1
|
Saad MA, Allen D, Sweeney A, Xavierselvan M, Mallidi S, Hasan T. Temporal dynamics of fluorescence and photoacoustic signals of a Cetuximab-IRDye800 conjugate in EGFR-overexpressing tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625469. [PMID: 39677759 PMCID: PMC11642854 DOI: 10.1101/2024.11.26.625469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Molecular fluorescence-guided surgery has shown promise for tumor margin delineation but is limited by its depth profiling capability. Interestingly, most fluorophores, either clinically approved or in clinical trials, can also be used as photoacoustic contrast agents, yet their use is limited due to the low light fluence permitted for clinical use and the limited sensitivity of current photoacoustic imaging systems. There is therefore an urgent unmet need to establish methods for enhancing contrast in molecular targeted PA imaging which could potentially complement and overcome limitations in molecular fluorescence guided therapies. In this study, we compare the photoacoustic (PA) and fluorescence imaging capabilities of a cetuximab-IRDye800 conjugate in a subcutaneous tumor xenograft model. We demonstrate that while the fluorescence signal increases steadily over time after administration of cetuximab-IRDye800, PA signal peaks early (~2 fold higher at 6-hour as compared to pre-injection controls) and then decreases (~1.3 fold higher at 24-hour as compared to pre-injection controls). This pattern aligns with previous findings using other antibody-conjugated PA contrast agents. Mechanistically, we demonstrate that the formation of H-aggregates upon antibody conjugation enhances PA contrast of the IRDye800. The disruption of these H-aggregates, as the antibody-dye conjugate is degraded post receptor-mediated endocytosis, decreases PA signal intensity. The timeframe of maximum PA signal and decrease thereafter is consistent with the time frame of receptor-mediated endocytosis of cetuximab-IRDye800. Our data suggests that tumor cell surface binding results in peak PA signal while lysosomal localization and degradation results in a significant drop in PA signal. Our study sheds light on the distinct temporal dynamics of PA and fluorescence signals of Cetuximab-IRDye800 conjugate and we propose that optimizing IRDye800 conjugation to antibodies can further enhance PA signal intensity when timed to precisely to capture IRDye800 in an H-aggregate form.
Collapse
Affiliation(s)
- Mohammad A. Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Derek Allen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Allison Sweeney
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, MA, USA
| | - Marvin Xavierselvan
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, MA, USA
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, MA, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Hagelstein I, Wessling L, Rochwarger A, Zekri L, Klimovich B, Tegeler CM, Jung G, Schürch CM, Salih HR, Lutz MS. Targeting CD276 for T cell-based immunotherapy of breast cancer. J Transl Med 2024; 22:902. [PMID: 39367484 PMCID: PMC11452943 DOI: 10.1186/s12967-024-05689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common malignancy in women. Immunotherapy has revolutionized treatment options in many malignancies, and the introduction of immune checkpoint inhibition yielded beneficial results also in BC. However, many BC patients are ineligible for this T cell-based therapy, others do not respond or only briefly. Thus, there remains a high medical need for new therapies, particularly for triple-negative BC. CD276 (B7-H3) is overexpressed in several tumors on both tumor cells and tumor vessels, constituting a promising target for immunotherapy. METHODS We analyzed tumor samples of 25 patients using immunohistochemistry to assess CD276 levels. The potential of CC-3, a novel bispecific CD276xCD3 antibody, for BC treatment was evaluated using various functional in vitro assays. RESULTS Pronounced expression of CD276 was observed in all analyzed tumor samples including triple negative BC. In analyses with BC cells, CC-3 induced profound T cell activation, proliferation, and T cell memory subset formation. Moreover, treatment with CC-3 induced cytokine secretion and potent tumor cell lysis. CONCLUSION Our findings characterize CD276 as promising target and preclinically document the therapeutic potential of CC-3 for BC treatment, providing a strong rationale for evaluation of CC-3 in BC patients in a clinical trial for which the recruitment has recently started.
Collapse
Affiliation(s)
- Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Laura Wessling
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Alexander Rochwarger
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Latifa Zekri
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department for Immunology and German Cancer Consortium (DKTK), Eberhard Karls University, Tübingen, Germany
| | - Boris Klimovich
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Christian M Tegeler
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Department of Obstetrics and Gynecology, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-Based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
| | - Gundram Jung
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department for Immunology and German Cancer Consortium (DKTK), Eberhard Karls University, Tübingen, Germany
| | - Christian M Schürch
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
| | - Martina S Lutz
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Yang Q, Ye W, Luo D, Xing J, Xiao Q, Wu H, Yao Y, Wang G, Yang L, Guo D, Wang K, He Y, Ye X, Zhang J, Jin Z, Fan Z, Wen X, Mao J, Chen X, Zhao Q. Neuroprotective effects of anti-TRAIL-ICG nanoagent and its multimodal imaging evaluation in cerebral ischemia-reperfusion injury. Mater Today Bio 2024; 26:101094. [PMID: 38854952 PMCID: PMC11157279 DOI: 10.1016/j.mtbio.2024.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 06/11/2024] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is a major challenge to neuronal survival in acute ischemic stroke (AIS). However, effective neuroprotective agents remain to be developed for the treatment of CIRI. In this work, we have developed an Anti-TRAIL protein-modified and indocyanine green (ICG)-responsive nanoagent (Anti-TRAIL-ICG) to target ischemic areas and then reduce CIRI and rescue the ischemic penumbra. In vitro and in vivo experiments have demonstrated that the carrier-free nanoagent can enhance drug transport across the blood-brain barrier (BBB) in stroke mice, exhibiting high targeting ability and good biocompatibility. Anti-TRAIL-ICG nanoagent played a better neuroprotective role by reducing apoptosis and ferroptosis, and significantly improved ischemia-reperfusion injury. Moreover, the multimodal imaging platform enables the dynamic in vivo examination of multiple morphofunctional information, so that the dynamic molecular events of nanoagent can be detected continuously and in real time for early treatment in transient middle cerebral artery occlusion (tMCAO) models. Furthermore, it has been found that Anti-TRAIL-ICG has great potential in the functional reconstruction of neurovascular networks through optical coherence tomography angiography (OCTA). Taken together, our work effectively alleviates CIRI after stoke by blocking multiple cell death pathways, which offers an innovative strategy for harnessing the apoptosis and ferroptosis against CIRI.
Collapse
Affiliation(s)
- Qiong Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Wenxuan Ye
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Doudou Luo
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jiwei Xing
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qingqing Xiao
- Department of Vascular Intervention, Guilin Medical College Affiliated Hospital, Guilin Medical College, Guilin, 541000, China
| | - Huiling Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Youliang Yao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Guangxing Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Luyao Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Dongbei Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Kun Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350117, China
| | - Yaqin He
- Department of Oncology Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaofeng Ye
- Department of Oncology Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Jinde Zhang
- Institute of Advanced Science Facilities, Shenzhen, Guangdong, 518107, China
| | - Zhaokui Jin
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhongxiong Fan
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China
| | - Xiaofei Wen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jingsong Mao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Department of Vascular Intervention, Guilin Medical College Affiliated Hospital, Guilin Medical College, Guilin, 541000, China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
| | - Qingliang Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
4
|
Jiang Y, Liu J, Chen L, Qian Z, Zhang Y. A promising target for breast cancer: B7-H3. BMC Cancer 2024; 24:182. [PMID: 38326735 PMCID: PMC10848367 DOI: 10.1186/s12885-024-11933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Breast cancer (BC) is the second-leading factor of mortality for women globally and is brought on by a variety of genetic and environmental causes. The conventional treatments for this disease have limitations, making it difficult to improve the lifespan of breast cancer patients. As a result, extensive research has been conducted over the past decade to find innovative solutions to these challenges. Targeting of the antitumor immune response through the immunomodulatory checkpoint protein B7 family has revolutionized cancer treatment and led to intermittent patient responses. B7-H3 has recently received attention because of its significant demodulation and its immunomodulatory effects in many cancers. Uncontrolled B7-H3 expression and a bad outlook are strongly associated, according to a substantial body of cancer research. Numerous studies have shown that BC has significant B7-H3 expression, and B7-H3 induces an immune evasion phenotype, consequently enhancing the survival, proliferation, metastasis, and drug resistance of BC cells. Thus, an innovative target for immunotherapy against BC may be the B7-H3 checkpoint.In this review, we discuss the structure and regulation of B7-H3 and its double costimulatory/coinhibitory function within the framework of cancer and normal physiology. Then we expound the malignant behavior of B7-H3 in BC and its role in the tumor microenvironment (TME) and finally focus on targeted drugs against B7-H3 that have opened new therapeutic opportunities in BC.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Jiayu Liu
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China.
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China.
| |
Collapse
|
5
|
Watanabe T, Mizuno HL, Norimatsu J, Obara T, Cabral H, Tsumoto K, Nakakido M, Kawauchi D, Anraku Y. Ligand Installation to Polymeric Micelles for Pediatric Brain Tumor Targeting. Polymers (Basel) 2023; 15:polym15071808. [PMID: 37050422 PMCID: PMC10097392 DOI: 10.3390/polym15071808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Medulloblastoma is a life-threatening disease with poor therapeutic outcomes. In chemotherapy, low drug accumulation has been a cause of these outcomes. Such inadequate response to treatments has been associated with low drug accumulation, particularly with a limited cellular uptake of drugs. Recently, the conjugation of drugs to ligand molecules with high affinity to tumor cells has attracted much attention for enhancing drug internalization into target cells. Moreover, combining tumor-targeting ligands with nano-scaled drug carriers can potentially improve drug loading capacity and the versatility of the delivery. Herein, we focused on the possibility of targeting CD276/B7-H3, which is highly expressed on the medulloblastoma cell membrane, as a strategy for enhancing the cellular uptake of ligand-installed nanocarriers. Thus, anti-CD276 antibodies were conjugated on the surface of model nanocarriers based on polyion complex micelles (PIC/m) via click chemistry. The results showed that the anti-CD276 antibody-installed PIC/m improved intracellular delivery into CD276-expressing medulloblastoma cells in a CD276-dependent manner. Moreover, increasing the number of antibodies on the surface of micelles improved the cellular uptake efficiency. These observations indicate the potential of anti-CD276 antibody-installed nanocarriers for promoting drug delivery in medulloblastoma.
