1
|
Xia K, Zhou Y, Xie Y, Cai Y. Role of SMYD2 in gastrointestinal cancer progression (Review). Oncol Lett 2025; 29:282. [PMID: 40242267 PMCID: PMC12001312 DOI: 10.3892/ol.2025.15028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Gastrointestinal cancer is one of the most prevalent malignancies in humans and is often associated with a poor prognosis. Understanding the molecular mechanisms underlying cancer progression and severity is essential for the development of effective cancer therapies. Abnormal protein methylation is associated with the occurrence and advancement of cancer, highlighting the importance of protein methyltransferase research. SET and MYND domain-containing protein 2 (SMYD2), a lysine methyltransferase, has emerged as a promising small molecule target for cancer treatment. Notably, SMYD2 is implicated in the pathogenesis of several diseases, including gastrointestinal cancer. SMYD2 is closely associated with the tumorigenesis, proliferation, migration and other biological processes of gastrointestinal cancer, indicating its potential as a novel therapeutic target. The present review offers an in-depth analysis of SMYD2, covering its structural characteristics, regulatory pathways and functional significance. By assessing the biological roles and therapeutic potential of SMYD2, the current review presents fresh insights and perspectives for advancing research in different types of gastrointestinal cancer.
Collapse
Affiliation(s)
- Kun Xia
- Department of General Surgery, People's Hospital of Ningxiang City, Ningxiang, Hunan 410600, P.R. China
| | - Yaoxiang Zhou
- Department of General Surgery, People's Hospital of Ningxiang City, Ningxiang, Hunan 410600, P.R. China
| | - Youping Xie
- Department of General Surgery, People's Hospital of Ningxiang City, Ningxiang, Hunan 410600, P.R. China
| | - Yinzhong Cai
- Department of General Surgery, People's Hospital of Ningxiang City, Ningxiang, Hunan 410600, P.R. China
| |
Collapse
|
2
|
González-Conde M, Yáñez C, Abuín C, Keup C, Lago-Lestón R, Aybar M, Pedrouzo L, Palacios P, Curiel T, Cueva J, Rodríguez C, Carmona M, Cortegoso A, García-Caballero T, Muinelo-Romay L, Kasimir-Bauer S, López-López R, Costa C. Gene expression analysis in circulating tumour cells to determine resistance to CDK4/6 inhibitors plus endocrine therapy in HR + /HER2- metastatic breast cancer patients. J Transl Med 2025; 23:400. [PMID: 40186268 PMCID: PMC11971781 DOI: 10.1186/s12967-025-06374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/08/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Metastatic breast cancer (BC) is the main cause of cancer-related mortality in women worldwide. HR + /HER2- BC patients are treated with endocrine therapy (ET), but therapeutic resistance is common. The combination of cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) with ET was approved for metastatic BC patients and extended the median progression-free survival to 24 months. This therapy is not always effective, and in every patient, resistance ultimately occurs, but the underlying resistance mechanisms remain unclear. To address this gap, we explored circulating tumour cells (CTCs) as biomarkers to assess treatment response and resistance in metastatic HR + /HER2- BC patients receiving CDK4/6i plus ET. METHODS In total, 53 HR + /HER2- metastatic BC patients who received a CDK4/6i plus ET as first-line treatment were analysed, including samples from internal and external validation cohorts. CTCs were isolated using the negative enrichment approach RosetteSep (STEMCELL Technologies) or positive immunomagnetic selection targeting EpCAM, EGFR, and HER2 (AdnaTest EMT-2/StemCell Select™, QIAGEN). RNA was extracted from CTCs and PBMCs for nCounter analysis (Pancancer pathways panel) in a discovery phase. Subsequent validation was performed by RT-qPCR. RESULTS CTC gene expression analysis revealed that non responder patients (those who experienced disease progression before 180 days) exhibited elevated PRKCB (p-value: 0.011), MAPK3 (p-value: 0.006) and STAT3 (p-value: 0.008) expression, while responders showed increased CDK6 (p-value: 0.011) and CCND1 (p-value: 0.035) expression at baseline. CTC transcriptional characterization revealed a gene expression signature (STAT3highPRKCBhighCDK6low) that accurately classified HR + /HER2- metastatic BC patients who responded to CDK4/6i plus ET, regardless of the CTC isolation method (AUC > 0.8). CTC characterization at progression also identified biomarkers linked to therapy resistance, including the epigenetic regulators EZH2 and HDAC6 and the cell cycle regulator CDC7, which could guide the selection of subsequent therapy lines. The expression of the CDK4 and STAT3 genes in CTCs was associated with progression-free survival and overall survival, respectively. Likewise, the presence of ≥ one CTC after one cycle of therapy predicts a worse prognosis. CONCLUSIONS CTC gene expression provides information about treatment outcomes in HR + /HER2- metastatic BC patients receiving CDK4/6i plus ET and could guide personalized strategies and improve prognosis.
