1
|
Kulkarni AM, Gayam PKR, Baby BT, Aranjani JM. Epithelial-Mesenchymal Transition in Cancer: A Focus on Itraconazole, a Hedgehog Inhibitor. Biochim Biophys Acta Rev Cancer 2025; 1880:189279. [PMID: 39938662 DOI: 10.1016/j.bbcan.2025.189279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Cancer, and the resulting mortality from it, is an ever-increasing concern in global health. Cancer mortality stems from the metastatic progression of the disease, by dissemination of the tumor cells. Epithelial-Mesenchymal Transition, the major hypothesis purported to be the origin of metastasis, confers mesenchymal phenotype to epithelial cells in a variety of contexts, physiological and pathological. EMT in cancer leads to rise of cancer-stem-like cells, drug resistance, relapse, and progression of malignancy. Inhibition of EMT could potentially attenuate the mortality. While novel molecules for inhibiting EMT are underway, repurposing drugs is also being considered as a viable strategy. In this review, Itraconazole is focused upon, as a repurposed molecule to mitigate EMT. Itraconazole is known to inhibit Hedgehog signaling, and light is shed upon the existing evidence, as well as the questions remaining to be answered.
Collapse
Affiliation(s)
- Aniruddha Murahar Kulkarni
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Prasanna Kumar Reddy Gayam
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Beena Thazhackavayal Baby
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| |
Collapse
|
2
|
Loda A, Semeraro F, Parolini S, Ronca R, Rezzola S. Cancer stem-like cells in uveal melanoma: novel insights and therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189104. [PMID: 38701937 DOI: 10.1016/j.bbcan.2024.189104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Uveal melanoma (UM) is the most common primary ocular tumor in the adult population. Even though these primary tumors are successfully treated in 90% of cases, almost 50% of patients ultimately develop metastasis, mainly in the liver, via hematological dissemination, with a median survival spanning from 6 to 12 months after diagnosis. In this context, chemotherapy regimens and molecular targeted therapies have demonstrated poor response rates and failed to improve survival. Among the multiple reasons for therapy failure, the presence of cancer stem-like cells (CSCs) represents the main cause of resistance to anticancer therapies. In the last few years, the existence of CSCs in UM has been demonstrated both in preclinical and clinical studies, and new molecular pathways and mechanisms have been described for this subpopulation of UM cells. Here, we will discuss the state of the art of CSC biology and their potential exploitation as therapeutic target in UM.
Collapse
Affiliation(s)
- Alessandra Loda
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesco Semeraro
- Eye Clinic, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; National Center for Gene Therapy and Drugs based on RNA Technology - CN3, Padova, Italy; Consorzio Interuniversitario per le Biotecnologie (CIB), Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Consorzio Interuniversitario per le Biotecnologie (CIB), Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
3
|
Horváth L, Biri-Kovács B, Baranyai Z, Stipsicz B, Méhes E, Jezsó B, Krátký M, Vinšová J, Bősze S. New Salicylanilide Derivatives and Their Peptide Conjugates as Anticancer Compounds: Synthesis, Characterization, and In Vitro Effect on Glioblastoma. ACS OMEGA 2024; 9:16927-16948. [PMID: 38645331 PMCID: PMC11024950 DOI: 10.1021/acsomega.3c05727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 04/23/2024]
Abstract
Pharmacologically active salicylanilides (2-hydroxy-N-phenylbenzamides) have been a promising area of interest in medicinal chemistry-related research for quite some time. This group of compounds has shown a wide spectrum of biological activities, including but not limited to anticancer effects. In this study, substituted salicylanilides were chosen to evaluate the in vitro activity on U87 human glioblastoma (GBM) cells. The parent salicylanilide, salicylanilide 5-chloropyrazinoates, a 4-aminosalicylic acid derivative, and the new salicylanilide 4-formylbenzoates were chemically and in vitro characterized. To enhance the internalization of the compounds, they were conjugated to delivery peptides with the formation of oxime bonds. Oligotuftsins ([TKPKG]n, n = 1-4), the ligands of neuropilin receptors, were used as GBM-targeting carrier peptides. The in vitro cellular uptake, intracellular localization, and penetration ability on tissue-mimicking models of the fluorescent peptide derivatives were determined. The compounds and their peptide conjugates significantly decreased the viability of U87 glioma cells. Salicylanilide compound-induced GBM cell death was associated with activation of autophagy, as characterized by immunodetection of autophagy-related processing of light chain 3 protein.
Collapse
Affiliation(s)
- Lilla Horváth
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Beáta Biri-Kovács
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Zsuzsa Baranyai
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Bence Stipsicz
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
- Institute
of Biology, Doctoral School of Biology, Eötvös Loránd University, Budapest 1117, Hungary
| | - Előd Méhes
- Institute
of Physics, Department of Biological Physics, Eötvös Loránd University, Budapest 1117, Hungary
| | - Bálint Jezsó
- Research
Centre for Natural Sciences, Institute of
Enzymology, Budapest 1053, Hungary
- ELTE-MTA
“Momentum” Motor Enzymology Research Group, Department
of Biochemistry, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Martin Krátký
- Department
of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec
Králové, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Jarmila Vinšová
- Department
of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec
Králové, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Szilvia Bősze
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| |
Collapse
|
4
|
van den Bosch QCC, de Klein A, Verdijk RM, Kiliç E, Brosens E. Uveal melanoma modeling in mice and zebrafish. Biochim Biophys Acta Rev Cancer 2024; 1879:189055. [PMID: 38104908 DOI: 10.1016/j.bbcan.2023.189055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Despite extensive research and refined therapeutic options, the survival for metastasized uveal melanoma (UM) patients has not improved significantly. UM, a malignant tumor originating from melanocytes in the uveal tract, can be asymptomatic and small tumors may be detected only during routine ophthalmic exams; making early detection and treatment difficult. UM is the result of a number of characteristic somatic alterations which are associated with prognosis. Although UM morphology and biology have been extensively studied, there are significant gaps in our understanding of the early stages of UM tumor evolution and effective treatment to prevent metastatic disease remain elusive. A better understanding of the mechanisms that enable UM cells to thrive and successfully metastasize is crucial to improve treatment efficacy and survival rates. For more than forty years, animal models have been used to investigate the biology of UM. This has led to a number of essential mechanisms and pathways involved in UM aetiology. These models have also been used to evaluate the effectiveness of various drugs and treatment protocols. Here, we provide an overview of the molecular mechanisms and pharmacological studies using mouse and zebrafish UM models. Finally, we highlight promising therapeutics and discuss future considerations using UM models such as optimal inoculation sites, use of BAP1mut-cell lines and the rise of zebrafish models.
Collapse
Affiliation(s)
- Quincy C C van den Bosch
- Department of Ophthalmology, Erasmus MC, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Section of Ophthalmic Pathology, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands; Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus MC, Rotterdam, the Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Li S, Wang D, Zheng X, Li Y, Ding C, Wang M, Ge X, Jiang J, Qiao Y, Wang Y. Combination of niclosamide and quinacrine inactivates Akt/HK2/Cyclin D1 axis mediated by glucose deprivation towards the inhibition of melanoma cell proliferation. Biomed Pharmacother 2023; 163:114865. [PMID: 37187020 DOI: 10.1016/j.biopha.2023.114865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023] Open
Abstract
Malignant melanoma is one of the most aggressive and lethal skin cancer. At present, the treatment methods for melanoma have shortcomings. Glucose is the primary energy source of cancer cells. However, it is unclear whether glucose deprivation can be used to treat melanoma. Herein, we first found glucose played an essential role in melanoma proliferation. We then further found a drug combination of niclosamide and quinacrine could inhibit melanoma proliferation and glucose intake. Thirdly, we revealed the mechanism of anti-melanoma effect of the drug combination, which suppressed the Akt pathway. In addition, the first-rate limiting enzyme HK2 of glucose metabolism was inhibited. This work also disclosed that the decrease of HK2 inhibited cyclin D1 by reducing the activity of transcription factor E2F3, which further suppressed the proliferation of melanoma cells. The drug combination treatment also resulted in significant tumor regression in the absence of obvious morphologic changes in primary organ in vivo. In summary, our study demonstrated that the drug combination treatment created glucose deprivation to inactive the Akt/HK2/cyclin D1 axis, thereby inhibited the proliferation of melanoma cells, providing a potential anti-melanoma strategy.
Collapse
Affiliation(s)
- Shuangting Li
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Diancan Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Xuan Zheng
- Qingdao Stomatological Hospital Affiliated to Qingdao University, No.17 Dexian Road, Shinan District, Qingdao 266001, Shandong Province, China
| | - Yi Li
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Chong Ding
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Meng Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Xuejun Ge
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China.
| | - Jiuhui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China.
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China.
| |
Collapse
|
6
|
Loda A, Calza S, Giacomini A, Ravelli C, Krishna Chandran AM, Tobia C, Tabellini G, Parolini S, Semeraro F, Ronca R, Rezzola S. FGF-trapping hampers cancer stem-like cells in uveal melanoma. Cancer Cell Int 2023; 23:89. [PMID: 37165394 PMCID: PMC10173517 DOI: 10.1186/s12935-023-02903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/24/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Cancer stem-like cells (CSCs) are a subpopulation of tumor cells responsible for tumor initiation, metastasis, chemoresistance, and relapse. Recently, CSCs have been identified in Uveal Melanoma (UM), which represents the most common primary tumor of the eye. UM is highly resistant to systemic chemotherapy and effective therapies aimed at improving overall survival of patients are eagerly required. METHODS Herein, taking advantage from a pan Fibroblast Growth Factor (FGF)-trap molecule, we singled out and analyzed a UM-CSC subset with marked stem-like properties. A hierarchical clustering of gene expression data publicly available on The Cancer Genome Atlas (TCGA) was performed to identify patients' clusters. RESULTS By disrupting the FGF/FGF receptor (FGFR)-mediated signaling, we unmasked an FGF-sensitive UM population characterized by increased expression of numerous stemness-related transcription factors, enhanced aldehyde dehydrogenase (ALDH) activity, and tumor-sphere formation capacity. Moreover, FGF inhibition deeply affected UM-CSC survival in vivo in a chorioallantoic membrane (CAM) tumor graft assay, resulting in the reduction of tumor growth. At clinical level, hierarchical clustering of TCGA gene expression data revealed a strong correlation between FGFs/FGFRs and stemness-related genes, allowing the identification of three distinct clusters characterized by different clinical outcomes. CONCLUSIONS Our findings support the evidence that the FGF/FGFR axis represents a master regulator of cancer stemness in primary UM tumors and point to anti-FGF treatments as a novel therapeutic strategy to hit the CSC component in UM.
