1
|
Yu Q, Wu T, Tian B, Li J, Liu Y, Wu Z, Jin X, Wang C, Wang C, Gu B. Recent advances in SERS-based immunochromatographic assay for pathogenic microorganism diagnosis: A review. Anal Chim Acta 2024; 1286:341931. [PMID: 38049231 DOI: 10.1016/j.aca.2023.341931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Infectious diseases caused by bacteria, viruses, fungi, and other pathogenic microorganisms are among the most harmful public health problems in the world, causing tens of millions of deaths and incalculable economic losses every year. The establishment of rapid, simple, and highly sensitive diagnostic methods for pathogenic microorganisms is important for the prevention and control of infectious diseases, guidance of timely treatment, and the reduction of public safety risks. Lateral flow immunoassay (LFA) based on the colorimetric signal of colloidal gold is the most popular point-of-care testing technology at present, but it is limited by poor sensitivity and low throughput and hardly meets the needs of the highly sensitive screening of pathogenic microorganisms. In recent years, the combination of surface-enhanced Raman scattering (SERS) and LFA technology has developed into a novel analytical platform with high sensitivity and multiple detection capabilities and has shown great advantages in the detection of pathogenic microorganisms and infectious diseases. This review summarizes the working principle, design ideas, and application of the existing SERS-based LFA methods in pathogenic microorganism detection and further introduces the effect of new technologies such as Raman signal encoding, magnetic enrichment, novel membrane nanotags, and integrated Raman reading equipment on the performance of SERS-LFA. Finally, the main challenges and the future direction of development in this field of SERS-LFA are discussed.
Collapse
Affiliation(s)
- Qing Yu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China; College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Ting Wu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Benshun Tian
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Jiaxuan Li
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Yun Liu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Zelan Wu
- Guangzhou Labway Clinical Laboratory Co., Ltd, Guangdong, 510000, China
| | - Xiong Jin
- Guangzhou Labway Clinical Laboratory Co., Ltd, Guangdong, 510000, China
| | - Chaoguang Wang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, China.
| | - Chongwen Wang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China; College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
2
|
Fu X, Wang Q, Ma B, Zhang B, Sun K, Yu X, Ye Z, Zhang M. Advances in Detection Techniques for the H5N1 Avian Influenza Virus. Int J Mol Sci 2023; 24:17157. [PMID: 38138987 PMCID: PMC10743243 DOI: 10.3390/ijms242417157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Avian influenza is caused by avian influenza virus infection; the H5N1 avian influenza virus is a highly pathogenic subtype, affecting poultry and human health. Since the discovery of the highly pathogenic subtype of the H5N1 avian influenza virus, it has caused enormous losses to the poultry farming industry. It was recently found that the H5N1 avian influenza virus tends to spread among mammals. Therefore, early rapid detection methods are highly significant for effectively preventing the spread of H5N1. This paper discusses the detection technologies used in the detection of the H5N1 avian influenza virus, including serological detection technology, immunological detection technology, molecular biology detection technology, genetic detection technology, and biosensors. Comparisons of these detection technologies were analyzed, aiming to provide some recommendations for the detection of the H5N1 avian influenza virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China; (X.F.); (Q.W.); (B.M.); (B.Z.); (K.S.); (X.Y.); (Z.Y.)