Collapse
MESH Headings
- Humans
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Neoplastic Cells, Circulating/drug effects
- Breast Neoplasms/genetics
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Breast Neoplasms/blood
- Female
- Cyclin-Dependent Kinase 6/antagonists & inhibitors
- Cyclin-Dependent Kinase 6/metabolism
- Cyclin-Dependent Kinase 4/antagonists & inhibitors
- Cyclin-Dependent Kinase 4/metabolism
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Receptor, ErbB-2/metabolism
- Neoplasm Metastasis
- Middle Aged
- Gene Expression Regulation, Neoplastic/drug effects
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Aged
- Gene Expression Profiling
- Adult
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Antineoplastic Agents, Hormonal/therapeutic use
Collapse
Affiliation(s)
- Miriam González-Conde
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Celso Yáñez
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Carmen Abuín
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Corinna Keup
- Department of Gynaecology and Obstetrics, University Hospital Essen, 45147, Essen, Germany
| | - Ramón Lago-Lestón
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Oncomet, Santiago de Compostela, Spain
| | - Maribel Aybar
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Lucía Pedrouzo
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Patricia Palacios
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Teresa Curiel
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Juan Cueva
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Carmela Rodríguez
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Marta Carmona
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Alexandra Cortegoso
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Tomás García-Caballero
- Department of Morphological Sciences, University of Santiago de Compostela. Health Research Institute of Santiago, Santiago de Compostela, Spain
| | - Laura Muinelo-Romay
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain
- Liquid Biopsy Analysis Unit, Oncomet, Santiago de Compostela, Spain
| | - Sabine Kasimir-Bauer
- Department of Gynaecology and Obstetrics, University Hospital Essen, 45147, Essen, Germany
| | - Rafael López-López
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain.
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain.
| | - Clotilde Costa
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain.
| |
Collapse
|
3
|
Liu W, Kuai Y, Wang D, Chen J, Xiong F, Wu G, Wang Q, Huang W, Qi Y, Wang B, Chen Y. PPM1G Inhibits Epithelial-Mesenchymal Transition in Cholangiocarcinoma by Catalyzing TET1 Dephosphorylation for Destabilization to Impair Its Targeted Demethylation of the CLDN3 Promoter. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407323. [PMID: 39477806 DOI: 10.1002/advs.202407323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/22/2024] [Indexed: 12/19/2024]
Abstract
Ten-eleven translocation protein 1 (TET1) functions as an epigenetic regulatory molecule, mediating the majority of DNA demethylation, and plays a role in the development of different types of cancers by regulating the expression of proto-oncogenes and oncogenes. Here it is found that TET1 is highly expressed in cholangiocarcinoma (CCA) and is associated with a poor prognosis. In addition, TET1 promotes claudin-3 (CLDN3) transcription by targeting the CLDN3 promoter region between -16 and 512 for demethylation. PPM1G functions as a protein dephosphorylase, catalyzing the dephosphorylation of TET1. This results in the destabilization of the TET1 protein, thereby impairing the targeting of the CLDN3 promoter for demethylation. Two phosphatase inhibitors, staurosporine and AZD0156, inhibit epithelial-to-mesenchymal transition (EMT) in cholangiocarcinoma cells by suppressing TET1 expression. In conclusion, it is also demonstrated that PPM1G can be employed as a therapeutic target to impede the progression of CCA by catalyzing the dephosphorylation of TET1, which diminishes the capacity of TET1 to target the CLDN3 promoter to activate transcription and inhibit EMT in CCA.