Collapse
Affiliation(s)
- Takayoshi Watanabe
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hayato Laurence Mizuno
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8551, Japan
| | - Jumpei Norimatsu
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takumi Obara
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo 113-8654, Japan
| | - Makoto Nakakido
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8551, Japan
| | - Yasutaka Anraku
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
6
|
Zhao S, Lee L, Zhao Y, Liang NC, Chen YS. Photoacoustic signal enhancement in dual-contrast gastrin-releasing peptide receptor-targeted nanobubbles. Front Bioeng Biotechnol 2023; 11:1102651. [PMID: 36733960 PMCID: PMC9887164 DOI: 10.3389/fbioe.2023.1102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Translatable imaging agents are a crucial element of successful molecular imaging. Photoacoustic molecular imaging relies on optical absorbing materials to generate a sufficient signal. However, few materials approved for human use can generate adequate photoacoustic responses. Here we report a new nanoengineering approach to further improve photoacoustic response from biocompatible materials. Our study shows that when optical absorbers are incorporated into the shell of a gaseous nanobubble, their photoacoustic signal can be significantly enhanced compared to the original form. As an example, we constructed nanobubbles using biocompatible indocyanine green (ICG) and biodegradable poly(lactic-co-glycolic acid) (PLGA). We demonstrated that these ICG nanobubbles generate a strong ultrasound signal and almost four-fold photoacoustic signal compared to the same concentration of ICG solution; our theoretical calculations corroborate this effect and elucidate the origin of the photoacoustic enhancement. To demonstrate their molecular imaging performance, we conjugated gastrin-releasing peptide receptor (GRPR) targeting ligands with the ICG nanobubbles. Our dual photoacoustic/ultrasound molecular imaging shows a more than three-fold enhancement in targeting specificity of the GRPR-targeted ICG nanobubbles, compared to untargeted nanobubbles or prostate cancer cells not expressing GRPR, in a prostate cancer xenograft mouse model in vivo.
Collapse
Affiliation(s)
- Shensheng Zhao
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Leanne Lee
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Yang Zhao
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Nu-Chu Liang
- Department of Psychology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Yun-Sheng Chen
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
7
|
Zhao B, Li H, Xia Y, Wang Y, Wang Y, Shi Y, Xing H, Qu T, Wang Y, Ma W. Immune checkpoint of B7-H3 in cancer: from immunology to clinical immunotherapy. J Hematol Oncol 2022; 15:153. [PMID: 36284349 PMCID: PMC9597993 DOI: 10.1186/s13045-022-01364-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022] Open
Abstract
Immunotherapy for cancer is a rapidly developing treatment that modifies the immune system and enhances the antitumor immune response. B7-H3 (CD276), a member of the B7 family that plays an immunoregulatory role in the T cell response, has been highlighted as a novel potential target for cancer immunotherapy. B7-H3 has been shown to play an inhibitory role in T cell activation and proliferation, participate in tumor immune evasion and influence both the immune response and tumor behavior through different signaling pathways. B7-H3 expression has been found to be aberrantly upregulated in many different cancer types, and an association between B7-H3 expression and poor prognosis has been established. Immunotherapy targeting B7-H3 through different approaches has been developing rapidly, and many ongoing clinical trials are exploring the safety and efficacy profiles of these therapies in cancer. In this review, we summarize the emerging research on the function and underlying pathways of B7-H3, the expression and roles of B7-H3 in different cancer types, and the advances in B7-H3-targeted therapy. Considering different tumor microenvironment characteristics and results from preclinical models to clinical practice, the research indicates that B7-H3 is a promising target for future immunotherapy, which might eventually contribute to an improvement in cancer immunotherapy that will benefit patients.
Collapse
Affiliation(s)
- Binghao Zhao
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Huanzhang Li
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Xia
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yaning Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuekun Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yixin Shi
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hao Xing
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Tian Qu
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenbin Ma
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Hui X, Malik MOA, Pramanik M. Looking deep inside tissue with photoacoustic molecular probes: a review. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:070901. [PMID: 36451698 PMCID: PMC9307281 DOI: 10.1117/1.jbo.27.7.070901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/01/2022] [Indexed: 05/19/2023]
Abstract
Significance Deep tissue noninvasive high-resolution imaging with light is challenging due to the high degree of light absorption and scattering in biological tissue. Photoacoustic imaging (PAI) can overcome some of the challenges of pure optical or ultrasound imaging to provide high-resolution deep tissue imaging. However, label-free PAI signals from light absorbing chromophores within the tissue are nonspecific. The use of exogeneous contrast agents (probes) not only enhances the imaging contrast (and imaging depth) but also increases the specificity of PAI by binding only to targeted molecules and often providing signals distinct from the background. Aim We aim to review the current development and future progression of photoacoustic molecular probes/contrast agents. Approach First, PAI and the need for using contrast agents are briefly introduced. Then, the recent development of contrast agents in terms of materials used to construct them is discussed. Then, various probes are discussed based on targeting mechanisms, in vivo molecular imaging applications, multimodal uses, and use in theranostic applications. Results Material combinations are being used to develop highly specific contrast agents. In addition to passive accumulation, probes utilizing activation mechanisms show promise for greater controllability. Several probes also enable concurrent multimodal use with fluorescence, ultrasound, Raman, magnetic resonance imaging, and computed tomography. Finally, targeted probes are also shown to aid localized and molecularly specific photo-induced therapy. Conclusions The development of contrast agents provides a promising prospect for increased contrast, higher imaging depth, and molecularly specific information. Of note are agents that allow for controlled activation, explore other optical windows, and enable multimodal use to overcome some of the shortcomings of label-free PAI.
Collapse
Affiliation(s)
- Xie Hui
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Mohammad O. A. Malik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| |
Collapse
|
9
|
Lin L, Wang LV. The emerging role of photoacoustic imaging in clinical oncology. Nat Rev Clin Oncol 2022; 19:365-384. [PMID: 35322236 DOI: 10.1038/s41571-022-00615-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
Clinical oncology can benefit substantially from imaging technologies that reveal physiological characteristics with multiscale observations. Complementing conventional imaging modalities, photoacoustic imaging (PAI) offers rapid imaging (for example, cross-sectional imaging in real time or whole-breast scanning in 10-15 s), scalably high levels of spatial resolution, safe operation and adaptable configurations. Most importantly, this novel imaging modality provides informative optical contrast that reveals details on anatomical, functional, molecular and histological features. In this Review, we describe the current state of development of PAI and the emerging roles of this technology in cancer screening, diagnosis and therapy. We comment on the performance of cutting-edge photoacoustic platforms, and discuss their clinical applications and utility in various clinical studies. Notably, the clinical translation of PAI is accelerating in the areas of macroscopic and mesoscopic imaging for patients with breast or skin cancers, as well as in microscopic imaging for histopathology. We also highlight the potential of future developments in technological capabilities and their clinical implications, which we anticipate will lead to PAI becoming a desirable and widely used imaging modality in oncological research and practice.
Collapse
Affiliation(s)
- Li Lin
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA. .,Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
10
|
Kratkiewicz K, Pattyn A, Alijabbari N, Mehrmohammadi M. Ultrasound and Photoacoustic Imaging of Breast Cancer: Clinical Systems, Challenges, and Future Outlook. J Clin Med 2022; 11:1165. [PMID: 35268261 PMCID: PMC8911419 DOI: 10.3390/jcm11051165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
Presently, breast cancer diagnostic methods are dominated by mammography. Although drawbacks of mammography are present including ionizing radiation and patient discomfort, not many alternatives are available. Ultrasound (US) is another method used in the diagnosis of breast cancer, commonly performed on women with dense breasts or in differentiating cysts from solid tumors. Handheld ultrasound (HHUS) and automated breast ultrasound (ABUS) are presently used to generate reflection images which do not contain quantitative information about the tissue. This limitation leads to a subjective interpretation from the sonographer. To rectify the subjective nature of ultrasound, ultrasound tomography (UST) systems have been developed to acquire both reflection and transmission UST (TUST) images. This allows for quantitative assessment of tissue sound speed (SS) and acoustic attenuation which can be used to evaluate the stiffness of the lesions. Another imaging modality being used to detect breast cancer is photoacoustic tomography (PAT). Utilizing much of the same hardware as ultrasound tomography, PAT receives acoustic waves generated from tissue chromophores that are optically excited by a high energy pulsed laser. This allows the user to ideally produce chromophore concentration maps or extract other tissue parameters through spectroscopic PAT. Here, several systems in the area of TUST and PAT are discussed along with their advantages and disadvantages in breast cancer diagnosis. This overview of available systems can provide a landscape of possible intersections and future refinements in cancer diagnosis.
Collapse
Affiliation(s)
- Karl Kratkiewicz
- Department of Oncology, Wayne State University, Detroit, MI 48202, USA;
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA; (A.P.); (N.A.)
| | - Alexander Pattyn
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA; (A.P.); (N.A.)
| | - Naser Alijabbari
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA; (A.P.); (N.A.)
| | - Mohammad Mehrmohammadi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA; (A.P.); (N.A.)
- Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, USA
- Barbara Ann Karmanos Cancer Institute, Detroit, MI 48202, USA
| |
Collapse
|
11
|
Zhao Z, Swartchick CB, Chan J. Targeted contrast agents and activatable probes for photoacoustic imaging of cancer. Chem Soc Rev 2022; 51:829-868. [PMID: 35094040 PMCID: PMC9549347 DOI: 10.1039/d0cs00771d] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoacoustic (PA) imaging has emerged as a powerful technique for the high resolution visualization of biological processes within deep tissue. Through the development and application of exogenous targeted contrast agents and activatable probes that can respond to a given cancer biomarker, researchers can image molecular events in vivo during cancer progression. This information can provide valuable details that can facilitate cancer diagnosis and therapy monitoring. In this tutorial review, we provide a step-by-step guide to select a cancer biomarker and subsequent approaches to design imaging agents for in vivo use. We envision this information will be a useful summary to those in the field, new members to the community, and graduate students taking advanced imaging coursework. We also highlight notable examples from the recent literature, with emphasis on the molecular designs and their in vivo PA imaging performance. To conclude, we provide our outlook and future perspective in this exciting field.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Chelsea B Swartchick
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| |
Collapse
|
12
|
Zhang X, Lu Y, Jia D, Qiu W, Ma X, Zhang X, Xu Z, Wen F. Acidic microenvironment responsive polymeric MOF-based nanoparticles induce immunogenic cell death for combined cancer therapy. J Nanobiotechnology 2021; 19:455. [PMID: 34963499 PMCID: PMC8715615 DOI: 10.1186/s12951-021-01217-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The complex tumor microenvironment and non-targeting drugs limit the efficacy of clinical tumor therapy. For ensuring the accurate delivery and maximal effects of anticancer drugs, it is important to develop innovative drug delivery system based on nano-strategies. RESULT In this study, an intracellular acidity-responsive polymeric metal organic framework nanoparticle (denoted as DIMP) has been constructed, which can co-deliver the chemotherapy agent of doxorubicin (DOX) and phototherapy agent of indocyanine green (ICG) for breast carcinoma theranostics. Specifically, DIMP possesses a suitable and stable nanometer size and can respond to the acidic microenvironment in cells, thus precisely delivering drugs into target tumor sites and igniting the biological reactions towards cell apoptosis. Following in vivo and in vitro results showed that DIMP could be effectively accumulated in tumor sites and induced powerful immunogenic cell death (ICD) effect. CONCLUSION The designed DIMP displayed its effectiveness in combined photo-chemotherapy with auxiliary of ICD effect under a multimodal imaging monitor. Thus, the present MOF-based strategy may offer a potential paradigm for designing drug-delivery system for image-guided synergistic tumor therapy.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Pediatric Research Institute, Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, 518038, Guangdong, People's Republic of China
| | - Yi Lu
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, People's Republic of China
| | - Die Jia
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, People's Republic of China
| | - Wei Qiu
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xianbin Ma
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xingliang Zhang
- Pediatric Research Institute, Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, 518038, Guangdong, People's Republic of China.