| |
Collapse
|
3
|
Wei-Wen Hsiao W, Fadhilah G, Lee CC, Endo R, Lin YJ, Angela S, Ku CC, Chang HC, Chiang WH. Nanomaterial-based biosensors for avian influenza virus: A new way forward. Talanta 2023; 265:124892. [PMID: 37451119 DOI: 10.1016/j.talanta.2023.124892] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Avian influenza virus (AIV) is a zoonotic virus that can be transmitted from animals to humans. Although human infections are rare, the virus has a high mortality rate when contracted. Appropriate detection methods are thus crucial for combatting this pathogen. There is a growing demand for rapid, selective, and accurate methods of identifying the virus. Numerous biosensors have been designed and commercialized to detect AIV. However, they all have considerable shortcomings. Nanotechnology offers a new way forward. Nanomaterials produce more eco-friendly, rapid, and portable diagnostic systems. They also exhibit high sensitivity and selectivity while achieving a low detection limit (LOD). This paper reviews state-of-the-art nanomaterial-based biosensors for AIV detection, such as those composed of quantum dots, gold, silver, carbon, silica, nanodiamond, and other nanoparticles. It also offers insight into potential trial protocols for creating more effective methods of identifying AIV and discusses key issues associated with developing nanomaterial-based biosensors.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| | - Gianna Fadhilah
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Cheng-Chung Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ryu Endo
- Department of Biomedical Engineering, The Ohio State University, 43210, USA
| | - Yu-Jou Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Stefanny Angela
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chia-Chi Ku
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106319, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| |
Collapse
|
4
|
Liu Y, Lv Y, Chen W, Yang X, Cheng X, Rong Z, Wang S. Development of a Fluorescent Immunochromatographic Assay Based on Quantum Dot-Functionalized Two-Dimensional Monolayer Ti 3C 2 MXene Nanoprobes for the Simultaneous Detection of Influenza A Virus and SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35872-35883. [PMID: 37467383 DOI: 10.1021/acsami.3c05424] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Accurate and rapid detection of the influenza A virus (FluA) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can effectively control their spread. We developed a colorimetric and fluorescent dual-functional two-channel immunochromatographic assay (ICA) biosensor to simultaneously detect the above-mentioned viruses. A unique two-dimensional Ti3C2-QD immunoprobe was established by adsorbing dense quantum dots (QDs) onto the light green monostromatic Ti3C2 MXene surface, resulting in light green colorimetric and superior fluorescence signals and guaranteeing high sensitivity, stability, and excellent liquidity for ICA detection. Rapid visual screening for FluA and SARS-CoV-2 infections was applicable via a green colorimetric signal. Sensitive and quantitative detection of viruses in their early stages of infection was performed by using the fluorescence signal. Our proposed Ti3C2-QD-ICA biosensor can simultaneously detect 1 ng/mL or 2.4 pg/mL FluA and 1 ng/mL or 6.2 pg/mL SARS-CoV-2 via its colorimetric or fluorescence signals, respectively, with a short testing time (20 min), good reproducibility, specificity, and accuracy. In addition, this method demonstrated sensitivity higher than that of the conventional AuNP-based ICA method in throat swab samples. Hence, our proposed Ti3C2-QD-ICA method can be potentially applied for the rapid, ultrasensitive, and multiplex detection of respiratory viruses.
Collapse
Affiliation(s)
- Ye Liu
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Yue Lv
- The Third Department of Health Care, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100089, P. R. China
| | - Wenji Chen
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Xingsheng Yang
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Xiaodan Cheng
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Zhen Rong
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Shengqi Wang
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| |
Collapse
|
5
|
Cai G, Yang J, Wang L, Chen C, Cai C, Gong H. A point-to-point "cap" strategy to construct a highly selective dual-function molecularly-imprinted sensor for the simultaneous detection of HAV and HBV. Biosens Bioelectron 2023; 219:114794. [PMID: 36279822 DOI: 10.1016/j.bios.2022.114794] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 11/19/2022]
Abstract
As an artificial biomimetic receptor, molecularly-imprinted polymer (MIP) has been widely used for the separation, enrichment and detection of various substances. However, due to the complexity of virus structure, huge volume and the existence of highly similar viruses, MIP shows unsatisfactory selectivity in virus detection. To overcome these issues, two kinds of virus nanoMIPs, just like a "cap", were synthesized by a solid-phase imprinting nanogel technique. The "cap" had no inner core and was much smaller than that of a conventional MIP, which was more favorable for mass transfer. Moreover, each "cap" could only combine with one target virus, which avoided the interference between large-volume virus molecules effectively. The two synthesized "caps" were mixed to construct a bifunctional MIP virus sensor for the simultaneous detection of Hepatitis A virus (HAV) and Hepatitis B virus (HBV). As expected, the selectivity factor (SF) for HBV detection reached 13.7, which was much higher than the reported virus MIP sensors (SF: 3-6), which was comparable to that of small molecular imprinting sensors. In addition, the high sensitivity toward HBV was 34.3 fM, and that of HAV was 27.1 pM. This method provides an idea for preparing high-selectivity biomacro-MIPs, as well as a method for the simultaneous detection of similar viruses with high sensitivity and selectivity. The recovery experiment of spiked serum showed that this method also has great practical application prospects.
