1
|
Wang X, Tan Y, Gao L, Gao H. Study on ultrasound-enhanced molecular transport in articular cartilage. Drug Deliv Transl Res 2024; 14:3621-3639. [PMID: 39145819 DOI: 10.1007/s13346-024-01695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Local intra-articular administration with minimal side effects and rapid efficacy is a promising strategy for treating osteoarthritis(OA). Most drugs are rapidly cleared from the joint space by capillaries and lymphatic vessels before free diffusion into cartilage. Ultrasound, as a non-invasive therapy, enhances molecular transport within cartilage through the mechanisms of microbubble cavitation and thermal effects. This study investigated the mass transfer behavior of solute molecules with different molecular weights (479 Da, 40 kDa, 150 kDa) within porcine articular cartilage under low-frequency ultrasound conditions of 40 kHz and ultrasound intensities of 0.189 W/cm2 and 0.359 W/cm2. The results revealed that under the conditions of 0.189 W/cm2 ultrasound intensity, the mass transfer concentration of solute molecules were higher compared to passive diffusion, and with an increase in ultrasound intensity to 0.359 W/cm2, the mass transfer effect within the cartilage was further enhanced. Ultrasound promotes molecular transport in different layers of cartilage. Under static conditions, after 2 h of mass transfer, the concentration of small molecules in the superficial layer is lower than that in the middle layer. After applying ultrasound at 0.189 W/cm2, the molecular concentration in the superficial layer significantly increases. Under conditions of 0.359 W/cm2, after 12 h of mass transfer, the concentration of medium and large molecules in the deep layer region increased by more than two times. In addition, this study conducted an assessment of damage to porcine articular cartilage under ultrasound exposure, revealing the significant potential of low-frequency, low-intensity ultrasound in drug delivery and treatment of OA.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yansong Tan
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300382, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300382, China
| | - Lilan Gao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300382, China.
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300382, China.
| | - Hong Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
2
|
Qin B, Chen X, Zhu J, Kopechek J, Helfield B, Yu F, Cyriac J, Lavery L, Grandis JR, Villanueva FS. Ultrasound enhanced siRNA delivery using cationic liposome-microbubble complexes for the treatment of squamous cell carcinoma. Nanotheranostics 2024; 8:285-297. [PMID: 38577322 PMCID: PMC10988211 DOI: 10.7150/ntno.90516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024] Open
Abstract
Rationale: Microbubble (MB) contrast agents combined with ultrasound targeted microbubble cavitation (UTMC) are a promising platform for site-specific therapeutic oligonucleotide delivery. We investigated UTMC-mediated delivery of siRNA directed against epidermal growth factor receptor (EGFR), to squamous cell carcinoma (SCC) via a novel MB-liposome complex (LPX). Methods: LPXs were constructed by conjugation of cationic liposomes to the surface of C4F10 gas-filled lipid MBs using biotin/avidin chemistry, then loaded with siRNA via electrostatic interaction. Luciferase-expressing SCC-VII cells (SCC-VII-Luc) were cultured in Petri dishes. The Petri dishes were filled with media in which LPXs loaded with siRNA against firefly luciferase (Luc siRNA) were suspended. Ultrasound (US) (1 MHz, 100-µs pulse, 10% duty cycle) was delivered to the dishes for 10 sec at varying acoustic pressures and luciferase assay was performed 24 hr later. In vivo siRNA delivery was studied in SCC-VII tumor-bearing mice intravenously infused with a 0.5 mL saline suspension of EGFR siRNA LPX (7×108 LPX, ~30 µg siRNA) for 20 min during concurrent US (1 MHz, 0.5 MPa spatial peak temporal peak negative pressure, five 100-µs pulses every 1 ms; each pulse train repeated every 2 sec to allow reperfusion of LPX into the tumor). Mice were sacrificed 2 days post treatment and tumor EGFR expression was measured (Western blot). Other mice (n=23) received either EGFR siRNA-loaded LPX + UTMC or negative control (NC) siRNA-loaded LPX + UTMC on days 0 and 3, or no treatment ("sham"). Tumor volume was serially measured by high-resolution 3D US imaging. Results: Luc siRNA LPX + UTMC caused significant luciferase knockdown vs. no treatment control, p<0.05) in SCC-VII-Luc cells at acoustic pressures 0.25 MPa to 0.9 MPa, while no significant silencing effect was seen at lower pressure (0.125 MPa). In vivo, EGFR siRNA LPX + UTMC reduced tumor EGFR expression by ~30% and significantly inhibited tumor growth by day 9 (~40% decrease in tumor volume vs. NC siRNA LPX + UTMC, p<0.05). Conclusions: Luc siRNA LPXs + UTMC achieved functional delivery of Luc siRNA to SCC-VII-Luc cells in vitro. EGFR siRNA LPX + UTMC inhibited tumor growth and suppressed EGFR expression in vivo, suggesting that this platform holds promise for non-invasive, image-guided targeted delivery of therapeutic siRNA for cancer treatment.
Collapse
Affiliation(s)
- Bin Qin
- Center for Ultrasound for Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xucai Chen
- Center for Ultrasound for Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianhui Zhu
- Center for Ultrasound for Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Kopechek
- Center for Ultrasound for Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brandon Helfield
- Center for Ultrasound for Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francois Yu
- Center for Ultrasound for Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jissy Cyriac
- Center for Ultrasound for Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Linda Lavery
- Center for Ultrasound for Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer R. Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Flordeliza S. Villanueva
- Center for Ultrasound for Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Graceffa V. Intracellular protein delivery: New insights into the therapeutic applications and emerging technologies. Biochimie 2023; 213:82-99. [PMID: 37209808 DOI: 10.1016/j.biochi.2023.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
The inability to cross the plasma membranes traditionally limited the therapeutic use of recombinant proteins. However, in the last two decades, novel technologies made delivering proteins inside the cells possible. This allowed researchers to unlock intracellular targets, once considered 'undruggable', bringing a new research area to emerge. Protein transfection systems display a large potential in a plethora of applications. However, their modality of action is often unclear, and cytotoxic effects are elevated, whereas experimental conditions to increase transfection efficacy and cell viability still need to be identified. Furthermore, technical complexity often limits in vivo experimentation, while challenging industrial and clinical translation. This review highlights the applications of protein transfection technologies, and then critically discuss the current methodologies and their limitations. Physical membrane perforation systems are compared to systems exploiting cellular endocytosis. Research evidence of the existence of either extracellular vesicles (EVs) or cell-penetrating peptides (CPPs)- based systems, that circumvent the endosomal systems is critically analysed. Commercial systems, novel solid-phase reverse protein transfection systems, and engineered living intracellular bacteria-based mechanisms are finally described. This review ultimately aims at finding new methodologies and possible applications of protein transfection systems, while helping the development of an evidence-based research approach.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University (ATU), Sligo, Ireland.
| |
Collapse
|
4
|
Kida H, Yamasaki Y, Feril Jr. LB, Endo H, Itaka K, Tachibana K. Efficient mRNA Delivery with Lyophilized Human Serum Albumin-Based Nanobubbles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1283. [PMID: 37049376 PMCID: PMC10097217 DOI: 10.3390/nano13071283] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
In this study, we developed an efficient mRNA delivery vehicle by optimizing a lyophilization method for preserving human serum albumin-based nanobubbles (HSA-NBs), bypassing the need for artificial stabilizers. The morphology of the lyophilized material was verified using scanning electron microscopy, and the concentration, size, and mass of regenerated HSA-NBs were verified using flow cytometry, nanoparticle tracking analysis, and resonance mass measurements, and compared to those before lyophilization. The study also evaluated the response of HSA-NBs to 1 MHz ultrasound irradiation and their ultrasound (US) contrast effect. The functionality of the regenerated HSA-NBs was confirmed by an increased expression of intracellularly transferred Gluc mRNA, with increasing intensity of US irradiation. The results indicated that HSA-NBs retained their structural and functional integrity markedly, post-lyophilization. These findings support the potential of lyophilized HSA-NBs, as efficient imaging, and drug delivery systems for various medical applications.
Collapse
Affiliation(s)
- Hiroshi Kida
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yutaro Yamasaki
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Loreto B. Feril Jr.
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Hitomi Endo
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Tokyo 101-0062, Japan
| | - Katsuro Tachibana
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
5
|
Chapla R, Huynh KT, Schutt CE. Microbubble–Nanoparticle Complexes for Ultrasound-Enhanced Cargo Delivery. Pharmaceutics 2022; 14:pharmaceutics14112396. [PMID: 36365214 PMCID: PMC9698658 DOI: 10.3390/pharmaceutics14112396] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
Targeted delivery of therapeutics to specific tissues is critically important for reducing systemic toxicity and optimizing therapeutic efficacy, especially in the case of cytotoxic drugs. Many strategies currently exist for targeting systemically administered drugs, and ultrasound-controlled targeting is a rapidly advancing strategy for externally-stimulated drug delivery. In this non-invasive method, ultrasound waves penetrate through tissue and stimulate gas-filled microbubbles, resulting in bubble rupture and biophysical effects that power delivery of attached cargo to surrounding cells. Drug delivery capabilities from ultrasound-sensitive microbubbles are greatly expanded when nanocarrier particles are attached to the bubble surface, and cargo loading is determined by the physicochemical properties of the nanoparticles. This review serves to highlight and discuss current microbubble–nanoparticle complex component materials and designs for ultrasound-mediated drug delivery. Nanocarriers that have been complexed with microbubbles for drug delivery include lipid-based, polymeric, lipid–polymer hybrid, protein, and inorganic nanoparticles. Several schemes exist for linking nanoparticles to microbubbles for efficient nanoparticle delivery, including biotin–avidin bridging, electrostatic bonding, and covalent linkages. When compared to unstimulated delivery, ultrasound-mediated cargo delivery enables enhanced cell uptake and accumulation of cargo in target organs and can result in improved therapeutic outcomes. These ultrasound-responsive delivery complexes can also be designed to facilitate other methods of targeting, including bioactive targeting ligands and responsivity to light or magnetic fields, and multi-level targeting can enhance therapeutic efficacy. Microbubble–nanoparticle complexes present a versatile platform for controlled drug delivery via ultrasound, allowing for enhanced tissue penetration and minimally invasive therapy. Future perspectives for application of this platform are also discussed in this review.