Collapse
Affiliation(s)
- Wenzheng Liu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Yiyang Kuai
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Da Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Junsheng Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Fei Xiong
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Guanhua Wu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Qi Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Wenhua Huang
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Yongqiang Qi
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Bing Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Yongjun Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| |
Collapse
|
4
|
Linowiecka K, Szpotan J, Godlewska M, Gaweł D, Zarakowska E, Gackowski D, Brożyna AA, Foksiński M. Selective Estrogen Receptor Modulators' (SERMs) Influence on TET3 Expression in Breast Cancer Cell Lines with Distinct Biological Subtypes. Int J Mol Sci 2024; 25:8561. [PMID: 39201247 PMCID: PMC11354732 DOI: 10.3390/ijms25168561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Tamoxifen, a selective estrogen receptor modulator (SERM), exhibits dual agonist or antagonist effects contingent upon its binding to either G-protein-coupled estrogen receptor (GPER) or estrogen nuclear receptor (ESR). Estrogen signaling plays a pivotal role in initiating epigenetic alterations and regulating estrogen-responsive genes in breast cancer. Employing three distinct breast cancer cell lines-MCF-7 (ESR+; GPER+), MDA-MB-231 (ESR-; GPER-), and SkBr3 (ESR-; GPER+)-this study subjected them to treatment with two tamoxifen derivatives: 4-hydroxytamoxifen (4-HT) and endoxifen (Endox). Through 2D high-performance liquid chromatography with tandem mass spectrometry detection (HPLC-MS/MS), varying levels of 5-methylcytosine (5-mC) were found, with MCF-7 displaying the highest levels. Furthermore, TET3 mRNA expression levels varied among the cell lines, with MCF-7 exhibiting the lowest expression. Notably, treatment with 4-HT induced significant changes in TET3 expression across all cell lines, with the most pronounced increase seen in MCF-7 and the least in MDA-MB-231. These findings underscore the influence of tamoxifen derivatives on DNA methylation patterns, particularly through modulating TET3 expression, which appears to be contingent on the presence of estrogen receptors. This study highlights the potential of targeting epigenetic modifications for personalized anti-cancer therapy, offering a novel avenue to improve treatment outcomes.
Collapse
Affiliation(s)
- Kinga Linowiecka
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.S.); (A.A.B.)
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Justyna Szpotan
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.S.); (A.A.B.)
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Marlena Godlewska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (M.G.); (D.G.)
| | - Damian Gaweł
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (M.G.); (D.G.)
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.S.); (A.A.B.)
| | - Marek Foksiński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| |
Collapse
|
5
|
Leone GM, Mangano K, Caponnetto S, Fagone P, Nicoletti F. Identification of Poliovirus Receptor-like 3 Protein as a Prognostic Factor in Triple-Negative Breast Cancer. Cells 2024; 13:1299. [PMID: 39120328 PMCID: PMC11312209 DOI: 10.3390/cells13151299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Triple-negative breast cancer (TNBC) represents an aggressive subtype of breast cancer, with a bad prognosis and lack of targeted therapeutic options. Characterized by the absence of estrogen receptors, progesterone receptors, and HER2 expression, TNBC is often associated with a significantly lower survival rate compared to other breast cancer subtypes. Our study aimed to explore the prognostic significance of 83 immune-related genes, by using transcriptomic data from the TCGA database. Our analysis identified the Poliovirus Receptor-Like 3 protein (PVRL3) as a critical negative prognostic marker in TNBC patients. Furthermore, we found that the Enhancer of Zeste Homolog 2 (EZH2), a well-known epigenetic regulator, plays a pivotal role in modulating PVRL3 levels in TNBC cancer cell lines expressing EZH2 along with high levels of PVRL3. The elucidation of the EZH2-PVRL3 regulatory axis provides valuable insights into the molecular mechanisms underlying TNBC aggressiveness and opens up potential pathways for personalized therapeutic intervention.
Collapse
Affiliation(s)
- Gian Marco Leone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.M.L.); (K.M.); (F.N.)
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.M.L.); (K.M.); (F.N.)
| | - Salvatore Caponnetto
- Medical Oncology Unit B, Department of Radiology, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy;
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.M.L.); (K.M.); (F.N.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.M.L.); (K.M.); (F.N.)