Collapse
Affiliation(s)
- Ganping Cai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Junyu Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Lingyun Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China; School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Chunyan Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Changqun Cai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Hang Gong
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
6
|
Sensitive and simultaneous detection of ractopamine and salbutamol using multiplex lateral flow immunoassay based on polyethyleneimine-mediated SiO2@QDs nanocomposites: Comparison and application. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Zhang R, Liao T, Wang X, Zhai H, Yang D, Wang X, Wang H, Feng F. Second near-infrared fluorescent dye for lateral flow immunoassays rapid detection of influenza A/B virus. Anal Biochem 2022; 655:114847. [PMID: 35964731 DOI: 10.1016/j.ab.2022.114847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/19/2022]
Abstract
Sensitive and rapid diagnostic point of care testing (POCT) system is of great significance to prevent and control human virus infection. Here reported an immunochromatographic strip technology. The second near-infrared (NIR-II) fluorescent dye encapsulated into polystyrene (PS) nanoparticles, was integrated into a lateral flow assay platform to achieve excellent detection of influenza A/B. This surface-functionalized and mono-dispersed PS nanoparticles has been conjugated with influenza nucleoprotein monoclonal antibody as targets for influenza antigen-detection. This assay achieved the detection limit of 0.015 ng/mL for influenza A nucleoprotein and 4.3*10-5 HAU/mL (102.08 TCID50/mL) influenza A virus (influenza B: 0.037 ng/mL, 9.7*10-7 HAU/mL (100.43 TCID50/mL)). Compared with an Au-based lateral flow test strip, the strip's sensitivity is about 16-fold higher than it. Strip detection properties remain stable for 6 months under 4 °C to 30 °C storage. The assay's intra assay variation is 5.14% and the inter assay variation is 7.74%. Other potential endogenous and exogenous interfering substances (whole blood, nasal mucin, saliva, antipyretics, antihistamines and neuraminidase inhibitors) showed negative results, which verified the excellent specificity of this method. This assay was successfully applied to the POCT quantitative detection of influenza A/B virus, the sensitivity to influenza A and B viruses was 70% and 87.5% respectively, and the specificity was 100%. Therefore, these microspheres can be used as an effective material for rapid POCT detection in clinical specimens.
Collapse
Affiliation(s)
- Runxuan Zhang
- Department of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, China, Shanxi Datong University, Datong, 037009, China
| | - Tao Liao
- WWHS Biotech, Inc, China, Shenzhen, 518000, China
| | - Xiao Wang
- Institute of Public Security, Northwest University of Political Science and Law, China, Xi'an, 710122, China
| | - Hong Zhai
- Department of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, China, Shanxi Datong University, Datong, 037009, China
| | - Di Yang
- Department of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, China, Shanxi Datong University, Datong, 037009, China
| | - Xin Wang
- Department of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, China, Shanxi Datong University, Datong, 037009, China
| | - Haiyan Wang
- Department of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, China, Shanxi Datong University, Datong, 037009, China.
| | - Feng Feng
- Department of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, China, Shanxi Datong University, Datong, 037009, China
| |
Collapse
|
8
|
Durairaj K, Than DD, Nguyen ATV, Kim HS, Yeo SJ, Park H. Cysteamine-Gold Coated Carboxylated Fluorescent Nanoparticle Mediated Point-of-Care Dual-Modality Detection of the H5N1 Pathogenic Virus. Int J Mol Sci 2022; 23:ijms23147957. [PMID: 35887315 PMCID: PMC9320457 DOI: 10.3390/ijms23147957] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 12/10/2022] Open
Abstract
Globally, point-of-care testing (POCT) is the most preferable on-site technique for disease detection and includes a rapid diagnostic test (RDT) and fluorescent immunochromatographic strip test (FICT). The testing kits are generally insufficient in terms of signal enhancement, which is a major drawback of this approach. Sensitive and timely on-site POCT methods with high signal enhancement are therefore essential for the accurate diagnosis of infectious diseases. Herein, we prepare cysteamine-gold coated carboxylated europium chelated nanoparticle (Cys Au-EuNPs)-mediated POCT for the detection of the H5N1 avian influenza virus (AIV). Commercial nanoparticles were used for comparison. The spectral characteristics, surface morphologies, functional groups, surface charge and stability of the Cys AuNPs, EuNPs, and Cys Au-EuNPs were confirmed by UV-visible spectrophotometry, fluorescence spectrometry, transmission electron microscope with Selected area electron diffraction (TEM-SAED), Fourier-transform infrared spectroscopy (FTIR) and zeta potential analysis. The particle size distribution revealed an average size of ~130 ± 0.66 nm for the Cys Au-EuNPs. The Cys Au-EuNP-mediated RDT (colorimetric analysis) and FICT kit revealed a limit of detection (LOD) of 10 HAU/mL and 2.5 HAU/mL, respectively, for H5N1 under different titer conditions. The obtained LOD is eight-fold that of commercial nanoparticle conjugates. The photo luminance (PL) stability of ~3% the Cys Au-EuNPs conjugates that was obtained under UV light irradiation differs considerably from that of the commercial nanoparticle conjugates. Overall, the developed Cys Au-EuNPs-mediated dual-mode POCT kit can be used as an effective nanocomposite for the development of on-site monitoring systems for infectious disease surveillance.