Collapse
Affiliation(s)
- Rachel Chapla
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
| | - Katherine T. Huynh
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Carolyn E. Schutt
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
6
|
Khan AH, Jiang X, Kaushik A, Nair HS, Edirisinghe M, Mercado-Shekhar KP, Shekhar H, Dalvi SV. Combining Ultrasound and Capillary-Embedded T-Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10288-10304. [PMID: 35943351 DOI: 10.1021/acs.langmuir.2c01676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microbubbles are tiny gas-filled bubbles that have a variety of applications in ultrasound imaging and therapeutic drug delivery. Microbubbles can be synthesized using a number of techniques including sonication, amalgamation, and saline shaking. These approaches can produce highly concentrated microbubble suspensions but offer minimal control over the size and polydispersity of the microbubbles. One of the simplest and effective methods for producing monodisperse microbubbles is capillary-embedded T-junction microfluidic devices, which offer great control over the microbubble size. However, lower production rates (∼200 bubbles/s) and large microbubble sizes (∼300 μm) limit the applicability of such devices for biomedical applications. To overcome the limitations of these technologies, we demonstrate in this work an alternative approach to combine a capillary-embedded T-junction device with ultrasound to enhance the generation of narrow-sized microbubbles in aqueous suspensions. Two T-junction microfluidic devices were connected in parallel and combined with an ultrasonic horn to produce lipid-coated SF6 core microbubbles in the size range of 1-8 μm. The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 106 bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 109/mL to ∼2.3 × 106/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. The acoustic response of these microbubbles was examined using broadband attenuation spectroscopy, and flow phantom imaging was performed to determine the ability of these microbubble suspensions to enhance the contrast relative to the surrounding tissue. Overall, this approach of coupling ultrasound with microfluidic parallelization enabled the continuous production of stable microbubbles at high production rates and low polydispersity using simple T-junction devices.
Collapse
Affiliation(s)
- Aaqib H Khan
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Xinyue Jiang
- Department of Mechanical Engineering, University College London (UCL), London WC1E 7JE, U.K
| | - Anuj Kaushik
- Electrical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Hari S Nair
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London (UCL), London WC1E 7JE, U.K
| | - Karla P Mercado-Shekhar
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Himanshu Shekhar
- Electrical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Sameer V Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
7
|
Kida H, Feril LB, Irie Y, Endo H, Itaka K, Tachibana K. Influence of Nanobubble Size Distribution on Ultrasound-Mediated Plasmid DNA and Messenger RNA Gene Delivery. Front Pharmacol 2022; 13:855495. [PMID: 35721213 PMCID: PMC9198282 DOI: 10.3389/fphar.2022.855495] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/17/2022] [Indexed: 12/13/2022] Open
Abstract
The use of nanobubbles (NBs) for ultrasound-mediated gene therapy has recently attracted much attention. However, few studies have evaluated the effect of different NB size distribution to the efficiency of gene delivery into cells. In this study, various size of albumin stabilized sub-micron bubbles were examined in an in vitro ultrasound (1 MHz) irradiation setup in the aim to compare and optimize gene transfer efficiency. Results with pDNA showed that gene transfer efficiency in the presence of NB size of 254.7 ± 3.8 nm was 2.5 fold greater than those with 187.3 ± 4.8 nm. Similarly, carrier-free mRNA transfer efficiency increased in the same conditions. It is suggested that NB size greater than 200 nm contributed more to the delivery of genes into the cytoplasm with ultrasound. Although further experiments are needed to understand the underlying mechanism for this phenomenon, the present results offer valuable information in optimizing of NB for future ultrasound-mediate gene therapy.
Collapse
Affiliation(s)
- Hiroshi Kida
- Department of Anatomy, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Loreto B Feril
- Department of Anatomy, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yutaka Irie
- Department of Anatomy, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Hitomi Endo
- Department of Anatomy, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Katsuro Tachibana
- Department of Anatomy, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
8
|
Delaney LJ, Isguven S, Eisenbrey JR, Hickok NJ, Forsberg F. Making waves: how ultrasound-targeted drug delivery is changing pharmaceutical approaches. MATERIALS ADVANCES 2022; 3:3023-3040. [PMID: 35445198 PMCID: PMC8978185 DOI: 10.1039/d1ma01197a] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/23/2022] [Indexed: 05/06/2023]
Abstract
Administration of drugs through oral and intravenous routes is a mainstay of modern medicine, but this approach suffers from limitations associated with off-target side effects and narrow therapeutic windows. It is often apparent that a controlled delivery of drugs, either localized to a specific site or during a specific time, can increase efficacy and bypass problems with systemic toxicity and insufficient local availability. To overcome some of these issues, local delivery systems have been devised, but most are still restricted in terms of elution kinetics, duration, and temporal control. Ultrasound-targeted drug delivery offers a powerful approach to increase delivery, therapeutic efficacy, and temporal release of drugs ranging from chemotherapeutics to antibiotics. The use of ultrasound can focus on increasing tissue sensitivity to the drug or actually be a critical component of the drug delivery. The high spatial and temporal resolution of ultrasound enables precise location, targeting, and timing of drug delivery and tissue sensitization. Thus, this noninvasive, non-ionizing, and relatively inexpensive modality makes the implementation of ultrasound-mediated drug delivery a powerful method that can be readily translated into the clinical arena. This review covers key concepts and areas applied in the design of different ultrasound-mediated drug delivery systems across a variety of clinical applications.
Collapse
Affiliation(s)
- Lauren J Delaney
- Department of Radiology, Thomas Jefferson University 132 S. 10th Street, Main 763 Philadelphia PA 19107 USA +1 (215) 955-4870
| | - Selin Isguven
- Department of Radiology, Thomas Jefferson University 132 S. 10th Street, Main 763 Philadelphia PA 19107 USA +1 (215) 955-4870
- Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street Philadelphia PA 19107 USA
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University 132 S. 10th Street, Main 763 Philadelphia PA 19107 USA +1 (215) 955-4870
| | - Noreen J Hickok
- Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street Philadelphia PA 19107 USA
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University 132 S. 10th Street, Main 763 Philadelphia PA 19107 USA +1 (215) 955-4870
| |
Collapse
|
9
|
Evaluation of Liposome-Loaded Microbubbles as a Theranostic Tool in a Murine Collagen-Induced Arthritis Model. Sci Pharm 2022. [DOI: 10.3390/scipharm90010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by severe inflammation of the synovial tissue. Here, we assess the feasibility of liposome-loaded microbubbles as theranostic agents in a murine arthritis model. First, contrast-enhanced ultrasound (CEUS) was used to quantify neovascularization in this model since CEUS is well-established for RA diagnosis in humans. Next, the potential of liposome-loaded microbubbles and ultrasound (US) to selectively enhance liposome delivery to the synovium was evaluated with in vivo fluorescence imaging. This procedure is made very challenging by the presence of hard joints and by the limited lifetime of the microbubbles. The inflamed knee joints were exposed to therapeutic US after intravenous injection of liposome-loaded microbubbles. Loaded microbubbles were found to be quickly captured by the liver. This resulted in fast clearance of attached liposomes while free and long-circulating liposomes were able to accumulate over time in the inflamed joints. Our observations show that murine arthritis models are not well-suited for evaluating the potential of microbubble-mediated drug delivery in joints given: (i) restricted microbubble passage in murine synovial vasculature and (ii) limited control over the exact ultrasound conditions in situ given the much shorter length scale of the murine joints as compared to the therapeutic wavelength.
Collapse
|
10
|
Qi S, Wang X, Chang K, Shen W, Yu G, Du J. The bright future of nanotechnology in lymphatic system imaging and imaging-guided surgery. J Nanobiotechnology 2022; 20:24. [PMID: 34991595 PMCID: PMC8740484 DOI: 10.1186/s12951-021-01232-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
Lymphatic system is identified the second vascular system after the blood circulation in mammalian species, however the research on lymphatic system has long been hampered by the lack of comprehensive imaging modality. Nanomaterials have shown the potential to enhance the quality of lymphatic imaging due to the unparalleled advantages such as the specific passive targeting and efficient co-delivery of cocktail to peripheral lymphatic system, ease molecular engineering for precise active targeting and prolonged retention in the lymphatic system of interest. Multimodal lymphatic imaging based on nanotechnology provides a complementary means to understand the kinetics of lymphoid tissues and quantify its function. In this review, we introduce the established approaches of lymphatic imaging used in clinic and summarize their strengths and weaknesses, and list the critical influence factors on lymphatic imaging. Meanwhile, the recent developments in the field of pre-clinical lymphatic imaging are discussed to shed new lights on the design of new imaging agents, the improvement of delivery methods and imaging-guided surgery strategies.
Collapse
Affiliation(s)
- Shaolong Qi
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, People's Republic of China.,Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xinyu Wang
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, People's Republic of China
| | - Kun Chang
- Department of Lymphology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Wenbin Shen
- Department of Lymphology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Jianshi Du
- Key Laboratory & Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, 130031, People's Republic of China.
| |
Collapse
|
11
|
Kurochkin MA, German SV, Abalymov A, Vorontsov DА, Gorin DA, Novoselova MV. Sentinel lymph node detection by combining nonradioactive techniques with contrast agents: State of the art and prospects. JOURNAL OF BIOPHOTONICS 2022; 15:e202100149. [PMID: 34514735 DOI: 10.1002/jbio.202100149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The status of sentinel lymph nodes (SLNs) has a substantial prognostic value because these nodes are the first place where cancer cells accumulate along their spreading route. Routine SLN biopsy ("gold standard") involves peritumoral injections of radiopharmaceuticals, such as technetium-99m, which has obvious disadvantages. This review examines the methods used as "gold standard" analogs to diagnose SLNs. Nonradioactive preoperative and intraoperative methods of SLN detection are analyzed. Promising photonic tools for SLNs detection are reviewed, including NIR-I/NIR-II fluorescence imaging, photoswitching dyes for SLN detection, in vivo photoacoustic detection, imaging and biopsy of SLNs. Also are discussed methods of SLN detection by magnetic resonance imaging, ultrasonic imaging systems including as combined with photoacoustic imaging, and methods based on the magnetometer-aided detection of superparamagnetic nanoparticles. The advantages and disadvantages of nonradioactive SLN-detection methods are shown. The review concludes with prospects for the use of conservative diagnostic methods in combination with photonic tools.