Collapse
Affiliation(s)
- Alessandra Loda
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Adwaid Manu Krishna Chandran
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Chiara Tobia
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Francesco Semeraro
- Eye Clinic, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy.
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
7
|
Liu S, Wu J, Lu X, Guo C, Zheng Q, Wang Y, Hu Q, Bian S, Luo L, Cheng Q, Liu Z, Dai W. Targeting CDK12 obviates the malignant phenotypes of colorectal cancer through the Wnt/β-catenin signaling pathway. Exp Cell Res 2023; 428:113613. [PMID: 37100369 DOI: 10.1016/j.yexcr.2023.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 04/22/2023] [Indexed: 04/28/2023]
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer-related mortality and lies third in terms of morbidity due to the limited number of effective druggable targets. Since cancer stem cells (CSCs) are considered to be one of the roots of tumorigenesis, outgrowth and metastasis, targeting CSCs may be a promising strategy to reverse the malignant phenotypes of CRC. Cyclin-dependent kinase 12 (CDK12) has been reported to be involved in the self-renewal of CSCs in various cancers, rendering it an attractive potential target against CSCs to consequently limit the malignant phenotypes in CRC. In the present study, we aimed to investigate whether CDK12 can be a potential therapeutic target for patients with CRC and clarify its underlying mechanism. We found that CDK12, but not CDK13 is required for CRC survival. CDK12 was found to drive tumor initiation according to the colitis-associated colorectal cancer mouse model. In addition, CDK12 promoted CRC outgrowth and hepatic metastasis in the subcutaneous allograft and liver metastasis mouse models, respectively. In particular, CDK12 was able to induce the self-renewal of CRC CSCs. Mechanistically, the activation of Wnt/β-catenin signaling mediated by CDK12 was implicated in stemness regulation and malignant phenotype maintenance. These findings indicate that CDK12 is a candidate druggable target in CRC. Therefore, the CDK12 inhibitor SR-4835 warrants clinical trial testing in patients with CRC.
Collapse
Affiliation(s)
- Shenglan Liu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Junhong Wu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Xiaolu Lu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Caiyao Guo
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Qisheng Zheng
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Yu Wang
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Qiao Hu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Shuigen Bian
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Li Luo
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Qilai Cheng
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China.
| | - Wei Dai
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
8
|
Thatikonda S, Pooladanda V, Tokala R, Nagula S, Godugu C. Niclosamide inhibits epithelial-mesenchymal transition with apoptosis induction in BRAF/ NRAS mutated metastatic melanoma cells. Toxicol In Vitro 2023; 89:105579. [PMID: 36870549 DOI: 10.1016/j.tiv.2023.105579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Malignant melanoma is considered a deadly aggressive form of skin cancer that frequently metastasizes to various distal organs, which harbors mutations of the BRAF or NRAS which occur in 30 to 50% of melanoma patients. The growth factors secreted by melanoma cells contribute to tumor angiogenesis with the acquisition of metastatic potential by epithelial-mesenchymal transition (EMT) and drive melanoma growth toward a more aggressive form. Niclosamide (NCL) is an FDA-approved anthelmintic drug and is reported to have strong anti-cancer properties against various solid and liquid tumors. Its role in BRAF or NRAS mutated cells is unknown. In this context, we uncovered the role of NCL in impeding malignant metastatic melanoma in vitro in SK-MEL-2 and SK-MEL-28 cell lines. We found that NCL induces significant ROS generation and apoptosis through a series of molecular mechanisms, such as depolarization of mitochondrial membrane potential, arresting the cell cycle at the sub G1 phase with a significant increase in the DNA cleavage via topoisomerase II in both cell lines. We also found that NCL potently inhibited metastasis, which was examined by scratch wound assay, Additionally, we found that NCL inhibits the most important markers involved in the EMT signaling cascade that are stimulated by TGF-β such as N-cadherin, Snail, Slug, Vimentin, α-SMA and p-Smad 2/3. This work provides useful insights into the mechanism of NCL in BRAF/NRAF mutant melanoma cells via inhibition of molecular signaling events involved in EMT signaling, and apoptosis induction.
Collapse
Affiliation(s)
- Sowjanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India; Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India; Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA; Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ramya Tokala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Shankaraiah Nagula
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India.
| |
Collapse
|
9
|
Kauerová T, Pérez-Pérez MJ, Kollar P. Salicylanilides and Their Anticancer Properties. Int J Mol Sci 2023; 24:ijms24021728. [PMID: 36675241 PMCID: PMC9861143 DOI: 10.3390/ijms24021728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Salicylanilides are pharmacologically active compounds with a wide spectrum of biological effects. Halogenated salicylanilides, which have been used for decades in human and veterinary medicine as anthelmintics, have recently emerged as candidates for drug repurposing in oncology. The most prominent example of salicylanilide anthelmintic, that is intensively studied for its potential anticancer properties, is niclosamide. Nevertheless, recent studies have discovered extensive anticancer potential in a number of other salicylanilides. This potential of their anticancer action is mediated most likely by diverse mechanisms of action such as uncoupling of oxidative phosphorylation, inhibition of protein tyrosine kinase epidermal growth factor receptor, modulation of different signaling pathways as Wnt/β-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways or induction of B-Raf V600E inhibition. Here we provide a comprehensive overview of the current knowledge about the proposed mechanisms of action of anticancer activity of salicylanilides based on preclinical in vitro and in vivo studies, or structural requirements for such an activity.
Collapse
Affiliation(s)
- Tereza Kauerová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | | | - Peter Kollar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
- Correspondence: ; Tel.: +420-541-562-892
| |
Collapse
|
10
|
Lam SK, Yan S, Lam JSM, Feng Y, Khan M, Chen C, Ko FCF, Ho JCM. Disturbance of the Warburg effect by dichloroacetate and niclosamide suppresses the growth of different sub-types of malignant pleural mesothelioma in vitro and in vivo. Front Pharmacol 2022; 13:1020343. [PMID: 36304150 PMCID: PMC9592830 DOI: 10.3389/fphar.2022.1020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Inhalation of asbestos fibers is the most common cause of malignant pleural mesothelioma (MPM). In 2004, the United States Food and Drug Administration approved a combination of cisplatin with pemetrexed to treat unresectable MPM. Nonetheless novel treatment is urgently needed. The objective of this study is to report the combination effect of dichloroacetate (DCA) or niclosamide (Nic) Nic in MPM. Materials and methods: The effect of a combination of DCA and Nic was studied using a panel of MPM cell lines (H28, MSTO-211H, H226, H2052, and H2452). Cell viability was monitored by MTT assay. Glycolysis, oxidative phosphorylation, glucose, glycogen, pyruvate, lactate, citrate, succinate and ATP levels were determined by corresponding ELISA. Apoptosis, mitochondrial transmembrane potential, cell cycle analysis, hydrogen peroxide and superoxide were investigated by flow cytometry. Cell migration and colony formation were investigated by transwell migration and colony formation assays respectively. The in vivo effect was confirmed using 211H and H226 nude mice xenograft models. Results and conclusion: Cell viability was reduced. Disturbance of glycolysis and/or oxidative phosphorylation resulted in downregulation of glycogen, citrate and succinate. DCA and/or Nic increased apoptosis, mitochondrial transmembrane depolarization, G2/M arrest and reactive oxygen species. Moreover, DCA and/or Nic suppressed cell migration and colony formation. Furthermore, a better initial tumor suppressive effect was induced by the DCA/Nic combination compared with either drug alone in both 211H and H226 xenograft models. In H226 xenografts, DCA/Nic increased median survival of mice compared with single treatment. Single drug and/or a combination disturbed the Warburg effect and activated apoptosis, and inhibition of migration and proliferation in vivo. In conclusion, dichloroacetate and/or niclosamide showed a tumor suppressive effect in MPM in vitro and in vivo, partially mediated by disturbance of glycolysis/oxidative phosphorylation, apoptosis, ROS production, G2/M arrest, and suppression of migration and proliferation.
Collapse
|
11
|
Overexpression of microRNA-130a represses uveal melanoma cell migration and invasion through inactivation of the Wnt/β-catenin signaling pathway by downregulating USP6. Cancer Gene Ther 2022; 29:930-939. [PMID: 34522027 DOI: 10.1038/s41417-021-00377-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 11/09/2022]
Abstract
Uveal melanoma (UM) is a neoplasm arising from melanocytes of the ciliary body, choroid, and iris of the eye, which is the most common primary malignant intraocular tumor. microRNA-130a (miR-130a) has been confirmed to be underexpressed in many types of cancers. Here we aimed to investigate the mechanism whereby miR-130a affects the Wnt/β-catenin signaling pathway by targeting ubiquitin-specific protease 6 (USP6) in UM. Ocular specimens of 62 patients with UM and 42 participants subjected to enucleation due to trauma were collected. In the normal uveal tissues and those from metastatic and non-metastatic UM, we evaluated miR-130a expression by RT-qPCR and then measured mRNA and protein expression of recombinant human mothers against decapentaplegic homolog 4 (SMAD4), USP6, related factors of the Wnt/β-catenin signaling pathway, and epidermal growth factor receptor (EGFR) by RT-qPCR and western blot analysis. Subsequently, the interaction between miR-130a and USP6 was identified by bioinformatics analysis and dual-luciferase reporter gene assay. Next, UM cell migration and invasion abilities, as well as tumor growth in nude mice, were measured through gain- and loss-of-function studies of miR-130a and USP6. miR-130a expression was downregulated in uveal tissues from patients with UM, especially in metastatic uveal tissues. The overall survival of UM patients with low miR-130a expression was shorter than those with high miR-130a expression. USP6 was a target of miR-130a and the overexpression of miR-130a or inhibition of USP6 in UM MUM-2B and MUM-2C cell lines inhibited the expression of Wnt, β-catenin, and EGFR, and activated SMAD4 expression, while reducing UM cell migration and invasion abilities in vitro. The above changes could be reversed by overexpressing USP6 in vitro, whereas overexpressed miR-130a could inhibit the tumor growth in nude mice. Taken together, overexpressed miR-130a inhibited USP6 expression to repress UM cell migration and invasion abilities through inactivating the Wnt/β-catenin signaling pathway, which could be a potential candidate for treatment of UM.