| |
Collapse
|
6
|
Guo S, Tang Q, Gao X, Hu L, Hu K, Zhang H, Zhang Q, Lai Y, Liu Y, Wang Z, Chang S, Zhang Y, Hu H, An D, Peng Y, Cai H, Shi J. EZH2 inhibition induces senescence via ERK1/2 signaling pathway in multiple myeloma. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1055-1064. [PMID: 38804044 PMCID: PMC11322866 DOI: 10.3724/abbs.2024077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/04/2024] [Indexed: 05/29/2024] Open
Abstract
Epigenetic modifications play an important role in cellular senescence, and enhancer of zeste homolog 2 (EZH2) is a key methyltransferase involved in epigenetic remodeling in multiple myeloma (MM) cells. We have previously demonstrated that GSK126, a specific EZH2 inhibitor, exhibits anti-MM therapeutic efficacy and safety in vivo and in vitro; however, its specific mechanism remains unclear. This study shows that GSK126 induces cellular senescence in MM, which is characterized by the accumulation of senescence-associated heterochromatin foci (SAHF) and p21, and increased senescence-associated β galactosidase activity. Furthermore, EZH2 is inhibited in ribonucleotide reductase regulatory subunit M2 (RRM2)-overexpressing OCI-MY5 and RPMI-8226 cells. RRM2 overexpression inhibits the methyltransferase function of EZH2 and promotes its degradation through the ubiquitin-proteasome pathway, thereby inducing cellular senescence. In this senescence model, Lamin B1, a key component of the nuclear envelope and a marker of senescence, does not decrease but instead undergoes aberrant accumulation. Meanwhile, phosphorylation of extracellular signal-regulated protein kinase (ERK1/2) is significantly increased. The inhibition of ERK1/2 phosphorylation in turn partially restores Lamin B1 level and alleviates senescence. These findings suggest that EZH2 inhibition increases Lamin B1 level and induces senescence by promoting ERK1/2 phosphorylation. These data indicate that EZH2 plays an important role in MM cellular senescence and provide insights into the relationships among Lamin B1, p-ERK1/2, and cellular senescence.
Collapse
Affiliation(s)
- Shushan Guo
- Shanghai Clinical CollegeAnhui Medical UniversityShanghai200072China
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
- The Fifth Clinical Medical College of Anhui Medical UniversityHefei230022China
| | - Qiongwei Tang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Xuejie Gao
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Liangning Hu
- Department of HematologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310016China
| | - Ke Hu
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Hui Zhang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Qikai Zhang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yue Lai
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yujie Liu
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Zhuning Wang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Shuaikang Chang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yifei Zhang
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Huifang Hu
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Dong An
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yu Peng
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Haiyan Cai
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Jumei Shi
- Shanghai Clinical CollegeAnhui Medical UniversityShanghai200072China
- Department of HematologyShanghai East HospitalTongji University School of MedicineShanghai200120China
- The Fifth Clinical Medical College of Anhui Medical UniversityHefei230022China
| |
Collapse
|
7
|
Luo Y, Li L, Hu Q, Zhang Z, Liu F, Peng Y, Zou Y, Chen L. Iron overload increases the sensitivity of endometriosis stromal cells to ferroptosis via a PRC2-independent function of EZH2. Int J Biochem Cell Biol 2024; 169:106553. [PMID: 38417568 DOI: 10.1016/j.biocel.2024.106553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Given the high concentration of iron in the micro-environment of ovarian endometriosis, it is plausible to hypothesize that ectopic endometrial cells may be more susceptible to undergoing ferroptosis. Manipulation of ferroptosis has been explored as a potential therapeutic strategy to treat related diseases. In this study, we examined the impact on ectopic endometrial stromal cells (EESCs) of iron overload and an inducer of ferroptosis. We found that the iron concentration in the ovarian endometriosis was much higher than control samples. Treatment of cultured EESCs with ferric ammonium citrate (FAC) increase the sensitivity to undergo ferroptosis. By analyzing the RNA-seq results, it was discovered that zeste 2 polycomb repressive complex 2 subunit (EZH2) was significantly downregulated in ferroptosis induced EESCs. Moreover, overexpression of EZH2 effectively prevented the induction of ferroptosis. In addition, the activity or expression of EZH2 is directly and specifically inhibited by the methyltransferase inhibitor GSK343, which raises the sensitivity of stromal cells to ferroptosis. Taken together, our findings revealed that EZH2 act as a suppressor in the induced cell ferroptosis through a PRC2-independent methyltransferase mechanism. Therefore, blocking EZH2 expression and inducing ferroptosis may be effective treatment approaches for ovarian endometriosis.