Collapse
Affiliation(s)
- Kaliannan Durairaj
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (K.D.); (D.D.T.); (A.T.V.N.)
| | - Duc Duong Than
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (K.D.); (D.D.T.); (A.T.V.N.)
| | - Anh Thi Viet Nguyen
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (K.D.); (D.D.T.); (A.T.V.N.)
| | - Hak Sung Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Korea;
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
- Correspondence: (S.-J.Y.); (H.P.)
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (K.D.); (D.D.T.); (A.T.V.N.)
- Correspondence: (S.-J.Y.); (H.P.)
| |
Collapse
|
9
|
Kinnamon DS, Heggestad JT, Liu J, Chilkoti A. Technologies for Frugal and Sensitive Point-of-Care Immunoassays. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:123-149. [PMID: 35216530 PMCID: PMC10024863 DOI: 10.1146/annurev-anchem-061020-123817] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immunoassays are a powerful tool for sensitive and quantitative analysis of a wide range of biomolecular analytes in the clinic and in research laboratories. However, enzyme-linked immunosorbent assay (ELISA)-the gold-standard assay-requires significant user intervention, time, and clinical resources, making its deployment at the point-of-care (POC) impractical. Researchers have made great strides toward democratizing access to clinical quality immunoassays at the POC and at an affordable price. In this review, we first summarize the commercially available options that offer high performance, albeit at high cost. Next, we describe strategies for the development of frugal POC assays that repurpose consumer electronics and smartphones for the quantitative detection of analytes. Finally, we discuss innovative assay formats that enable highly sensitive analysis in the field with simple instrumentation.
Collapse
Affiliation(s)
- David S Kinnamon
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| | - Jacob T Heggestad
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| | - Jason Liu
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| |
Collapse
|
10
|
Development of a Rapid Fluorescent Diagnostic System for Early Detection of the Highly Pathogenic Avian Influenza H5 Clade 2.3.4.4 Viruses in Chicken Stool. Int J Mol Sci 2022; 23:ijms23116301. [PMID: 35682982 PMCID: PMC9181406 DOI: 10.3390/ijms23116301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023] Open
Abstract
Rapid diagnosis is essential for the control and prevention of H5 highly pathogenic avian influenza viruses (HPAIVs). However, highly sensitive and rapid diagnostic systems have shown limited performance due to specific antibody scarcity. In this study, two novel specific monoclonal antibodies (mAbs) for clade 2.3.4.4 H5Nx viruses were developed by using an immunogen from a reversed genetic influenza virus (RGV). These mAbs were combined with fluorescence europium nanoparticles and an optimized lysis buffer, which were further used for developing a fluorescent immunochromatographic rapid strip test (FICT) for early detection of H5Nx influenza viruses on chicken stool samples. The result indicates that the limit of detection (LoD) of the developed FICT was 40 HAU/mL for detection of HPAIV H5 clade 2.3.4.4b in spiked chicken stool samples, which corresponded to 4.78 × 104 RNA copies as obtained from real-time polymerase chain reaction (RT-PCR). An experimental challenge of chicken with H5N6 HPAIV is lethal for chicken three days post-infection (DPI). Interestingly, our FICT could detect H5N6 in stool samples at 2 DPI earlier, with 100% relative sensitivity in comparison with RT-PCR, and it showed 50% higher sensitivity than the traditional colloidal gold-based rapid diagnostic test using the same mAbs pair. In conclusion, our rapid diagnostic method can be utilized for the early detection of H5Nx 2.3.4.4 HPAIVs in avian fecal samples from poultry farms or for influenza surveillance in wild migratory birds.