Collapse
|
12
|
Caban M, Owczarek K, Lewandowska U. The Role of Metalloproteinases and Their Tissue Inhibitors on Ocular Diseases: Focusing on Potential Mechanisms. Int J Mol Sci 2022; 23:ijms23084256. [PMID: 35457074 PMCID: PMC9026850 DOI: 10.3390/ijms23084256] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023] Open
Abstract
Eye diseases are associated with visual impairment, reduced quality of life, and may even lead to vision loss. The efficacy of available treatment of eye diseases is not satisfactory. The unique environment of the eye related to anatomical and physiological barriers and constraints limits the bioavailability of existing agents. In turn, complex ethiopathogenesis of ocular disorders that used drugs generally are non-disease specific and do not act causally. Therefore, there is a need for the development of a new therapeutic and preventive approach. It seems that matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have a significant role in the development and progression of eye diseases and could be used in the therapy of these disorders as pharmacological targets. MMPs and TIMPs play an important role in the angiogenesis, epithelial-mesenchymal transition, cell invasion, and migration, which occur in ocular diseases. In this review, we aim to describe the participation of MMPs and TIMPs in the eye diseases, such as age-related macular degeneration, cataract, diabetic retinopathy, dry eye syndrome, glaucoma, and ocular cancers, posterior capsule opacification focusing on potential mechanisms.
Collapse
|
13
|
Host cell targeting of novel antimycobacterial 4-aminosalicylic acid derivatives with tuftsin carrier peptides. Eur J Pharm Biopharm 2022; 174:111-130. [DOI: 10.1016/j.ejpb.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022]
|
14
|
Niclosamide induces miR-148a to inhibit PXR and sensitize colon cancer stem cells to chemotherapy. Stem Cell Reports 2022; 17:835-848. [PMID: 35276090 PMCID: PMC9023769 DOI: 10.1016/j.stemcr.2022.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Tumor recurrence is often attributed to cancer stem cells (CSCs). We previously demonstrated that down-regulation of Pregnane X Receptor (PXR) decreases the chemoresistance of CSCs and prevents colorectal cancer recurrence. Currently, no PXR inhibitor is usable in clinic. Here, we identify miR-148a as a targetable element upstream of PXR signaling in CSCs, which when over-expressed decreases PXR expression and impairs tumor relapse after chemotherapy in mouse tumor xenografts. We then develop a fluorescent reporter screen for miR-148a activators and identify the anti-helminthic drug niclosamide as an inducer of miR-148a expression. Consequently, niclosamide decreased PXR expression and CSC numbers in colorectal cancer patient-derived cell lines and synergized with chemotherapeutic agents to prevent CSC chemoresistance and tumor recurrence in vivo. Our study suggests that endogenous miRNA inducers is a viable strategy to down-regulate PXR and illuminates niclosamide as a neoadjuvant repurposing strategy to prevent tumor relapse in colon cancer. miR-148a expression is decreased in colon cancer stem cells Forced expression of miR-148a inhibits colon cancer stem cell chemoresistance High-content screening identified niclosamide as a potent miR-148a inducer Niclosamide induces miR-148a expression, inhibits PXR expression in CSCs and prevents tumor
Collapse
|
15
|
Xu Y, He X, Wang S, Sun B, Jia R, Chai P, Li F, Yang Y, Ge S, Jia R, Yang YG, Fan X. The m 6A reading protein YTHDF3 potentiates tumorigenicity of cancer stem-like cells in ocular melanoma through facilitating CTNNB1 translation. Oncogene 2022; 41:1281-1297. [PMID: 35110680 DOI: 10.1038/s41388-021-02146-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/06/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023]
Abstract
N6-methyladenosine (m6A) is the most universal internal RNA modification on messenger RNAs and regulates the fate and functions of m6A-modified transcripts through m6A-specific binding proteins. Nevertheless, the functional role and potential mechanism of the m6A reading proteins in ocular melanoma tumorigenicity, especially cancer stem-like cell (CSC) properties, remain to be elucidated. Herein, we demonstrated that the m6A reading protein YTHDF3 promotes the translation of the target transcript CTNNB1, contributing to ocular melanoma propagation and migration through m6A methylation. YTHDF3 is highly expressed in ocular melanoma stem-like cells and abundantly enriched in ocular melanoma tissues, which is related to poor clinical prognosis. Moreover, YTHDF3 is required for the maintenance of CSC properties and tumor initiation capacity in ocular melanoma both in vitro and in vivo. Ocular melanoma cells with targeted YTHDF3 knockdown exhibited inhibitory tumor proliferation and migration abilities. Transcriptome-wide mapping of m6A peaks and YTHDF3 binding peaks on mRNAs revealed a key target gene candidate, CTNNB1. Mechanistically, YTHDF3 enhances CTNNB1 translation through recognizing and binding the m6A peaks on CTNNB1 mRNA.
Collapse
Affiliation(s)
- Yangfan Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Xiaoyu He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Shanzheng Wang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
- China National Center for Bioinformation, Beijing, P.R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Baofa Sun
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
- China National Center for Bioinformation, Beijing, P.R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, P.R. China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, P.R. China
| | - Ruobing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Fang Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Ying Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
- China National Center for Bioinformation, Beijing, P.R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, P.R. China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, P.R. China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Yun-Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China.
- China National Center for Bioinformation, Beijing, P.R. China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, P.R. China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, P.R. China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China.
| |
Collapse
|
16
|
Li Y, Li P, He Q, Zhang R, Li Y, Kamar N, Peppelenbosch MP, de Man RA, Wang L, Pan Q. Niclosamide inhibits hepatitis E virus through suppression of NF-kappaB signalling. Antiviral Res 2021; 197:105228. [PMID: 34929248 DOI: 10.1016/j.antiviral.2021.105228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/05/2021] [Accepted: 12/15/2021] [Indexed: 11/28/2022]
Abstract
Hepatitis E virus (HEV) infection can cause severe acute hepatitis in pregnant women and chronic infection in immunocompromised patients, promoting the development of effective antiviral therapies. In this study, we identified niclosamide, a widely used anthelmintic drug, as a potent inhibitor of HEV replication in a range of subgenomic and full-length HEV models, which are based on human cell lines and liver organoids harbouring genotype 1 and 3 HEV strains. Niclosamide is known to have multiple cellular targets including the inhibition of STAT3 and NFκB signaling pathways. Although HEV activates STAT3, we excluded its involvement in the anti-HEV activity of niclosamide. Interestingly, HEV infection activated NFκB and activation of NFκB promoted viral replication. Consistently, stable silencing of NFκB by lentiviral RNAi inhibited HEV replication. By targeting NFκB signaling, we further revealed its role in mediating the anti-HEV action of niclosamide. These results demonstrated that niclosamide potently inhibits HEV replication by inhibiting NFκB signaling but independent of STAT3. Our findings support the potential of repurposing niclosamide for treating HEV infection.
Collapse
Affiliation(s)
- Yunlong Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Pengfei Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Qiyu He
- Department of Microbiology and Infectious Disease Centre, School of Basic Medical Sciences, Peking University Health Science Centre, Beijing, China
| | - Ruyi Zhang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Yang Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Nassim Kamar
- Department of Nephrology, Dialysis and Organ Transplantation, CHU Rangueil, INSERM U1043, IFR-BMT, University Paul Sabatier, Toulouse, France
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Robert A de Man
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Lin Wang
- Department of Microbiology and Infectious Disease Centre, School of Basic Medical Sciences, Peking University Health Science Centre, Beijing, China
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
17
|
Zhou J, Wang S, Nie D, Lai P, Li Y, Li Y, Jin Y, Pan J. Super-enhancer landscape reveals leukemia stem cell reliance on X-box binding protein 1 as a therapeutic vulnerability. Sci Transl Med 2021; 13:eabh3462. [PMID: 34550724 DOI: 10.1126/scitranslmed.abh3462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jingfeng Zhou
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shubo Wang
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Danian Nie
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Peilong Lai
- Department of Hematology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yiqing Li
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yanli Jin
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
18
|
Huang F, Santinon F, Flores González RE, del Rincón SV. Melanoma Plasticity: Promoter of Metastasis and Resistance to Therapy. Front Oncol 2021; 11:756001. [PMID: 34604096 PMCID: PMC8481945 DOI: 10.3389/fonc.2021.756001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer. Although targeted therapies and immunotherapies have revolutionized the treatment of metastatic melanoma, most patients are not cured. Therapy resistance remains a significant clinical challenge. Melanoma comprises phenotypically distinct subpopulations of cells, exhibiting distinct gene signatures leading to tumor heterogeneity and favoring therapeutic resistance. Cellular plasticity in melanoma is referred to as phenotype switching. Regardless of their genomic classification, melanomas switch from a proliferative and differentiated phenotype to an invasive, dedifferentiated and often therapy-resistant state. In this review we discuss potential mechanisms underpinning melanoma phenotype switching, how this cellular plasticity contributes to resistance to both targeted therapies and immunotherapies. Finally, we highlight novel strategies to target plasticity and their potential clinical impact in melanoma.
Collapse
Affiliation(s)
- Fan Huang
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - François Santinon
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Raúl Ernesto Flores González
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Sonia V. del Rincón
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
- Department of Oncology, McGill University, Montréal, QC, Canada
| |
Collapse
|
19
|
Lithocholic acid-tryptophan conjugate (UniPR126) based mixed micelle as a nano carrier for specific delivery of niclosamide to prostate cancer via EphA2 receptor. Int J Pharm 2021; 605:120819. [PMID: 34166727 DOI: 10.1016/j.ijpharm.2021.120819] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Targeted delivery of chemotherapeutic agents is considered a prominent strategy for the treatment of cancer due to its site-specific delivery, augmented penetration, bioavailability, and improved therapeutic efficiency. In the present study, we employed UniPR126 as a carrier in a mixed nanomicellar delivery system to target and deliver anticancer drug NIC specifically to cancer cells via EphA2 receptors as these receptors are overexpressed in cancer cells but not in normal cells. The specificity of the carrier was confirmed from the significant enhancement in the uptake of coumarin-6 loaded mixed nanomicelle by EphA2 highly expressed PC-3 cells compared to EphA2 low expressed H4 cells. Further, niclosamide-loaded lithocholic acid tryptophan conjugate-based mixed nanomicelle has shown significant synergistic cytotoxicity in PC-3 but not in H4 cells. In vivo anticancer efficacy data in PC-3 xenograft revealed a significant reduction in the tumor volume (66.87%) with niclosamide-loaded lithocholic acid tryptophan conjugate nanomicelle, where pure niclosamide showed just half of the activity. Molecular signaling data by western blotting also indicated that niclosamide-loaded lithocholic acid tryptophan conjugate nanomicelle interfered with the EphA2 receptor signaling and inhibition of the Wnt/beta-catenin pathway and resulted in the synergistic anticancer activity compared to niclosamide pure drug.