Collapse
Affiliation(s)
| | - Sergey V German
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Spectroscopy of the Russian Academy of Sciences, Moscow, Russia
| | | | - Dmitry А Vorontsov
- State Budgetary Institution of Health Care of Nizhny Novgorod "Nizhny Novgorod Regional Clinical Oncological Dispensary", Nizhny Novgorod, Russia
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | | |
Collapse
|
12
|
Endo-Takahashi Y, Negishi Y. Gene and oligonucleotide delivery via micro- and nanobubbles by ultrasound exposure. Drug Metab Pharmacokinet 2022; 44:100445. [DOI: 10.1016/j.dmpk.2022.100445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/15/2022]
|
13
|
Peng C, Chen M, Spicer JB, Jiang X. Acoustics at the nanoscale (nanoacoustics): A comprehensive literature review.: Part II: Nanoacoustics for biomedical imaging and therapy. SENSORS AND ACTUATORS. A, PHYSICAL 2021; 332:112925. [PMID: 34937992 PMCID: PMC8691754 DOI: 10.1016/j.sna.2021.112925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the past decade, acoustics at the nanoscale (i.e., nanoacoustics) has evolved rapidly with continuous and substantial expansion of capabilities and refinement of techniques. Motivated by research innovations in the last decade, for the first time, recent advancements of acoustics-associated nanomaterials/nanostructures and nanodevices for different applications are outlined in this comprehensive review, which is written in two parts. As part II of this two-part review, this paper concentrates on nanoacoustics in biomedical imaging and therapy applications, including molecular ultrasound imaging, photoacoustic imaging, ultrasound-mediated drug delivery and therapy, and photoacoustic drug delivery and therapy. Firstly, the recent developments of nanosized ultrasound and photoacoustic contrast agents as well as their various imaging applications are examined. Secondly, different types of nanomaterials/nanostructures as nanocarriers for ultrasound and photoacoustic therapies are discussed. Finally, a discussion of challenges and future research directions are provided for nanoacoustics in medical imaging and therapy.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - James B. Spicer
- Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
14
|
Walsh AP, Gordon HN, Peter K, Wang X. Ultrasonic particles: An approach for targeted gene delivery. Adv Drug Deliv Rev 2021; 179:113998. [PMID: 34662671 PMCID: PMC8518240 DOI: 10.1016/j.addr.2021.113998] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Gene therapy has been widely investigated for the treatment of genetic, acquired, and infectious diseases. Pioneering work utilized viral vectors; however, these are suspected of causing serious adverse events, resulting in the termination of several clinical trials. Non-viral vectors, such as lipid nanoparticles, have attracted significant interest, mainly due to their successful use in vaccines in the current COVID-19 pandemic. Although they allow safe delivery, they come with the disadvantage of off-target delivery. The application of ultrasound to ultrasound-sensitive particles allows for a direct, site-specific transfer of genetic materials into the organ/site of interest. This process, termed ultrasound-targeted gene delivery (UTGD), also increases cell membrane permeability and enhances gene uptake. This review focuses on the advances in ultrasound and the development of ultrasonic particles for UTGD across a range of diseases. Furthermore, we discuss the limitations and future perspectives of UTGD.
Collapse
Affiliation(s)
- Aidan P.G. Walsh
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Henry N. Gordon
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Department of Biochemistry and Pharmacology, University of Melbourne, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Department of Medicine, Monash University, Melbourne, VIC, Australia,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Department of Medicine, Monash University, Melbourne, VIC, Australia,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Corresponding author at: Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| |
Collapse
|
15
|
Song HW, Lee HS, Kim SJ, Kim HY, Choi YH, Kang B, Kim CS, Park JO, Choi E. Sonazoid-Conjugated Natural Killer Cells for Tumor Therapy and Real-Time Visualization by Ultrasound Imaging. Pharmaceutics 2021; 13:pharmaceutics13101689. [PMID: 34683982 PMCID: PMC8537855 DOI: 10.3390/pharmaceutics13101689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Various cell therapy strategies, including chimeric antigen receptor-expressing T or natural killer (NK) cells and cell-mediated drug delivery, have been developed for tumor eradication. However, the efficiency of these strategies against solid tumors remains unclear. We hypothesized that real-time control and visualization of therapeutic cells, such as NK cells, would improve their therapeutic efficacy against solid tumors. In this study, we engineered Sonazoid microbubble-conjugated NK (NK_Sona) cells and demonstrated that they were detectable by ultrasound imaging in real-time and maintained their functions. The Sonazoid microbubbles on the cell membrane did not affect the cytotoxicity and viability of the NK cells in vitro. Additionally, the NK_Sona cells could be visualized by ultrasound imaging and inhibited tumor growth in vivo. Taken together, our findings demonstrate the feasibility of this new approach in the use of therapeutic cells, such as NK cells, against solid tumors.
Collapse
Affiliation(s)
- Hyeong-Woo Song
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
| | - Han-Sol Lee
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
| | - Seok-Jae Kim
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
| | - Ho Yong Kim
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
| | - You Hee Choi
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
| | - Byungjeon Kang
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- College of AI Convergence, Chonnam National University, Gwangju 61186, Korea
| | - Chang-Sei Kim
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
- Correspondence: (J.-O.P.); (E.C.)
| | - Eunpyo Choi
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
- Correspondence: (J.-O.P.); (E.C.)
| |
Collapse
|
16
|
Deprez J, Lajoinie G, Engelen Y, De Smedt SC, Lentacker I. Opening doors with ultrasound and microbubbles: Beating biological barriers to promote drug delivery. Adv Drug Deliv Rev 2021; 172:9-36. [PMID: 33705877 DOI: 10.1016/j.addr.2021.02.015] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Apart from its clinical use in imaging, ultrasound has been thoroughly investigated as a tool to enhance drug delivery in a wide variety of applications. Therapeutic ultrasound, as such or combined with cavitating nuclei or microbubbles, has been explored to cross or permeabilize different biological barriers. This ability to access otherwise impermeable tissues in the body makes the combination of ultrasound and therapeutics very appealing to enhance drug delivery in situ. This review gives an overview of the most important biological barriers that can be tackled using ultrasound and aims to provide insight on how ultrasound has shown to improve accessibility as well as the biggest hurdles. In addition, we discuss the clinical applicability of therapeutic ultrasound with respect to the main challenges that must be addressed to enable the further progression of therapeutic ultrasound towards an effective, safe and easy-to-use treatment tailored for drug delivery in patients.
Collapse
Affiliation(s)
- J Deprez
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - G Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Y Engelen
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - S C De Smedt
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - I Lentacker
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
17
|
van Elburg B, Collado-Lara G, Bruggert GW, Segers T, Versluis M, Lajoinie G. Feedback-controlled microbubble generator producing one million monodisperse bubbles per second. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:035110. [PMID: 33820052 DOI: 10.1063/5.0032140] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Monodisperse lipid-coated microbubbles are a promising route to unlock the full potential of ultrasound contrast agents for medical diagnosis and therapy. Here, we present a stand-alone lab-on-a-chip instrument that allows microbubbles to be formed with high monodispersity at high production rates. Key to maintaining a long-term stable, controlled, and safe operation of the microfluidic device with full control over the output size distribution is an optical transmission-based measurement technique that provides real-time information on the production rate and bubble size. We feed the data into a feedback loop and demonstrate that this system can control the on-chip bubble radius (2.5 μm-20 μm) and the production rate up to 106 bubbles/s. The freshly formed phospholipid-coated bubbles stabilize after their formation to a size approximately two times smaller than their initial on-chip bubble size without loss of monodispersity. The feedback control technique allows for full control over the size distribution of the agent and can aid the development of microfluidic platforms operated by non-specialist end users.
Collapse
Affiliation(s)
- Benjamin van Elburg
- Physics of Fluids Group, Technical Medical (TechMed) Center and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Gonzalo Collado-Lara
- Physics of Fluids Group, Technical Medical (TechMed) Center and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Gert-Wim Bruggert
- Physics of Fluids Group, Technical Medical (TechMed) Center and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Tim Segers
- Physics of Fluids Group, Technical Medical (TechMed) Center and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, Technical Medical (TechMed) Center and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Guillaume Lajoinie
- Physics of Fluids Group, Technical Medical (TechMed) Center and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
18
|
Kumar SU, Telichko AV, Wang H, Hyun D, Johnson EG, Kent MS, Rebhun RB, Dahl JJ, Culp WTN, Paulmurugan R. Acoustically Driven Microbubbles Enable Targeted Delivery of microRNA-Loaded Nanoparticles to Spontaneous Hepatocellular Neoplasia in Canines. ADVANCED THERAPEUTICS 2020; 3:2000120. [PMID: 33415184 PMCID: PMC7784952 DOI: 10.1002/adtp.202000120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 01/16/2023]
Abstract
Spatially localized microbubble cavitation by ultrasound offers an effective means of altering permeability of natural barriers (i.e. blood vessel and cell membrane) in favor of nanomaterials accumulation in the target site. In this study, a clinically relevant, minimally invasive ultrasound guided therapeutic approach is investigated for targeted delivery of anticancer microRNA loaded PLGA-b-PEG nanoparticles to spontaneous hepatocellular neoplasia in a canine model. Quantitative assessment of the delivered microRNAs revealed prominent and consistent increase in miRNAs levels (1.5-to 2.3-fold increase (p<0.001)) in ultrasound treated tumor regions compared to untreated control regions. Immunohistology of ultrasound treated tumor tissue presented a clear evidence for higher amount of nanoparticles extravasation from the blood vessels. A distinct pattern of cytokine expression supporting CD8+ T cells mediated "cold-to-hot" tumor transition was evident in all patients. On the outset, proposed platform can enhance delivery of miRNA-loaded nanoparticles to deep seated tumors in large animals to enhance chemotherapy.