| | - Zhigang Xu
- Pediatric Research Institute, Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, 518038, Guangdong, People's Republic of China.
| | - Feiqiu Wen
- Pediatric Research Institute, Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, 518038, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
Feng R, Chen Y, Liu Y, Zhou Q, Zhang W. The role of B7-H3 in tumors and its potential in clinical application. Int Immunopharmacol 2021; 101:108153. [PMID: 34678689 DOI: 10.1016/j.intimp.2021.108153] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
B7-H3 (CD276 molecule) is an immune checkpoint from the B7 family of molecules that acts more as a co-inhibitory molecule to promote tumor progression. It is abnormally expressed on tumor cells and can be induced to express on antigen-presenting cells (APCs) including dendritic cells (DCs) and macrophages. In the tumor microenvironment (TME), B7-H3 promotes tumor progression by impairing T cell response, promoting the polarization of tumor-associated macrophages (TAMs) to M2, inhibiting the function of DCs, and promoting the migration and invasion of cancer-associated fibroblasts (CAFs). In addition, through non-immunological functions, B7-H3 promotes tumor cell proliferation, invasion, metastasis, resistance, angiogenesis, and metabolism, or in the form of exosomes to promote tumor progression. In this process, microRNAs can regulate the expression of B7-H3. B7-H3 may serve as a potential biomarker for tumor diagnosis and a marker of poor prognosis. Immunotherapy targeting B7-H3 and the combination of B7-H3 and other immune checkpoints have shown certain efficacy. In this review, we summarized the basic characteristics of B7-H3 and its mechanism to promote tumor progression by inducing immunosuppression and non-immunological functions, as well as the potential clinical applications of B7-H3 and immunotherapy based on B7-H3.
Collapse
Affiliation(s)
- Ranran Feng
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Department of Andrology, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yong Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qing Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Rijs Z, Jeremiasse B, Shifai N, Gelderblom H, Sier CFM, Vahrmeijer AL, van Leeuwen FWB, van der Steeg AFW, van de Sande MAJ. Introducing Fluorescence-Guided Surgery for Pediatric Ewing, Osteo-, and Rhabdomyosarcomas: A Literature Review. Biomedicines 2021; 9:biomedicines9101388. [PMID: 34680505 PMCID: PMC8533294 DOI: 10.3390/biomedicines9101388] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023] Open
Abstract
Sarcomas are a rare heterogeneous group of malignant neoplasms of mesenchymal origin which represent approximately 13% of all cancers in pediatric patients. The most prevalent pediatric bone sarcomas are osteosarcoma (OS) and Ewing sarcoma (ES). Rhabdomyosarcoma (RMS) is the most frequently occurring pediatric soft tissue sarcoma. The median age of OS and ES is approximately 17 years, so this disease is also commonly seen in adults while non-pleiomorphic RMS is rare in the adult population. The mainstay of all treatment regimens is multimodal treatment containing chemotherapy, surgical resection, and sometimes (neo)adjuvant radiotherapy. A clear resection margin improves both local control and overall survival and should be the goal during surgery with a curative intent. Real-time intraoperative fluorescence-guided imaging could facilitate complete resections by visualizing tumor tissue during surgery. This review evaluates whether non-targeted and targeted fluorescence-guided surgery (FGS) could be beneficial for pediatric OS, ES, and RMS patients. Necessities for clinical implementation, current literature, and the positive as well as negative aspects of non-targeted FGS using the NIR dye Indocyanine Green (ICG) were evaluated. In addition, we provide an overview of targets that could potentially be used for FGS in OS, ES, and RMS. Then, due to the time- and cost-efficient translational perspective, we elaborate on the use of antibody-based tracers as well as their disadvantages and alternatives. Finally, we conclude with recommendations for the experiments needed before FGS can be implemented for pediatric OS, ES, and RMS patients.
Collapse
Affiliation(s)
- Zeger Rijs
- Department of Orthopedic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.S.); (M.A.J.v.d.S.)
- Correspondence: ; Tel.: +31-641-637-074
| | - Bernadette Jeremiasse
- Department of Surgery, Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (B.J.); (A.F.W.v.d.S.)
| | - Naweed Shifai
- Department of Orthopedic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.S.); (M.A.J.v.d.S.)
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (C.F.M.S.); (A.L.V.)
- Percuros BV, 2333 CL Leiden, The Netherlands
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (C.F.M.S.); (A.L.V.)
| | - Fijs W. B. van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - Alida F. W. van der Steeg
- Department of Surgery, Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (B.J.); (A.F.W.v.d.S.)
| | - Michiel A. J. van de Sande
- Department of Orthopedic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.S.); (M.A.J.v.d.S.)
| |
Collapse
|
15
|
Chen W, Ye F, Yin J, Yang GF. A high-contrast photoacoustic agent with near-infrared emission. Methods Enzymol 2021; 657:223-247. [PMID: 34353489 DOI: 10.1016/bs.mie.2021.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Benzobisthiadiazole as a typical electron acceptor, has been widely used to design fluorescent dyes and photoacoustic (PA) agents. With the strategy of constructing donor-acceptor-donor (D-A-D) type of electron characteristics, benzobisthiadiazole derivatives tend to behave stable in near-infrared absorption and emission, which is beneficial to PA imaging. In this chapter, two molecular design strategies are combined to improve the photoacoustic imaging effects of new PA contrast agent IR-1302 NPs, by installing strengthened conjugated bridges and electron donors. The nanoparticles exhibit high-contrast noninvasive photoacoustic imaging in tumor models with longer wavelength absorption and emission and show potential as a clinic contrast agent.
Collapse
Affiliation(s)
- Weijie Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Fengying Ye
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China.
| |
Collapse
|
16
|
Zhou WT, Jin WL. B7-H3/CD276: An Emerging Cancer Immunotherapy. Front Immunol 2021; 12:701006. [PMID: 34349762 PMCID: PMC8326801 DOI: 10.3389/fimmu.2021.701006] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy aiming at suppressing tumor development by relying on modifying or strengthening the immune system prevails among cancer treatments and points out a new direction for cancer therapy. B7 homolog 3 protein (B7-H3, also known as CD276), a newly identified immunoregulatory protein member of the B7 family, is an attractive and promising target for cancer immunotherapy because it is overexpressed in tumor tissues while showing limited expression in normal tissues and participating in tumor microenvironment (TME) shaping and development. Thus far, numerous B7-H3-based immunotherapy strategies have demonstrated potent antitumor activity and acceptable safety profiles in preclinical models. Herein, we present the expression and biological function of B7-H3 in distinct cancer and normal cells, as well as B7-H3-mediated signal pathways in cancer cells and B7-H3-based tumor immunotherapy strategies. This review provides a comprehensive overview that encompasses B7-H3’s role in TME to its potential as a target in cancer immunotherapy.
Collapse
Affiliation(s)
- Wu-Tong Zhou
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China.,Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
17
|
Huang J, Huang J, Ning X, Luo W, Chen M, Wang Z, Zhang W, Zhang Z, Chao J. CT/NIRF dual-modal imaging tracking and therapeutic efficacy of transplanted mesenchymal stem cells labeled with Au nanoparticles in silica-induced pulmonary fibrosis. J Mater Chem B 2021; 8:1713-1727. [PMID: 32022096 DOI: 10.1039/c9tb02652e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mesenchymal stem cells (MSCs) have shown promising therapeutic effects in cell-based therapies and regenerative medicine. Efficient tracking of MSCs is an urgent clinical need that will help us to understand their behavior after transplantation and allow adjustment of therapeutic strategies. However, no clinically approved tracers are currently available, which limits the clinical translation of stem cell therapy. In this study, a nanoparticle (NP) for computed tomography (CT)/fluorescence dual-modal imaging, Au@Albumin@ICG@PLL (AA@ICG@PLL), was developed to track bone marrow-derived mesenchymal stem cells (BMSCs) that were administered intratracheally into mice with silica-induced pulmonary fibrosis, which facilitated understanding of the therapeutic effect and the possible molecular mechanism of stem cell therapy. The AuNPs were first formed in bovine serum albumin (BSA) solution and modified with indocyanine green (ICG), and subsequently coated with a poly-l-lysine (PLL) layer to enhance intracellular uptake and biocompatibility. BMSCs were labeled with AA@ICG@PLL NPs with high efficiency without an effect on biological function or therapeutic capacity. The injected AA@ICG@PLL-labeled BMSCs could be tracked via CT and near-infrared fluorescence (NIRF) imaging for up to 21 days after transplantation. Using these NPs, the molecular anti-inflammatory mechanism of transplanted BMSCs was revealed, which included the downregulation of proinflammatory cytokines, suppression of macrophage activation, and delay of the fibrosis process. This study suggests a promising role for imaging-guided MSC-based therapy for pulmonary fibrosis, such as idiopathic pulmonary fibrosis (IPF) and pneumoconiosis.
Collapse
Affiliation(s)
- Jie Huang
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Xinyu Ning
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Wei Luo
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China. and Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China and Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Mengling Chen
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China. and Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China and Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhangyan Wang
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China. and Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China and Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Wei Zhang
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China. and Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China and Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Jie Chao
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China. and Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China and Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China and School of Medicine, Xizang Minzu University, Xianyang, Shanxi 712082, China
| |
Collapse
|
18
|
Photoacoustic Molecular Imaging: Principles and Practice. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Huda K, Wu C, Sider JG, Bayer CL. Spherical-view photoacoustic tomography for monitoring in vivo placental function. PHOTOACOUSTICS 2020; 20:100209. [PMID: 33101927 PMCID: PMC7569225 DOI: 10.1016/j.pacs.2020.100209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 05/04/2023]
Abstract
Photoacoustic tomography has great potential to image dynamic functional changes in vivo. Many tomographic systems are built with a circular view geometry, necessitating a linear translation along one axis of the subject to obtain a three-dimensional volume. In this work, we evaluated a prototype spherical view photoacoustic tomographic system which acquires a 3D volume in a single scan, without linear translation. We simultaneously measured relative hemoglobin oxygen saturation in multiple placentas of pregnant mice under oxygen challenge. We also synthesized a folate-conjugated indocyanine green (ICG) contrast agent to image folate kinetics in the placenta. Photoacoustic tomography performed at the wavelength of peak optical absorption of our contrast agent revealed increased ICG signal over time. Through these phantom and in vivo studies, we have demonstrated that the spherical view 3D photoacoustic tomographic system achieves high sensitivity and fast image acquisition, enabling in vivo experiments to assess physiological and molecular dynamics.