Collapse
|
20
|
Goldrick C, Palanga L, Tang B, Mealy G, Crown J, Horgan N, Kennedy S, Walsh N. Hindsight: Review of Preclinical Disease Models for the Development of New Treatments for Uveal Melanoma. J Cancer 2021; 12:4672-4685. [PMID: 34149931 PMCID: PMC8210544 DOI: 10.7150/jca.53954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
The molecular, histopathological, genomic and transcriptomic characteristics of uveal melanoma (UM) have identified four molecular subgroups with different clinical outcomes. Despite the improvements in UM classification and biological pathology, current treatments do not reduce the occurrence of metastasis. The development of effective adjuvant and metastatic therapies for UM has been slow and extremely limited. Preclinical models that closely resemble the molecular and genetic UM subgroups are essential for translating molecular findings into improved clinical treatment. In this review, we provide a retrospective view of the existing preclinical models used to study UM, and give an overview of their strengths and limitations. We review targeted therapy clinical trial data to evaluate the gap in the translation of preclinical findings to human studies. Reflecting on the current high attrition rates of clinical trials for UM, preclinical models that effectively recapitulate the human in vivo situation and/or accurately reflect the subtype classifications would enhance the translational impact of experimental data and have crucial implications for the advancement of personalised medicine.
Collapse
Affiliation(s)
- Caoimhe Goldrick
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Letizia Palanga
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Bobby Tang
- Royal Victoria Eye and Ear Research Foundation, Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin, Ireland
| | - Grace Mealy
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - John Crown
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin, Ireland
- Department of Medical Oncology, St. Vincent's University Hospital, Dublin, Ireland
| | - Noel Horgan
- Royal Victoria Eye and Ear Research Foundation, Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin, Ireland
| | - Susan Kennedy
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin, Ireland
- Royal Victoria Eye and Ear Research Foundation, Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin, Ireland
| | - Naomi Walsh
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
21
|
Identification of survival-related genes and a novel gene-based prognostic signature involving the tumor microenvironment of uveal melanoma. Int Immunopharmacol 2021; 96:107816. [PMID: 34162166 DOI: 10.1016/j.intimp.2021.107816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022]
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults and almost fifty percent of patients subsequently develop systemic metastases usually involving the liver. The tumor microenvironment (TME) is crucial to the initiation and progression of tumors. In the present study, we comprehensively evaluated the TME of primary UM samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database by using several bioinformatic algorithms. The prognostic value of immune score and infiltrating immune cells in the TME were evaluated. Differentially expressed genes between the low- and high-immune score groups were also identified. The majority of tumor-infiltrating lymphocytes in UM have been determined to be activated CD8 + T cells. Therefore, weighted gene co-expression network analysis (WGCNA) was performed to identify the co-expression modules and genes significantly associated with the level of infiltrating CD8 + T cells in UM. Survival-related genes involved in the TME were identified by univariate Cox regression analysis. Furthermore, an eight-gene-based prognostic signature was established in the training dataset TCGA-UM via Lasso-penalized and multivariate Cox regression analyses. The predictive value of this signature was validated in two testing datasets. Besides, a nomogram was established to serve clinical practice. Moreover, hub genes involved in the infiltrating CD8 + T cells were identified and a potential targeted therapy for preventing metastasis of UM was proposed based on the results. In summary, our results provided a robust gene-based prognostic signature for predicting prognosis of UM patients and proposed a potential targeted therapy for preventing UM metastasis.
Collapse
|
22
|
An L, Zhang P, Shen W, Yi X, Yin W, Jiang R, Xiao C. A sulfur dioxide polymer prodrug showing combined effect with doxorubicin in combating subcutaneous and metastatic melanoma. Bioact Mater 2021; 6:1365-1374. [PMID: 33210029 PMCID: PMC7658323 DOI: 10.1016/j.bioactmat.2020.10.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/10/2020] [Accepted: 10/28/2020] [Indexed: 02/09/2023] Open
Abstract
Melanoma, as the most aggressive and treatment-resistant skin malignancy, is responsible for about 80% of all skin cancer mortalities. Prone to invade into the dermis and form distant metastases significantly reduce the patient survival rate. Therefore, early treatment of the melanoma in situ or timely blocking the deterioration of metastases is critical. In this study, a sulfur dioxide (SO2) polymer prodrug was designed as both an intracellular glutathione (GSH)-responsive SO2 generator and a carrier of doxorubicin (DOX), and used for the treatment of subcutaneous and metastatic melanoma. Firstly, chemical conjugation of 4-N-(2,4-dinitrobenzenesulfonyl)-imino-1-butyric acid (DIBA) onto the side chains of methoxy poly (ethylene glycol) grafted dextran (mPEG-g-Dex) resulted in the synthesis of the amphiphilic polymer prodrug of SO2, mPEG-g-Dex (DIBA). The obtained mPEG-g-Dex (DIBA) could self-assemble into stable micellar nanoparticles and exhibited a glutathione-responsive SO2 release behavior. Subsequently, DOX was encapsulated into the core of mPEG-g-Dex (DIBA) micelles to form DOX-loaded nanoparticles (PDDN-DOX). The formed PDDN-DOX could be internalized by B16F10 cells and synchronously release DOX and SO2 into the tumor cells. As a result, PDDN-DOX exerted synergistic anti-tumor effects in B16F10 melanoma cells because of the oxidative damage properties of SO2 and toxic effects of DOX. Furthermore, in vivo experiments verified that PDDN-DOX had great potential for the treatment of subcutaneous and metastasis melanoma. Collectively, our present work demonstrates that the combination of SO2-based gas therapy and chemotherapeutics offers a new avenue for inhibiting melanoma progression and metastases.
Collapse
Affiliation(s)
- Lin An
- Department of Hand Surgery and Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, PR China
| | - Wei Shen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Xuan Yi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, PR China
| | - Weitian Yin
- Department of Hand Surgery and Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Rihua Jiang
- Department of Hand Surgery and Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, PR China
| |
Collapse
|
23
|
Alavi SE, Ebrahimi Shahmabadi H. Anthelmintics for drug repurposing: Opportunities and challenges. Saudi Pharm J 2021; 29:434-445. [PMID: 34135669 PMCID: PMC8180459 DOI: 10.1016/j.jsps.2021.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022] Open
Abstract
Drug repositioning is defined as a process to identify a new application for drugs. This approach is critical as it takes advantage of well-known pharmacokinetics, pharmacodynamics, and toxicity profiles of the drugs; thus, the chance of their future failure decreases, and the cost of their development and the required time for their approval are reduced. Anthelmintics, which are antiparasitic drugs, have recently demonstrated promising anticancer effects in vitro and in vivo. This literature review focuses on the potential of anthelmintics for repositioning in the treatment of cancers. It also discusses their pharmacokinetics and pharmacodynamics as antiparasitic drugs, proposed anticancer mechanisms, present development conditions, challenges in cancer therapy, and strategies to overcome these challenges.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hasan Ebrahimi Shahmabadi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
24
|
Chen YN, Li Y, Wei WB. Research Progress of Cancer Stem Cells in Uveal Melanoma. Onco Targets Ther 2020; 13:12243-12252. [PMID: 33273829 PMCID: PMC7708312 DOI: 10.2147/ott.s284262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Uveal melanoma is the most common malignant tumor in adult eyes, mostly in the choroid, but also in the iris and ciliary body. Distant metastasis is found in nearly half of the patients. Cancer stem cells are a kind of cells with the ability of self-renewal and multidirectional differentiation, which are related to tumor invasion and metastasis. Although the concept of cancer stem cells is relatively mature in other tumors, its existence and verification methods in uveal melanoma are still uncertain. A more in-depth understanding of cancer stem cells and their mechanism may reveal new strategies to treat uveal melanoma. This article reviews the concept of cancer stem cells and their research progress in uveal melanoma, including identification, probable markers, cancer stem cell targeted drug therapy and the controversies and prospects in this field.
Collapse
Affiliation(s)
- Yu Ning Chen
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yang Li
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wen Bin Wei
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
25
|
Deng G, Zeng F, Su J, Zhao S, Hu R, Zhu W, Hu S, Chen X, Yin M. BET inhibitor suppresses melanoma progression via the noncanonical NF-κB/SPP1 pathway. Am J Cancer Res 2020; 10:11428-11443. [PMID: 33052224 PMCID: PMC7546000 DOI: 10.7150/thno.47432] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Bromodomain and extra-terminal domain (BET) inhibitors have shown profound efficacy against hematologic malignancies and solid tumors in preclinical studies. However, the underlying molecular mechanism in melanoma is not well understood. Here we identified secreted phosphoprotein 1 (SPP1) as a melanoma driver and a crucial target of BET inhibitors in melanoma. Methods: Bioinformatics analysis and meta-analysis were used to evaluate the SPP1 expression in normal tissues, primary melanoma, and metastatic melanoma. Real-time PCR (RT-PCR) and Western blotting were employed to quantify SPP1 expression in melanoma cells and tissues. Cell proliferation, wound healing, and Transwell assays were carried out to evaluate the effects of SPP1 and BET inhibitors in melanoma cells in vitro. A xenograft mouse model was used to investigate the effect of SPP1 and BET inhibitors on melanoma in vivo. Chromatin immunoprecipitation (ChIP) assay was performed to evaluate the regulatory mechanism of BET inhibitors on SPP1. Results: SPP1 was identified as a melanoma driver by bioinformatics analysis, and meta-analysis determined it to be a diagnostic and prognostic biomarker for melanoma. SPP1 overexpression was associated with poor melanoma prognosis, and silencing SPP1 suppressed melanoma cell proliferation, migration, and invasion. Through a pilot drug screen, we identified BET inhibitors as ideal therapeutic agents that suppressed SPP1 expression. Also, SPP1 overexpression could partially reverse the suppressive effect of BET inhibitors on melanoma. We further demonstrated that bromodomain-containing 4 (BRD4) regulated SPP1 expression. Notably, BRD4 did not bind directly to the SPP1 promoter but regulated SPP1 expression through NFKB2. Silencing of NFKB2 resembled the phenotype of BET inhibitors treatment and SPP1 silencing in melanoma. Conclusion: Our findings highlight SPP1 as an essential target of BET inhibitors and provide a novel mechanism by which BET inhibitors suppress melanoma progression via the noncanonical NF-κB/SPP1 pathway.