Collapse
|
11
|
Xiao M, Tian F, Liu X, Zhou Q, Pan J, Luo Z, Yang M, Yi C. Virus Detection: From State-of-the-Art Laboratories to Smartphone-Based Point-of-Care Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105904. [PMID: 35393791 PMCID: PMC9110880 DOI: 10.1002/advs.202105904] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/27/2022] [Indexed: 05/07/2023]
Abstract
Infectious virus outbreaks pose a significant challenge to public healthcare systems. Early and accurate virus diagnosis is critical to prevent the spread of the virus, especially when no specific vaccine or effective medicine is available. In clinics, the most commonly used viral detection methods are molecular techniques that involve the measurement of nucleic acids or proteins biomarkers. However, most clinic-based methods require complex infrastructure and expensive equipment, which are not suitable for low-resource settings. Over the past years, smartphone-based point-of-care testing (POCT) has rapidly emerged as a potential alternative to laboratory-based clinical diagnosis. This review summarizes the latest development of virus detection. First, laboratory-based and POCT-based viral diagnostic techniques are compared, both of which rely on immunosensing and nucleic acid detection. Then, various smartphone-based POCT diagnostic techniques, including optical biosensors, electrochemical biosensors, and other types of biosensors are discussed. Moreover, this review covers the development of smartphone-based POCT diagnostics for various viruses including COVID-19, Ebola, influenza, Zika, HIV, et al. Finally, the prospects and challenges of smartphone-based POCT diagnostics are discussed. It is believed that this review will aid researchers better understand the current challenges and prospects for achieving the ultimate goal of containing disease-causing viruses worldwide.
Collapse
Affiliation(s)
- Meng Xiao
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Feng Tian
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHunghomHong Kong999077P. R. China
| | - Xin Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Qiaoqiao Zhou
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Jiangfei Pan
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Zhaofan Luo
- Department of Clinical LaboratoryThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Mo Yang
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHunghomHong Kong999077P. R. China
| | - Changqing Yi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| |
Collapse
|
12
|
Arshad R, Sargazi S, Fatima I, Mobashar A, Rahdar A, Ajalli N, Kyzas GZ. Nanotechnology for Therapy of Zoonotic Diseases: A Comprehensive Overview. ChemistrySelect 2022. [DOI: 10.1002/slct.202201271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Saman Sargazi
- Cellular and Molecular Research Center Research Institute of Cellular and Molecular Sciences in Infectious Diseases Zahedan University of Medical Sciences Zahedan 98167-43463 Iran
| | - Iqra Fatima
- Department of Pharmacy Quaid-i-Azam University Islamabad Islamabad Pakistan
| | - Aisha Mobashar
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Abbas Rahdar
- Department of Physics University of Zabol Zabol P. O. Box. 98613–35856 Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering University of Tehran Tehran Iran
| | - George Z. Kyzas
- Department of Chemistry International Hellenic University Kavala Greece
| |
Collapse
|
13
|
Wang C, Yang X, Zheng S, Cheng X, Xiao R, Li Q, Wang W, Liu X, Wang S. Development of an ultrasensitive fluorescent immunochromatographic assay based on multilayer quantum dot nanobead for simultaneous detection of SARS-CoV-2 antigen and influenza A virus. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 345:130372. [PMID: 34219970 PMCID: PMC8239248 DOI: 10.1016/j.snb.2021.130372] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/15/2021] [Accepted: 06/26/2021] [Indexed: 05/02/2023]
Abstract
Rapid and accurate diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (FluA) antigens in the early stages of virus infection is the key to control the epidemic spread. Here, we developed a two-channel fluorescent immunochromatographic assay (ICA) for ultrasensitive and simultaneous qualification of the two viruses in biological samples. A high-performance quantum dot nanobead (QB) was fabricated by adsorption of multilayers of dense quantum dots (QDs) onto the SiO2 surface and used as the highly luminescent label of the ICA system to ensure the high-sensitivity and stability of the assay. The combination of monodispersed SiO2 core (∼180 nm) and numerous carboxylated QDs formed a hierarchical shell, which ensured that the QBs possessed excellent stability, superior fluorescence signal, and convenient surface functionalization. The developed ICA biosensor achieved simultaneous detection of SARS-CoV-2 and FluA in one test within 15 min, with detection limits reaching 5 pg/mL for SARS-CoV-2 antigen and 50 pfu/mL for FluA H1N1. Moreover, our method showed high accuracy and specificity in throat swab samples with two orders of magnitude improvement in sensitivity compared with traditional AuNP-based ICA method. Hence, the proposed method is a promising and convenient tool for detection of respiratory viruses.