Collapse
Affiliation(s)
- Yong Luo
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Liping Li
- Prenatal Diagnosis Center, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Qiwen Hu
- School of Medicine, Nanchang University, Nanchang, China
| | - Ziyu Zhang
- Department of pathology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Faying Liu
- Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China; Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Yongbao Peng
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Yang Zou
- Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China; Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
8
|
Salmerón-Bárcenas EG, Zacapala-Gómez AE, Torres-Rojas FI, Antonio-Véjar V, Ávila-López PA, Baños-Hernández CJ, Núñez-Martínez HN, Dircio-Maldonado R, Martínez-Carrillo DN, Ortiz-Ortiz J, Jiménez-Wences H. TET Enzymes and 5hmC Levels in Carcinogenesis and Progression of Breast Cancer: Potential Therapeutic Targets. Int J Mol Sci 2023; 25:272. [PMID: 38203443 PMCID: PMC10779134 DOI: 10.3390/ijms25010272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Breast Cancer (BC) was the most common female cancer in incidence and mortality worldwide in 2020. Similarly, BC was the top female cancer in the USA in 2022. Risk factors include earlier age at menarche, oral contraceptive use, hormone replacement therapy, high body mass index, and mutations in BRCA1/2 genes, among others. BC is classified into Luminal A, Luminal B, HER2-like, and Basal-like subtypes. These BC subtypes present differences in gene expression signatures, which can impact clinical behavior, treatment response, aggressiveness, metastasis, and survival of patients. Therefore, it is necessary to understand the epigenetic molecular mechanism of transcriptional regulation in BC, such as DNA demethylation. Ten-Eleven Translocation (TET) enzymes catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) on DNA, which in turn inhibits or promotes the gene expression. Interestingly, the expression of TET enzymes as well as the levels of the 5hmC epigenetic mark are altered in several types of human cancers, including BC. Several studies have demonstrated that TET enzymes and 5hmC play a key role in the regulation of gene expression in BC, directly (dependent or independent of DNA de-methylation) or indirectly (via interaction with other proteins such as transcription factors). In this review, we describe our recent understanding of the regulatory and physiological function of the TET enzymes, as well as their potential role as biomarkers in BC biology.
Collapse
Affiliation(s)
- Eric Genaro Salmerón-Bárcenas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México C.P. 07360, Mexico; (E.G.S.-B.); (P.A.Á.-L.)
| | - Ana Elvira Zacapala-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (A.E.Z.-G.); (F.I.T.-R.); (V.A.-V.); (J.O.-O.)
| | - Francisco Israel Torres-Rojas
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (A.E.Z.-G.); (F.I.T.-R.); (V.A.-V.); (J.O.-O.)
| | - Verónica Antonio-Véjar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (A.E.Z.-G.); (F.I.T.-R.); (V.A.-V.); (J.O.-O.)
| | - Pedro Antonio Ávila-López
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México C.P. 07360, Mexico; (E.G.S.-B.); (P.A.Á.-L.)
| | - Christian Johana Baños-Hernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara C. P. 44340, Jalisco, Mexico;
| | - Hober Nelson Núñez-Martínez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México C. P. 04510, Mexico;
| | - Roberto Dircio-Maldonado
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (R.D.-M.); (D.N.M.-C.)
| | - Dinorah Nashely Martínez-Carrillo
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (R.D.-M.); (D.N.M.-C.)
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (A.E.Z.-G.); (F.I.T.-R.); (V.A.-V.); (J.O.-O.)
| | - Hilda Jiménez-Wences
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (R.D.-M.); (D.N.M.-C.)
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico
| |
Collapse
|
9
|
Qiu T, Ding Y, Qin J, Ren D, Xie M, Qian Q, Wang Y, Ma L, Jing A, Yang J, Ma S, Wang X, Wang W, Ji J, Li G. Epigenetic reactivation of PEG3 by EZH2 inhibitors suppresses renal clear cell carcinoma progress. Cell Signal 2023; 107:110662. [PMID: 37001595 DOI: 10.1016/j.cellsig.2023.110662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/01/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
PEG3 is a paternally imprinted gene located on chromosome 19q13.4 and one of the most common low-expression genes in human ovarian cancer. PEG3 plays an important role in p53-related cell death. However, whether PEG3 plays a role in renal clear cell carcinoma (ccRCC) remains unclear. Here, we found that PEG3 was epigenetic inactivated and played a tumor suppressor role in ccRCC. Overexpression of PEG3 inhibited ccRCC cell proliferation and colony formation, while removal of PEG3 significantly promoted cell proliferation in vitro and tumor formation in nude mice in vivo. EZH2-mediated H3K27me3 at the PEG3 promoter suppressed PEG3 expression. EZH2 specific inhibitors promote PEG3 transcriptional expression through the transition from H3K27me3 to H3K27ac at the PEG3 promoter region. Depletion of PEG3 inhibited the activation of the p53 signaling pathway, resulting in the resistance of ccRCC to EZH2 inhibitors treatment. Thus, our data show that EZH2-mediated epigenetic inactivation of PEG3 promotes the progress of ccRCC, and reactivation of PEG3 may be a promising strategy for ccRCC.
