1
|
Takagi S, Nakajima M, Koike S, Takami M, Sugiura Y, Sakata S, Baba S, Takemoto A, Huang T, Seto Y, Saito M, Funauchi Y, Ae K, Takeuchi K, Fujita N, Katayama R. Frequent copy number gain of MCL1 is a therapeutic target for osteosarcoma. Oncogene 2024:10.1038/s41388-024-03251-6. [PMID: 39663392 DOI: 10.1038/s41388-024-03251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor primarily affecting children and adolescents. The lack of progress in drug development for OS is partly due to unidentified actionable oncogenic drivers common to OS. In this study, we demonstrate that copy number gains of MCL1 frequently occur in OS, leading to vulnerability to therapies based on Mcl-1 inhibitors. Fluorescence in situ hybridization analysis of 41 specimens revealed MCL1 amplification in 46.3% of patients with OS. Genetic inhibition of MCL1 induced significant apoptosis in MCL1-amplified OS cells, and the pharmacological efficacy of Mcl-1 inhibitors was correlated with MCL1 copy numbers. Chromosome 1q21.2-3 region, where MCL1 is located, contains multiple genes related to the IGF-1R/PI3K pathway, including PIP5K1A, TARS2, OUTD7B, and ENSA, which also showed increased copy numbers in MCL1-amplified OS cells. Furthermore, combining Mcl-1 inhibitors with IGF-1R inhibitors resulted in synergistic cell death by overcoming drug tolerance conferred by the activation of IGF signaling and suppressed tumor growth in MCL1-amplified OS xenograft models. These results suggest that genomic amplification of MCL1 in the 1q21.2-3 region, which occurred in approximately half of OS patients, may serve as a predictive biomarker for the combination therapy with an Mcl-1 inhibitor and an IGF1R inhibitor.
Collapse
Affiliation(s)
- Satoshi Takagi
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Mikako Nakajima
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan
| | - Sumie Koike
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Miho Takami
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Yoshiya Sugiura
- Division of Pathology, Cancer Institute, JFCR, Tokyo, Japan
- Department of Pathology, Toho University Medical Center, Sakura Hospital, Sakura, Japan
| | - Seiji Sakata
- Division of Pathology, Cancer Institute, JFCR, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, JFCR, Tokyo, Japan
- Pathology Project for Molecular Targets, Cancer Institute, JFCR, Tokyo, Japan
| | - Satoko Baba
- Division of Pathology, Cancer Institute, JFCR, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, JFCR, Tokyo, Japan
- Pathology Project for Molecular Targets, Cancer Institute, JFCR, Tokyo, Japan
| | - Ai Takemoto
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Tianyi Huang
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan
| | - Yosuke Seto
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Masanori Saito
- Department of Orthopedic Oncology, Cancer Institute Hospital, JFCR, Tokyo, Japan
| | - Yuki Funauchi
- Department of Orthopedic Oncology, Cancer Institute Hospital, JFCR, Tokyo, Japan
- Department of Orthopedic Surgery, Institute of Science Tokyo, Tokyo, Japan
| | - Keisuke Ae
- Department of Orthopedic Oncology, Cancer Institute Hospital, JFCR, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, JFCR, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, JFCR, Tokyo, Japan
- Pathology Project for Molecular Targets, Cancer Institute, JFCR, Tokyo, Japan
| | | | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Zhakula-Kostadinova N, Taylor AM. Patterns of Aneuploidy and Signaling Consequences in Cancer. Cancer Res 2024; 84:2575-2587. [PMID: 38924459 PMCID: PMC11325152 DOI: 10.1158/0008-5472.can-24-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Aneuploidy, or a change in the number of whole chromosomes or chromosome arms, is a near-universal feature of cancer. Chromosomes affected by aneuploidy are not random, with observed cancer-specific and tissue-specific patterns. Recent advances in genome engineering methods have allowed the creation of models with targeted aneuploidy events. These models can be used to uncover the downstream effects of individual aneuploidies on cancer phenotypes including proliferation, apoptosis, metabolism, and immune signaling. Here, we review the current state of research into the patterns of aneuploidy in cancer and their impact on signaling pathways and biological processes.
Collapse
Affiliation(s)
- Nadja Zhakula-Kostadinova
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
3
|
Jung O, Baek MJ, Wooldrik C, Johnson KR, Fisher KW, Lou J, Ricks TJ, Wen T, Best MD, Cryns VL, Anderson RA, Choi S. Nuclear phosphoinositide signaling promotes YAP/TAZ-TEAD transcriptional activity in breast cancer. EMBO J 2024; 43:1740-1769. [PMID: 38565949 PMCID: PMC11066040 DOI: 10.1038/s44318-024-00085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
The Hippo pathway effectors Yes-associated protein 1 (YAP) and its homolog TAZ are transcriptional coactivators that control gene expression by binding to TEA domain (TEAD) family transcription factors. The YAP/TAZ-TEAD complex is a key regulator of cancer-specific transcriptional programs, which promote tumor progression in diverse types of cancer, including breast cancer. Despite intensive efforts, the YAP/TAZ-TEAD complex in cancer has remained largely undruggable due to an incomplete mechanistic understanding. Here, we report that nuclear phosphoinositides function as cofactors that mediate the binding of YAP/TAZ to TEADs. The enzymatic products of phosphoinositide kinases PIPKIα and IPMK, including phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (P(I3,4,5)P3), bridge the binding of YAP/TAZ to TEAD. Inhibiting these kinases or the association of YAP/TAZ with PI(4,5)P2 and PI(3,4,5)P3 attenuates YAP/TAZ interaction with the TEADs, the expression of YAP/TAZ target genes, and breast cancer cell motility. Although we could not conclusively exclude the possibility that other enzymatic products of IPMK such as inositol phosphates play a role in the mechanism, our results point to a previously unrecognized role of nuclear phosphoinositide signaling in control of YAP/TAZ activity and implicate this pathway as a potential therapeutic target in YAP/TAZ-driven breast cancer.
Collapse
Affiliation(s)
- Oisun Jung
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Min-Jeong Baek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Colin Wooldrik
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Keith R Johnson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Oral Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kurt W Fisher
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Tanei J Ricks
- Department of Chemistry, University of Memphis, 3744 Walker Avenue, Memphis, TN, 38152, USA
| | - Tianmu Wen
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Vincent L Cryns
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Suyong Choi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
4
|
Watson EV, Lee JJK, Gulhan DC, Melloni GEM, Venev SV, Magesh RY, Frederick A, Chiba K, Wooten EC, Naxerova K, Dekker J, Park PJ, Elledge SJ. Chromosome evolution screens recapitulate tissue-specific tumor aneuploidy patterns. Nat Genet 2024; 56:900-912. [PMID: 38388848 PMCID: PMC11096114 DOI: 10.1038/s41588-024-01665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
Whole chromosome and arm-level copy number alterations occur at high frequencies in tumors, but their selective advantages, if any, are poorly understood. Here, utilizing unbiased whole chromosome genetic screens combined with in vitro evolution to generate arm- and subarm-level events, we iteratively selected the fittest karyotypes from aneuploidized human renal and mammary epithelial cells. Proliferation-based karyotype selection in these epithelial lines modeled tissue-specific tumor aneuploidy patterns in patient cohorts in the absence of driver mutations. Hi-C-based translocation mapping revealed that arm-level events usually emerged in multiples of two via centromeric translocations and occurred more frequently in tetraploids than diploids, contributing to the increased diversity in evolving tetraploid populations. Isogenic clonal lineages enabled elucidation of pro-tumorigenic mechanisms associated with common copy number alterations, revealing Notch signaling potentiation as a driver of 1q gain in breast cancer. We propose that intrinsic, tissue-specific proliferative effects underlie tumor copy number patterns in cancer.