Collapse
Affiliation(s)
- Chongwen Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Xingsheng Yang
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Shuai Zheng
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Xiaodan Cheng
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Rui Xiao
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Qingjun Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Wenqi Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Xiaoxian Liu
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| |
Collapse
|
14
|
Zheng S, Yang X, Zhang B, Cheng S, Han H, Jin Q, Wang C, Xiao R. Sensitive detection of Escherichia coli O157:H7 and Salmonella typhimurium in food samples using two-channel fluorescence lateral flow assay with liquid Si@quantum dot. Food Chem 2021; 363:130400. [PMID: 34198144 DOI: 10.1016/j.foodchem.2021.130400] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/18/2021] [Accepted: 06/16/2021] [Indexed: 01/02/2023]
Abstract
Here, we proposed a silica-quantum dot (QD)-based fluorescent lateral flow immunoassay (LFA) method with high sensitivity for the simultaneous qualification of Salmonella typhimurium and Escherichia coli O157:H7 in food samples. The silica-QD nanobead (Si@DQD) with dual-QD shell was introduced into the two-channel LFA strip as the advanced fluorescent tag, thus providing superior fluorescence signal, monodispersity, and excellent stability for actual sample detection. The liquid Si@DQD tags were mixed with sample solution and directly loaded onto the LFA strip for the quantitative analysis of target bacteria within 15 min. The detection limit of the proposed assay reached 50 cells/mL for both S. typhi/E. coli and was approximately 200 times more sensitive than the colloidal gold (AuNP)-based LFA strips. The Si@DQD-LFA also exhibited the advantages of good stability, specificity, and easy operation, suggesting its great potential for real bacterial sample detection.
Collapse
Affiliation(s)
- Shuai Zheng
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China; Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Xingsheng Yang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China; Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Bo Zhang
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Siyun Cheng
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Han Han
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Qing Jin
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China.
| | - Chongwen Wang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China; Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Rui Xiao
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| |
Collapse
|
15
|
Avian Influenza in Wild Birds and Poultry: Dissemination Pathways, Monitoring Methods, and Virus Ecology. Pathogens 2021; 10:pathogens10050630. [PMID: 34065291 PMCID: PMC8161317 DOI: 10.3390/pathogens10050630] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/21/2022] Open
Abstract
Avian influenza is one of the largest known threats to domestic poultry. Influenza outbreaks on poultry farms typically lead to the complete slaughter of the entire domestic bird population, causing severe economic losses worldwide. Moreover, there are highly pathogenic avian influenza (HPAI) strains that are able to infect the swine or human population in addition to their primary avian host and, as such, have the potential of being a global zoonotic and pandemic threat. Migratory birds, especially waterfowl, are a natural reservoir of the avian influenza virus; they carry and exchange different virus strains along their migration routes, leading to antigenic drift and antigenic shift, which results in the emergence of novel HPAI viruses. This requires monitoring over time and in different locations to allow for the upkeep of relevant knowledge on avian influenza virus evolution and the prevention of novel epizootic and epidemic outbreaks. In this review, we assess the role of migratory birds in the spread and introduction of influenza strains on a global level, based on recent data. Our analysis sheds light on the details of viral dissemination linked to avian migration, the viral exchange between migratory waterfowl and domestic poultry, virus ecology in general, and viral evolution as a process tightly linked to bird migration. We also provide insight into methods used to detect and quantify avian influenza in the wild. This review may be beneficial for the influenza research community and may pave the way to novel strategies of avian influenza and HPAI zoonosis outbreak monitoring and prevention.
Collapse
|
16
|
Okoh GR, Horwood PF, Whitmore D, Ariel E. Herpesviruses in Reptiles. Front Vet Sci 2021; 8:642894. [PMID: 34026888 PMCID: PMC8131531 DOI: 10.3389/fvets.2021.642894] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/06/2021] [Indexed: 12/31/2022] Open
Abstract
Since the 1970s, several species of herpesviruses have been identified and associated with significant diseases in reptiles. Earlier discoveries placed these viruses into different taxonomic groups on the basis of morphological and biological characteristics, while advancements in molecular methods have led to more recent descriptions of novel reptilian herpesviruses, as well as providing insight into the phylogenetic relationship of these viruses. Herpesvirus infections in reptiles are often characterised by non-pathognomonic signs including stomatitis, encephalitis, conjunctivitis, hepatitis and proliferative lesions. With the exception of fibropapillomatosis in marine turtles, the absence of specific clinical signs has fostered misdiagnosis and underreporting of the actual disease burden in reptilian populations and hampered potential investigations that could lead to the effective control of these diseases. In addition, complex life histories, sampling bias and poor monitoring systems have limited the assessment of the impact of herpesvirus infections in wild populations and captive collections. Here we review the current published knowledge of the taxonomy, pathogenesis, pathology and epidemiology of reptilian herpesviruses.