Collapse
|
20
|
Kukkar D, Kukkar P, Kumar V, Hong J, Kim KH, Deep A. Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron 2020; 173:112787. [PMID: 33190049 DOI: 10.1016/j.bios.2020.112787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
The quest for advanced management tools or options of various cancers has been on the rise to efficiently reduce their risks of mortality without the demerits of conventional treatments (e.g., undesirable side effects of the medications on non-target tissues, non-targeted distribution, slow clearance of the administered drugs, and the development of drug resistance over the duration of therapy). In this context, nanomaterials-antibody conjugates can offer numerous advantages in the development of cancer theranostics over conventional delivery systems (e.g., highly specific and enhanced biodistribution of the drug in targeted tissues, prolonged systemic circulation, low toxicity, and minimally invasive molecular imaging). This review comprehensively discusses and evaluates recent advances in the application of nanomaterial-antibody bioconjugates for cancer theranostics for the further advancement in the control of diverse cancerous diseases. Further, discussion is expanded to cover the various challenges and limitations associated with the design and development of nanomaterial-antibody conjugates applicable towards better management of cancer.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Preeti Kukkar
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab, 140406, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763 Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organization (CSIR-CSIO), Sector 30 C, Chandigarh, 160030, India.
| |
Collapse
|
21
|
Nishio N, van den Berg NS, Martin BA, van Keulen S, Fakurnejad S, Rosenthal EL, Wilson KE. Photoacoustic Molecular Imaging for the Identification of Lymph Node Metastasis in Head and Neck Cancer Using an Anti-EGFR Antibody-Dye Conjugate. J Nucl Med 2020; 62:648-655. [PMID: 33008927 PMCID: PMC8844260 DOI: 10.2967/jnumed.120.245241] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
The presence of lymph node (LN) metastases is an essential prognostic indicator in patients with head and neck squamous cell carcinoma (HNSCC). This study assessed photoacoustic molecular imaging (PAMI) of the antiepidermal growth factor receptor antibody (panitumumab) conjugated to a near-infrared fluorescent dye, IRDye800CW (panitumumab-IRDye800CW; pan800), for the identification of occult metastatic LNs in patients with HNSCC (n = 7). Methods: After in vitro photoacoustic imaging characterization of pan800, PAMI was performed on excised neck specimens from patients infused with pan800 before surgery. Freshly obtained neck specimens were imaged with 3-dimensional, multiwavelength spectroscopic PAMI (wavelengths of 680, 686, 740, 800, 860, 924, and 958 nm). Harvested LNs were then imaged with a closed-field near-infrared fluorescence imager and histologically examined by the pathologist to determine their metastatic status. Results: In total, 53 LNs with a maximum diameter of 10 mm were analyzed with photoacoustic and fluorescence imaging, of which 4 were determined to be metastatic on the final histopathologic report. Photoacoustic signals in the LNs corresponding to accumulated pan800 were spectrally unmixed using a linear least-square-error classification algorithm. The average thresholded photoacoustic signal intensity corresponding to pan800 was 5-fold higher for metastatic LNs than for benign LNs (2.50 ± 1.09 arbitrary units [a.u.] vs. 0.53 ± 0.32 a.u., P < 0.001). Fluorescence imaging showed that metastatic LNs had a 2-fold increase in fluorescence signal compared with benign LNs ex vivo (P < 0.01, 0.068 ± 0.027 a.u. vs. 0.035 ± 0.018 a.u.). Moreover, the ratio of the average of the highest 10% of the photoacoustic signal intensity over the total average, representative of the degree of heterogeneity in the pan800 signal in LNs, showed a significant difference between metastatic LNs and benign LNs (11.6 ± 13.4 vs. 1.8 ± 0.7, P < 0.01) and an area under the receiver-operating-characteristic curve of 0.96 (95% CI, 0.91-1.00). Conclusion: The data indicate that PAMI of IRDye800-labeled tumor-specific antibody may have the potential to identify occult LN metastasis perioperatively in HNSCC patients.
Collapse
Affiliation(s)
- Naoki Nishio
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California.,Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Nynke S van den Berg
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - Brock A Martin
- Department of Pathology, Stanford University School of Medicine, Stanford, California; and
| | - Stan van Keulen
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - Shayan Fakurnejad
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - Eben L Rosenthal
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - Katheryne E Wilson
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
22
|
Wang S, Zhang X. Design Strategies of Photoacoustic Molecular Probes. Chembiochem 2020; 22:308-316. [PMID: 32770597 DOI: 10.1002/cbic.202000514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Photoacoustic (PA) probes have been developed very quickly and applied in broad areas in recent years. Most of them are constructed based on organic dyes with intrinsic near-infrared (NIR) absorption properties. To increase PA contrast and improve imaging resolution and the sensitivity of detection, various methods for the design of PA probes have been developed. This minireview mainly focuses on the development and design strategies of activatable small-molecule PA probes in four aspects: reaction-cleavage, metal ion chelation, photoswitch, and protonation-deprotonation. It highlights some key points of designing PA probes corresponding to their properties and applications. The challenges and perspectives for small-molecule PA probes are also discussed.
Collapse
Affiliation(s)
- Shichao Wang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, P.R. China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, P.R. China
| |
Collapse
|
23
|
Slikboer S, Naperstkow Z, Janzen N, Faraday A, Soenjaya Y, Le Floc'h J, Al-Karmi S, Swann R, Wyszatko K, Demore CEM, Foster S, Valliant JF. Tetrazine-Derived Near-Infrared Dye as a Facile Reagent for Developing Targeted Photoacoustic Imaging Agents. Mol Pharm 2020; 17:3369-3377. [PMID: 32697098 DOI: 10.1021/acs.molpharmaceut.0c00441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new photoacoustic (PA) dye was developed as a simple-to-use reagent for creating targeted PA imaging agents. The lead molecule was prepared via an efficient two-step synthesis from an inexpensive commercially available starting material. With the dye's innate albumin-binding properties, the resulting tetrazine-derived dye is capable of localizing to tumor and exhibits a biological half-life of a few hours, allowing for an optimized distribution profile. The presence of tetrazine in turn makes it possible to link the albumin-binding optoacoustic signaling agent to a wide range of targeting molecules. To demonstrate the utility and ease of use of the platform, a novel PA probe for imaging calcium accretion was generated using a single-step bioorthogonal coupling reaction where high-resolution PA images of the knee joint in mice were obtained as early as 1 h post injection. Whole-body distribution was subsequently determined by labeling the probe with 99mTc and performing tissue counting following necropsy. These studies, along with tumor imaging and in vitro albumin binding studies, revealed that the core PA contrast agent can be imaged in vivo and can be easily linked to targeting molecules for organ-specific uptake.
Collapse
Affiliation(s)
- Samantha Slikboer
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Zoya Naperstkow
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Nancy Janzen
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Amber Faraday
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Yohannes Soenjaya
- Department of Medical Biophysics University of Toronto, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Johann Le Floc'h
- Department of Medical Biophysics University of Toronto, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Salma Al-Karmi
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Rowan Swann
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Kevin Wyszatko
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Christine E M Demore
- Department of Medical Biophysics University of Toronto, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Stuart Foster
- Department of Medical Biophysics University of Toronto, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - John F Valliant
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
24
|
Flem-Karlsen K, Fodstad Ø, Nunes-Xavier CE. B7-H3 Immune Checkpoint Protein in Human Cancer. Curr Med Chem 2020; 27:4062-4086. [PMID: 31099317 DOI: 10.2174/0929867326666190517115515] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
Abstract
B7-H3 belongs to the B7 family of immune checkpoint proteins, which are important regulators of the adaptive immune response and emerging key players in human cancer. B7-H3 is a transmembrane protein expressed on the surface of tumor cells, antigen presenting cells, natural killer cells, tumor endothelial cells, but can also be present in intra- and extracellular vesicles. Additionally, B7-H3 may be present as a circulating soluble isoform in serum and other body fluids. B7-H3 is overexpressed in a variety of tumor types, in correlation with poor prognosis. B7-H3 is a promising new immunotherapy target for anti-cancer immune response, as well as a potential biomarker. Besides its immunoregulatory role, B7-H3 has intrinsic pro-tumorigenic activities related to enhanced cell proliferation, migration, invasion, angiogenesis, metastatic capacity and anti-cancer drug resistance. B7-H3 has also been found to regulate key metabolic enzymes, promoting the high glycolytic capacity of cancer cells. B7-H3 receptors are still not identified, and little is known about the molecular mechanisms underlying B7-H3 functions. Here, we review the current knowledge on the involvement of B7-H3 in human cancer.
Collapse
Affiliation(s)
- Karine Flem-Karlsen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Caroline E Nunes-Xavier
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| |
Collapse
|
25
|
Testa U, Pelosi E, Castelli G. Endothelial Progenitors in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:85-115. [PMID: 32588325 DOI: 10.1007/978-3-030-44518-8_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor vascularization refers to the formation of new blood vessels within a tumor and is considered one of the hallmarks of cancer. Tumor vessels supply the tumor with oxygen and nutrients, required to sustain tumor growth and progression, and provide a gateway for tumor metastasis through the blood or lymphatic vasculature. Blood vessels display an angiocrine capacity of supporting the survival and proliferation of tumor cells through the production of growth factors and cytokines. Although tumor vasculature plays an essential role in sustaining tumor growth, it represents at the same time an essential way to deliver drugs and immune cells to the tumor. However, tumor vasculature exhibits many morphological and functional abnormalities, thus resulting in the formation of hypoxic areas within tumors, believed to represent a mechanism to maintain tumor cells in an invasive state.Tumors are vascularized through a variety of modalities, mainly represented by angiogenesis, where VEGF and other members of the VEGF family play a key role. This has represented the basis for the development of anti-VEGF blocking agents and their use in cancer therapy: however, these agents failed to induce significant therapeutic effects.Much less is known about the cellular origin of vessel network in tumors. Various cell types may contribute to tumor vasculature in different tumors or in the same tumor, such as mature endothelial cells, endothelial progenitor cells (EPCs), or the same tumor cells through a process of transdifferentiation. Early studies have suggested a role for bone marrow-derived EPCs; these cells do not are true EPCs but myeloid progenitors differentiating into monocytic cells, exerting a proangiogenic effect through a paracrine mechanism. More recent studies have shown the existence of tissue-resident endothelial vascular progenitors (EVPs) present at the level of vessel endothelium and their possible involvement as cells of origin of tumor vasculature.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
26
|
Bachawal S, Bean GR, Krings G, Wilson KE. Evaluation of ductal carcinoma in situ grade via triple-modal molecular imaging of B7-H3 expression. NPJ Breast Cancer 2020; 6:14. [PMID: 32377564 PMCID: PMC7190737 DOI: 10.1038/s41523-020-0158-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/25/2020] [Indexed: 01/19/2023] Open
Abstract
Ductal carcinoma in situ (DCIS) will account for 62,930 cases of breast cancer in 2019. DCIS is a pre-invasive lesion which may not progress to invasive carcinoma, yet surgery remains the mainstay treatment. Molecular imaging of a specific marker for DCIS grade for detection and active surveillance are critically needed to reduce potential overtreatment. First, breast cancer marker B7-H3 (CD276) expression was evaluated by immunohistochemical staining in 123 human specimens including benign epithelium (H-score 10.0 ± 8.2) and low (20.8 ± 17.7), intermediate (87.1 ± 69.5), and high (159.1 ± 87.6) grade DCIS, showing a positive association with DCIS nuclear grade (P < 0.001, AUC 0.96). Next, a murine DCIS model was combined with ultrasound molecular imaging of B7-H3 targeted microbubbles to differentiate normal glands from those harboring DCIS (n = 100, FVB/N-Tg(MMTVPyMT)634Mul, AUC 0.89). Finally, photoacoustic and fluorescence molecular imaging with an anti-B7-H3 antibody-indocyanine green conjugate were utilized for DCIS detection (n = 53). Molecular imaging of B7-H3 expression may allow for active surveillance of DCIS.