Collapse
Affiliation(s)
- Sukumar Uday Kumar
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| | - Arsenii V Telichko
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| | - Huaijun Wang
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| | - Dongwoon Hyun
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| | - Eric G Johnson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Robert B Rebhun
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Jeremy J Dahl
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| | - William T N Culp
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| |
Collapse
|
19
|
Helbert A, Gaud E, Segers T, Botteron C, Frinking P, Jeannot V. Monodisperse versus Polydisperse Ultrasound Contrast Agents: In Vivo Sensitivity and safety in Rat and Pig. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3339-3352. [PMID: 33008649 DOI: 10.1016/j.ultrasmedbio.2020.07.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 05/21/2023]
Abstract
Recent advances in the field of monodisperse microbubble synthesis by flow focusing allow for the production of foam-free, highly concentrated and monodisperse lipid-coated microbubble suspensions. It has been found that in vitro, such monodisperse ultrasound contrast agents (UCAs) improve the sensitivity of contrast-enhanced ultrasound imaging. Here, we present the first in vivo study in the left ventricle of rat and pig with this new monodisperse bubble agent. We systematically characterize the acoustic sensitivity and safety of the agent at an imaging frequency of 2.5 MHz as compared with three commercial polydisperse UCAs (SonoVue/Lumason, Definity/Luminity and Optison) and one research-grade polydisperse agent with the same shell composition as the monodisperse bubbles. The monodisperse microbubbles, which had a diameter of 4.2 μm, crossed the pulmonary vasculature, and their echo signal could be measured at least as long as that of the polydisperse UCAs, indicating that microfluidically formed monodisperse microbubbles are stable in vivo. Furthermore, it was found that the sensitivity of the monodisperse agent, expressed as the mean echo power per injected bubble, was at least 10 times higher than that of the polydisperse UCAs. Finally, the safety profile of the monodisperse microbubble suspension was evaluated by injecting 400 and 2000 times the imaging dose, and neither physiologic nor pathologic changes were found, which is a first indication that monodisperse lipid-coated microbubbles formed by flow focusing are safe for in vivo use. The more uniform acoustic response and corresponding increased imaging sensitivity of the monodisperse agent may boost emerging applications of microbubbles and ultrasound such as molecular imaging and therapy.
Collapse
Affiliation(s)
- Alexandre Helbert
- Bracco Suisse S.A., Route de la Galaise 31, 1228 Plan-les-Ouates, Switzerland
| | - Emmanuel Gaud
- Bracco Suisse S.A., Route de la Galaise 31, 1228 Plan-les-Ouates, Switzerland
| | - Tim Segers
- Physics of Fluids Group, MESA + Institute for Nanotechnology, Technical Medical (TechMed) Center, University of Twente, Enschede, The Netherlands; Former employee of Bracco Suisse S.A
| | | | | | - Victor Jeannot
- Bracco Suisse S.A., Route de la Galaise 31, 1228 Plan-les-Ouates, Switzerland.
| |
Collapse
|
20
|
Microbubbles and Nanobubbles with Ultrasound for Systemic Gene Delivery. Pharmaceutics 2020; 12:pharmaceutics12100964. [PMID: 33066531 PMCID: PMC7602142 DOI: 10.3390/pharmaceutics12100964] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
The regulation of gene expression is a promising therapeutic approach for many intractable diseases. However, its use in clinical applications requires the efficient delivery of nucleic acids to target tissues, which is a major challenge. Recently, various delivery systems employing physical energy, such as ultrasound, magnetic force, electric force, and light, have been developed. Ultrasound-mediated delivery has particularly attracted interest due to its safety and low costs. Its delivery effects are also enhanced when combined with microbubbles or nanobubbles that entrap an ultrasound contrast gas. Furthermore, ultrasound-mediated nucleic acid delivery could be performed only in ultrasound exposed areas. In this review, we summarize the ultrasound-mediated nucleic acid systemic delivery system, using microbubbles or nanobubbles, and discuss its possibilities as a therapeutic tool.
Collapse
|
21
|
Kooiman K, Roovers S, Langeveld SAG, Kleven RT, Dewitte H, O'Reilly MA, Escoffre JM, Bouakaz A, Verweij MD, Hynynen K, Lentacker I, Stride E, Holland CK. Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1296-1325. [PMID: 32165014 PMCID: PMC7189181 DOI: 10.1016/j.ultrasmedbio.2020.01.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 05/03/2023]
Abstract
Therapeutic ultrasound strategies that harness the mechanical activity of cavitation nuclei for beneficial tissue bio-effects are actively under development. The mechanical oscillations of circulating microbubbles, the most widely investigated cavitation nuclei, which may also encapsulate or shield a therapeutic agent in the bloodstream, trigger and promote localized uptake. Oscillating microbubbles can create stresses either on nearby tissue or in surrounding fluid to enhance drug penetration and efficacy in the brain, spinal cord, vasculature, immune system, biofilm or tumors. This review summarizes recent investigations that have elucidated interactions of ultrasound and cavitation nuclei with cells, the treatment of tumors, immunotherapy, the blood-brain and blood-spinal cord barriers, sonothrombolysis, cardiovascular drug delivery and sonobactericide. In particular, an overview of salient ultrasound features, drug delivery vehicles, therapeutic transport routes and pre-clinical and clinical studies is provided. Successful implementation of ultrasound and cavitation nuclei-mediated drug delivery has the potential to change the way drugs are administered systemically, resulting in more effective therapeutics and less-invasive treatments.
Collapse
Affiliation(s)
- Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Silke Roovers
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Simone A G Langeveld
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert T Kleven
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Heleen Dewitte
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Laboratory for Molecular and Cellular Therapy, Medical School of the Vrije Universiteit Brussel, Jette, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Martin D Verweij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Christy K Holland
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
22
|
UTMD inhibit EMT of breast cancer through the ROS/miR-200c/ZEB1 axis. Sci Rep 2020; 10:6657. [PMID: 32313093 PMCID: PMC7170845 DOI: 10.1038/s41598-020-63653-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/30/2020] [Indexed: 02/08/2023] Open
Abstract
As a potential drug/gene delivery system, the ultrasound-targeted microbubble destruction (UTMD) system can be used as a vehicle as well as increasing the permeability of biological barriers to enhance the effect of tumor treatment. However, the effect of UTMD in the tumor EMT process is unknown. In this study, we aimed to investigate the potential and mechanism of UTMD induced oxidative stress in inhibiting EMT of breast cancer. Human breast MDA231 cells were treated with microbubble (MB), ultrasound (US) and UTMD, respectively. The generation of oxidative stress, the levels of miR-200c, ZEB1 and vimentin, and the numbers of migratory cells were evaluated quantitatively and qualitatively by the measurement of intracellular reactive oxygen species (ROS), qRT-PCR, western blot assay, and transwell assay. Then, to evaluate the role of UTMD-induced oxidative stress and miR-200c in the epithelial-mesenchymal transition (EMT) inhibition, the ROS scavenger N-acetyl-L-cysteine (NAC) and miR-200c inhibitor were used before UTMD treatment. We found that UTMD induced oxidative stress, upregulated the expression of miR-200c, downregulated the expression of ZEB1 and vimentin and suppressed the MDA231 cell migration. The addition of NAC and miR-200c inhibitor had an opposite impact on the expression of miR-200c and ZEB1, thus hindered the effects of UTMD on MDA231 cells EMT. In conclusion, UTMD can inhibit the EMT characteristics of MDA231 cells. The mechanism may be related to the regulation of the miR-200c/ZEB1 axis through the generation of ROS induced by UTMD, which may provide a new strategy to prevent the tumor cells EMT under UTMD treatment.
Collapse
|
23
|
Frinking P, Segers T, Luan Y, Tranquart F. Three Decades of Ultrasound Contrast Agents: A Review of the Past, Present and Future Improvements. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:892-908. [PMID: 31941587 DOI: 10.1016/j.ultrasmedbio.2019.12.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Initial reports from the 1960s describing the observations of ultrasound contrast enhancement by tiny gaseous bubbles during echocardiographic examinations prompted the development of the first ultrasound contrast agent in the 1980s. Current commercial contrast agents for echography, such as Definity, Optison, Sonazoid and SonoVue, have proven to be successful in a variety of on- and off-label clinical indications. Whereas contrast-specific technology has seen dramatic progress after the introduction of the first approved agents in the 1990s, successful clinical translation of new developments has been limited during the same period, while understanding of microbubble physical, chemical and biologic behavior has improved substantially. It is expected that for a successful development of future opportunities, such as ultrasound molecular imaging and therapeutic applications using microbubbles, new creative developments in microbubble engineering and production dedicated to further optimizing microbubble performance are required, and that they cannot rely on bubble technology developed more than 3 decades ago.