Collapse
Affiliation(s)
- God'spower Richard Okoh
- Division of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Paul F Horwood
- Division of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - David Whitmore
- Division of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Ellen Ariel
- Division of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
17
|
Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: From methods to devices. NANO TODAY 2021; 37:101092. [PMID: 33584847 PMCID: PMC7864790 DOI: 10.1016/j.nantod.2021.101092] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 05/04/2023]
Abstract
The current widespread of COVID-19 all over the world, which is caused by SARS-CoV-2 virus, has again emphasized the importance of development of point-of-care (POC) diagnostics for timely prevention and control of the pandemic. Compared with labor- and time-consuming traditional diagnostic methods, POC diagnostics exhibit several advantages such as faster diagnostic speed, better sensitivity and specificity, lower cost, higher efficiency and ability of on-site detection. To achieve POC diagnostics, developing POC detection methods and correlated POC devices is the key and should be given top priority. The fast development of microfluidics, micro electro-mechanical systems (MEMS) technology, nanotechnology and materials science, have benefited the production of a series of portable, miniaturized, low cost and highly integrated POC devices for POC diagnostics of various infectious diseases. In this review, various POC detection methods for the diagnosis of infectious diseases, including electrochemical biosensors, fluorescence biosensors, surface-enhanced Raman scattering (SERS)-based biosensors, colorimetric biosensors, chemiluminiscence biosensors, surface plasmon resonance (SPR)-based biosensors, and magnetic biosensors, were first summarized. Then, recent progresses in the development of POC devices including lab-on-a-chip (LOC) devices, lab-on-a-disc (LOAD) devices, microfluidic paper-based analytical devices (μPADs), lateral flow devices, miniaturized PCR devices, and isothermal nucleic acid amplification (INAA) devices, were systematically discussed. Finally, the challenges and future perspectives for the design and development of POC detection methods and correlated devices were presented. The ultimate goal of this review is to provide new insights and directions for the future development of POC diagnostics for the management of infectious diseases and contribute to the prevention and control of infectious pandemics like COVID-19.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Mei Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| |
Collapse
|
18
|
Leptihn S, Welburn SC. Will Technology Rather Than Vaccination Be the Way to Control Pandemics? INFECTIOUS MICROBES & DISEASES 2020; 2:125-126. [PMID: 38630072 PMCID: PMC7769057 DOI: 10.1097/im9.0000000000000041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Sebastian Leptihn
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, International Campus, Haining, Zhejiang, China
- Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Susan C. Welburn
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, International Campus, Haining, Zhejiang, China
- Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
19
|
Emerging design strategies for constructing multiplex lateral flow test strip sensors. Biosens Bioelectron 2020; 157:112168. [DOI: 10.1016/j.bios.2020.112168] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 11/18/2022]
|
20
|
Nguyen AVT, Dao TD, Trinh TTT, Choi DY, Yu ST, Park H, Yeo SJ. Sensitive detection of influenza a virus based on a CdSe/CdS/ZnS quantum dot-linked rapid fluorescent immunochromatographic test. Biosens Bioelectron 2020; 155:112090. [DOI: 10.1016/j.bios.2020.112090] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/22/2019] [Accepted: 02/10/2020] [Indexed: 02/05/2023]
|
21
|
Chen X, Leng Y, Hao L, Duan H, Yuan J, Zhang W, Huang X, Xiong Y. Self-assembled colloidal gold superparticles to enhance the sensitivity of lateral flow immunoassays with sandwich format. Theranostics 2020; 10:3737-3748. [PMID: 32206119 PMCID: PMC7069069 DOI: 10.7150/thno.42364] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Traditional lateral flow immunoassay (LFIA) based on 20-40 nm gold nanoparticles (AuNPs) as signal reporter always suffers from relatively low detection sensitivity due to its insufficient brightness, severely restricting its wide-ranging application in the detection of target analytes with trace concentration. Methods: To address this problem, the self-assembled colloidal gold superparticles (GSPs) were synthesized as an improved absorption-dominated labeling probe for improving the sensitivity of sandwich LFIA. Five kinds of GSPs with the size ranging from 100 nm to 400 nm were synthesized by embedding hydrophobic AuNPs of size 12 nm as building blocks into the polymer nanobeads. The as-prepared GSPs were suggested as novel labeling probes of LFIA. The effects of the size of assembled GSPs on the sensitivity of sandwich LFIA was assessed, and the detection performance of GSPs-LFIA was further compared with traditional AuNPs-LFIA. Results: The resultant GSPs showed extremely high light absorption but very low light scattering, which favor the absorption-dominated signal output in LFIA. Among them, the GSP270-LFIA (size 270 nm) exhibits the highest sensitivity for human chorionic gonadotropin and hepatitis B surface antigen detection in real serum sample, which are approximate 39.79- and 13.8-fold higher than that of traditional AuNP40-LFIA. Conclusions: The proposed research demonstrated that the current GSPs can provide an ultrasensitive and quantitative detection for disease biomarkers in real serum samples as promising reporters of sandwich LFIA platform.