Collapse
Affiliation(s)
- Sunitha Bachawal
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA USA
| | - Gregory R. Bean
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA USA
| | - Gregor Krings
- Department of Pathology, University of California San Francisco, San Francisco, CA USA
| | - Katheryne E. Wilson
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA USA
| |
Collapse
|
27
|
Photoacoustic Imaging Probes Based on Tetrapyrroles and Related Compounds. Int J Mol Sci 2020; 21:ijms21093082. [PMID: 32349297 PMCID: PMC7247687 DOI: 10.3390/ijms21093082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Photoacoustic imaging (PAI) is a rapidly evolving field in molecular imaging that enables imaging in the depths of ultrasound and with the sensitivity of optical modalities. PAI bases on the photoexcitation of a chromophore, which converts the absorbed light into thermal energy, causing an acoustic pressure wave that can be captured with ultrasound transducers, in generating an image. For in vivo imaging, chromophores strongly absorbing in the near-infrared range (NIR; > 680 nm) are required. As tetrapyrroles have a long history in biomedical applications, novel tetrapyrroles and inspired mimics have been pursued as potentially suitable contrast agents for PAI. The goal of this review is to summarize the current state of the art in PAI applications using tetrapyrroles and related macrocycles inspired by it, highlighting those compounds exhibiting strong NIR-absorption. Furthermore, we discuss the current developments of other absorbers for in vivo photoacoustic (PA) applications.
Collapse
|
28
|
Zheng M, Yu L, Hu J, Zhang Z, Wang H, Lu D, Tang X, Huang J, Zhong K, Wang Z, Li Y, Guo G, Liu S, Tong A, Yang H. Efficacy of B7-H3-Redirected BiTE and CAR-T Immunotherapies Against Extranodal Nasal Natural Killer/T Cell Lymphoma. Transl Oncol 2020; 13:100770. [PMID: 32298986 PMCID: PMC7160598 DOI: 10.1016/j.tranon.2020.100770] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 02/05/2023] Open
Abstract
Extranodal nasal natural killer (NK)/T cell lymphoma (ENKTCL) is a rare but highly aggressive subtype of non-Hodgkin lymphoma (NHL). Nevertheless, despite extensive research, the estimated 5-year overall survival of affected patients remains low. Therefore, new treatment strategies are needed urgently. Recent advances in immunotherapy have the potential to broaden the applications of chimeric antigen receptor-modified T (CAR-T) cells and the bispecific T-cell engaging (BiTE) antibody. Here, we screened a panel of biomarkers including the B7-H3, CD70, TIM-3, VISTA, ICAM-1, and PD-1 in NKTCL cell lines. As a result, we found for the first time that B7-H3 was highly and homogeneously expressed in these cells. Consequently, we constructed a novel anti-B7-H3/CD3 BiTE antibody and B7-H3-redirected CAR-T cells, and evaluated their efficacy against NKTCL cel lines both in vitro and in vivo. Notably, we found that both anti-B7-H3/CD3 BiTE and B7-H3-redirected CAR-T cells effectively targeted and killed NKTCL cells in vitro, and suppressed the growth of NKTCL tumors in NSG mouse models. Thus, B7-H3 might be a promising therapeutic target for treating patients with NKTCL tumors.
Collapse
Affiliation(s)
- Meijun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan province, PR China
| | - Lingyu Yu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan province, PR China
| | - Juanjuan Hu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan province, PR China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, Sichuan province, PR China
| | - Haiyang Wang
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan province, PR China
| | - Dan Lu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan province, PR China
| | - Xin Tang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan province, PR China
| | - Jianhan Huang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan province, PR China
| | - Kunhong Zhong
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, Sichuan province, PR China
| | - Zeng Wang
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, Sichuan province, PR China
| | - Yisong Li
- Department of Laboratory Medicine, West China Medical School, Sichuan University, Chengdu, Sichuan province, PR China
| | - Gang Guo
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, Sichuan province, PR China
| | - Shixi Liu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan province, PR China
| | - Aiping Tong
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, Sichuan province, PR China.
| | - Hui Yang
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan province, PR China.
| |
Collapse
|
29
|
Chaudhary Z, Khan GM, Abeer MM, Pujara N, Wan-Chi Tse B, McGuckin MA, Popat A, Kumeria T. Efficient photoacoustic imaging using indocyanine green (ICG) loaded functionalized mesoporous silica nanoparticles. Biomater Sci 2020; 7:5002-5015. [PMID: 31617526 DOI: 10.1039/c9bm00822e] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photoacoustic (PA) imaging is gaining momentum due to its greater depth of field, low background, and 3D imaging capabilities. However, traditional PA imaging agents (e.g. dyes, quantum dots, etc.) are usually unstable in plasma and bind to serum proteins, and thus cleared rapidly. Because of this, the nanoparticle encapsulation of PA imaging agents is becoming increasingly popular. Therefore, the rational design of carrier nanoparticles for this purpose is necessary for strong imaging signal intensity, high biosafety, and precise targeting. Herein, we systematically evaluate the influence of the chemical and physical surface functionalization of mesoporous silica nanoparticles (MSNs) on the photo-stability, loading, release, and photoacoustic (PA) signal strength of the FDA approved small molecule contrast agent, indocyanine green (ICG). Chemical functionalization involved the modification of MSNs with silanes having amine (NH2) or phosphonate (PO3) terminal groups, whereas physical modifications were performed by capping the ICG loaded MSNs with lipid bilayer (LB) or layer-by-layer (LBL) polyelectrolyte coatings. The NH2-MSNs display the highest ICG mass loading capacity (16.5 wt%) with a limited release of ICG (5%) in PBS over 48 h, while PO3-MSNs only loaded ICG around 3.5 wt%. The physically modified MSNs (i.e. LBMSNs and LBLMSNs) were vacuum loaded resulting in approximately 9 wt% loading and less than 10% ICG release in 48 h. Pure ICG was highly photo-unstable and showed 20% reduction in photoluminescence (PL) within 3 h of exposure to 800 nm, while the ICG loaded onto functionalized MSNs did not photo-degrade. Among the tested formulations, NH2-MSNs and LBLMSNs presented 4-fold in vitro PA signal intensity enhancement at a 200 μg mL-1 equivalent ICG dose. Similar to the in vitro PA imaging, NH2-MSNs and LBLMSNs performed the best when subcutaneously injected into mouse cadavers with 1.29- and 1.43-fold PA signal enhancement in comparison to the pure ICG, respectively.
Collapse
Affiliation(s)
- Zanib Chaudhary
- School of Pharmacy, The University of Queensland, Queensland-4102, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Shrestha B, DeLuna F, Anastasio MA, Yong Ye J, Brey EM. Photoacoustic Imaging in Tissue Engineering and Regenerative Medicine. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:79-102. [PMID: 31854242 PMCID: PMC7041335 DOI: 10.1089/ten.teb.2019.0296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022]
Abstract
Several imaging modalities are available for investigation of the morphological, functional, and molecular features of engineered tissues in small animal models. While research in tissue engineering and regenerative medicine (TERM) would benefit from a comprehensive longitudinal analysis of new strategies, researchers have not always applied the most advanced methods. Photoacoustic imaging (PAI) is a rapidly emerging modality that has received significant attention due to its ability to exploit the strong endogenous contrast of optical methods with the high spatial resolution of ultrasound methods. Exogenous contrast agents can also be used in PAI for targeted imaging. Applications of PAI relevant to TERM include stem cell tracking, longitudinal monitoring of scaffolds in vivo, and evaluation of vascularization. In addition, the emerging capabilities of PAI applied to the detection and monitoring of cancer and other inflammatory diseases could be exploited by tissue engineers. This article provides an overview of the operating principles of PAI and its broad potential for application in TERM. Impact statement Photoacoustic imaging, a new hybrid imaging technique, has demonstrated high potential in the clinical diagnostic applications. The optical and acoustic aspect of the photoacoustic imaging system works in harmony to provide better resolution at greater tissue depth. Label-free imaging of vasculature with this imaging can be used to track and monitor disease, as well as the therapeutic progression of treatment. Photoacoustic imaging has been utilized in tissue engineering to some extent; however, the full benefit of this technique is yet to be explored. The increasing availability of commercial photoacoustic systems will make application as an imaging tool for tissue engineering application more feasible. This review first provides a brief description of photoacoustic imaging and summarizes its current and potential application in tissue engineering.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Frank DeLuna
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Mark A. Anastasio
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jing Yong Ye
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Eric M. Brey
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
31
|
Photoacoustic Imaging for Management of Breast Cancer: A Literature Review and Future Perspectives. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030767] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review article, a detailed chronological account of the research related to photoacoustic imaging for the management of breast cancer is presented. Performing a detailed analysis of the breast cancer detection related photoacoustic imaging studies undertaken by different research groups, this review attempts to present the clinical evidence in support of using photoacoustic imaging for breast cancer detection. Based on the experimental evidence obtained from the clinical studies conducted so far, the performance of photoacoustic imaging is compared with that of conventional breast imaging modalities. While we find that there is enough experimental evidence to support the use of photoacoustic imaging for breast cancer detection, additional clinical studies are required to be performed to evaluate the diagnostic potential of photoacoustic imaging for identifying different types of breast cancer. To establish the utility of photoacoustic imaging for breast cancer screening, clinical studies with high-risk asymptomatic patients need to be done.
Collapse
|
32
|
Zhu L, Liu J, Zhou G, Ng HM, Ang IL, Ma G, Liu Y, Yang S, Zhang F, Miao K, Poon TCW, Zhang X, Yuan Z, Deng CX, Zhao Q. Targeting immune checkpoint B7-H3 antibody-chlorin e6 bioconjugates for spectroscopic photoacoustic imaging and photodynamic therapy. Chem Commun (Camb) 2020; 55:14255-14258. [PMID: 31657388 DOI: 10.1039/c9cc06839b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, we constructed bioconjugates of targeting immune checkpoint B7-H3 antibody and chlorin e6 to treat non-small cell lung cancer under the guidance of spectroscopic photoacoustic and fluorescence imaging. The B7-H3-Ce6 conjugates could display effective tumor diagnosis and therapy and provide a novel approach for immunotherapy.
