molecular switch to activate EGF-mediated responses. In this study, we aimed at defining whether the high expression of ARF1 limits sensitivity of these tumor cells to EGFR inhibitors, such as gefitinib. Here, we show that the knock down of ARF1 expression or activity decreased the dose and latency time required by tyrosine kinase inhibitors to induce cell death. This may be explained by the observation that the depletion of ARF1 suppressed gefitinib-mediated activation of key mediators of survival such as ERK1/2, AKT and Src, while enhancing cascades leading to apoptosis such as the p38MAPK and JNK pathways, modifying the Bax/Bcl2 ratio and cytochrome c release. In addition, inhibiting ARF1 expression and activation also results in an increase in gefitinib-mediated EGFR internalization and degradation further limiting the ability of this receptor to promote its effects. Interestingly, we observed that gefitinib treatment resulted in the enhanced activation of ARF1 by promoting its recruitment to the receptor AXL, an important mediator of EGFR inhibition suggesting that ARF1 may promote its pro-survival effects by coupling to alternative mitogenic receptors in conditions where the EGFR is inhibited. Together our results uncover a new role for ARF1 in mediating the sensitivity to EGFR inhibition and thus suggest that limiting the activation of this GTPase could improve the therapeutic efficacy of EGFR inhibitors.
Collapse
Affiliation(s)
- Eric Haines
- a Department of Pharmacology ; Faculty of Medicine ; Université de Montréal ; Montreal , QC , Canada
| | - Sabrina Schlienger
- a Department of Pharmacology ; Faculty of Medicine ; Université de Montréal ; Montreal , QC , Canada
| | - Audrey Claing
- a Department of Pharmacology ; Faculty of Medicine ; Université de Montréal ; Montreal , QC , Canada
| |
Collapse
|