Collapse
|
22
|
Zhang B, Yang X, Liu X, Li J, Wang C, Wang S. Polyethyleneimine-interlayered silica-core quantum dot-shell nanocomposites for sensitive detection of Salmonella typhimurium via a lateral flow immunoassay. RSC Adv 2020; 10:2483-2489. [PMID: 35496136 PMCID: PMC9048750 DOI: 10.1039/c9ra09252h] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/04/2020] [Indexed: 12/13/2022] Open
Abstract
Herein, we synthesized high-performance SiO2–core quantum dot (QD)–shell nanocomposites (SiO2@PEI-QDs) using the polyethyleneimine (PEI)-mediated adsorption method. Cationic PEI was used to form a positively charged interlayer on the SiO2 core, which achieved a dense adsorption of carboxylated QDs to form a shell of QDs and maintained a good dispersibility of the nanocomposite. The SiO2@PEI-QDs showed excellent stability and high luminescence, and served as high-performance fluorescent labels for the detection of bacteria when used with the lateral flow immunoassay (LFA) technique. An SiO2@PEI-QD-based LFA strip was successfully applied to rapidly detect Salmonella typhimurium in milk samples with a low limit of 5 × 102 cells per mL. A novel type of SiO2-core QDs-shell nanomaterial was fabricated and utilized to prepare bright fluorescent nanotags for fluorescent lateral flow strip.![]()
Collapse
Affiliation(s)
- Bo Zhang
- School of Public Health
- Jilin University
- Changchun 130021
- PR China
- Department of Pharmacy
| | - Xingsheng Yang
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
- Beijing Institute of Radiation Medicine
| | - Xiaoxian Liu
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
- Beijing Institute of Radiation Medicine
| | - Juan Li
- School of Public Health
- Jilin University
- Changchun 130021
- PR China
| | - Chongwen Wang
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
- Beijing Institute of Radiation Medicine
| | - Shengqi Wang
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
- Beijing Institute of Radiation Medicine
| |
Collapse
|
23
|
Ong DSY, Poljak M. Smartphones as mobile microbiological laboratories. Clin Microbiol Infect 2019; 26:421-424. [PMID: 31610301 DOI: 10.1016/j.cmi.2019.09.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/24/2019] [Accepted: 09/29/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Point-of-care (POC) tests provide an alternative to traditional laboratory-based diagnostics due to reduced turnaround times, portability and no need for highly trained laboratory staff. Smartphones can be integrated into POC platforms because of their multifunctionality, enabled by high-quality digital cameras, computer processors, touchscreen interface and wireless data transfer. It is predicted that by 2020 about 80% of the world population will use smartphones. OBJECTIVES This review summarizes the current state of the art regarding smartphones as part of a mobile microbiological laboratory. SOURCES Selected peer-reviewed publications on smartphone-based microbiological testing published between January 2015 and August 2019. CONTENT Smartphones can be used as instrumental interfaces, dongles, microscopes or test result readers (brightfield, colorimetric and fluorescent measurements), or combined with amplification methods such as loop-mediated isothermal amplification (LAMP) tests in portable POC test platforms. Smartphone-based tests offer opportunities for microbiological diagnostics in remote areas and both resource-limited and resource-rich settings. Wireless connectivity may facilitate epidemiological studies and creation of spatiotemporal disease prevalence maps. However, the current analytical performance of many smartphone-based POC tests must be improved and carefully validated in clinical settings by comparison with current diagnostic standards. IMPLICATIONS Recent developments in smartphone-based POC tests for infectious diseases are promising, as evidenced by results from many proof-of-concept studies. Further progress will foster large-scale implementation of smartphone-based POC as mobile microbiological laboratories in the near future.
Collapse
Affiliation(s)
- D S Y Ong
- Department of Medical Microbiology and Infection Control, Franciscus Gasthuis & Vlietland, Rotterdam, the Netherlands; Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - M Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|