Collapse
Affiliation(s)
- Peter Frinking
- Tide Microfluidics, Capitool 41, Enschede, The Netherlands.
| | - Tim Segers
- Physics of Fluids group, University of Twente, Enschede, The Netherlands
| | - Ying Luan
- R&D Pharmaceutical Diagnostics, General Electric Healthcare, Amersham, UK
| | - François Tranquart
- R&D Pharmaceutical Diagnostics, General Electric Healthcare, Amersham, UK
| |
Collapse
|
24
|
Khan AH, Dalvi SV. Kinetics of albumin microbubble dissolution in aqueous media. SOFT MATTER 2020; 16:2149-2163. [PMID: 32016261 DOI: 10.1039/c9sm01516g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effectiveness of microbubbles as ultrasound contrast agents and targeted drug delivery vehicles depends on their persistence in blood. It is therefore necessary to understand the dissolution behavior of microbubbles in an aqueous medium. While there are several reports available in the literature on the dissolution of lipid microbubbles, there are no reports available on the dissolution kinetics of protein microbubbles. Moreover, shell parameters such as interfacial tension, shell resistance and shell elasticity/stiffness which characterize microbubble shells, have been reported for lipid shells but no such data are available for protein shells. Accordingly, this work was focused on capturing the dissolution behavior of protein microbubbles and estimation of shell parameters such as surface tension, shell resistance and shell elasticity. Bovine serum albumin (BSA) was used as a model protein and microbubbles were synthesized using sonication. During dissolution, a large portion of the protein shell was found to disengage from the gas-liquid interface after a stagnant dissolution phase, leading to a sudden disappearance of the microbubbles due to complete dissolution. In order to estimate shell parameters, microbubble dissolution kinetic data (radius vs. time) was fit numerically to a mass transfer model describing a microbubble dissolution process. Analysis of the results shows that the interfacial tension increases drastically and the shell resistance reduces significantly, as protein molecules leave the gas-liquid interface. Furthermore, the effect of processing conditions such as preheating temperature, microbubble size, and core gas and shell composition on the protein shell parameters was also evaluated.
Collapse
Affiliation(s)
- Aaqib H Khan
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India.
| | - Sameer V Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
25
|
Mai B, Wang X, Liu Q, Zhang K, Wang P. The Application of DVDMS as a Sensitizing Agent for Sono-/Photo-Therapy. Front Pharmacol 2020; 11:19. [PMID: 32116698 PMCID: PMC7020569 DOI: 10.3389/fphar.2020.00019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 01/08/2020] [Indexed: 01/01/2023] Open
Abstract
Both photodynamic therapy (PDT) and sonodynamic therapy (SDT) are fast growing activated therapies by using light or ultrasound to initiate catalytic reaction of sensitizing agents, showing great potentials in clinics because of high safety and noninvasiveness. Sensitizers are critical components in PDT and SDT. Sinoporphyrin sodium (DVDMS) is an effective constituent derived from Photofrin that has been approved by FDA. This review is based on previous articles that explore the applications of DVDMS mediated photodynamic/sonodynamic cancer therapy and antimicrobial chemotherapy. Researchers utilize different cell lines, distinct treatment protocols to explore the enhanced therapeutic response of neoplastic lesion. Moreover, by designing a series of nanoparticles for loading DVDMS to improve the cellular uptake and antitumor efficacy of PDT/SDT, which integrates diagnostics into therapeutics for precision medical applications. During the sono-/photo-activated process, the balance between oxidation and antioxidation, numerous signal transduction and cell death pathways are also involved. In addition, DVDMS mediated photodynamic antimicrobial chemotherapy (PACT) can effectively suppress bacteria and multidrug resistant bacteria proliferation, promote the healing of wounds in burn infection. In brief, these efficient preclinical studies indicate a good promise for DVDMS application in the activated sono-/photo-therapy.
Collapse
Affiliation(s)
- Bingjie Mai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Quanhong Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
26
|
Qu Z, Shen J, Li Q, Xu F, Wang F, Zhang X, Fan C. Near-IR emissive rare-earth nanoparticles for guided surgery. Theranostics 2020; 10:2631-2644. [PMID: 32194825 PMCID: PMC7052904 DOI: 10.7150/thno.40808] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Intraoperative image-guided surgery (IGS) has attracted extensive research interests in determination of tumor margins from surrounding normal tissues. Introduction of near infrared (NIR) fluorophores into IGS could significantly improve the in vivo imaging quality thus benefit IGS. Among the reported NIR fluorophores, rare-earth nanoparticles exhibit unparalleled advantages in disease theranostics by taking advantages such as large Stokes shift, sharp emission spectra, and high chemical/photochemical stability. The recent advances in elements doping and morphologies controlling endow the rare-earth nanoparticles with intriguing optical properties, including emission span to NIR-II region and long life-time photoluminescence. Particularly, NIR emissive rare earth nanoparticles hold advantages in reduction of light scattering, photon absorption and autofluorescence, largely improve the performance of nanoparticles in biological and pre-clinical applications. In this review, we systematically compared the benefits of RE nanoparticles with other NIR probes, and summarized the recent advances of NIR emissive RE nanoparticles in bioimaging, photodynamic therapy, drug delivery and NIR fluorescent IGS. The future challenges and promises of NIR emissive RE nanoparticles for IGS were also discussed.
Collapse
Affiliation(s)
- Zhibei Qu
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Xu
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Fei Wang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueli Zhang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
27
|
Hou R, Liang X, Li X, Zhang X, Ma X, Wang F. In situconversion of rose bengal microbubbles into nanoparticles for ultrasound imaging guided sonodynamic therapy with enhanced antitumor efficacy. Biomater Sci 2020; 8:2526-2536. [DOI: 10.1039/c9bm02046b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sonosensitizer microbubbles enhance drug accumulation and the antitumor efficacy of sonodynamic therapy by ultrasound mediated micro to nano conversion.
Collapse
Affiliation(s)
- Rui Hou
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University
- Beijing
- China
| | - Xiaolong Liang
- Department of Ultrasound
- Peking University Third Hospital
- Beijing
- China
| | - Xiaoda Li
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University
- Beijing
- China
| | - Xu Zhang
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University
- Beijing
- China
| | - Xiaotu Ma
- Key Laboratory of Protein and Peptide Pharmaceuticals
- CAS Center for Excellence in Biomacromolecules
- Institute of Biophysics
- Chinese Academy of Sciences
- Beijing
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University
- Beijing
- China
| |
Collapse
|
28
|
Ultrasound/microbubble-mediated targeted delivery of anticancer microRNA-loaded nanoparticles to deep tissues in pigs. J Control Release 2019; 309:1-10. [PMID: 31326463 DOI: 10.1016/j.jconrel.2019.07.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/26/2019] [Accepted: 07/17/2019] [Indexed: 02/03/2023]
Abstract
In this study, we designed and validated a platform for ultrasound and microbubble-mediated delivery of FDA-approved pegylated poly lactic-co-glycolic acid (PLGA) nanoparticles loaded with anticancer microRNAs (miRNAs) to deep tissues in a pig model. Small RNAs have been shown to reprogram tumor cells and sensitize them to clinically used chemotherapy. To overcome their short intravascular circulation half-life and achieve controlled and sustained release into tumor cells, anticancer miRNAs need to be encapsulated into nanocarriers. Focused ultrasound combined with gas-filled microbubbles provides a noninvasive way to improve the permeability of tumor vasculature and increase the delivery efficiency of drug-loaded particles. A single handheld, curvilinear ultrasound array was used in this study for image-guided therapy with clinical-grade SonoVue contrast agent. First, we validated the platform on phantoms to optimize the microbubble cavitation dose based on acoustic parameters, including peak negative pressure, pulse length, and pulse repetition frequency. We then tested the system in vivo by delivering PLGA nanoparticles co-loaded with antisense-miRNA-21 and antisense-miRNA-10b to pig liver and kidney. Enhanced miRNA delivery was observed (1.9- to 3.7-fold increase) as a result of the ultrasound treatment compared to untreated control regions. Additionally, we used highly fluorescent semiconducting polymer nanoparticles to visually assess nanoparticle extravasation. Fluorescent microscopy suggested the presence of nanoparticles in the extravascular compartment. Hematoxylin and eosin staining of treated tissues did not reveal tissue damage. The results presented in this manuscript suggest that the proposed platform may be used to safely and noninvasively enhance the delivery of miRNA-loaded nanoparticles to target regions in deep organs in large animal models.
Collapse
|
29
|
Development of Antibody-Modified Nanobubbles Using Fc-Region-Binding Polypeptides for Ultrasound Imaging. Pharmaceutics 2019; 11:pharmaceutics11060283. [PMID: 31208098 PMCID: PMC6631014 DOI: 10.3390/pharmaceutics11060283] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 02/01/2023] Open
Abstract
Ultrasound (US) imaging is a widely used imaging technique. The use of US contrast agents such as microbubbles, which consist of phospholipids and are filled with perfluorocarbon gases, has become an indispensable component of clinical US imaging, while molecular US imaging has recently attracted significant attention in combination with efficient diagnostics. The avidin–biotin interaction method is frequently used to tether antibodies to microbubbles, leading to the development of a molecular targeting US imaging agent. However, avidin still has limitations such as immunogenicity. We previously reported that lipid-based nanobubbles (NBs) containing perfluorocarbon gas are suitable for US imaging and gene delivery. In this paper, we report on the development of a novel antibody modification method for NBs using Fc-region-binding polypeptides derived from protein A/G. First, we prepared anti-CD146 antibody-modified NBs using this polypeptide, resulting in high levels of attachment to human umbilical vein endothelial cells expressing CD146. To examine their targeting ability and US imaging capability, the NBs were administered to tumor-bearing mice. The contrast imaging of antibody-modified NBs was shown to be prolonged compared with that of non-labeled NBs. Thus, this antibody modification method using an Fc-binding polypeptide may be a feasible tool for developing a next-generation antibody-modified US imaging agent.