Collapse
Affiliation(s)
- Emma V Watson
- Department of Genetics, Harvard Medical School and Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jake June-Koo Lee
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Doga C Gulhan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Giorgio E M Melloni
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Sergey V Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Rayna Y Magesh
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Abdulrazak Frederick
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kunitoshi Chiba
- Department of Genetics, Harvard Medical School and Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Eric C Wooten
- Department of Genetics, Harvard Medical School and Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Kamila Naxerova
- Department of Genetics, Harvard Medical School and Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School and Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
5
|
Tan C, Du Y, Zhu L, Jing S, Gao J, Qian Y, Yue X, Lee I. KDEL Receptor Trafficking to the Plasma Membrane Is Regulated by ACBD3 and Rab4A-GTP. Cells 2023; 12:cells12071079. [PMID: 37048152 PMCID: PMC10093020 DOI: 10.3390/cells12071079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
KDEL receptor-1 maintains homeostasis in the early secretory pathway by capturing and retrieving ER chaperones to the ER during heavy secretory activity. Unexpectedly, a fraction of the receptor is also known to reside in the plasma membrane (PM), although it is largely unknown exactly how the KDEL receptor gets exported from the Golgi and travels to the PM. We have previously shown that a Golgi scaffolding protein (ACBD3) facilitates KDEL receptor localization at the Golgi via the regulating cargo wave-induced cAMP/PKA-dependent signaling pathway. Upon endocytosis, surface-expressed KDEL receptor undergoes highly complex itineraries through the Golgi and the endo-lysosomal compartments, where the endocytosed receptor utilizes Rab14A- and Rab11A-positive recycling endosomes and clathrin-decorated tubulovesicular carriers. In this study, we sought to investigate the mechanism through which the KDEL receptor gets exported from the Golgi en route to the PM. We report here that ACBD3 depletion results in greatly increased trafficking of KDEL receptor to the PM via Rab4A-positive tubular carriers emanating from the Golgi. Expression of constitutively activated Rab4A mutant (Q72L) increases the surface expression of KDEL receptor up to 2~3-fold, whereas Rab4A knockdown or the expression of GDP-locked Rab4A mutant (S27N) inhibits KDEL receptor targeting of the PM. Importantly, KDELR trafficking from the Golgi to the PM is independent of PKA- and Src kinase-mediated mechanisms. Taken together, these results reveal that ACBD3 and Rab4A play a key role in regulating KDEL receptor trafficking to the cell surface.
Collapse
Affiliation(s)
- Chuanting Tan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yulei Du
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lianhui Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuaiyang Jing
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jingkai Gao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yi Qian
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xihua Yue
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Intaek Lee
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
6
|
Cordero RY, Cordero JB, Stiemke AB, Datta LW, Buyske S, Kugathasan S, McGovern DPB, Brant SR, Simpson CL. Trans-ancestry, Bayesian meta-analysis discovers 20 novel risk loci for inflammatory bowel disease in an African American, East Asian and European cohort. Hum Mol Genet 2023; 32:873-882. [PMID: 36308435 PMCID: PMC9941836 DOI: 10.1093/hmg/ddac269] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated chronic intestinal disorder with major phenotypes: ulcerative colitis (UC) and Crohn's disease (CD). Multiple studies have identified over 240 IBD susceptibility loci. However, most studies have centered on European (EUR) and East Asian (EAS) populations. The prevalence of IBD in non-EUR, including African Americans (AAs), has risen in recent years. Here we present the first attempt to identify loci in AAs using a trans-ancestry Bayesian approach (MANTRA) accounting for heterogeneity between diverse ancestries while allowing for the similarity between closely related populations. We meta-analyzed genome-wide association studies (GWAS) and Immunochip data from a 2015 EUR meta-analysis of 38 155 IBD cases and 48 485 controls and EAS Immunochip study of 2824 IBD cases and 3719 controls, and our recent AA IBD GWAS of 2345 cases and 5002 controls. Across the major IBD phenotypes, we found significant evidence for 92% of 205 loci lead SNPs from the 2015 meta-analysis, but also for three IBD loci only established in latter studies. We detected 20 novel loci, all containing immunity-related genes or genes with other evidence for IBD or immune-mediated disease relevance: PLEKHG5;TNFSFR25 (encoding death receptor 3, receptor for TNFSF15 gene product TL1A), XKR6, ELMO1, BC021024;PI4KB;PSMD4 and APLP1 for IBD; AUTS2, XKR6, OSER1, TET2;AK094561, BCAP29 and APLP1 for CD; and GABBR1;MOG, DQ570892, SPDEF;ILRUN, SMARCE1;CCR7;KRT222;KRT24;KRT25, ANKS1A;TCP11, IL7, LRRC18;WDFY4, XKR6 and TNFSF4 for UC. Our study highlights the value of combining low-powered genomic studies from understudied populations of diverse ancestral backgrounds together with a high-powered study to enable novel locus discovery, including potentially important therapeutic IBD gene targets.
Collapse
Affiliation(s)
- Roberto Y Cordero
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jennifer B Cordero
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Andrew B Stiemke
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lisa W Datta
- Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Steven Buyske
- Department of Statistics and Biostatistics, Rutgers University, Piscataway, NJ 08854, USA
| | - Subra Kugathasan
- Department of Pediatrics and Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Steven R Brant
- Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
- Rutgers Crohn’s and Colitis Center of New Jersey, Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Human Genetics Institute of New Jersey and Department of Genetics, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Claire L Simpson
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
7
|
Yin M, Wang Y. The role of PIP5K1A in cancer development and progression. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:151. [PMID: 35852640 DOI: 10.1007/s12032-022-01753-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Malignant tumors are formed via a pathological process of uncontrolled cell division that seriously endangers human physical and mental health. The PI3K/AKT signaling pathway plays an important role in the occurrence and development of various cancers. As a lipid kinase, PIP5K1A acts on the upstream of the PI3K/AKT signaling pathway and has a variety of biological functions, including cell differentiation, cell migration, and sperm development. An increasing number of studies have shown that the overexpression of PIP5K1A promotes the growth, invasion, and migration of cancer cells, and the inhibition of PIP5K1A can effectively hinder tumor progression. These findings imply that PIP5K1A are potential markers and targets for cancers. The aim of this study was to systemically review the structure and function of PIP5K1A, the relationship between PIP5K1A and tumors and the potential therapeutic value of PIP5K1A inhibitors in cancer. PIP5K1A affects the occurrence and progression of many tumors and will provide new strategies for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Man Yin
- Department of Clinical Medicine, Jining Medical University, Jining, 272000, Shandong, China
| | - Yunfei Wang
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Gu Huai Road, No.89, Jining, 272029, Shandong, China.