Collapse
|
26
|
Zhou J, Jin B, Jin Y, Liu Y, Pan J. Erratum: The antihelminthic drug niclosamide effectively inhibits the malignant phenotypes of uveal melanoma in vitro and in vivo: Erratum. Am J Cancer Res 2020; 10:7401-7402. [PMID: 32641999 PMCID: PMC7330861 DOI: 10.7150/thno.47923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jingfeng Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 S. Xianlie Road, Guangzhou, 510060, China
| | - Bei Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 S. Xianlie Road, Guangzhou, 510060, China
| | - Yanli Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 S. Xianlie Road, Guangzhou, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 S. Xianlie Road, Guangzhou, 510060, China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 S. Xianlie Road, Guangzhou, 510060, China
| |
Collapse
|
27
|
Ghandadi M, Valadan R, Mohammadi H, Akhtari J, Khodashenas S, Ashari S. Wnt-β-catenin Signaling Pathway, the Achilles' Heels of Cancer Multidrug Resistance. Curr Pharm Des 2020; 25:4192-4207. [PMID: 31721699 DOI: 10.2174/1381612825666191112142943] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Most of the anticancer chemotherapies are hampered via the development of multidrug resistance (MDR), which is the resistance of tumor cells against cytotoxic effects of multiple chemotherapeutic agents. Overexpression and/or over-activation of ATP-dependent drug efflux transporters is a key mechanism underlying MDR development. Moreover, enhancement of drug metabolism, changes in drug targets and aberrant activation of the main signaling pathways, including Wnt, Akt and NF-κB are also responsible for MDR. METHODS In this study, we have reviewed the roles of Wnt signaling in MDR as well as its potential therapeutic significance. Pubmed and Scopus have been searched using Wnt, β-catenin, cancer, MDR and multidrug resistance as keywords. The last search was done in March 2019. Manuscripts investigating the roles of Wnt signaling in MDR or studying the modulation of MDR through the inhibition of Wnt signaling have been involved in the study. The main focus of the manuscript is regulation of MDR related transporters by canonical Wnt signaling pathway. RESULT AND CONCLUSION Wnt signaling has been involved in several pathophysiological states, including carcinogenesis and embryonic development. Wnt signaling is linked to various aspects of MDR including P-glycoprotein and multidrug resistance protein 1 regulation through its canonical pathways. Aberrant activation of Wnt/β- catenin signaling leads to the induction of cancer MDR mainly through the overexpression and/or over-activation of MDR related transporters. Accordingly, Wnt/β-catenin signaling can be a potential target for modulating cancer MDR.
Collapse
Affiliation(s)
- Morteza Ghandadi
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Valadan
- Molecular and Cell Biology Research Center (MCBRC), Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran.,Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Hamidreza Mohammadi
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of toxicology and pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Akhtari
- Molecular and Cell Biology Research Center (MCBRC), Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran.,Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shabanali Khodashenas
- Department of Medical Biotechnology, Faculty of Medical Sciences, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sorour Ashari
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of toxicology and pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
28
|
Ring-Substituted 1-Hydroxynaphthalene-2-Carboxanilides Inhibit Proliferation and Trigger Mitochondria-Mediated Apoptosis. Int J Mol Sci 2020; 21:ijms21103416. [PMID: 32408543 PMCID: PMC7279329 DOI: 10.3390/ijms21103416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022] Open
Abstract
Ring-substituted 1-hydroxynaphthalene-2-carboxanilides were previously investigated for their antimycobacterial properties. In our study, we have shown their antiproliferative and cell death-inducing effects in cancer cell lines. Cell proliferation and viability were assessed by WST-1 assay and a dye exclusion test, respectively. Cell cycle distribution, phosphatidylserine externalization, levels of reactive oxygen or nitrogen species (RONS), mitochondrial membrane depolarization, and release of cytochrome c were estimated by flow cytometry. Levels of regulatory proteins were determined by Western blotting. Our data suggest that the ability to inhibit the proliferation of THP-1 or MCF-7 cells might be referred to meta- or para-substituted derivatives with electron-withdrawing groups -F, -Br, or -CF3 at anilide moiety. This effect was accompanied by accumulation of cells in G1 phase. Compound 10 also induced apoptosis in THP-1 cells in association with a loss of mitochondrial membrane potential and production of mitochondrial superoxide. Our study provides a new insight into the action of salicylanilide derivatives, hydroxynaphthalene carboxamides, in cancer cells. Thus, their structure merits further investigation as a model moiety of new small-molecule compounds with potential anticancer properties.
Collapse
|
29
|
Zhirnik AS, Semochkina YP, Moskaleva EY. Inhibition of DNA Double-Strand Break Repair by Niclosamide in Human Colorectal Cancer Cells. BIOL BULL+ 2020. [DOI: 10.1134/s1062359019120100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Karyopherin α 2 promotes proliferation, migration and invasion through activating NF-κB/p65 signaling pathways in melanoma cells. Life Sci 2020; 252:117611. [PMID: 32243925 DOI: 10.1016/j.lfs.2020.117611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/12/2020] [Accepted: 03/28/2020] [Indexed: 12/18/2022]
Abstract
AIMS Melanoma is a fatal malignancy. Karyopherin α 2 (KPNA2) plays an important role in many carcinogenesis. This study was aimed to study the role of KPNA2 in cellular functions and molecular mechanisms of melanoma. MAIN METHODS We investigated the expression and prognosis of KPNA2 in melanoma using the GEPIA database (http://gepia.cancer-pku.cn/). The effect of KPNA2 on melanoma cells was determined using real-time PCR, western blot, immunofluorescence assay, CCK-8, colony formation, wound healing assay, transwell assay, EMSA, and immunohistochemistry. The influence of KPNA2 on the tumorigenicity of melanoma cells was evaluated in a nude mice model in vivo. KEY FINDINGS Our results showed that KPNA2 expression is relatively high in melanoma tissues and cells, and melanoma patients with higher expression of KPNA2 had lower overall survival rate and disease free survival rate. KPNA2 promoted proliferation ability and increased the expression of PCNA, Ki67, and C-MYC in melanoma cells. Further, KPNA2 could promote migration and invasion and increase the expression of MMP2 and MMP9. Mechanism studies showed that KPNA2 activated NF-κB/p65 signaling pathways, as evidenced by the nuclear translocation of p65 and increased the expression of COX-2, ICAM-1, iNOS, and MCP1 in melanoma cells. NF-κB inhibitor JSH-23 could reverse the pro-tumor effects of KPNA2 on melanoma cells. Moreover, upregulation of KPNA2 facilitated the tumorigenicity of melanoma cells. SIGNIFICANCE KPNA2 promotes proliferation, migration and invasion through enhancing NF-κB/p65 signaling pathways in melanoma cells. Our study suggests KPNA2 as a potential therapeutic target for the treatment of melanoma.
Collapse
|
31
|
González-Ruiz L, González-Moles MÁ, González-Ruiz I, Ruiz-Ávila I, Ayén Á, Ramos-García P. An update on the implications of cyclin D1 in melanomas. Pigment Cell Melanoma Res 2020; 33:788-805. [PMID: 32147907 DOI: 10.1111/pcmr.12874] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Cyclin D1 is a protein encoded by the CCND1 gene, located on 11q13 chromosome, which is a key component of the physiological regulation of the cell cycle. CCND1/cyclin D1 is upregulated in several types of human tumors including melanoma and is currently classified as an oncogene that promotes uncontrolled cell proliferation. Despite the demonstrated importance of CCND1/cyclin D1 as a central oncogene in several types of human tumors, its knowledge in melanoma is still limited. This review examines data published on upregulation of the CCND1 gene and cyclin D1 protein in the melanoma setting, focusing on the pathways and molecular mechanisms involved in the activation of the gene and on the clinical and therapeutic implications.
Collapse
Affiliation(s)
- Lucia González-Ruiz
- Dermatology Service, Ciudad Real General University Hospital, Ciudad Real, Spain
| | | | | | - Isabel Ruiz-Ávila
- Biohealth Research Institute, Granada, Spain.,Pathology Service, San Cecilio Hospital Complex, Granada, Spain
| | - Ángela Ayén
- Dermatology Service, San Cecilio Hospital Complex, Granada, Spain
| | | |
Collapse
|
32
|
Jin B, Zhang P, Zou H, Ye H, Wang Y, Zhang J, Yang H, Pan J. Verification of EZH2 as a druggable target in metastatic uveal melanoma. Mol Cancer 2020; 19:52. [PMID: 32127003 PMCID: PMC7055080 DOI: 10.1186/s12943-020-01173-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatic metastasis develops in ~ 50% of uveal melanoma (UM) patients with no effective treatments. Although GNAQ/GNA11 mutations are believed to confer pathogenesis of UM, the underlying mechanism of liver metastasis remains poorly understood. Given that profound epigenetic evolution may occur in the long journey of circulating tumor cells (CTCs) to distant organs, we hypothesized that EZH2 endowed tumor cells with enhanced malignant features (e.g., stemness and motility) during hepatic metastasis in UM. We aimed to test this hypothesis and explore whether EZH2 was a therapeutic target for hepatic metastatic UM patients. METHODS Expression of EZH2 in UM was detected by qRT-PCR, Western blotting and immunohistochemistry staining. Proliferation, apoptosis, cancer stem-like cells (CSCs) properties, migration and invasion were evaluated under circumstances of treatment with either EZH2 shRNA or EZH2 inhibitor GSK126. Antitumor activity and frequency of CSCs were determined by xenografted and PDX models with NOD/SCID mice. Hepatic metastasis was evaluated with NOG mice. RESULTS We found that EZH2 overexpressed in UM promoted the growth of UM; EZH2 increased the percentage and self-renewal of CSCs by miR-29c-DVL2-β-catenin signaling; EZH2 facilitates migration and invasion of UM cells via RhoGDIγ-Rac1 axis. Targeting EZH2 either by genetics or small molecule inhibitor GSK126 decreased CSCs and motility and abrogated the liver metastasis of UM. CONCLUSIONS These findings validate EZH2 as a druggable target in metastatic UM patients, and may shed light on the understanding and interfering the complicated metastatic process.
Collapse
Affiliation(s)
- Bei Jin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Ping Zhang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Hailin Zou
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Huijing Ye
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Yun Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
33
|
Richards JR, Yoo JH, Shin D, Odelberg SJ. Mouse models of uveal melanoma: Strengths, weaknesses, and future directions. Pigment Cell Melanoma Res 2020; 33:264-278. [PMID: 31880399 PMCID: PMC7065156 DOI: 10.1111/pcmr.12853] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/21/2019] [Indexed: 12/14/2022]
Abstract
Uveal melanoma is the most common primary malignancy of the eye, and a number of discoveries in the last decade have led to a more thorough molecular characterization of this cancer. However, the prognosis remains dismal for patients with metastases, and there is an urgent need to identify treatments that are effective for this stage of disease. Animal models are important tools for preclinical studies of uveal melanoma. A variety of models exist, and they have specific advantages, disadvantages, and applications. In this review article, these differences are explored in detail, and ideas for new models that might overcome current challenges are proposed.