Collapse
|
30
|
Concurrent Osteosarcoma Theranostic Strategy Using Contrast-Enhanced Ultrasound and Drug-Loaded Bubbles. Pharmaceutics 2019; 11:pharmaceutics11050223. [PMID: 31071997 PMCID: PMC6571587 DOI: 10.3390/pharmaceutics11050223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/02/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone tumor in children and teenagers. The multidrug resistant property of OS produces a major obstacle to chemotherapy, since the effective drug dose cannot be achieved via conventional drug delivery routes without serious systemic cytotoxicity. Microbubbles in conjunction with ultrasound (US) has recently been shown to spatially and temporally permeabilize the cellular membrane, promoting drug penetration into tumors. Here, we investigated whether drug (doxorubicin, DOX)-loaded bubbles (DOX-bubbles) can serve as drug-loaded carriers in combination with US in order to facilitate tumor drug delivery. The proposed bubbles have a high payload capacity (efficiency of 69.4 ± 9.1%, payload of 1.4 mg/mL) for DOX. In vitro data revealed that when used in combination with US (1-MHz), these DOX-bubbles facilitate DOX entering into tumor cells. In tumor-bearing animals, DOX-bubbles + US could provide 3.7-fold suppression of tumor growth compared with the group without insonation (1.8 ± 0.9 cm3 vs. 8.5 ± 2.2 cm3) because of the acceleration of DOX-induced tumor necrosis. In the meantime, the tumor perfusion and volume can be monitored by DOX-bubbles with contrast-enhanced ultrasound imaging. Our data provide useful information in support of translating the use of theranostic US-responsive bubbles for regulated tumor drug delivery into clinical use.
Collapse
|
31
|
Cote B, Rao D, Alany RG, Kwon GS, Alani AW. Lymphatic changes in cancer and drug delivery to the lymphatics in solid tumors. Adv Drug Deliv Rev 2019; 144:16-34. [PMID: 31461662 DOI: 10.1016/j.addr.2019.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023]
Abstract
Although many solid tumors use the lymphatic system to metastasize, there are few treatment options that directly target cancer present in the lymphatic system, and those that do are highly invasive, uncomfortable, and/or have limitations. In this review we provide a brief overview of lymphatic function and anatomy, discusses changes that befall the lymphatics in cancer and the mechanisms by which these changes occur, and highlight limitations of lymphatic drug delivery. We then go on to summarize relevant techniques and new research for targeting cancer populations in the lymphatics and enhancing drug delivery intralymphatically, including intralymphatic injections, isolated limb perfusion, passive nano drug delivery systems, and actively targeted nanomedicine.
Collapse
|
32
|
Upadhyay A, Dalvi SV. Microbubble Formulations: Synthesis, Stability, Modeling and Biomedical Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:301-343. [PMID: 30527395 DOI: 10.1016/j.ultrasmedbio.2018.09.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 05/12/2023]
Abstract
Microbubbles are increasingly being used in biomedical applications such as ultrasonic imaging and targeted drug delivery. Microbubbles typically range from 0.1 to 10 µm in size and consist of a protective shell made of lipids or proteins. The shell encapsulates a gaseous core containing gases such as oxygen, sulfur hexafluoride or perfluorocarbons. This review is a consolidated account of information available in the literature on research related to microbubbles. Efforts have been made to present an overview of microbubble synthesis techniques; microbubble stability; microbubbles as contrast agents in ultrasonic imaging and drug delivery vehicles; and side effects related to microbubble administration in humans. Developments related to the modeling of microbubble dissolution and stability are also discussed.
Collapse
Affiliation(s)
- Awaneesh Upadhyay
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Sameer V Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India.
| |
Collapse
|
33
|
Ultrasound-Targeted Microbubble Destruction (UTMD) for Localized Drug Delivery into Tumor Tissue. Ing Rech Biomed 2019. [DOI: 10.1016/j.irbm.2018.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
Nam K, Stanczak M, Forsberg F, Liu JB, Eisenbrey JR, Solomides CC, Lyshchik A. Sentinel Lymph Node Characterization with a Dual-Targeted Molecular Ultrasound Contrast Agent. Mol Imaging Biol 2019; 20:221-229. [PMID: 28762204 DOI: 10.1007/s11307-017-1109-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The purpose of this study was to assess the performance of molecular ultrasound with dual-targeted microbubbles to detect metastatic disease in the sentinel lymph nodes (SLNs) in swine model of naturally occurring melanoma. The SLN is the first lymph node in the lymphatic chain draining primary tumor, and early detection of metastatic SLN involvement is critical in the appropriate management of melanoma. PROCEDURE Nine Sinclair swine (weight 3-7 kg; Sinclair BioResources, Columbia, MO, USA) with naturally occurring melanoma were examined. Siemens S3000 scanner with a 9L4 probe was used for imaging (Siemens Healthineers, Mountain View, CA). Dual-targeted contrast agent was created using Targestar SA microbubbles (Targeson, San Diego, CA, USA) labeled with ανβ3-integrin and P-selectin antibodies. Targestar SA microbubbles labeled with IgG-labeled were used as control. First, peritumoral injection of Sonazoid contrast agent (GE Healthcare, Oslo, Norway) was performed to detect SLNs. After that, dual-targeted and IGG control Targestar SA microbubbles were injected intravenously with a 30-min interval between injections. Labeled Targestar SA microbubbles were allowed to circulate for 4 min to enable binding. After that, two sets of image clips were acquired several seconds before and after a high-power destruction sequence. The mean intensity difference pre- to post-bubble destruction within the region of interest placed over SLN was calculated as a relative measure of targeted microbubble contrast agent retention. This process was repeated for non-SLNs as controls. All lymph nodes evaluated on imaging were surgically removed and histologically examined for presence of metastatic involvement. RESULTS A total of 43 lymph nodes (25 SLNs and 18 non-SLNs) were included in the analysis with 18 SLNs demonstrating metastatic involvement greater than 5 % on histology. All non-SLNs were benign. The mean intensity (± SD) of the dual-targeted microbubbles for metastatic SLNs was significantly higher than that of benign LNs (18.05 ± 19.11 vs. 3.30 ± 6.65 AU; p = 0.0008), while IgG-labeled control microbubbles demonstrated no difference in retained contrast intensity between metastatic and benign lymph nodes (0.39 ± 1.14 vs. 0.03 ± 0.24 AU; p = 0.14). CONCLUSIONS The results indicate that dual-targeted microbubbles labeled with P-selectin and ανβ3-integrin antibodies may aid in detecting metastatic involvement in SLNs of melanoma.
Collapse
Affiliation(s)
- Kibo Nam
- Department of Radiology, Thomas Jefferson University, 132 South 10th Street, Philadelphia, PA, 19107, USA
| | - Maria Stanczak
- Department of Radiology, Thomas Jefferson University, 132 South 10th Street, Philadelphia, PA, 19107, USA
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, 132 South 10th Street, Philadelphia, PA, 19107, USA
| | - Ji-Bin Liu
- Department of Radiology, Thomas Jefferson University, 132 South 10th Street, Philadelphia, PA, 19107, USA
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, 132 South 10th Street, Philadelphia, PA, 19107, USA
| | | | - Andrej Lyshchik
- Department of Radiology, Thomas Jefferson University, 132 South 10th Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
35
|
Segers T, Lassus A, Bussat P, Gaud E, Frinking P. Improved coalescence stability of monodisperse phospholipid-coated microbubbles formed by flow-focusing at elevated temperatures. LAB ON A CHIP 2018; 19:158-167. [PMID: 30511070 DOI: 10.1039/c8lc00886h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Monodisperse phospholipid-coated ultrasound contrast agent (UCA) microbubbles can be directly synthesized in a lab-on-a-chip flow-focusing device. However, high total lipid concentrations are required to minimize on-chip bubble coalescence. Here, we characterize the coalescence probability and the long-term size stability of microbubbles formed using DPPC and DSPC based lipid mixtures as a function of temperature. We show that the coalescence probability can be dramatically reduced by increasing the temperature during bubble formation. Moreover, it is shown that the increased coalescence stability can be explained from an exponential increase of the relative viscosity in the thin liquid film between the colliding bubbles. Furthermore, it was found that the relative viscosity of a DPPC lipid mixture is 7.6 times higher than that of a DSPC mixture and that it can be explained solely from the higher DPPC liposome concentration. Regarding long-term bubble stability, the ratio of the initial on-chip bubble size to the final stable bubble size was always found to be 2.2 for DPPC and DSPC coated bubbles with 10 mol% DPPE-PEG5000, independent of the temperature. Moreover, it was demonstrated that the microbubble suspensions formed at elevated temperatures are highly stable over a time window of 2 to 4 days when collected in a vial. All in all, this work shows that, by increasing the temperature during bubble formation from room temperature to 70 °C, the efficiency of the use of phospholipids in microbubble formation by flow-focusing can be increased by 5 times.
Collapse
Affiliation(s)
- Tim Segers
- Bracco Suisse S.A., Route de la Galaise 31, 1228 Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
36
|
Favril S, Stock E, Hernot S, Hesta M, Polis I, Vanderperren K, de Rooster H. Sentinel lymph node mapping by near-infrared fluorescence imaging and contrast-enhanced ultrasound in healthy dogs. Vet Comp Oncol 2018; 17:89-98. [PMID: 30311430 DOI: 10.1111/vco.12449] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/04/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023]
Abstract
Sentinel lymph node (SLN) mapping is a valuable and crucial diagnostic procedure in staging malignancies. We compared two non-invasive techniques, near-infrared (NIR) fluorescence imaging and contrast-enhanced ultrasound (CEUS), to identify the SLNs in three superficial anatomical regions in an animal model. Six healthy laboratory dogs were included in a proof-of-concept trial. A NIR fluorescent dye (Indocyanine Green) and microbubbles (Sonovue) were consecutively injected subdermally in the Inguinal, axillary and popliteal region to map the SLNs. Transcutaneous NIR fluorescence imaging identified SLNs in 17 out of a total of 18 occasions. CEUS identified SLNs in all regions (18/18). Whereas NIR fluorescence imaging performed better in the visualization of the afferent lymphatic tract, CEUS demonstrated different filling patterns of the SLNs, a feature potentially critical for the concept of SLN mapping in cancer patients. Both NIR fluorescence imaging and CEUS are safe, non-invasive, practical and accurate methods to perform real-time transcutaneous SLN mapping with potential in a clinical setting.