Collapse
Affiliation(s)
- Lipeng Zhu
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dammes N, Peer D. Monoclonal antibody-based molecular imaging strategies and theranostic opportunities. Theranostics 2020; 10:938-955. [PMID: 31903161 PMCID: PMC6929980 DOI: 10.7150/thno.37443] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/26/2019] [Indexed: 01/13/2023] Open
Abstract
Molecular imaging modalities hold great potential as less invasive techniques for diagnosis and management of various diseases. Molecular imaging combines imaging agents with targeting moieties to specifically image diseased sites in the body. Monoclonal antibodies (mAbs) have become increasingly popular as novel therapeutics against a variety of diseases due to their specificity, affinity and serum stability. Because of the same properties, mAbs are also exploited in molecular imaging to target imaging agents such as radionuclides to the cell of interest in vivo. Many studies investigated the use of mAb-targeted imaging for a variety of purposes, for instance to monitor disease progression and to predict response to a specific therapeutic agent. Herein, we highlighted the application of mAb-targeted imaging in three different types of pathologies: autoimmune diseases, oncology and cardiovascular diseases. We also described the potential of molecular imaging strategies in theranostics and precision medicine. Due to the nearly infinite repertoire of mAbs, molecular imaging can change the future of modern medicine by revolutionizing diagnostics and response prediction in practically any disease.
Collapse
Affiliation(s)
- Niels Dammes
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel
- School of Molecular Cell Biology and Biotechnology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel
- School of Molecular Cell Biology and Biotechnology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
34
|
Wang J, Hsu SW, Gonzalez-Pech N, Jhunjhunwala A, Chen F, Hariri A, Grassian V, Tao A, Jokerst JV. Copper Sulfide Nanodisks and Nanoprisms for Photoacoustic Ovarian Tumor Imaging. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2019; 36:1900171. [PMID: 32863594 PMCID: PMC7451243 DOI: 10.1002/ppsc.201900171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 05/19/2023]
Abstract
Transvaginal ultrasound is widely used for ovarian cancer screening but has a high false positive rate. Photoacoustic imaging provides additional optical contrast to supplement ultrasound and might be able to improve the accuracy of screening. Here, we report two copper sulfide (CuS) nanoparticles types (nanodisks and triangular nanoprisms) as the photoacoustic contrast agents for imaging ovarian cancer. Both CuS nanoprisms and nanodisks were ~6 nm thick and ~26 nm wide and were coated with poly(ethylene glycol) to make them colloidally stable in phosphate buffered saline (PBS) for at least 2 weeks. The CuS nanodisks and nanoprisms revealed strong localized surface plasmon resonances with peak maxima at 1145 nm and 1098 nm, respectively. Both nanoparticles types had strong and stable photoacoustic intensity with detection limits below 120 pM. The circular CuS nanodisk remained in the circulation of nude mice (n=4) and xenograft 2008 ovarian tumors (n=4) 17.9-fold and 1.8-fold more than the triangular nanoprisms, respectively. Finally, the photoacoustic intensity of the tumors from the mice (n=3) treated with CuS nanodisks was 3.0-fold higher than the baseline. The tumors treated with nanodisks had a characteristic peak at 920 nm in the spectrum to potentially differentiate the tumor from adjacent tissues.
Collapse
Affiliation(s)
- Junxin Wang
- Department of Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Su-wen Hsu
- Department of Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Natalia Gonzalez-Pech
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Anamik Jhunjhunwala
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Fang Chen
- Material Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Ali Hariri
- Department of Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Vicki Grassian
- Department of Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Material Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrea Tao
- Department of Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Material Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Jesse V. Jokerst
- Department of Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA
- Material Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
35
|
Yeroslavsky G, Umezawa M, Okubo K, Nigoghossian K, Dung DTK, Kamimura M, Soga K. Photostabilization of Indocyanine Green Dye by Energy Transfer in Phospholipid-PEG Micelles. J PHOTOPOLYM SCI TEC 2019. [DOI: 10.2494/photopolymer.32.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gil Yeroslavsky
- Imaging Frontier Center (IFC), Research Institute for Science and Technology (RIST), Tokyo University of Science
| | - Masakazu Umezawa
- Imaging Frontier Center (IFC), Research Institute for Science and Technology (RIST), Tokyo University of Science
- Department of Material Science and Technology, Tokyo University of Science
| | - Kyohei Okubo
- Imaging Frontier Center (IFC), Research Institute for Science and Technology (RIST), Tokyo University of Science
- Department of Material Science and Technology, Tokyo University of Science
| | | | - Doan Thi Kim Dung
- Research Institute of Biomedical Science, Tokyo University of Science
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Hospital East
| | - Masao Kamimura
- Imaging Frontier Center (IFC), Research Institute for Science and Technology (RIST), Tokyo University of Science
- Department of Material Science and Technology, Tokyo University of Science
| | - Kohei Soga
- Imaging Frontier Center (IFC), Research Institute for Science and Technology (RIST), Tokyo University of Science
- Department of Material Science and Technology, Tokyo University of Science
| |
Collapse
|
36
|
Bam R, Laffey M, Nottberg K, Lown PS, Hackel BJ, Wilson KE. Affibody-Indocyanine Green Based Contrast Agent for Photoacoustic and Fluorescence Molecular Imaging of B7-H3 Expression in Breast Cancer. Bioconjug Chem 2019; 30:1677-1689. [PMID: 31082216 PMCID: PMC6745046 DOI: 10.1021/acs.bioconjchem.9b00239] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Spectroscopic photoacoustic (sPA) molecular imaging has high potential for identification of exogenous contrast agents targeted to specific markers. Antibody-dye conjugates have recently been used extensively for preclinical sPA and other optical imaging modalities for highly specific molecular imaging of breast cancer. However, antibody-based agents suffer from long circulation times that limit image specificity. Here, the efficacy of a small protein scaffold, the affibody (ABY), conjugated to indocyanine green (ICG), a near-infrared fluorescence dye, as a targeted molecular imaging probe is demonstrated. In particular, B7-H3 (CD276), a cellular receptor expressed in breast cancer, was imaged via sPA and fluorescence molecular imaging to differentiate invasive tumors from normal glands in mice. Administration of ICG conjugated to an ABY specific to B7-H3 (ABYB7-H3-ICG) showed significantly higher signal in mammary tumors compared to normal glands of mice. ABYB7-H3-ICG is a compelling scaffold for molecular sPA imaging for breast cancer detection.
Collapse
Affiliation(s)
- Rakesh Bam
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Makenna Laffey
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Katharine Nottberg
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Patrick S. Lown
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katheryne E. Wilson
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
37
|
Dhyani M, Joshi N, Bemelman WA, Gee MS, Yajnik V, D’Hoore A, Traverso G, Donowitz M, Mostoslavsky G, Lu TK, Lineberry N, Niessen HG, Peer D, Braun J, Delaney CP, Dubinsky MC, Guillory AN, Pereira M, Shtraizent N, Honig G, Polk DB, Hurtado-Lorenzo A, Karp JM, Michelassi F. Challenges in IBD Research: Novel Technologies. Inflamm Bowel Dis 2019; 25:S24-S30. [PMID: 31095703 PMCID: PMC6787667 DOI: 10.1093/ibd/izz077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Indexed: 12/15/2022]
Abstract
Novel technologies is part of five focus areas of the Challenges in IBD research document, which also includes preclinical human IBD mechanisms, environmental triggers, precision medicine and pragmatic clinical research. The Challenges in IBD research document provides a comprehensive overview of current gaps in inflammatory bowel diseases (IBD) research and delivers actionable approaches to address them. It is the result of a multidisciplinary input from scientists, clinicians, patients, and funders, and represents a valuable resource for patient centric research prioritization. In particular, the novel technologies section is focused on prioritizing unmet clinical needs in IBD that will benefit from novel technologies applied to: 1) non-invasive detection and monitoring of active inflammation and assessment of treatment response; 2) mucosal targeted drug delivery systems; and 3) prevention of post-operative septic complications and treatment of fistulizing complications. Proposed approaches include development of multiparametric imaging modalities and biosensors, to enable non invasive or minimally invasive detection of pro-inflammatory signals to monitor disease activity and treatment responses. Additionally, technologies for local drug delivery to control unremitting disease and increase treatment efficacy while decreasing systemic exposure are also proposed. Finally, research on biopolymers and other sealant technologies to promote post-surgical healing; and devices to control anastomotic leakage and prevent post-surgical complications and recurrences are also needed.
Collapse
Affiliation(s)
- Manish Dhyani
- Lahey Hospital & Medical Center, Burlington, Massachusetts
| | - Nitin Joshi
- Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Michael S Gee
- Massachusetts General Hospital, Boston, Massachusetts
| | - Vijay Yajnik
- Takeda Pharmaceutical Company, Boston, Massachusetts
| | - André D’Hoore
- University Hospital Gasthuisberg and University of Leuven, Leuven, Belgium
| | - Giovanni Traverso
- Brigham and Women’s Hospital, Harvard Medical School and Massachusetts Institute of Technology, Boston, Massachusetts
| | - Mark Donowitz
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Timothy K Lu
- Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Heiko G Niessen
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Dan Peer
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan Braun
- Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai, Los Angeles, California
| | | | | | | | | | | | - Gerard Honig
- Crohn’s & Colitis Foundation, New York, New York
| | - David Brent Polk
- Department of Biochemistry and Molecular Biology, University of Southern California,Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, California
| | - Andrés Hurtado-Lorenzo
- Crohn’s & Colitis Foundation, New York, New York,Address correspondence to: Andrés Hurtado-Lorenzo, PhD, 733 3rd Ave Suite 510, New York, NY USA 10017 ()
| | - Jeffrey M Karp
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Broad Institute and Harvard Stem Cell Institute, Boston, Massachusetts
| | - Fabrizio Michelassi
- New York-Presbyterian Hospital and Weill Cornell School of Medicine, New York, New York
| |
Collapse
|
38
|
Morales J, Pawle RH, Akkilic N, Luo Y, Xavierselvan M, Albokhari R, Calderon IAC, Selfridge S, Minns R, Takiff L, Mallidi S, Clark HA. DNA-Based Photoacoustic Nanosensor for Interferon Gamma Detection. ACS Sens 2019; 4:1313-1322. [PMID: 30973005 DOI: 10.1021/acssensors.9b00209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tracking protein levels in the body is vital in both research and medicine, where understanding their physiological roles provides insight into their regulation in homeostasis and diseases. In medicine, protein levels are actively sampled since they continuously fluctuate, reflecting the status of biological systems and provide insight into patient health. One such protein is interferon gamma, a clinically relevant protein with immunoregulatory functions that play critical roles against infection. New tools for continuously monitoring protein levels in vivo are invaluable in monitoring real-time conditions of patients to allow better care. Here, we developed a DNA-based nanosensor for the photoacoustic detection of interferon gamma. This work demonstrates how we transformed a simple DNA motif, receptors, and a novel phthalocyanine dye into a proof-of-concept photoacoustic nanosensor for protein detection. Surface plasmon resonance kinetic analysis demonstrated that the nanosensor is responsive and reversible to interferon gamma with an affinity in the nanomolar range, KD1 = 167 nM and KD2 = 316 nM. As a reporter, our design includes a novel phthalocyanine-based photoacoustic dye that stacks in a J-aggregate, causing a 22.5% increase in signal. Upon receptor binding, the DNA structure bends to induce phthalocyanine dye stacking, resulting in a 55% increase in photoacoustic signal in the presence of 10 μM interferon gamma. This proof-of-concept nanosensor is a novel approach to the development of a photoacoustic sensor and may be adapted for other proteins of interest in the future for in vivo tracking.