| |
Collapse
|
8
|
Huang X, Cao Y, Bao P, Zhu B, Cheng Z. High expression of PI4K2A predicted poor prognosis of colon adenocarcinoma (COAD) and correlated with immunity. Cancer Med 2022; 12:837-851. [PMID: 35634680 PMCID: PMC9844633 DOI: 10.1002/cam4.4895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/26/2022] [Accepted: 05/15/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND PI4K2A has been found to have a tumor-promoting role in various solid tumors and be involved in various biological procedures. In this article, we aim to investigate the prognostic values of PI4K2A and provide new insights in colon adenocarcinoma (COAD). METHODS The Cancer Genome Atlas (TCGA) database, Human Protein Atlas online database, and UALCAN database were used to analyze the expression of PI4K2A in COAD and the survival of patients. Univariate and multifactorial Cox regression analyses were used to assess the prognosis of PI4K2A on COAD. GSEA was used to explore PI4K2A-related signaling pathways. In addition, the effect of PI4K2A on immune checkpoint inhibitors (ICIs) treatment was investigated by constructing a TIDE model and predicting the association between PI4K2A and anticancer drug sensitivity through the CellMiner database. RESULTS In the TCGA database, PI4K2A was highly expressed in COAD and the similar results were verified by qRT-PCR. Survival analysis, utilizing Kaplan-Meier curves, revealed that COAD patients with high PI4K2A expression had a worse prognosis. In addition, PI4K2A expression was discovered to have been associated with T-stage, N-stage, and pathological stage by logistic analysis. Next, we utilized univariate and multifactorial Cox regression analyses to identify PI4K2A as an independent predictor. Additionally, GSEA analysis indicates that PI4K2A is enriched in MAPK signaling pathway, Toll-like receptor signaling pathway, etc. In COAD, PI4K2A was remarkably associated with the tumor immune microenvironment. In addition, by constructing a TIDE model, we discovered that COAD patients in the PI4K2A low-expression cohort were better treated with ICI. Finally, analysis of the CellMiner database predicted that PI4K2A was adversely correlated with the sensitivity of various anticancer drugs. CONCLUSIONS Our study suggests that PI4K2A may be a potential predictor of poor prognosis in COAD and a potential biomarker for early diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Xinkun Huang
- Department of General SurgeryAffiliated Hospital of NantongNantongJiangsu ProvinceChina
| | - Yang Cao
- Department of OperationAffiliated Hospital of NantongNantongJiangsu ProvinceChina
| | - Peng Bao
- Department of Critical Care MedicineAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Bingye Zhu
- Department of UrologyAffiliated Nantong Hospital of Shanghai University/The Sixth People's Hospital of NantongNantongJiangsu ProvinceChina
| | - Zhouyang Cheng
- Department of General SurgeryAffiliated Hospital of NantongNantongJiangsu ProvinceChina
| |
Collapse
|
9
|
Wang YH, Sheetz MP. When PIP 2 Meets p53: Nuclear Phosphoinositide Signaling in the DNA Damage Response. Front Cell Dev Biol 2022; 10:903994. [PMID: 35646908 PMCID: PMC9136457 DOI: 10.3389/fcell.2022.903994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanisms that maintain genome stability are critical for preventing tumor progression. In the past decades, many strategies were developed for cancer treatment to disrupt the DNA repair machinery or alter repair pathway selection. Evidence indicates that alterations in nuclear phosphoinositide lipids occur rapidly in response to genotoxic stresses. This implies that nuclear phosphoinositides are an upstream element involved in DNA damage signaling. Phosphoinositides constitute a new signaling interface for DNA repair pathway selection and hence a new opportunity for developing cancer treatment strategies. However, our understanding of the underlying mechanisms by which nuclear phosphoinositides regulate DNA damage repair, and particularly the dynamics of those processes, is rather limited. This is partly because there are a limited number of techniques that can monitor changes in the location and/or abundance of nuclear phosphoinositide lipids in real time and in live cells. This review summarizes our current knowledge regarding the roles of nuclear phosphoinositides in DNA damage response with an emphasis on the dynamics of these processes. Based upon recent findings, there is a novel model for p53's role with nuclear phosphoinositides in DNA damage response that provides new targets for synthetic lethality of tumors.
Collapse
Affiliation(s)
| | - Michael P. Sheetz
- Biochemistry and Molecular Biology Dept., University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
10
|
Neumann-Mufweba A, Kimani S, Khan SF, Chibale K, Prince S. The diaryl-imidazopyridazine anti-plasmodial compound, MMV652103, exhibits anti-breast cancer activity. EXCLI JOURNAL 2022; 21:656-679. [PMID: 35651652 PMCID: PMC9149975 DOI: 10.17179/excli2021-4323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/24/2022] [Indexed: 11/12/2022]
Abstract
Breast cancer is the most common malignancy in women worldwide and it remains a global health burden, in part, due to poor response and tolerance to current therapeutics. Drug repurposing, which seeks to identify new indications for existing and investigational drugs, has become an exciting strategy to address these challenges. Here we describe the anti-breast cancer activity of a diaryl-imidazopyridazine compound, MMV652103, which was previously identified for its anti-plasmodial activity. We demonstrate that MMV652103 potently inhibits the oncogenic PI4KB and PIK3C2G lipid kinases, is selectively cytotoxic to MCF7 and T47D estrogen receptor positive breast cancer cells and inhibits their ability to survive and migrate. The underlying mechanisms involved included the induction of reactive oxygen species and activation of the DNA damage and p38 MAPK stress signaling pathways. This was associated with a G1 cell cycle arrest and an increase in levels of the cyclin-dependent kinase inhibitor p21 and activation of apoptotic and autophagic cell death pathways. Lastly, MMV652103 significantly reduced the weight and metastases of MCF7 induced tumors in an in vivo chick embryo model and displayed a favorable safety profile. These findings position MMV652103 as a promising chemotherapeutic in the treatment of oestrogen receptor positive breast cancers.