Collapse
Affiliation(s)
- Sophie Favril
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Emmelie Stock
- Department of Medical Imaging of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sophie Hernot
- Laboratory in vivo Cellular and Molecular Imaging (ICMI-BEFY/MIMA), Vrije Universiteit Brussel, Brussels, Belgium
| | - Myriam Hesta
- Laboratory of Animal Nutrition, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ingeborgh Polis
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katrien Vanderperren
- Department of Medical Imaging of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hilde de Rooster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
37
|
Snipstad S, Sulheim E, de Lange Davies C, Moonen C, Storm G, Kiessling F, Schmid R, Lammers T. Sonopermeation to improve drug delivery to tumors: from fundamental understanding to clinical translation. Expert Opin Drug Deliv 2018; 15:1249-1261. [PMID: 30415585 DOI: 10.1080/17425247.2018.1547279] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Ultrasound in combination with microbubbles can make cells and tissues more accessible for drugs, thereby achieving improved therapeutic outcomes. In this review, we introduce the term 'sonopermeation', covering mechanisms such as pore formation (traditional sonoporation), as well as the opening of intercellular junctions, stimulated endocytosis/transcytosis, improved blood vessel perfusion and changes in the (tumor) microenvironment. Sonopermeation has gained a lot of interest in recent years, especially for delivering drugs through the otherwise impermeable blood-brain barrier, but also to tumors. AREAS COVERED In this review, we summarize various in vitro assays and in vivo setups that have been employed to unravel the fundamental mechanisms involved in ultrasound-enhanced drug delivery, as well as clinical trials that are ongoing in patients with brain, pancreatic, liver and breast cancer. We summarize the basic principles of sonopermeation, describe recent findings obtained in (pre-) clinical trials, and discuss future directions. EXPERT OPINION We suggest that an improved mechanistic understanding, and microbubbles and ultrasound equipment specialized for drug delivery (and not for imaging) are key aspects to create more effective treatment regimens by sonopermeation. Real-time feedback and tools to predict therapeutic outcome and which tumors/patients will benefit from sonopermeation-based interventions will be important to promote clinical translation.
Collapse
Affiliation(s)
- Sofie Snipstad
- a Department of Physics , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway.,b Department of Biotechnology and Nanomedicine , SINTEF AS , Trondheim , Norway.,c Cancer Clinic , St. Olavs Hospital , Trondheim , Norway
| | - Einar Sulheim
- a Department of Physics , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway.,b Department of Biotechnology and Nanomedicine , SINTEF AS , Trondheim , Norway.,c Cancer Clinic , St. Olavs Hospital , Trondheim , Norway
| | - Catharina de Lange Davies
- a Department of Physics , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway
| | - Chrit Moonen
- d Imaging Division , University Medical Center , Utrecht , The Netherlands
| | - Gert Storm
- e Department of Pharmaceutics , Utrecht University , Utrecht , The Netherlands.,f Department of Targeted Therapeutics , University of Twente , Enschede , The Netherlands
| | - Fabian Kiessling
- g Institute for Experimental Molecular Imaging , RWTH Aachen University , Aachen , Germany
| | - Ruth Schmid
- b Department of Biotechnology and Nanomedicine , SINTEF AS , Trondheim , Norway
| | - Twan Lammers
- e Department of Pharmaceutics , Utrecht University , Utrecht , The Netherlands.,f Department of Targeted Therapeutics , University of Twente , Enschede , The Netherlands.,g Institute for Experimental Molecular Imaging , RWTH Aachen University , Aachen , Germany
| |
Collapse
|
38
|
Segers T, Kruizinga P, Kok MP, Lajoinie G, de Jong N, Versluis M. Monodisperse Versus Polydisperse Ultrasound Contrast Agents: Non-Linear Response, Sensitivity, and Deep Tissue Imaging Potential. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1482-1492. [PMID: 29705522 DOI: 10.1016/j.ultrasmedbio.2018.03.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 05/21/2023]
Abstract
It has been proposed that monodisperse microbubble ultrasound contrast agents further increase the signal-to-noise ratio of contrast-enhanced ultrasound imaging. Here, the sensitivity of a polydisperse pre-clinical agent was compared experimentally with that of its size- and acoustically sorted derivatives by using narrowband pressure- and frequency-dependent scattering and attenuation measurements. The sorted monodisperse agents had up to a two-orders-of-magnitude increase in sensitivity, that is, in the average scattering cross section per bubble. Moreover, we found, for the first time, that the highly non-linear response of acoustically sorted microbubbles can be exploited to confine scattering and attenuation to the focal region of ultrasound fields used in clinical imaging. This property is a result of minimal pre-focal scattering and attenuation and can be used to minimize shadowing effects in deep tissue imaging. Moreover, it potentially allows for more localized therapy using microbubbles through the spatial control of resonant microbubble oscillations.
Collapse
Affiliation(s)
- Tim Segers
- Physics of Fluids Group and TechMed Centre, University of Twente, Enschede, The Netherlands.
| | - Pieter Kruizinga
- Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| | - Maarten P Kok
- Physics of Fluids Group and TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Guillaume Lajoinie
- Physics of Fluids Group and TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Nico de Jong
- Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands; Acoustical Wavefield imaging, Delft University of Technology, Delft, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group and TechMed Centre, University of Twente, Enschede, The Netherlands; MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
39
|
Gu M, Wang X, Toh TB, Chow EKH. Applications of stimuli-responsive nanoscale drug delivery systems in translational research. Drug Discov Today 2018; 23:1043-1052. [DOI: 10.1016/j.drudis.2017.11.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/24/2017] [Accepted: 11/13/2017] [Indexed: 01/31/2023]
|
40
|
Yue P, Miao W, Gao L, Zhao X, Teng J. Ultrasound-Triggered Effects of the Microbubbles Coupled to GDNF Plasmid-Loaded PEGylated Liposomes in a Rat Model of Parkinson's Disease. Front Neurosci 2018; 12:222. [PMID: 29686604 PMCID: PMC5900787 DOI: 10.3389/fnins.2018.00222] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
Background: The purpose of this study was to investigate ultrasound-triggered effects of PEGylated liposomes-coupled microbubbles mediated gene transfer of glial cell line-derived neurotrophic factor (GDNF) plasmid (PLs-GDNF-MBs) on behavioral deficits and neuron loss in a rat model of Parkinson's disease (PD). Methods: The unloaded PLs-MBs were characterized for particle size, concentration and zeta potential. PD rat model was established by a unilateral 6-hydroxydopamine (6-OHDA) lesion. Rotational, climbing pole, and suspension tests were used to evaluate behavioral deficits. The immunohistochemical staining of tyrosine hydroxylase (TH) and dopamine transporter (DAT) was used to assess the neuron loss. The expression levels of GDNF and nuclear receptor-related factor 1 (Nurr1) were determined by western blot and qRT-PCR analysis. Results: The particle size of PLs-MBs was gradually increased, while the concentration and absolute zeta potential were gradually decreased in a time-dependent manner after injection. 6-OHDA elevated amphetamine-induced rotations and decreased the TH and DAT immunoreactivity compared to sham group. However, these effects were blocked by the PLs-GDNF-MBs. In addition, the mRNA and protein expression levels of GDNF and Nurr1 were increased after PLs-GDNF-MBs treatment. Conclusions: The delivery of PLs-GDNF-MBs into the brains using MRI-guided focused ultrasound alleviates the behavioral deficits and neuron loss in the rat model of PD.
Collapse
Affiliation(s)
- Peijian Yue
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wang Miao
- Department of Neurological Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Gao
- Department of Neurological Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyu Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
41
|
Yue P, Gao L, Wang X, Ding X, Teng J. Ultrasound‐triggered effects of the microbubbles coupled to GDNF‐ and Nurr1‐loaded PEGylated liposomes in a rat model of Parkinson's disease. J Cell Biochem 2018; 119:4581-4591. [DOI: 10.1002/jcb.26608] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/07/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Peijian Yue
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lin Gao
- Department of Neurological Intensive Care UnitThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xuejing Wang
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xuebing Ding
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Junfang Teng
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
42
|
Cationic gas-filled microbubbles for ultrasound-based nucleic acids delivery. Biosci Rep 2017; 37:BSR20160619. [PMID: 29180378 PMCID: PMC5741830 DOI: 10.1042/bsr20160619] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
The use of ultrasound has gained great interest for nucleic acids delivery. Ultrasound can reach deep tissues in non-invasive manner. The process of sonoporation is based on the use of low-frequency ultrasound combined with gas-filled microbubbles (MBs) allowing an improved delivery of molecules including nucleic acids in the insonified tissue. For in vivo gene transfer, the engineering of cationic MBs is essential for creating strong electrostatic interactions between MBs and nucleic acids leading to their protection against nucleases degradation and high concentration within the target tissue. Cationic MBs must be stable enough to withstand nucleic acids interaction, have a good size distribution for in vivo administration, and enough acoustic activity to be detected by echography. This review aims to summarize the basic principles of ultrasound-based delivery and new knowledge acquired in these recent years about this method. A focus is made on gene delivery by discussing reported studies made with cationic MBs including ours. They have the ability for efficient delivery of plasmid DNA (pDNA), mRNA or siRNA. Last, we discuss about the key challenges that have to be faced for a fine use of this delivery system.
Collapse
|
43
|
Segers T, Lohse D, Versluis M, Frinking P. Universal Equations for the Coalescence Probability and Long-Term Size Stability of Phospholipid-Coated Monodisperse Microbubbles Formed by Flow Focusing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10329-10339. [PMID: 28872315 DOI: 10.1021/acs.langmuir.7b02547] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Resonantly driven monodisperse phospholipid-coated microbubbles are expected to substantially increase the sensitivity and efficiency in contrast-enhanced ultrasound imaging and therapy. They can be produced in a microfluidic flow-focusing device, but questions remain as to the role of the device geometry, the liquid and gas flow, and the phospholipid formulation on bubble stability. Here, we develop a model based on simple continuum mechanics equations that reveals the scaling of the coalescence probability with the key physical parameters. It is used to characterize short-term coalescence behavior and long-term size stability as a function of flow-focusing geometry, bulk viscosity, lipid cosolvent mass fraction, lipid concentration, lipopolymer molecular weight, and lipopolymer molar fraction. All collected data collapse on two master curves given by universal equations for the coalescence probability and the long-term size stability. This work is therefore a route to a more fundamental understanding of the physicochemical monolayer properties of microfluidically formed bubbles and their coalescence behavior in a flow-focusing device.