Collapse
Affiliation(s)
- Jennifer Morales
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Robert H. Pawle
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Namik Akkilic
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Yi Luo
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Marvin Xavierselvan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States,
| | - Rayan Albokhari
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States,
| | - Isen Andrew C. Calderon
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Scott Selfridge
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Richard Minns
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Larry Takiff
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States,
| | - Heather A. Clark
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States,
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
39
|
Chrétien S, Zerdes I, Bergh J, Matikas A, Foukakis T. Beyond PD-1/PD-L1 Inhibition: What the Future Holds for Breast Cancer Immunotherapy. Cancers (Basel) 2019; 11:E628. [PMID: 31060337 PMCID: PMC6562626 DOI: 10.3390/cancers11050628] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy has altered the management of human malignancies, improving outcomes in an expanding list of diseases. Breast cancer - presumably due to its perceived low immunogenicity - is a late addition to this list. Furthermore, most of the focus has been on the triple negative subtype because of its higher tumor mutational load and lymphocyte-enriched stroma, although emerging data show promise on the other breast cancer subtypes as well. To this point the clinical use of immunotherapy is limited to the inhibition of two immune checkpoints, Programmed Cell Death Protein 1 (PD-1) and Cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4). Consistent with the complexity of the regulation of the tumor - host interactions and their lack of reliance on a single regulatory pathway, combinatory approaches have shown improved efficacy albeit at the cost of increased toxicity. Beyond those two checkpoints though, a large number of co-stimulatory or co-inhibitory molecules play major roles on tumor evasion from immunosurveillance. These molecules likely represent future targets of immunotherapy provided that the promise shown in early data is translated into improved patient survival in randomized trials. The biological role, prognostic and predictive implications regarding breast cancer and early clinical efforts on exploiting these immune-related therapeutic targets are herein reviewed.
Collapse
Affiliation(s)
- Sebastian Chrétien
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Ioannis Zerdes
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Jonas Bergh
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Alexios Matikas
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Theodoros Foukakis
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| |
Collapse
|
40
|
Gargiulo S, Albanese S, Mancini M. State-of-the-Art Preclinical Photoacoustic Imaging in Oncology: Recent Advances in Cancer Theranostics. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:5080267. [PMID: 31182936 PMCID: PMC6515147 DOI: 10.1155/2019/5080267] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
The optical imaging plays an increasing role in preclinical studies, particularly in cancer biology. The combined ultrasound and optical imaging, named photoacoustic imaging (PAI), is an emerging hybrid technique for real-time molecular imaging in preclinical research and recently expanding into clinical setting. PAI can be performed using endogenous contrast, particularly from oxygenated and deoxygenated hemoglobin and melanin, or exogenous contrast agents, sometimes targeted for specific biomarkers, providing comprehensive morphofunctional and molecular information on tumor microenvironment. Overall, PAI has revealed notable opportunities to improve knowledge on tumor pathophysiology and on the biological mechanisms underlying therapy. The aim of this review is to introduce the principles of PAI and to provide a brief overview of current PAI applications in preclinical research, highlighting also on recent advances in clinical translation for cancer diagnosis, staging, and therapy.
Collapse
Affiliation(s)
- Sara Gargiulo
- Institute of Biostructure and Bioimaging of National Council of Research, Naples 80145, Italy
| | - Sandra Albanese
- Institute of Biostructure and Bioimaging of National Council of Research, Naples 80145, Italy
| | - Marcello Mancini
- Institute of Biostructure and Bioimaging of National Council of Research, Naples 80145, Italy
| |
Collapse
|
41
|
Moore C, Jokerst JV. Strategies for Image-Guided Therapy, Surgery, and Drug Delivery Using Photoacoustic Imaging. Theranostics 2019; 9:1550-1571. [PMID: 31037123 PMCID: PMC6485201 DOI: 10.7150/thno.32362] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/26/2019] [Indexed: 12/17/2022] Open
Abstract
Photoacoustic imaging is a rapidly maturing imaging modality in biological research and medicine. This modality uses the photoacoustic effect ("light in, sound out") to combine the contrast and specificity of optical imaging with the high temporal resolution of ultrasound. The primary goal of image-guided therapy, and theranostics in general, is to transition from conventional medicine to precision strategies that combine diagnosis with therapy. Photoacoustic imaging is well-suited for noninvasive guidance of many therapies and applications currently being pursued in three broad areas. These include the image-guided resection of diseased tissue, monitoring of disease states, and drug delivery. In this review, we examine the progress and strategies for development of photoacoustics in these three key areas with an emphasis on the value photoacoustics has for image-guided therapy.
Collapse
Affiliation(s)
| | - Jesse V. Jokerst
- Department of NanoEngineering
- Materials Science and Engineering Program
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093. United States
| |
Collapse
|
42
|
Vishal TMD, Ji-Bin LMD, John EP. Applications in Molecular Ultrasound Imaging: Present and Future. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2019. [DOI: 10.37015/audt.2019.190812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
43
|
Yan H, Chen J, Li Y, Bai Y, Wu Y, Sheng Z, Song L, Liu C, Zhang H. Ultrasmall hybrid protein–copper sulfide nanoparticles for targeted photoacoustic imaging of orthotopic hepatocellular carcinoma with a high signal-to-noise ratio. Biomater Sci 2019; 7:92-103. [DOI: 10.1039/c8bm00767e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A schematic illustration of CuS@BSA-RGD nanoparticle synthesis and the application of photoacoustic imaging in an orthotopic HCC model.
Collapse
Affiliation(s)
- Huixiang Yan
- Department of Ultrasound
- The Second Clinical College of Jinan University
- Shenzhen People's Hospital
- China
- Research Laboratory for Biomedical Optics and Molecular Imaging
| | - Jingqin Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging
- Shenzhen Key Laboratory for Molecular Imaging
- Institute of Biomedical and Health Engineering
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
| | - Ying Li
- Division of Radiology
- Department of Medicine
- the University of Hong Kong Shenzhen Hospital
- China
| | - Yuanyuan Bai
- Research Laboratory for Biomedical Optics and Molecular Imaging
- Shenzhen Key Laboratory for Molecular Imaging
- Institute of Biomedical and Health Engineering
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
| | - Yunzhu Wu
- Department of Ultrasound
- The Second Clinical College of Jinan University
- Shenzhen People's Hospital
- China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging
- Institute of Biomedical and Health Engineering
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging
- Shenzhen Key Laboratory for Molecular Imaging
- Institute of Biomedical and Health Engineering
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging
- Shenzhen Key Laboratory for Molecular Imaging
- Institute of Biomedical and Health Engineering
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
| | - Hai Zhang
- Department of Ultrasound
- The Second Clinical College of Jinan University
- Shenzhen People's Hospital
- China
- Department of Ultrasound
| |
Collapse
|
44
|
Sun L, Wu Y, Chen J, Zhong J, Zeng F, Wu S. A Turn-On Optoacoustic Probe for Imaging Metformin-Induced Upregulation of Hepatic Hydrogen Sulfide and Subsequent Liver Injury. Theranostics 2019; 9:77-89. [PMID: 30662555 PMCID: PMC6332797 DOI: 10.7150/thno.30080] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/19/2018] [Indexed: 01/10/2023] Open
Abstract
Metformin is currently the most prescribed oral agent for diabetes treatment; however the overdose or long-term use may cause some severe side effects such as liver injury. Researches indicate that metformin-induced liver injury is closely related to upregulation of hepatic H2S. Hence, monitoring hepatic H2S generation induced by metformin could be an effective approach for evaluating hepatoxicity of the drug. Methods: We present a novel turn-on and dual-mode probe for detecting and imaging metformin-induced liver injury by specifically tracking the upregulation of hepatic H2S with fluorescent and optoacoustic methods. After reaction with H2S, the strong electron-withdrawing group dinitrophenyl ether (which acts as both the recognition moiety and the fluorescence quencher) was cleaved and replaced by an electron-donating group hydroxyl. This correspondingly leads to the changes of the probe's electronic state and absorption red-shifting as well as the subsequent turn-on fluorescent and optoacoustic signals. Results: The probe was applied to the colon tumor-bearing mice model and the metformin-induced liver injury mice model to achieve tumor imaging and liver injury assessment. The biosafety of the probe was verified by histological analysis (hematoxylin and eosin staining) and serum biochemical assays. Conclusion: The probe responds quickly to H2S in tumors and the liver, and MSOT imaging with the probe offers cross-secitonal and 3D spatial information of liver injury. This study may provide an effective approach for accessing medication side effects by tracking drug-metabolism-related products.
Collapse
Affiliation(s)
| | | | | | | | - Fang Zeng
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
45
|
Wischhusen J, Wilson KE, Delcros JG, Molina-Peña R, Gibert B, Jiang S, Ngo J, Goldschneider D, Mehlen P, Willmann JK, Padilla F. Ultrasound molecular imaging as a non-invasive companion diagnostic for netrin-1 interference therapy in breast cancer. Theranostics 2018; 8:5126-5142. [PMID: 30429890 PMCID: PMC6217066 DOI: 10.7150/thno.27221] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023] Open
Abstract
In ultrasound molecular imaging (USMI), ligand-functionalized microbubbles (MBs) are used to visualize vascular endothelial targets. Netrin-1 is upregulated in 60% of metastatic breast cancers and promotes tumor progression. A novel netrin-1 interference therapy requires the assessment of netrin-1 expression prior to treatment. In this study, we studied netrin-1 as a target for USMI and its potential as a companion diagnostic in breast cancer models. Methods: To verify netrin-1 expression and localization, an in vivo immuno-localization approach was applied, in which anti-netrin-1 antibody was injected into living mice 24 h before tumor collection, and revealed with secondary fluorescent antibody for immunofluorescence analysis. Netrin-1 interactions with the cell surface were studied by flow cytometry. Netrin-1-targeted MBs were prepared using MicroMarker Target-Ready (VisualSonics), and validated in in vitro binding assays in static conditions or in a flow chamber using purified netrin-1 protein or netrin-1-expressing cancer cells. In vivo USMI of netrin-1 was validated in nude mice bearing human netrin-1-positive SKBR7 tumors or weakly netrin-1-expressing MDA-MB-231 tumors using the Vevo 2100 small animal imaging device (VisualSonics). USMI feasibility was further tested in transgenic murine FVB/N Tg(MMTV/PyMT634Mul) (MMTV-PyMT) mammary tumors. Results: Netrin-1 co-localized with endothelial CD31 in netrin-1-positive breast tumors. Netrin-1 binding to the surface of endothelial HUVEC and cancer cells was partially mediated by heparan sulfate proteoglycans. MBs targeted with humanized monoclonal anti-netrin-1 antibody bound to netrin-1-expressing cancer cells in static and dynamic conditions. USMI signal was significantly increased with anti-netrin-1 MBs in human SKBR7 breast tumors and transgenic murine MMTV-PyMT mammary tumors compared to signals recorded with either isotype control MBs or after blocking of netrin-1 with humanized monoclonal anti-netrin-1 antibody. In weakly netrin-1-expressing human tumors and normal mammary glands, no difference in imaging signal was observed with anti-netrin-1- and isotype control MBs. Ex vivo analysis confirmed netrin-1 expression in MMTV-PyMT tumors. Conclusions: These results show that USMI allowed reliable detection of netrin-1 on the endothelium of netrin-1-positive human and murine tumors. Significant differences in USMI signal for netrin-1 reflected the significant differences in netrin-1 mRNA & protein expression observed between different breast tumor models. The imaging approach was non-invasive and safe, and provided the netrin-1 expression status in near real-time. Thus, USMI of netrin-1 has the potential to become a companion diagnostic for the stratification of patients for netrin-1 interference therapy in future clinical trials.