Collapse
Affiliation(s)
- Alexis Neumann-Mufweba
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Serah Kimani
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Saif Feroz Khan
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Kelly Chibale
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| | - Sharon Prince
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| |
Collapse
|
11
|
Li YP, Mikrani R, Hu YF, Faran Ashraf Baig MM, Abbas M, Akhtar F, Xu M. Research progress of phosphatidylinositol 4-kinase and its inhibitors in inflammatory diseases. Eur J Pharmacol 2021; 907:174300. [PMID: 34217706 DOI: 10.1016/j.ejphar.2021.174300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023]
Abstract
Phosphatidylinositol 4-kinase (PI4K) is a lipid kinase that can catalyze the transfer of phosphate group from ATP to the inositol ring of phosphatidylinositol (PtdIns) resulting in the phosphorylation of PtdIns at 4-OH sites, to generate phosphatidylinositol 4-phosphate (PI4P). Studies on biological functions reveal that PI4K is closely related to the occurrence and development of various inflammatory diseases such as obesity, cancer, viral infections, malaria, Alzheimer's disease, etc. PI4K-related inhibitors have been found to have the effects of inhibiting virus replication, anti-cancer, treating malaria and reducing rejection in organ transplants, among which MMV390048, an anti-malaria drug, has entered phase II clinical trial. This review discusses the classification, structure, distribution and related inhibitors of PI4K and their role in the progression of cancer, viral replication, and other inflammation induced diseases to explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yan-Ping Li
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Reyaj Mikrani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Yi-Fan Hu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mirza Muhammad Faran Ashraf Baig
- Laboratory of Biomedical Engineering for Novel Bio-functional and Pharmaceutical Nano-materials, Prince Philip Dental Hospital, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Muhammad Abbas
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Fahad Akhtar
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Addiction to Golgi-resident PI4P synthesis in chromosome 1q21.3-amplified lung adenocarcinoma cells. Proc Natl Acad Sci U S A 2021; 118:2023537118. [PMID: 34155143 PMCID: PMC8237628 DOI: 10.1073/pnas.2023537118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A chromosome 1q21.3 region that is frequently amplified in diverse cancer types encodes phosphatidylinositol (PI)-4 kinase IIIβ (PI4KIIIβ), a key regulator of secretory vesicle biogenesis and trafficking. Chromosome 1q21.3-amplified lung adenocarcinoma (1q-LUAD) cells rely on PI4KIIIβ for Golgi-resident PI-4-phosphate (PI4P) synthesis, prosurvival effector protein secretion, and cell viability. Here, we show that 1q-LUAD cells subjected to prolonged PI4KIIIβ antagonist treatment acquire tolerance by activating an miR-218-5p-dependent competing endogenous RNA network that up-regulates PI4KIIα, which provides an alternative source of Golgi-resident PI4P that maintains prosurvival effector protein secretion and cell viability. These findings demonstrate an addiction to Golgi-resident PI4P synthesis in a genetically defined subset of cancers.
Collapse
|
13
|
Mohamed M, Gardeitchik T, Balasubramaniam S, Guerrero‐Castillo S, Dalloyaux D, van Kraaij S, Venselaar H, Hoischen A, Urban Z, Brandt U, Al‐Shawi R, Simons JP, Frison M, Ngu L, Callewaert B, Spelbrink H, Kallemeijn WW, Aerts JMFG, Waugh MG, Morava E, Wevers RA. Novel defect in phosphatidylinositol 4-kinase type 2-alpha (PI4K2A) at the membrane-enzyme interface is associated with metabolic cutis laxa. J Inherit Metab Dis 2020; 43:1382-1391. [PMID: 32418222 PMCID: PMC7687218 DOI: 10.1002/jimd.12255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022]
Abstract
Inherited cutis laxa, or inelastic, sagging skin is a genetic condition of premature and generalised connective tissue ageing, affecting various elastic components of the extracellular matrix. Several cutis laxa syndromes are inborn errors of metabolism and lead to severe neurological symptoms. In a patient with cutis laxa, a choreoathetoid movement disorder, dysmorphic features and intellectual disability we performed exome sequencing to elucidate the underlying genetic defect. We identified the amino acid substitution R275W in phosphatidylinositol 4-kinase type IIα, caused by a homozygous missense mutation in the PI4K2A gene. We used lipidomics, complexome profiling and functional studies to measure phosphatidylinositol 4-phosphate synthesis in the patient and evaluated PI4K2A deficient mice to define a novel metabolic disorder. The R275W residue, located on the surface of the protein, is involved in forming electrostatic interactions with the membrane. The catalytic activity of PI4K2A in patient fibroblasts was severely reduced and lipid mass spectrometry showed that particular acyl-chain pools of PI4P and PI(4,5)P2 were decreased. Phosphoinositide lipids play a major role in intracellular signalling and trafficking and regulate the balance between proliferation and apoptosis. Phosphatidylinositol 4-kinases such as PI4K2A mediate the first step in the main metabolic pathway that generates PI4P, PI(4,5)P2 and PI(3,4,5)P3 . Although neurologic involvement is common, cutis laxa has not been reported previously in metabolic defects affecting signalling. Here we describe a patient with a complex neurological phenotype, premature ageing and a mutation in PI4K2A, illustrating the importance of this enzyme in the generation of inositol lipids with particular acylation characteristics.
Collapse
Affiliation(s)
- Miski Mohamed
- Department of PaediatricsRadboud University Medical CenterNijmegenThe Netherlands
| | - Thatjana Gardeitchik
- Department of PaediatricsRadboud University Medical CenterNijmegenThe Netherlands
- Department of GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Shanti Balasubramaniam
- Clinical Genetic DepartmentHospital Kuala Lumpur, Jalan PahangKuala LumpurMalaysia
- Discipline of Genetic Medicine, Sydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
- Western Sydney Genetics ProgramThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Sergio Guerrero‐Castillo
- Radboud Center for Mitochondrial MedicineRadboud University Medical CenterNijmegenThe Netherlands
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Daisy Dalloyaux
- Department of PaediatricsRadboud University Medical CenterNijmegenThe Netherlands
| | - Sanne van Kraaij
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Hanka Venselaar
- Center of Molecular and Biomolecular InformaticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Alexander Hoischen
- Department of GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Department of Internal MedicineRadboud University Medical CenterNijmegenThe Netherlands
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Zsolt Urban
- Department of Human Genetics, Graduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Ulrich Brandt
- Radboud Center for Mitochondrial MedicineRadboud University Medical CenterNijmegenThe Netherlands
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Raya Al‐Shawi
- Wolfson Drug Discovery Unit, Division of Medicine, Royal Free CampusUniversity College LondonLondonUK
| | - J. Paul Simons
- Wolfson Drug Discovery Unit, Division of Medicine, Royal Free CampusUniversity College LondonLondonUK
| | - Michele Frison
- Wolfson Drug Discovery Unit, Division of Medicine, Royal Free CampusUniversity College LondonLondonUK
| | - Lock‐Hock Ngu
- Clinical Genetic DepartmentHospital Kuala Lumpur, Jalan PahangKuala LumpurMalaysia
| | - Bert Callewaert
- Center for Medical GeneticsGhent University HospitalGhentBelgium
| | - Hans Spelbrink
- Department of PaediatricsRadboud University Medical CenterNijmegenThe Netherlands
| | - Wouter W. Kallemeijn
- Department of Medical Biochemistry, Leiden Institute of ChemistryLeiden UniversityLeidenThe Netherlands
- Department of ChemistryImperial College LondonLondonUK
| | - Johannes M. F. G. Aerts
- Department of Medical Biochemistry, Leiden Institute of ChemistryLeiden UniversityLeidenThe Netherlands
| | - Mark G. Waugh
- Lipid and Membrane Biology Group, Institute for Liver & Digestive HealthUniversity College LondonLondonUK
| | - Eva Morava
- Haywards Genetics CenterTulane UniversityNew OrleansLouisianaUSA
- Department of PediatricsUniversity Medical CentreLeuvenBelgium
| | - Ron A. Wevers
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
14
|
Feng Y, Yu P, Li J, Cao Y, Zhang J. Phosphatidylinositol 4-kinase β is required for the ciliogenesis of zebrafish otic vesicle. J Genet Genomics 2020; 47:627-636. [PMID: 33358778 DOI: 10.1016/j.jgg.2020.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/26/2022]
Abstract
The primary cilium, an important microtubule-based organelle, protrudes from nearly all the vertebrate cells. The motility of cilia is necessary for various developmental and physiological processes. Phosphoinositides (PIs) and its metabolite, PtdIns(4,5)P2, have been revealed to contribute to cilia assembly and disassembly. As an important kinase of the PI pathway and signaling, phosphatidylinositol 4-kinase β (PI4KB) is the one of the most extensively studied phosphatidylinositol 4-kinase isoform. However, its potential roles in organ development remain to be characterized. To investigate the developmental role of Pi4kb, especially its function on zebrafish ciliogenesis, we generated pi4kb deletion mutants using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 technique. The homozygous pi4kb mutants exhibit an absence of primary cilia in the inner ear, neuromasts, and pronephric ducts accompanied by severe edema in the eyes and other organs. Moreover, smaller otic vesicle, malformed semicircular canals, and the insensitivity on sound stimulation were characteristics of pi4kb mutants. At the protein level, both in vivo and in vitro analyses revealed that synthesis of Pi4p was greatly reduced owing to the loss of Pi4kb. In addition, the expression of the Pi4kb-binding partner of neuronal calcium sensor-1, as well as the phosphorylation of phosphatidylinositol-4-phosphate downstream effecter of Akt, was significantly inhibited in pi4kb mutants. Taken together, our work uncovers a novel role of Pi4kb in zebrafish inner ear development and the functional formation of hearing ability by determining hair cell ciliogenesis.