Collapse
Affiliation(s)
- Jackson R. Richards
- Department of Oncological SciencesUniversity of UtahSalt Lake CityUTUSA
- Program in Molecular MedicineUniversity of UtahSalt Lake CityUTUSA
| | - Jae Hyuk Yoo
- Program in Molecular MedicineUniversity of UtahSalt Lake CityUTUSA
| | - Donghan Shin
- Program in Molecular MedicineUniversity of UtahSalt Lake CityUTUSA
| | - Shannon J. Odelberg
- Program in Molecular MedicineUniversity of UtahSalt Lake CityUTUSA
- Department of Internal MedicineDivision of Cardiovascular MedicineUniversity of UtahSalt Lake CityUTUSA
- Department of Neurobiology and AnatomyUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
34
|
Wu S, Chen H, Zuo L, Jiang H, Yan H. Suppression of long noncoding RNA MALAT1 inhibits the development of uveal melanoma via microRNA-608-mediated inhibition of HOXC4. Am J Physiol Cell Physiol 2020; 318:C903-C912. [PMID: 31913701 DOI: 10.1152/ajpcell.00262.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study explored the effects of the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) on the development of uveal melanoma. Moreover, the role of the MALAT1/microRNA-608 (miR-608)/homeobox C4 (HOXC4) axis was assessed by evaluating the proliferation, invasion, and migration, as well as the cell cycle distribution of uveal melanoma in vitro after knocking down MALAT1 or HOXC4 and/or overexpression of miR-608 in uveal melanoma cells (MUM-2B and C918). Moreover, the effects of the MALAT1/miR-608/HOXC4 axis in uveal melanoma in vivo were further evaluated by injecting the C918 cells into the NOD/SCID mice. HOXC4 was found to be a gene upregulated in uveal melanoma, while knockdown of its expression resulted in suppression of uveal melanoma cell migration, proliferation, and invasion, as well as cell cycle progression. In addition, the upregulation of miR-608 reduced the expression of HOXC4 in the uveal melanoma cells, which was rescued by overexpression of MALAT1. Hence, MALAT1 could upregulate the HOXC4 by binding to miR-608. The suppressed progression of uveal melanoma in vitro by miR-608 was rescued by overexpression of MALAT1. Additionally, in vivo assays demonstrated that downregulation of MALAT1 could suppress tumor growth through downregulation of HOXC4 expression via increasing miR-608 in uveal melanoma. In summary, MALAT1 downregulation functions to restrain the development of uveal melanoma via miR-608-mediated inhibition of HOXC4.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Han Chen
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Ling Zuo
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Hai Jiang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Hongtao Yan
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
35
|
Zhou J, Liu S, Wang Y, Dai W, Zou H, Wang S, Zhang J, Pan J. Salinomycin effectively eliminates cancer stem-like cells and obviates hepatic metastasis in uveal melanoma. Mol Cancer 2019; 18:159. [PMID: 31718679 PMCID: PMC6852970 DOI: 10.1186/s12943-019-1068-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Uveal melanoma (UM) is the most common primary intraocular tumor. Hepatic metastasis is the major and direct death-related reason in UM patients. Given that cancer stem-like cells (CSCs) are roots of metastasis, targeting CSCs may be a promising strategy to overcome hepatic metastasis in UM. Salinomycin, which has been identified as a selective inhibitor of CSCs in multiple types of cancer, may be an attractive agent against CSCs thereby restrain hepatic metastasis in UM. The objective of the study is to explore the antitumor activity of salinomycin against UM and clarify its underlying mechanism. METHODS UM cells were treated with salinomycin, and its effects on cell proliferation, apoptosis, migration, invasion, CSCs population, and the related signal transduction pathways were determined. The in vivo antitumor activity of salinomycin was evaluated in the NOD/SCID UM xenograft model and intrasplenic transplantation liver metastasis mouse model. RESULTS We found that salinomycin remarkably obviated growth and survival in UM cell lines and in a UM xenograft mouse model. Meanwhile, salinomycin significantly eliminated CSCs and efficiently hampered hepatic metastasis in UM liver metastasis mouse model. Mechanistically, Twist1 was fundamental for the salinomycin-enabled CSCs elimination and migration/invasion blockage in UM cells. CONCLUSIONS Our findings suggest that targeting UM CSCs by salinomycin is a promising therapeutic strategy to hamper hepatic metastasis in UM. These results provide the first pre-clinical evidence for further testing of salinomycin for its antitumor efficacy in UM patients with hepatic metastasis.
Collapse
Affiliation(s)
- Jingfeng Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Shenglan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Yun Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Wei Dai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Hailin Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Shubo Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
36
|
Dandu K, Kallamadi PR, Thakur SS, Rao CM. Drug Repurposing for Retinoblastoma: Recent Advances. Curr Top Med Chem 2019; 19:1535-1544. [PMID: 30659544 DOI: 10.2174/1568026619666190119152706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
Retinoblastoma is the intraocular malignancy that occurs during early childhood. The current standard of care includes chemotherapy followed by focal consolidative therapies, and enucleation. Unfortunately, these are associated with many side and late effects. New drugs and/or drug combinations need to be developed for safe and effective treatment. This compelling need stimulated efforts to explore drug repurposing for retinoblastoma. While conventional drug development is a lengthy and expensive process, drug repurposing is a faster, alternate approach, where an existing drug, not meant for treating cancer, can be repurposed to treat retinoblastoma. The present article reviews various attempts to test drugs approved for different purposes such as calcium channels blockers, non-steroidal antiinflammatory drugs, cardenolides, antidiabetic, antibiotics and antimalarial for treating retinoblastoma. It also discusses other promising candidates that could be explored for repurposing for retinoblastoma.
Collapse
Affiliation(s)
- Kamakshi Dandu
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Prathap R Kallamadi
- School of Life Sciences. University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500 046, India
| | - Suman S Thakur
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500 007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
37
|
Zhang J, Liu S, Ye Q, Pan J. Transcriptional inhibition by CDK7/9 inhibitor SNS-032 abrogates oncogene addiction and reduces liver metastasis in uveal melanoma. Mol Cancer 2019; 18:140. [PMID: 31526394 PMCID: PMC6745806 DOI: 10.1186/s12943-019-1070-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Background Life of patients with uveal melanoma (UM) is largely threatened by liver metastasis. Little is known about the drivers of liver organotropic metastasis in UM. The elevated activity of transcription of oncogenes is presumably to drive aspects of tumors. We hypothesized that inhibition of transcription by cyclin-dependent kinase 7/9 (CDK7/9) inhibitor SNS-032 diminished liver metastasis by abrogating the putative oncogenes in charge of colonization, stemness, cell motility of UM cells in host liver microenvironment. Methods The effects of SNS-032 on the expression of the relevant oncogenes were examined by qRT-PCR and Western blotting analysis. Proliferative activity, frequency of CSCs and liver metastasis were evaluated by using NOD-SCID mouse xenograft model and NOG mouse model, respectively. Results The results showed that CDK7/9 were highly expressed in UM cells, and SNS-032 significantly suppressed the cellular proliferation, induced apoptosis, and inhibited the outgrowth of xenografted UM cells and PDX tumors in NOD-SCID mice, repressed the cancer stem-like cell (CSC) properties through transcriptional inhibition of stemness-related protein Krüppel-like factor 4 (KLF4), inhibited the invasive phonotypes of UM cells through matrix metalloproteinase 9 (MMP9). Mechanistically, SNS-032 repressed the c-Myc-dependent transcription of RhoA gene, and thereby lowered the RhoA GTPase activity and actin polymerization, and subsequently inhibited cell motility and liver metastasis. Conclusions In conclusion, we validate a set of transcription factors which confer metastatic traits (e.g., KLF4 for CSCs, c-Myc for cell motility) in UM cells. Our results identify SNS-032 as a promising therapeutic agent, and warrant a clinical trial in patients with metastatic UM.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Shenglan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Qianyun Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, People's Republic of China
| |
Collapse
|
38
|
Mu X, Mou KH, Ge R, Han D, Zhou Y, Wang LJ. Linc00961 inhibits the proliferation and invasion of skin melanoma by targeting the miR‑367/PTEN axis. Int J Oncol 2019; 55:708-720. [PMID: 31364744 PMCID: PMC6685588 DOI: 10.3892/ijo.2019.4848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
Long intergenic noncoding RNA 00961 (Linc00961) has been identified as a tumor suppressor in various types of cancer. However, the critical roles of Linc00961 in the carcinogenesis and progression of skin melanoma (SM) are yet to be fully elucidated. The present study revealed via reverse transcription‑quantitative PCR analysis that Linc00961 was downregulated in the tissues of patients with SM compared with benign nevi, and in A375, A2058 and SK‑MEL‑28 cell lines compared with human melanocytes. Furthermore, overexpression of Linc00961 inhibited cell proliferation, and promoted the apoptosis of A375 and SK‑MEL‑28 cells in vitro and in vivo, as determined by Cell Counting Kit‑8 and flow cytometry assays, and tumor xenograft studies, respectively. Overexpression of Linc00961 also led to an attenuation of the migration and invasive capabilities of A375 and SK‑MEL‑28 cells, measured using Transwell assays. Functionally, it was demonstrated that Linc00961 acted as a competing endogenous RNA (ceRNA) by competitively sponging microRNA‑367 (miR‑367) in A375 and SK‑MEL‑28 cells; restoration of miR‑367 rescued the inhibitory effects of Linc00961 on A375 and SK‑MEL‑28 cells. Finally, it was observed that phosphate and tension homology deleted on chromosome 10 (PTEN), an established target of miR‑367 in A375 and SK‑MEL‑28 cells, was positively regulated by Linc00961, and its inhibition reversed the inhibitory effects of Linc00961 on the proliferation and invasion of A375 and SK‑MEL‑28 cells. Collectively, the present study revealed that Linc00961 was downregulated in SM, and furthermore, Linc00961 was identified as a ceRNA that inhibits the proliferation and invasion of A375 and SK‑MEL‑28 cells by modulating the miR‑367/PTEN axis.