Collapse
|
46
|
Zhang HK, Chen Y, Kang J, Lisok A, Minn I, Pomper MG, Boctor EM. Prostate-specific membrane antigen-targeted photoacoustic imaging of prostate cancer in vivo. JOURNAL OF BIOPHOTONICS 2018; 11:e201800021. [PMID: 29653029 PMCID: PMC6578595 DOI: 10.1002/jbio.201800021] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/03/2018] [Indexed: 05/07/2023]
Abstract
A sensitive, noninvasive method to detect localized prostate cancer, particularly for early detection and repetitive study in patients undergoing active surveillance, remains an unmet need. Here, we propose a molecular photoacoustic (PA) imaging approach by targeting the prostate-specific membrane antigen (PSMA), which is over-expressed in the vast majority of prostate cancers. We performed spectroscopic PA imaging in an experimental model of prostate cancer, namely, in immunocompromised mice bearing PSMA+ (PC3 PIP) and PSMA- (PC3 flu) tumors through administration of the known PSMA-targeted fluorescence agent, YC-27. Differences in contrast between PSMA+ and isogenic control tumors were observed upon PA imaging, with PSMA+ tumors showing higher contrast in average of 66.07-fold with 5 mice at the 24-hour postinjection time points. These results were corroborated using standard near-infrared fluorescence imaging with YC-27, and the squared correlation between PA and fluorescence intensities was 0.89. Spectroscopic PA imaging is a new molecular imaging modality with sufficient sensitivity for targeting PSMA in vivo, demonstrating the potential applications for other saturable targets relevant to cancer and other disorders.
Collapse
Affiliation(s)
- Haichong K. Zhang
- Laboratory for Computational Sensing and Robotics, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, 601 N. Caroline St., Baltimore, MD, USA
| | - Ying Chen
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, 601 N. Caroline St., Baltimore, MD, USA
| | - Jeeun Kang
- Laboratory for Computational Sensing and Robotics, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, 601 N. Caroline St., Baltimore, MD, USA
| | - Ala Lisok
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, 601 N. Caroline St., Baltimore, MD, USA
| | - Il Minn
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, 601 N. Caroline St., Baltimore, MD, USA
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, 601 N. Caroline St., Baltimore, MD, USA
- Co-Corresponding Authors: ,
| | - Emad M. Boctor
- Laboratory for Computational Sensing and Robotics, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, 601 N. Caroline St., Baltimore, MD, USA
- Department of Electrical and Computer Engineering, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA
- Co-Corresponding Authors: ,
| |
Collapse
|
47
|
Yao J, Wang LV. Recent progress in photoacoustic molecular imaging. Curr Opin Chem Biol 2018; 45:104-112. [PMID: 29631120 PMCID: PMC6076847 DOI: 10.1016/j.cbpa.2018.03.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/24/2018] [Accepted: 03/27/2018] [Indexed: 01/08/2023]
Abstract
By acoustically detecting the optical absorption contrast, photoacoustic (PA) tomography (PAT) has broken the penetration limits of traditional high-resolution optical imaging. Through spectroscopic analysis of the target's optical absorption, PAT can identify a wealth of endogenous and exogenous molecules and thus is inherently capable of molecular imaging with high sensitivity. PAT's molecular sensitivity is uniquely accompanied by non-ionizing radiation, high spatial resolution, and deep penetration in biological tissues, which other optical imaging modalities cannot achieve yet. In this concise review, we summarize the most recent technological advancements in PA molecular imaging and highlight the novel molecular probes specifically made for PAT in deep tissues. We conclude with a brief discussion of the opportunities for future advancements.
Collapse
Affiliation(s)
- Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
48
|
Liu M, Deng M, Su J, Lin Y, Jia Z, Peng K, Wang F, Yang T. Specific downregulation of cystathionine β-synthase expression in the kidney during obesity. Physiol Rep 2018; 6:e13630. [PMID: 29998554 PMCID: PMC6041699 DOI: 10.14814/phy2.13630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/13/2022] Open
Abstract
Hydrogen sulfide (H2 S) is recognized as a novel gasotransmitter involved in the regulation of nervous system, cardiovascular functions, inflammatory response, gastrointestinal system, and renal function. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are the major enzymes responsible for H2 S production through desulfuration reactions. H2 S is reported to play a protective role in both high-fat diet (HFD)-induced obese and diabetic mice. However, the synthesizing enzyme involved is not clearly elucidated. The current study was aimed to investigate the regulation of CBS and CSE in different tissues including the kidney, liver, and epididymal fat in C57BL/6 mice after a HFD (60% kcal fat) for 24 weeks. The protein and mRNA expression of CBS was specifically decreased in the kidney while CSE remained unchanged, which was further confirmed in db/db mice. In the liver, CSE expression was downregulated after HFD accompanied with unchanged CBS. Moreover, CSE expression was even upregulated in epididymal fat. The specific downregulation of renal CBS may contribute to decreased H2 S production, which could be a pathogenic mechanism of obesity. Increased CSE/H2 S pathway in epididymal fat possibly resulted in impaired glucose uptake and aggravated insulin resistance. In conclusion, our results revealed that CBS was selectively downregulated in both diet and gene-induced obesity models.
Collapse
Affiliation(s)
- Mi Liu
- Institute of HypertensionSun Yat‐Sen University School of MedicineGuangzhouChina
- Department of Medicine and Veterans Affairs Medical CenterUniversity of UtahSalt Lake CityUtah
| | - Mokan Deng
- Institute of HypertensionSun Yat‐Sen University School of MedicineGuangzhouChina
| | - Jiahui Su
- Institute of HypertensionSun Yat‐Sen University School of MedicineGuangzhouChina
| | - Yu Lin
- Department of PathologyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhanjun Jia
- Department of Medicine and Veterans Affairs Medical CenterUniversity of UtahSalt Lake CityUtah
- Nanjing Key Laboratory of PediatricsNanjingChina
| | - Kexin Peng
- Institute of HypertensionSun Yat‐Sen University School of MedicineGuangzhouChina
- Department of Medicine and Veterans Affairs Medical CenterUniversity of UtahSalt Lake CityUtah
| | - Fei Wang
- Institute of HypertensionSun Yat‐Sen University School of MedicineGuangzhouChina
- Department of Medicine and Veterans Affairs Medical CenterUniversity of UtahSalt Lake CityUtah
| | - Tianxin Yang
- Institute of HypertensionSun Yat‐Sen University School of MedicineGuangzhouChina
- Department of Medicine and Veterans Affairs Medical CenterUniversity of UtahSalt Lake CityUtah
| |
Collapse
|
49
|
Tummers WS, Willmann JK, Bonsing BA, Vahrmeijer AL, Gambhir SS, Swijnenburg RJ. Advances in Diagnostic and Intraoperative Molecular Imaging of Pancreatic Cancer. Pancreas 2018; 47:675-689. [PMID: 29894417 PMCID: PMC6003672 DOI: 10.1097/mpa.0000000000001075] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis. To improve outcomes, there is a critical need for improved tools for detection, accurate staging, and resectability assessment. This could improve patient stratification for the most optimal primary treatment modality. Molecular imaging, used in combination with tumor-specific imaging agents, can improve established imaging methods for PDAC. These novel, tumor-specific imaging agents developed to target specific biomarkers have the potential to specifically differentiate between malignant and benign diseases, such as pancreatitis. When these agents are coupled to various types of labels, this type of molecular imaging can provide integrated diagnostic, noninvasive imaging of PDAC as well as image-guided pancreatic surgery. This review provides a detailed overview of the current clinical imaging applications, upcoming molecular imaging strategies for PDAC, and potential targets for imaging, with an emphasis on intraoperative imaging applications.
Collapse
Affiliation(s)
- Willemieke S. Tummers
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA. Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Juergen K. Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA. Juergen K. Willmann died January 8, 2018
| | - Bert A. Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sanjiv S. Gambhir
- Address correspondence to: R.J. Swijnenburg, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands (). Tel: +31 71 526 4005, Fax: +31 71 526 6750
| | - Rutger-Jan Swijnenburg
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
50
|
Belciug S, Gorunescu F. Learning a single-hidden layer feedforward neural network using a rank correlation-based strategy with application to high dimensional gene expression and proteomic spectra datasets in cancer detection. J Biomed Inform 2018; 83:159-166. [PMID: 29890313 DOI: 10.1016/j.jbi.2018.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 01/06/2023]
Abstract
Methods based on microarrays (MA), mass spectrometry (MS), and machine learning (ML) algorithms have evolved rapidly in recent years, allowing for early detection of several types of cancer. A pitfall of these approaches, however, is the overfitting of data due to large number of attributes and small number of instances -- a phenomenon known as the 'curse of dimensionality'. A potentially fruitful idea to avoid this drawback is to develop algorithms that combine fast computation with a filtering module for the attributes. The goal of this paper is to propose a statistical strategy to initiate the hidden nodes of a single-hidden layer feedforward neural network (SLFN) by using both the knowledge embedded in data and a filtering mechanism for attribute relevance. In order to attest its feasibility, the proposed model has been tested on five publicly available high-dimensional datasets: breast, lung, colon, and ovarian cancer regarding gene expression and proteomic spectra provided by cDNA arrays, DNA microarray, and MS. The novel algorithm, called adaptive SLFN (aSLFN), has been compared with four major classification algorithms: traditional ELM, radial basis function network (RBF), single-hidden layer feedforward neural network trained by backpropagation algorithm (BP-SLFN), and support vector-machine (SVM). Experimental results showed that the classification performance of aSLFN is competitive with the comparison models.
Collapse
Affiliation(s)
- Smaranda Belciug
- Department of Computer Science, University of Craiova, Craiova 200585, Romania.
| | | |
Collapse
|