Collapse
Affiliation(s)
- Yufei Feng
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Ping Yu
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Jingyu Li
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ying Cao
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
15
|
The Great Escape: how phosphatidylinositol 4-kinases and PI4P promote vesicle exit from the Golgi (and drive cancer). Biochem J 2019; 476:2321-2346. [DOI: 10.1042/bcj20180622] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is a membrane glycerophospholipid and a major regulator of the characteristic appearance of the Golgi complex as well as its vesicular trafficking, signalling and metabolic functions. Phosphatidylinositol 4-kinases, and in particular the PI4KIIIβ isoform, act in concert with PI4P to recruit macromolecular complexes to initiate the biogenesis of trafficking vesicles for several Golgi exit routes. Dysregulation of Golgi PI4P metabolism and the PI4P protein interactome features in many cancers and is often associated with tumour progression and a poor prognosis. Increased expression of PI4P-binding proteins, such as GOLPH3 or PITPNC1, induces a malignant secretory phenotype and the release of proteins that can remodel the extracellular matrix, promote angiogenesis and enhance cell motility. Aberrant Golgi PI4P metabolism can also result in the impaired post-translational modification of proteins required for focal adhesion formation and cell–matrix interactions, thereby potentiating the development of aggressive metastatic and invasive tumours. Altered expression of the Golgi-targeted PI 4-kinases, PI4KIIIβ, PI4KIIα and PI4KIIβ, or the PI4P phosphate Sac1, can also modulate oncogenic signalling through effects on TGN-endosomal trafficking. A Golgi trafficking role for a PIP 5-kinase has been recently described, which indicates that PI4P is not the only functionally important phosphoinositide at this subcellular location. This review charts new developments in our understanding of phosphatidylinositol 4-kinase function at the Golgi and how PI4P-dependent trafficking can be deregulated in malignant disease.
Collapse
|
16
|
Tu Z, Schmöllerl J, Cuiffo BG, Karnoub AE. Microenvironmental Regulation of Long Noncoding RNA LINC01133 Promotes Cancer Stem Cell-Like Phenotypic Traits in Triple-Negative Breast Cancers. Stem Cells 2019; 37:1281-1292. [PMID: 31283068 DOI: 10.1002/stem.3055] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/06/2019] [Accepted: 06/16/2019] [Indexed: 01/08/2023]
Abstract
The fibrotic tumor microenvironment is a critical player in the pathogenesis of triple-negative breast cancers (TNBCs), with the presence of fibroblastic infiltrates particularly correlating with tumors that are clinically advanced. On this front, we previously demonstrated that TNBCs are highly enriched in fibroblastic stromal progenitor cells called mesenchymal stem/stromal cells (MSCs) and that such cells play critical roles in promoting TNBC initiation and progression. How TNBC cells respond to MSC stimulation, however, is not fully understood, and stands to reveal contextual signals used by TNBC cells during tumor development and provide biomarkers and therapeutic targets of pertinence to TNBC management. Here, we report that MSCs strongly induced the long noncoding RNA (lncRNA) LINC01133 in neighboring TNBC cells. Indeed, although lncRNAs have been tightly associated with cancer development, their contributions to breast cancer in general, and to TNBC pathogenesis in particular, have not been fully elucidated, and we set out to determine if LINC01133 regulated malignant traits in TNBC cells. We establish that LINC01133 is sufficient, on its own, in promoting phenotypic and growth characteristics of cancer stem cell-like cells, and that it is a direct mediator of the MSC-triggered miR-199a-FOXP2 pathway in TNBC models. Furthermore, we show that LINC01133 is a critical regulator of the pluripotency-determining gene Kruppel-Like Factor 4 (KLF4), and that it represents a biomarker and prognosticator of disease outcome in the clinic. Collectively, our findings introduce LINC01133 as a novel functional driver of malignancy and a potential theranostic in TNBC. Stem Cells 2019;37:1281-1292.
Collapse
Affiliation(s)
- Zhenbo Tu
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Johannes Schmöllerl
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin G Cuiffo
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Antoine E Karnoub
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
17
|
Larsson P, Syed Khaja AS, Semenas J, Wang T, Sarwar M, Dizeyi N, Simoulis A, Hedblom A, Wai SN, Ødum N, Persson JL. The functional interlink between AR and MMP9/VEGF signaling axis is mediated through PIP5K1α/pAKT in prostate cancer. Int J Cancer 2019; 146:1686-1699. [PMID: 31381135 PMCID: PMC7004098 DOI: 10.1002/ijc.32607] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/01/2019] [Accepted: 07/25/2019] [Indexed: 01/06/2023]
Abstract
Currently, no effective targeted therapeutics exists for treatment of metastatic prostate cancer (PCa). Given that matrix metalloproteinases 9 (MMP9) and its associated vascular endothelial growth factor (VEGF) are critical for tumor vascularization and invasion under castration-resistant condition, it is therefore of great importance to define the functional association and interplay between androgen receptor (AR) and MMP9 and their associated key survival and invasion pathways in PCa cells. Here, we found that there was a significant correlation between MMP9 and AR protein expression in primary and metastatic PCa tissues, and a trend that high level of MMP9 expression was associated with poor prognosis. We demonstrated that constitutive activation of AR increased expression of MMP9 and VEGF/VEGF receptors. We further showed that AR exerts its effect on MMP9/VEGF signaling axis through PIP5K1α/AKT. We showed that MMP9 physically interacted with PIP5K1α via formation of protein-protein complexes. Furthermore, elevated expression of MMP9 enhanced ability of AR to activate its target gene cyclin A1. The elevated sequential activation of AR/PIP5K1α/AKT/MMP9/VEGF signaling axis contributed to increased invasiveness and growth of metastatic tumors. Conversely, treatment with PIP5K1α inhibitor significantly suppressed invasiveness of PCa cells expressing constitutively activated AR, this was coincident with its inhibitory effect of this inhibitor on AR/MMP9/VEGF pathways. Our results suggest that AR and MMP9-associated network proteins may be effectively targeted by blocking PIP5K1α/AKT pathways using PIP5K1α inhibitor in metastatic PCa.