Collapse
Affiliation(s)
- Xin Mu
- Department of Dermatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Kuan-Hou Mou
- Department of Dermatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Rui Ge
- Department of Dermatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dan Han
- Department of Dermatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Zhou
- Department of Dermatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Li-Juan Wang
- Department of Dermatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
39
|
Mou K, Zhang X, Mu X, Ge R, Han D, Zhou Y, Wang L. LNMAT1 Promotes Invasion-Metastasis Cascade in Malignant Melanoma by Epigenetically Suppressing CADM1 Expression. Front Oncol 2019; 9:569. [PMID: 31334110 PMCID: PMC6617740 DOI: 10.3389/fonc.2019.00569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
The invasion-metastasis cascade is one of the most important factors relating to poor survival and prognosis of malignant melanoma (MM) patients. Long non-coding RNA lymph node metastasis associated transcript 1 (LNMAT1) is a key regulator in lymph node metastasis of multiple cancer types, but the roles and underlying mechanisms of LNMAT1 in the invasion-metastasis cascade of MM remain unclear. In the present study, we aimed to investigate the expression and function of LNMAT1 in MM. Here, we found that LNMAT1 was upregulated in MM tissues and cells, and its expression levels were further enhanced in MM patients with lymph node metastasis and metastatic MM cells. Using loss-of-function assays, we found that LNMAT1 promoted cell migration and invasion and lung metastasis in MM in vitro and in vivo. Moreover, we found that cell adhesion molecule 1 (CADM1), the established tumor suppressor in MM, was the downstream target of LNMAT1. Mechanistically, LNMAT1 epigenetically suppressed CADM1 expression by recruiting EZH2, the key regulator of trimethylation of histone H3 at lysine 27 (H3K27me3), to the CADM1 promoter, resulting in transcriptional inhibition of CADM1. Lastly, rescue assays demonstrated that LNMAT1 promoted cell migration and invasion of MM by suppressing CADM1 expression. Our findings elucidate a new mechanism for LNMAT1-mediated invasion-metastasis cascade in MM and suggest that LNMAT1 may be a new therapeutic target and prognostic predictor for MM.
Collapse
Affiliation(s)
- Kuanhou Mou
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiang Zhang
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin Mu
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui Ge
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dan Han
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhou
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijuan Wang
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
40
|
Barbosa EJ, Löbenberg R, de Araujo GLB, Bou-Chacra NA. Niclosamide repositioning for treating cancer: Challenges and nano-based drug delivery opportunities. Eur J Pharm Biopharm 2019; 141:58-69. [PMID: 31078739 DOI: 10.1016/j.ejpb.2019.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/23/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
Drug repositioning may be defined as a process when new biological effects for known drugs are identified, leading to recommendations for new therapeutic applications. Niclosamide, present in the Model List of Essential Medicines, from the World Health Organization, has been used since the 1960s for tapeworm infection. Several preclinical studies have been shown its impressive anticancer effects, which led to clinical trials for colon and prostate cancer. Despite high expectations, proof of efficacy and safety are still required, which are associated with diverse biopharmaceutical challenges, such as the physicochemical properties of the drug and its oral absorption, and their relationship with clinical outcomes. Nanostructured systems are innovative drug delivery strategies, which may provide interesting pharmaceutical advantages for this candidate. The aim of this review is to discuss challenges involving niclosamide repositioning for cancer diseases, and the opportunities of therapeutic benefits from nanosctrutured system formulations containing this compound.
Collapse
Affiliation(s)
- Eduardo José Barbosa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Nádia Araci Bou-Chacra
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Xu S, Sui S, Zhang X, Pang B, Wan L, Pang D. Modulation of autophagy in human diseases strategies to foster strengths and circumvent weaknesses. Med Res Rev 2019; 39:1953-1999. [PMID: 30820989 DOI: 10.1002/med.21571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/20/2019] [Accepted: 02/05/2019] [Indexed: 12/19/2022]
Abstract
Autophagy is central to the maintenance of intracellular homeostasis across species. Accordingly, autophagy disorders are linked to a variety of diseases from the embryonic stage until death, and the role of autophagy as a therapeutic target has been widely recognized. However, autophagy-associated therapy for human diseases is still in its infancy and is supported by limited evidence. In this review, we summarize the landscape of autophagy-associated diseases and current autophagy modulators. Furthermore, we investigate the existing autophagy-associated clinical trials, analyze the obstacles that limit their progress, offer tactics that may allow barriers to be overcome along the way and then discuss the therapeutic potential of autophagy modulators in clinical applications.
Collapse
Affiliation(s)
- Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shiyao Sui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Boran Pang
- Department of Surgery, Rui Jin Hospital, Shanghai Key Laboratory of Gastric Neoplasm, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Wan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjcontrary, induction of autophagy elongiang, China
| |
Collapse
|
42
|
Niclosamide alleviates pulmonary fibrosis in vitro and in vivo by attenuation of epithelial-to-mesenchymal transition, matrix proteins & Wnt/β-catenin signaling: A drug repurposing study. Life Sci 2019; 220:8-20. [PMID: 30611787 DOI: 10.1016/j.lfs.2018.12.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/31/2018] [Accepted: 12/31/2018] [Indexed: 01/09/2023]
Abstract
Drug repurposing off late has been emerging as an inspiring alternative approach to conventional, exhaustive and arduous process of drug discovery. It is a process of identifying new therapeutic values for a drug already established for the treatment of a certain condition. Our current study is aimed at repurposing the old anti-helimenthic drug Niclosamide as an anti-fibrotic drug against pulmonary fibrosis (PF). PF is most common lethal interstitial lung disease hallmarked by deposition of extracelluar matrix and scarring of lung. Heterogenous nature, untimely diagnosis and lack of appropriate treatment options make PF an inexorable lung disorder. Prevailing void in PF treatment and drug repositioning strategy of drugs kindled our interest to demonstrate the anti-fibrotic activity of Niclosamide. Our study is aimed at investigating the anti-fibrotic potential of Niclosamide in TGF-β1 induced in vitro model of PF and 21-day model of Bleomycin induced PF in vivo respectively. Our study results showed that Niclosamide holds the potential to exert anti-fibrotic effect by hampering fibroblast migration, attenuating EMT, inhibiting fibrotic signaling and by regulating WNT/β-catenin signaling as evident from protein expression studies. Our study findings can give new directions to development of Niclosamide as an anti-fibrotic agent for treatment of pulmonary fibrosis.
Collapse
|
43
|
Yi Q, Zou WJ. A novel four‑snoRNA signature for predicting the survival of patients with uveal melanoma. Mol Med Rep 2018; 19:1294-1301. [PMID: 30569172 DOI: 10.3892/mmr.2018.9766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/14/2018] [Indexed: 11/06/2022] Open
Abstract
Uveal melanoma (UM), the predominant histological subtype of intraocular malignant tumors in adults, often results in high rates of mortality; effective prognostic signatures used to predict the survival of patients with UM are limited. Small nucleolar RNAs (snoRNAs) are emerging as important regulators in the processes of carcinogenesis and tumor progression, but knowledge of their application as prognostic markers in UM is limited. In the present study, the expression profiles of snoRNAs in UM were determined; a total of 60 snoRNAs were notably associated with the overall survival of patients with UM via univariate Cox survival analysis. Subsequently, a prognostic signature based on four snoRNAs was proposed, which retained their prognostic significance determined by a multivariate Cox survival analysis. The formula is as follows: ACA17 * (‑1.602) + ACA45 * 0.803 + HBII‑276 * 0.603 + SNORD12 * 1.348. Furthermore, the results of in silico analysis indicated that perturbation of the phototransduction, GABAergic synapse and amphetamine addiction pathways may be the potential molecular mechanisms underlying the poor prognosis of patients with UM. Collectively, the present study proposed a potential prognostic signature for patients with UM and the prospective mechanisms at the genome‑wide level were determined.
Collapse
Affiliation(s)
- Qiong Yi
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wen-Jin Zou
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
44
|
Peng F, He Q, Cheng C, Pan J. GCNT2 induces epithelial-mesenchymal transition and promotes migration and invasion in esophageal squamous cell carcinoma cells. Cell Biochem Funct 2018; 37:42-51. [DOI: 10.1002/cbf.3371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/01/2018] [Accepted: 11/27/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Fei Peng
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy; Jinan University; Guangzhou China
| | - Qi He
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy; Jinan University; Guangzhou China
| | - Chao Cheng
- Department of Thoracic Surgery; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Jingxuan Pan
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy; Jinan University; Guangzhou China
| |
Collapse
|
45
|
Wei M, Liu X, Cao C, Yang J, Lv Y, Huang J, Wang Y, Qin Y. An engineered PD-1-based and MMP-2/9-oriented fusion protein exerts potent antitumor effects against melanoma. BMB Rep 2018. [PMID: 30021673 PMCID: PMC6283027 DOI: 10.5483/bmbrep.2018.51.11.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies showed that the PD-1/PD-L1 checkpoint blockade is a dramatic therapy for melanoma by enhancing antitumor immune activity. Currently, major strategies for the PD-1/PD-L1 blockade have mainly focused on the use of antibodies and compounds. Seeking an alternative approach, others employ endogenous proteins as blocking agents. The extracellular domain of PD-1 (ePD1) includes the binding site with PD-L1. Accordingly, we constructed a PD-1-based recombinantly tailored fusion protein (dFv-ePD1) that consists of bivalent variable fragments (dFv) of an MMP-2/9-targeted antibody and ePD1. The melanoma-binding intensity and antitumor activity were also investigated. We found the intense and selective binding capability of the protein dFv-ePD1 to human melanoma specimens was confirmed by a tissue microarray. In addition, dFv-ePD1 significantly suppressed the migration and invasion of mouse melanoma B16-F1 cells, and displayed cytotoxicity to cancer cells in vitro. Notably, dFv-ePD1 significantly inhibited the growth of mouse melanoma B16-F1 tumor cells in mice and in vivo fluorescence imaging showed that dFv-ePD was gradually accumulated into the B16-F1 tumor. Also the B16-F1 tumor fluorescence intensity at the tumor site was stronger than that of dFv. This study indicates that the recombinant protein dFv-ePD1 has an intensive melanoma-binding capability and exerts potent therapeutic efficacy against melanoma. The novel format of the PD-L1-blocked agent may play an active role in antitumor immunotherapy.