Collapse
Affiliation(s)
- Tim Segers
- Bracco Suisse S.A., Route de la Galaise 31, 1228 Geneva, Switzerland
| | - Detlef Lohse
- Physics of Fluids group, MIRA Institute for Biomedical Technology and Technical Medicine, MESA+ Institute for Nanotechnology, University of Twente , Postbus 217, 7500 AE Enschede, The Netherlands
| | - Michel Versluis
- Physics of Fluids group, MIRA Institute for Biomedical Technology and Technical Medicine, MESA+ Institute for Nanotechnology, University of Twente , Postbus 217, 7500 AE Enschede, The Netherlands
| | - Peter Frinking
- Bracco Suisse S.A., Route de la Galaise 31, 1228 Geneva, Switzerland
| |
Collapse
|
44
|
Segers T, de Jong N, Versluis M. Uniform scattering and attenuation of acoustically sorted ultrasound contrast agents: Modeling and experiments. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:2506. [PMID: 27794344 DOI: 10.1121/1.4964270] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The sensitivity and efficiency in contrast-enhanced ultrasound imaging and therapy can potentially be increased by the use of resonant monodisperse bubbles. However, bubbles of the same size may respond differently to ultrasound due to differences in their phospholipid shell. In an acoustic bubble sorting chip, resonant bubbles can be separated from the polydisperse agent. Here, a sample of acoustically sorted bubbles is characterized by measuring scattering and attenuation simultaneously using narrowband acoustic pulses at peak negative pressures of 10, 25, and 50 kPa over a 0.7-5.5 MHz frequency range. A second sample is characterized by attenuation measurements at acoustic pressures ranging from 5 to 75 kPa in steps of 2.5 kPa. Scattering and attenuation coefficients were modeled by integration over the pressure and frequency dependent response of all bubbles located within the non-uniform acoustic characterization beam. For all driving pressures and frequencies employed here, the coefficients could be modeled using a single and unique set of shell parameters confirming that acoustically sorted bubbles provide a uniform acoustic response. Moreover, it is shown that it is crucial to include the pressure distribution of the acoustic characterization beam in the modeling to accurately determine shell parameters of non-linearly oscillating bubbles.
Collapse
Affiliation(s)
- Tim Segers
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Nico de Jong
- Biomedical Engineering, Thoraxcenter, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
45
|
Segers T, de Rond L, de Jong N, Borden M, Versluis M. Stability of Monodisperse Phospholipid-Coated Microbubbles Formed by Flow-Focusing at High Production Rates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3937-3944. [PMID: 27006083 DOI: 10.1021/acs.langmuir.6b00616] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Monodisperse microbubble ultrasound contrast agents may dramatically increase the sensitivity and efficiency in ultrasound imaging and therapy. They can be produced directly in a microfluidic flow-focusing device, but questions remain as to the interfacial chemistry, such as the formation and development of the phospholipid monolayer coating over time. Here, we demonstrate the synthesis of monodisperse bubbles with radii of 2-10 μm at production rates ranging from 10(4) to 10(6) bubbles/s. All bubbles were found to dissolve to a stable final radius 2.55 times smaller than their initial radius, independent of the nozzle size and shear rate, indicating that the monolayer self-assembles prior to leaving the nozzle. The corresponding decrease in surface area by a factor 6.6 reveals that lipid molecules are adsorbed to the gas-liquid interface in the disordered expanded state, and they become mechanically compressed by Laplace pressure-driven bubble dissolution to a more ordered condensed state with near zero surface tension. Acoustic characterization of the stabilized microbubbles revealed that their shell stiffness gradually increased from 0.8 to 2.5 N/m with increasing number of insonations through the selective loss of the more soluble lipopolymer molecules. This work therefore demonstrates high-throughput production of clinically relevant monodisperse contrast microbubbles with excellent control over phospholipid monolayer elasticity and microbubble resonance.
Collapse
Affiliation(s)
- Tim Segers
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , P. O. Box 217, 7500 AE Enschede, The Netherlands
| | - Leonie de Rond
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , P. O. Box 217, 7500 AE Enschede, The Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC , Wyternaweg 80 EE 2302, 3015 CN Rotterdam, The Netherlands
| | - Mark Borden
- Department of Mechanical Engineering, University of Colorado , 1111 Engineering Drive, Boulder, Colorado 80309-0427, United States
| | - Michel Versluis
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , P. O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
46
|
De Cock I, Lajoinie G, Versluis M, De Smedt SC, Lentacker I. Sonoprinting and the importance of microbubble loading for the ultrasound mediated cellular delivery of nanoparticles. Biomaterials 2016; 83:294-307. [DOI: 10.1016/j.biomaterials.2016.01.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/24/2015] [Accepted: 01/01/2016] [Indexed: 11/26/2022]
|
47
|
Kato S, Mori S, Kodama T. A Novel Treatment Method for Lymph Node Metastasis Using a Lymphatic Drug Delivery System with Nano/Microbubbles and Ultrasound. J Cancer 2015; 6:1282-94. [PMID: 26640589 PMCID: PMC4643085 DOI: 10.7150/jca.13028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/31/2015] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy based on hematogenous administration of drugs to lymph nodes (LNs) located outside the surgically resected area shows limited tissue selectivity and inadequate response rates, resulting in poor prognosis. Here, we demonstrate proof of concept for a lymphatic drug delivery system using nano/microbubbles (NMBs) and ultrasound (US) to achieve sonoporation in LNs located outside the dissection area. First, we demonstrated the in vitro effectiveness of doxorubicin (Dox) delivered into three different tumor cell lines by sonoporation. Sonoporation increased the Dox autofluorescence signal and resulted in a subsequent decrease in cell viability. Next, we verified the antitumor effects of Dox in vivo using MXH10/Mo-lpr/lpr mice that exhibit systemic lymphadenopathy, with some peripheral LNs reaching 10 mm in diameter. We defined the subiliac LN (SiLN) as the upstream LN within the dissection area, and the proper axillary LN (PALN) as the downstream LN outside the dissection area. Dox and NMBs were injected into the SiLN and delivered to the PALN via lymphatic vessels; the PALN was then exposed to US when it had filled with solution. We found that sonoporation enhanced the intracellular uptake of Dox leading to high cytotoxicity. We also found that sonoporation induced extravasation of Dox from lymphatic endothelia and penetration of Dox into tumor tissues within the PALN. Furthermore, our method inhibited tumor growth and diminished blood vessels in the PALN while avoiding systemic toxic effects of Dox. Our findings indicate that a lymphatic drug delivery system with sonoporation represents a promising method for treating metastatic LNs located outside the dissection area.
Collapse
Affiliation(s)
- Shigeki Kato
- 1. Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Shiro Mori
- 2. Department of Oral Medicine and Surgery, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Tetsuya Kodama
- 1. Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
48
|
Niu G, Chen X. Lymphatic imaging: focus on imaging probes. Am J Cancer Res 2015; 5:686-97. [PMID: 25897334 PMCID: PMC4402493 DOI: 10.7150/thno.11862] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/10/2015] [Indexed: 01/10/2023] Open
Abstract
In view of the importance of sentinel lymph nodes (SLNs) in tumor staging and patient management, sensitive and accurate imaging of SLNs has been intensively explored. Along with the advance of the imaging technology, various contrast agents have been developed for lymphatic imaging. In this review, the lymph node imaging agents were summarized into three groups: tumor targeting agents, lymphatic targeting agents and lymphatic mapping agents. Tumor targeting agents are used to detect metastatic tumor tissue within LNs, lymphatic targeting agents aim to visualize lymphatic vessels and lymphangionesis, while lymphatic mapping agents are mainly for SLN detection during surgery after local administration. Coupled with various signal emitters, these imaging agents work with single or multiple imaging modalities to provide a valuable way to evaluate the location and metastatic status of SLNs.
Collapse
|
49
|
Kok MP, Segers T, Versluis M. Bubble sorting in pinched microchannels for ultrasound contrast agent enrichment. LAB ON A CHIP 2015; 15:3716-3722. [PMID: 26223966 DOI: 10.1039/c5lc00370a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ultrasound contrast agent (UCA) suspensions contain encapsulated microbubbles with a wide size distribution, with radii between 1 and 10 μm. Medical transducers generally operate at a narrow frequency bandwidth, severely limiting the fraction of bubbles that resonates to the driving ultrasound. Thus, the sensitivity of contrast enhanced ultrasound imaging, molecular imaging with targeted bubbles, and drug delivery with microbubbles can be improved by narrowing down the size distribution of the bubble suspension. Here, we use a low-cost lab-on-a-chip method for the sorting of microbubbles by their size without external actuation, based on a microfluidic separation technique known as pinched flow fractionation (PFF). We show by numerical investigation that the inclusion of particle rotation in the pinched segment is essential for an accurate description of the sorting behavior of particles with sizes close to the pinched segment width. Successful enrichment of a polydisperse contrast agent into a bubble suspension with a narrow size distribution (radius 1.56 ± 0.30 μm) was achieved with a PFF-based microdevice. This sorting technique can be readily parallelized, and may thus lead to an easy-to-use and robust device capable of enriching ultrasound contrast agents, leading to an improvement in the sensitivity of contrast ultrasound imaging.
Collapse
Affiliation(s)
- Maarten P Kok
- Physics of Fluids Group and MESA+ Institute of Nanotechnology, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | | | | |
Collapse
|