Collapse
Affiliation(s)
- Per Larsson
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | - Julius Semenas
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Tianyan Wang
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Martuza Sarwar
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Nishtman Dizeyi
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Athanasios Simoulis
- Department of Clinical Pathology and Cytology, Skåne University Hospital, Malmö, Sweden
| | - Andreas Hedblom
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Niels Ødum
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jenny L Persson
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, Malmö, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
18
|
Goeppert B, Toth R, Singer S, Albrecht T, Lipka DB, Lutsik P, Brocks D, Baehr M, Muecke O, Assenov Y, Gu L, Endris V, Stenzinger A, Mehrabi A, Schirmacher P, Plass C, Weichenhan D, Roessler S. Integrative Analysis Defines Distinct Prognostic Subgroups of Intrahepatic Cholangiocarcinoma. Hepatology 2019; 69:2091-2106. [PMID: 30615206 PMCID: PMC6594081 DOI: 10.1002/hep.30493] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer. It is defined by cholangiocytic differentiation and has poor prognosis. Recently, epigenetic processes have been shown to play an important role in cholangiocarcinogenesis. We performed an integrative analysis on 52 iCCAs using both genetic and epigenetic data with a specific focus on DNA methylation components. We found recurrent isocitrate dehydrogenase 1 (IDH1) and IDH2 (28%) gene mutations, recurrent arm-length copy number alterations (CNAs), and focal alterations such as deletion of 3p21 or amplification of 12q15, which affect BRCA1 Associated Protein 1, polybromo 1, and mouse double minute 2 homolog. DNA methylome analysis revealed excessive hypermethylation of iCCA, affecting primarily the bivalent genomic regions marked with both active and repressive histone modifications. Integrative clustering of genetic and epigenetic data identified four iCCA subgroups with prognostic relevance further designated as IDH, high (H), medium (M), and low (L) alteration groups. The IDH group consisted of all samples with IDH1 or IDH2 mutations and showed, together with the H group, a highly disrupted genome, characterized by frequent deletions of chromosome arms 3p and 6q. Both groups showed excessive hypermethylation with distinct patterns. The M group showed intermediate characteristics regarding both genetic and epigenetic marks, whereas the L group exhibited few methylation changes and mutations and a lack of CNAs. Methylation-based latent component analysis of cell-type composition identified differences among these four groups. Prognosis of the H and M groups was significantly worse than that of the L group. Conclusion: Using an integrative genomic and epigenomic analysis approach, we identified four major iCCA subgroups with widespread genomic and epigenomic differences and prognostic implications. Furthermore, our data suggest differences in the cell-of-origin of the iCCA subtypes.
Collapse
Affiliation(s)
- Benjamin Goeppert
- Institute of PathologyUniversity Clinic of HeidelbergHeidelbergGermany,Liver Cancer Center HeidelbergHeidelbergGermany
| | - Reka Toth
- Division of Cancer EpigenomicsGerman Cancer Research CenterHeidelbergGermany
| | - Stephan Singer
- Institute of PathologyUniversity Clinic of HeidelbergHeidelbergGermany,Institute of PathologyErnst‐Moritz‐Arndt UniversityGreifswaldGermany
| | - Thomas Albrecht
- Institute of PathologyUniversity Clinic of HeidelbergHeidelbergGermany
| | - Daniel B. Lipka
- Division of Cancer EpigenomicsGerman Cancer Research CenterHeidelbergGermany
| | - Pavlo Lutsik
- Division of Cancer EpigenomicsGerman Cancer Research CenterHeidelbergGermany
| | - David Brocks
- Division of Cancer EpigenomicsGerman Cancer Research CenterHeidelbergGermany
| | - Marion Baehr
- Division of Cancer EpigenomicsGerman Cancer Research CenterHeidelbergGermany
| | - Oliver Muecke
- Division of Cancer EpigenomicsGerman Cancer Research CenterHeidelbergGermany
| | - Yassen Assenov
- Division of Cancer EpigenomicsGerman Cancer Research CenterHeidelbergGermany
| | - Lei Gu
- Division of Cancer EpigenomicsGerman Cancer Research CenterHeidelbergGermany,Boston Children's HospitalBostonMA
| | - Volker Endris
- Institute of PathologyUniversity Clinic of HeidelbergHeidelbergGermany
| | | | - Arianeb Mehrabi
- Liver Cancer Center HeidelbergHeidelbergGermany,Department of General Visceral and Transplantation SurgeryUniversity Hospital HeidelbergHeidelbergGermany
| | - Peter Schirmacher
- Institute of PathologyUniversity Clinic of HeidelbergHeidelbergGermany,Liver Cancer Center HeidelbergHeidelbergGermany,German Consortium for Translational Cancer ResearchHeidelbergGermany
| | - Christoph Plass
- Division of Cancer EpigenomicsGerman Cancer Research CenterHeidelbergGermany,German Consortium for Translational Cancer ResearchHeidelbergGermany
| | - Dieter Weichenhan
- Division of Cancer EpigenomicsGerman Cancer Research CenterHeidelbergGermany
| | - Stephanie Roessler
- Institute of PathologyUniversity Clinic of HeidelbergHeidelbergGermany,Liver Cancer Center HeidelbergHeidelbergGermany
| |
Collapse
|
19
|
Choi S, Chen M, Cryns VL, Anderson RA. A nuclear phosphoinositide kinase complex regulates p53. Nat Cell Biol 2019; 21:462-475. [PMID: 30886346 DOI: 10.1038/s41556-019-0297-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
The tumour suppressor p53 (encoded by TP53) protects the genome against cellular stress and is frequently mutated in cancer. Mutant p53 acquires gain-of-function oncogenic activities that are dependent on its enhanced stability. However, the mechanisms by which nuclear p53 is stabilized are poorly understood. Here, we demonstrate that the stability of stress-induced wild-type and mutant p53 is regulated by the type I phosphatidylinositol phosphate kinase (PIPKI-α (also known as PIP5K1A)) and its product phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). Nuclear PIPKI-α binds to p53 upon stress, resulting in the production and association of PtdIns(4,5)P2 with p53. PtdIns(4,5)P2 binding promotes the interaction between p53 and the small heat shock proteins HSP27 (also known as HSPB1) and αB-crystallin (also known as HSPB5), which stabilize nuclear p53. Moreover, inhibition of PIPKI-α or PtdIns(4,5)P2 association results in p53 destabilization. Our results point to a previously unrecognized role of nuclear phosphoinositide signalling in regulating p53 stability and implicate this pathway as a promising therapeutic target in cancer.