Collapse
Affiliation(s)
- Mulan Wei
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University Medical College, Yichang, Hubei 443000, China
- Department of Pathology, Yiling Hospital Yichang, Yichang, Hubei 443100, China
| | - Xujie Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chunyu Cao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University Medical College, Yichang, Hubei 443000, China
| | - Jianlin Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University Medical College, Yichang, Hubei 443000, China
| | - Yafeng Lv
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University Medical College, Yichang, Hubei 443000, China
| | - Jiaojiao Huang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University Medical College, Yichang, Hubei 443000, China
| | - Yanlin Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University Medical College, Yichang, Hubei 443000, China
| | - Ye Qin
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University Medical College, Yichang, Hubei 443000, China
| |
Collapse
|
46
|
Park SY, Kim JY, Choi JH, Kim JH, Lee CJ, Singh P, Sarkar S, Baek JH, Nam JS. Inhibition of LEF1-Mediated DCLK1 by Niclosamide Attenuates Colorectal Cancer Stemness. Clin Cancer Res 2018; 25:1415-1429. [PMID: 30446587 DOI: 10.1158/1078-0432.ccr-18-1232] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/10/2018] [Accepted: 11/13/2018] [Indexed: 01/31/2023]
Abstract
PURPOSE Niclosamide, an FDA-approved anthelmintic drug, has been characterized as a potent Wnt inhibitor that can suppress tumor growth and cancer stem-like cell (CSC) populations. However, the underlying molecular mechanisms remain poorly understood. This study aimed to examine how Wnt inhibition by niclosamide preferentially targets CSCs. EXPERIMENTAL DESIGN The mechanistic role of niclosamide in CSC inhibition was examined in public databases, human colorectal cancer cells, colorectal cancer xenografts, and azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colorectal cancer model. RESULTS Niclosamide suppresses CSC populations and their self-renewal activities in colorectal cancer cells, and this CSC-targeting effect leads to irreversible disruption of tumor-initiating potential in vivo. Mechanistically, niclosamide downregulates multiple signaling components of the Wnt pathway, specifically lymphoid enhancer-binding factor 1 (LEF1) expression, which is critical for regulating stemness. Subsequently, we identified that the doublecortin-like kinase 1 (DCLK1)-B is a target of LEF1 and upregulates cancer stemness in colorectal cancer cells. We first documented that niclosamide blocks the transcription of DCLK1-B by interrupting the binding of LEF1 to DCLK1-B promoter. DCLK1-B depletion impairs cancer stemness resulting in reduced survival potential and increased apoptosis, thus sensitizing colorectal cancer to chemoradiation. CONCLUSIONS Disruption of the LEF1/DCLK1-B axis by niclosamide eradicates cancer stemness and elicits therapeutic effects on colorectal cancer initiation, progression, and resistance. These findings provide a preclinical rationale to broaden the clinical evaluation of niclosamide for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- So-Yeon Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.,Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Ji-Young Kim
- Laboratory Animal Resource Center, Gwangju Institute of Science and Technology, Gwnagju, Republic of Korea
| | - Jang-Hyun Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jee-Heun Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Choong-Jae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Pomila Singh
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | - Shubhashish Sarkar
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | - Jeong-Heum Baek
- Division of Colon and Rectal Surgery, Department of Surgery, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Jeong-Seok Nam
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea. .,Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.,Silver Health Bio Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
47
|
Xu Y, Zhang C, Liang H, Hu S, Li P, Liu L, Duan X, Chen C, Zhang Y, Dai P. Dishevelled 1, a pivotal positive regulator of the Wnt signalling pathway, mediates 5-fluorouracil resistance in HepG2 cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:192-200. [DOI: 10.1080/21691401.2018.1453827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yisong Xu
- School of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Cheng Zhang
- School of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Hui Liang
- School of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Shanshuang Hu
- School of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Pengkun Li
- School of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Linna Liu
- Pharmacy Department, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Xianglong Duan
- Second Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Chao Chen
- School of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Yani Zhang
- School of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Penggao Dai
- School of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| |
Collapse
|
48
|
Anthelmintic niclosamide suppresses transcription of BCR-ABL fusion oncogene via disabling Sp1 and induces apoptosis in imatinib-resistant CML cells harboring T315I mutant. Cell Death Dis 2018; 9:68. [PMID: 29358661 PMCID: PMC5833368 DOI: 10.1038/s41419-017-0075-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/13/2017] [Accepted: 09/25/2017] [Indexed: 12/12/2022]
Abstract
Tyrosine kinase BCR-ABL fusion protein is the driver in patients with chronic myeloid leukemia (CML). The gate-keeper mutation T315I is the most challenging mutant due to its resistance to most tyrosine kinase inhibitors (TKIs). The third generation TKI ponatinib is the only effective TKI to treat CML patients harboring T315I-BCR-ABL mutation, but with high rate of major arterial thrombotic events. Alternative strategies to specifically target T315I-BCR-ABL are needed for the treatment of CML patients harboring such a mutation. Given that Sp1 is a fundamental transcriptional factor to positively regulate WT-BCR-ABL fusion oncogene, the purpose of this investigation was aimed at evaluating the anti-tumor activity and the underlying mechanism in terms of Sp1 regulational effect on the transcription of T315I-BCR-ABL fusion oncogene. Like in WT-BCR-ABL, we identified enrichment of Sp1 on the promoter of T315I-BCR-ABL fusion gene. Treatment of WT- and T315I-BCR-ABL-expressing CML cells by niclosamide diminished such an enrichment of Sp1, and decreased WT- and T315I-BCR-ABL transcription and its downstream signaling molecules such as STAT5 and Akt. Further, niclosamide significantly inhibited the proliferation and induced apoptosis through intrinsic pathway. The in vivo efficacy validation of p-niclosamide, a water soluble derivative of niclosamide, showed that p-niclosamide significantly inhibited the tumor burden of nude mice subcutaneously bearing T315I-BCR-ABL-expressing CML cells, and prolonged the survival of allografted leukemic mice harboring BaF3-T315I-BCR-ABL. We conclude that niclosamide is active against T315I-BCR-ABL-expressing cells, and may be a promising agent for CML patients regardless of T315I mutation status.
Collapse
|
49
|
Jin Y, Zhang P, Wang Y, Jin B, Zhou J, Zhang J, Pan J. Neddylation Blockade Diminishes Hepatic Metastasis by Dampening Cancer Stem-Like Cells and Angiogenesis in Uveal Melanoma. Clin Cancer Res 2017; 24:3741-3754. [PMID: 29233905 DOI: 10.1158/1078-0432.ccr-17-1703] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/03/2017] [Accepted: 12/05/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Liver metastasis is the major and direct cause of death in patients with uveal melanoma (UM). There is no effective therapy for patients with metastatic UM. Improved treatments of hepatic metastatic patients with UM were urgently needed. Inspired by readily detectable key components in the neddylation pathway in UM cells, we aimed at exploring whether neddylation pathway was a therapeutic target for liver metastatic UM.Experimental Design: Expression of key proteins in the neddylation pathway in UM was detected by Western blotting, real-time quantitative RT-PCR (qRT-PCR), and immunohistochemical staining. Cellular proliferation, apoptosis, cell cycle, migration, and cancer stem-like cells (CSCs) properties were examined upon treatment with MLN4924, a potent and selective NAE inhibitor. Antitumor activity and frequency of CSCs were determined by using a NOD-SCID mouse xenograft model. Liver metastasis was evaluated by use of a NOD-scid-IL2Rg-/- mouse model.Results: NAE1 expression was readily detectable in UM. Inhibition of the neddylation pathway by MLN4924 repressed the CSCs properties in UM (capacities of tumorsphere formation and serially replating, aldehyde dehydrogenase-positive cells, and frequency of CSC) through Slug protein degradation. MLN4924 treatment disturbed the paracrine secretion of NF-κB-mediated VEGF-C and its dependent angiogenesis. The inhibitory effect of neddylation blockade on proliferation, which was confirmed by xenografted UM tumor in NOD-SCID mice, was involved in activation of ATM-Chk1-Cdc25C DNA damage response, and G2-M phase arrest. Neddylation inhibition profoundly inhibited hepatic metastasis in UM.Conclusions: Our studies validate the neddylation pathway as a promising therapeutic target for the treatment of patients with hepatic metastasis of UM. Clin Cancer Res; 24(15); 3741-54. ©2017 AACRSee related commentary by Yang et al., p. 3477.
Collapse
Affiliation(s)
- Yanli Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ping Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yun Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bei Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingfeng Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
50
|
Zhou J, Nie D, Li J, Du X, Lu Y, Li Y, Liu C, Dai W, Wang Y, Jin Y, Pan J. PTEN Is Fundamental for Elimination of Leukemia Stem Cells Mediated by GSK126 Targeting EZH2 in Chronic Myelogenous Leukemia. Clin Cancer Res 2017; 24:145-157. [PMID: 29070525 DOI: 10.1158/1078-0432.ccr-17-1533] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/21/2017] [Accepted: 10/18/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Leukemia stem cells (LSCs) are an important source of tyrosine kinase inhibitor resistance and disease relapse in patients with chronic myelogenous leukemia (CML). Targeting LSCs may be an attractive strategy to override this thorny problem. Given that EZH2 was overexpressed in primary CML CD34+ cells, our purpose in this study was to evaluate the effects of targeting EZH2 on CML LSCs and clarify its underlying mechanism.Experimental Design: Human primary CML CD34+ cells and retrovirally BCR-ABL-driven CML mouse models were employed to evaluate the effects of suppression of EZH2 by GSK126- or EZH2-specific shRNA in vitro and in vivo Recruitment of EZH2 and H3K27me3 on the promoter of tumor-suppressor gene PTEN in CML cells was measured by chromatin immunoprecipitation assay.Results: Our results showed that pharmacologic inhibition of EZH2 by GSK126 not only elicited apoptosis and restricted cell growth in CML bulk leukemia cells, but also decreased LSCs in CML CD34+ cells while sparing those from normal bone marrow CD34+ cells. Suppression of EZH2 by GSK126 or specific shRNA prolonged survival of CML mice and reduced the number of LSCs in mice. EZH2 knockdown resulted in elevation of PTEN and led to impaired recruitment of EZH2 and H3K27me3 on the promoter of PTEN gene. The effect of EZH2 knockdown in the CML mice was at least partially reversed by PTEN knockdown.Conclusions: These findings improve the understanding of the epigenetic regulation of stemness in CML LSCs and warrant clinical trial of GSK126 in refractory patients with CML. Clin Cancer Res; 24(1); 145-57. ©2017 AACR.
Collapse
Affiliation(s)
- Jingfeng Zhou
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Danian Nie
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juan Li
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Du
- Department of Hematology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuhong Lu
- Department of Hematology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Department of Hematology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chang Liu
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Wei Dai
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yun Wang
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanli Jin
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China.
| | - Jingxuan Pan
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China. .,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|