Collapse
Affiliation(s)
- Suyong Choi
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Mo Chen
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Vincent L Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Richard A Anderson
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
20
|
Durand N, Borges S, Hall T, Bastea L, Döppler H, Edenfield BH, Thompson EA, Geiger X, Storz P. The phosphorylation status of PIP5K1C at serine 448 can be predictive for invasive ductal carcinoma of the breast. Oncotarget 2018; 9:36358-36370. [PMID: 30555634 PMCID: PMC6284740 DOI: 10.18632/oncotarget.26357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/31/2018] [Indexed: 11/25/2022] Open
Abstract
Phosphatidylinositol-4-phosphate 5-kinase type-1C (PIP5K1C) is a lipid kinase that regulates focal adhesion dynamics and cell attachment through site-specific formation of phosphatidylinositol-4,5-bisphosphate (PI4,5P2). By comparing normal breast tissue to carcinoma in situ and invasive ductal carcinoma subtypes, we here show that the phosphorylation status of PIP5K1C at serine residue 448 (S448) can be predictive for breast cancer progression to an aggressive phenotype, while PIP5K1C expression levels are not indicative for this event. PIP5K1C phosphorylation at S448 is downregulated in invasive ductal carcinoma, and similarly, the expression levels of PKD1, the kinase that phosphorylates PIP5K1C at this site, are decreased. Overall, since PKD1 is a negative regulator of cell migration and invasion in breast cancer, the phosphorylation status of this residue may serve as an indicator of aggressiveness of breast tumors.
Collapse
Affiliation(s)
- Nisha Durand
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sahra Borges
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tavia Hall
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ligia Bastea
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Heike Döppler
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Brandy H Edenfield
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
21
|
Tran MH, Seo E, Min S, Nguyen QAT, Choi J, Lee UJ, Hong SS, Kang H, Mansukhani A, Jou I, Lee SY. NEDD4-induced degradative ubiquitination of phosphatidylinositol 4-phosphate 5-kinase α and its implication in breast cancer cell proliferation. J Cell Mol Med 2018; 22:4117-4129. [PMID: 29851245 PMCID: PMC6111810 DOI: 10.1111/jcmm.13689] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/21/2018] [Indexed: 12/15/2022] Open
Abstract
Phosphatidylinositol 4‐phosphate 5‐kinase (PIP5K) family members generate phosphatidylinositol 4,5‐bisphosphate (PIP2), a critical lipid regulator of diverse physiological processes. The PIP5K‐dependent PIP2 generation can also act upstream of the oncogenic phosphatidylinositol 3‐kinase (PI3K)/Akt pathway. Many studies have demonstrated various mechanisms of spatiotemporal regulation of PIP5K catalytic activity. However, there are few studies on regulation of PIP5K protein stability. Here, we examined potential regulation of PIP5Kα, a PIP5K isoform, via ubiquitin‐proteasome system, and its implication for breast cancer. Our results showed that the ubiquitin ligase NEDD4 (neural precursor cell expressed, developmentally down‐regulated gene 4) mediated ubiquitination and proteasomal degradation of PIP5Kα, consequently reducing plasma membrane PIP2 level. NEDD4 interacted with the C‐terminal region and ubiquitinated the N‐terminal lysine 88 in PIP5Kα. In addition, PIP5Kα gene disruption inhibited epidermal growth factor (EGF)‐induced Akt activation and caused significant proliferation defect in breast cancer cells. Notably, PIP5Kα K88R mutant that was resistant to NEDD4‐mediated ubiquitination and degradation showed more potentiating effects on Akt activation by EGF and cell proliferation than wild‐type PIP5Kα. Collectively, these results suggest that PIP5Kα is a novel degradative substrate of NEDD4 and that the PIP5Kα‐dependent PIP2 pool contributing to breast cancer cell proliferation through PI3K/Akt activation is negatively controlled by NEDD4.
Collapse
Affiliation(s)
- Mai Hoang Tran
- Department of Biomedical Sciences, Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Eunjeong Seo
- Department of Biomedical Sciences, Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Soohong Min
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Quynh-Anh T Nguyen
- Department of Biomedical Sciences, Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Juyong Choi
- Department of Biomedical Sciences, Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Uk-Jin Lee
- Department of Biomedical Sciences, Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| | - Hyuk Kang
- Department of Chemistry, Ajou University, Suwon, Korea
| | - Alka Mansukhani
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Ilo Jou
- Department of Biomedical Sciences, Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Sang Yoon Lee
- Department of Biomedical Sciences, Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
22
|
Hu X, Wang J, He W, Zhao P, Ye C. MicroRNA-433 targets AKT3 and inhibits cell proliferation and viability in breast cancer. Oncol Lett 2018; 15:3998-4004. [PMID: 29556282 DOI: 10.3892/ol.2018.7803] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 09/29/2017] [Indexed: 12/28/2022] Open
Abstract
Breast cancer is the most frequently diagnosed malignancy in women. However, the molecular mechanisms underlying breast cancer pathogenesis are not fully understood. The present study examined the role of miR-433 in breast cancer and investigated its underlying molecular mechanisms of action. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to analyze the level of microRNA (miRNA/miR)/mRNA and protein expression, respectively. Additionally, MTT assay was used to determined cell proliferation and viability. Cell apoptosis was measured by flow cytometry. A dual-luciferase reporter assay was used to confirm the identity of the downstream target of miR-433. The results revealed that miR-433 was downregulated in breast cancer tissues and cell lines. Overexpression of miR-433 inhibited cell proliferation and cell viability in BT-549 cells, whereas downregulation of miR-433 increased cell proliferation and cell viability in MDA-MB-231 cells. Further flow cytometry analysis revealed that miR-433 was able to induce apoptosis and also alter the levels of proteins expression of B-cell lymphoma-2 and Bcl-associated X. Bioinformatics analysis showed that RAC-γ serine/threonine-protein kinase (AKT3) was one of the downstream targets of miR-433, and luciferase reporter assay further confirmed that AKT3 is a direct target of miR-433. The knockdown of AKT3 was able to inhibit proliferation and viability in BT-549 cells. Overexpression of AKT3 prevented the inhibitory effects of miR-433 on proliferation and viability in BT-549 cells. The level of AKT3 mRNA expression was upregulated in breast cancer tissues compared with normal tissues and was inversely correlated with miR-433 expression levels. In summary, the results of the present study results indicate that the tumor-suppressive role of miR-433 may be mediated by regulating AKT3. miR-433 may therefore serve as a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Xiaolei Hu
- Department of Breast Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jie Wang
- Clinical Nutrition Department, The 458th Hospital of People's Liberation Army, Guangzhou, Guangdong 510620, P.R. China
| | - Wan He
- Department of Oncology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518000, P.R. China
| | - Pan Zhao
- Department of Clinical Medical Research, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518000, P.R. China
| | - Changsheng Ye
- Department of Breast Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
23
|
PI-273, a Substrate-Competitive, Specific Small-Molecule Inhibitor of PI4KIIα, Inhibits the Growth of Breast Cancer Cells. Cancer Res 2017; 77:6253-6266. [DOI: 10.1158/0008-5472.can-17-0484] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/29/2017] [Accepted: 08/14/2017] [Indexed: 11/16/2022]
|
24
|
Feng F, Cheng Q, Yang L, Zhang D, Ji S, Zhang Q, Lin Y, Li F, Xiong L, Liu C, Jiang X. Guidance to rational use of pharmaceuticals in gallbladder sarcomatoid carcinoma using patient-derived cancer cells and whole exome sequencing. Oncotarget 2017; 8:5349-5360. [PMID: 28029662 PMCID: PMC5354913 DOI: 10.18632/oncotarget.14146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/22/2016] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Gallbladder sarcomatoid carcinoma is a rare cancer with no clinical standard treatment. With the rapid development of next generation sequencing, it has been able to provide reasonable treatment options for patients based on genetic variations. However, most cancer drugs are not approval for gallbladder sarcomatoid carcinoma indications. The correlation between drug response and a genetic variation needs to be further elucidated. EXPERIMENTAL DESIGN Three patient-derived cells-JXQ-3D-001, JXQ-3D-002, and JXQ-3D-003, were derived from biopsy samples of one gallbladder sarcomatoid carcinoma patient with progression and have been characterized. In order to study the relationship between drug sensitivity and gene alteration, genetic mutations of three patient-derived cells were discovered by whole exome sequencing, and drug screening has been performed based on the gene alterations and related signaling pathways that are associated with drug targets. RESULTS It has been found that there are differences in biological characteristics such as morphology, cell proliferation, cell migration and colony formation activity among these three patient-derived cells although they are derived from the same patient. Their sensitivities to the chemotherapy drugs-Fluorouracil, Doxorubicin, and Cisplatin are distinct. Moreover, none of common chemotherapy drugs could inhibit the proliferations of all three patient-derived cells. Comprehensive analysis of their whole exome sequencing demonstrated that tumor-associated genes TP53, AKT2, FGFR3, FGF10, SDHA, and PI3KCA were mutated or amplified. Part of these alterations are actionable. By screening a set of compounds that are associated with the genetic alteration, it has been found that GDC-0941 and PF-04691502 for PI3K-AKT-mTOR pathway inhibitors could dramatically decrease the proliferation of three patient-derived cells. Importantly, expression of phosphorylated AKT and phosphorylated S6 were markedly decreased after treatments with PI3K-AKT-mTOR pathway inhibitors GDC-0941 (0.5 μM) and PF-04691502 (0.1 μM) in all three patient-derived cells. These data suggested that inhibition of the PI3K-AKT-mTOR pathway that was activated by PIK3CA amplification in all three patient-derived cells could reduce the cell proliferation. CONCLUSIONS A patient-derived cell model combined with whole exome sequencing is a powerful tool to elucidate relationship between drug sensitivities and genetic alternations. In these gallbladder sarcomatoid carcinoma patient-derived cells, it is found that PIK3CA amplification could be used as a biomarker to indicate PI3K-AKT-mTOR pathway activation. Block of the pathway may benefit the gallbladder sarcomatoid carcinoma patient with this alternation in hypothesis. The real efficacy needs to be confirmed in vivo or in a clinical trial.
Collapse
Affiliation(s)
- Feiling Feng
- Department of Biliary I, Third Affiliated Hospital of PLA Second Military Medical University, Shanghai, China
| | - Qingbao Cheng
- Department of Biliary I, Third Affiliated Hospital of PLA Second Military Medical University, Shanghai, China
| | - Liang Yang
- Department of Biliary I, Third Affiliated Hospital of PLA Second Military Medical University, Shanghai, China
| | - Dadong Zhang
- Division of Translational Medicine, 3D Medicines Corporation, Shanghai, China
- Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Shunlong Ji
- Division of Translational Medicine, 3D Medicines Corporation, Shanghai, China
| | - Qiangzu Zhang
- Division of Translational Medicine, 3D Medicines Corporation, Shanghai, China
| | - Yihui Lin
- Division of Translational Medicine, 3D Medicines Corporation, Shanghai, China
| | - Fugen Li
- Division of Translational Medicine, 3D Medicines Corporation, Shanghai, China
| | - Lei Xiong
- Division of Translational Medicine, 3D Medicines Corporation, Shanghai, China
| | - Chen Liu
- Department of Biliary I, Third Affiliated Hospital of PLA Second Military Medical University, Shanghai, China
| | - Xiaoqing Jiang
- Department of Biliary I, Third Affiliated Hospital of PLA Second Military Medical University, Shanghai, China
| |
Collapse
|
25
|
Falasca M, Hamilton JR, Selvadurai M, Sundaram K, Adamska A, Thompson PE. Class II Phosphoinositide 3-Kinases as Novel Drug Targets. J Med Chem 2016; 60:47-65. [DOI: 10.1021/acs.jmedchem.6b00963] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Marco Falasca
- Metabolic
Signalling Group, School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Justin R. Hamilton
- Australian
Centre for Blood Diseases and Department of Clinical Haematology, Monash University, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Maria Selvadurai
- Australian
Centre for Blood Diseases and Department of Clinical Haematology, Monash University, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Krithika Sundaram
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Aleksandra Adamska
- Metabolic
Signalling Group, School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Philip E. Thompson
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
26
|
Thapa N, Tan X, Choi S, Lambert PF, Rapraeger AC, Anderson RA. The Hidden Conundrum of Phosphoinositide Signaling in Cancer. Trends Cancer 2016; 2:378-390. [PMID: 27819060 DOI: 10.1016/j.trecan.2016.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phosphoinositide 3-kinase (PI3K) generation of PI(3,4,5)P3 from PI(4,5)P2 and the subsequent activation of Akt and its downstream signaling cascades (e.g. mTORC1) dominates the landscape of phosphoinositide signaling axis in cancer research. However, PI(4,5)P2 is breaking its boundary as merely a substrate for PI3K and phospholipase C (PLC), and is now an established lipid messenger pivotal for different cellular events in cancer. Here, we review the phosphoinositide signaling axis in cancer, giving due weight to PI(4,5)P2 and its generating enzymes, the phosphatidylinositol phosphate (PIP) kinases (PIPKs). We highlighted how PI(4,5)P2 and PIP kinases serve as a proximal node in phosphoinositide signaling axis and how its interaction with cytoskeletal proteins regulates migratory and invasive nexus of metastasizing tumor cells.
Collapse
Affiliation(s)
- Narendra Thapa
- University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Xiaojun Tan
- Program in Molecular and Cellular Pharmacology, 1300 University Avenue, Madison, WI 53706, USA
| | - Suyong Choi
- University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Paul F Lambert
- Department of Oncology, 1300 University Avenue, Madison, WI 53706, USA; McArdle Laboratory for Cancer Research, 1300 University Avenue, Madison, WI 53706, USA; University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Alan C Rapraeger
- Program in Molecular and Cellular Pharmacology, 1300 University Avenue, Madison, WI 53706, USA; Department of Human Oncology, 1300 University Avenue, Madison, WI 53706, USA; University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- Program in Molecular and Cellular Pharmacology, 1300 University Avenue, Madison, WI 53706, USA; University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| |
Collapse
|