Collapse
Affiliation(s)
- Teng Qiu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuanyuan Ding
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingting Qin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Dexu Ren
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mengru Xie
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qilan Qian
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yasong Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ling Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Aixin Jing
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiayan Yang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shaojie Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiujun Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Weiling Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Guanchu Li
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, PR China
| |
Collapse
|
10
|
Dutta P, Basu M, Roy A, Mandal RK, Panda CK. High nuclear expression of DNMT1 in correlation with inactivation of TET1 portray worst prognosis among the cervical carcinoma patients: clinical implications. J Mol Histol 2023; 54:89-102. [PMID: 36692670 DOI: 10.1007/s10735-023-10114-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/15/2023] [Indexed: 01/25/2023]
Abstract
In this study, we aimed to understand the interplay of the epigenetic modifier genes DNMT1 and TET1 along with HPV infection in the cervical epithelium and how it changes during tumorigenesis. For this purpose, initially the bioinformatical analysis (methylation and expression profile) of DNMT1 and TET1 was analyzed in the TCGA dataset. Next genetic (deletion) and epigenetic profiling (promoter methylation) of DNMT1 and TET1 were done in our sample pool and also validated in CACX cell lines as well. The results were further correlated with different clinicopathological parameters. Our data revealed that HPV infection in basal/parabasal layers of cervical epithelium actually disrupts the epigenetic homeostasis of DNMT1 and TET1 proteins which ultimately leads to the high expression of DNMT1 along with further reduction in TET1 protein during the development of carcinoma. Further, in-depth look into the results revealed that comparatively low methylation frequency of DNMT1 coupled with high promoter methylation and deletion frequency [22-46%] of TET1 were the plausible reasons of their antagonistic expression profile during the progression of the disease. Interestingly, the prevalence of DNMT1 [9.1%] and TET1 promoter methylation [22.7%] found in both the plasma DNA of the respective CACX patients implicated its diagnostic importance in this study. Lastly, molecular alteration of TET1 alone or in combination with DNMT1 showed the worst overall survival among the patients. Hence, it may be concluded that an inverse molecular profile of DNMT1 and TET1 genes seen in the proliferative basal-parabasal layers of the cervical epithelium was aggravated during the development of CACX along with genetic and epigenetic changes due to HPV infection.
Collapse
Affiliation(s)
- Priyanka Dutta
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Mukta Basu
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Anup Roy
- Department of Pathology, Nil Ratan Sircar Medical College and Hospital, Kolkata, 700014, India
| | - Ranajit Kumar Mandal
- Department of Gynaecologic Oncology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
11
|
Appiah CO, Singh M, May L, Bakshi I, Vaidyanathan A, Dent P, Ginder G, Grant S, Bear H, Landry J. The epigenetic regulation of cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Adv Cancer Res 2023; 158:337-385. [PMID: 36990536 DOI: 10.1016/bs.acr.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ultimate goal of cancer therapy is the elimination of disease from patients. Most directly, this occurs through therapy-induced cell death. Therapy-induced growth arrest can also be a desirable outcome, if prolonged. Unfortunately, therapy-induced growth arrest is rarely durable and the recovering cell population can contribute to cancer recurrence. Consequently, therapeutic strategies that eliminate residual cancer cells reduce opportunities for recurrence. Recovery can occur through diverse mechanisms including quiescence or diapause, exit from senescence, suppression of apoptosis, cytoprotective autophagy, and reductive divisions resulting from polyploidy. Epigenetic regulation of the genome represents a fundamental regulatory mechanism integral to cancer-specific biology, including the recovery from therapy. Epigenetic pathways are particularly attractive therapeutic targets because they are reversible, without changes in DNA, and are catalyzed by druggable enzymes. Previous use of epigenetic-targeting therapies in combination with cancer therapeutics has not been widely successful because of either unacceptable toxicity or limited efficacy. The use of epigenetic-targeting therapies after a significant interval following initial cancer therapy could potentially reduce the toxicity of combination strategies, and possibly exploit essential epigenetic states following therapy exposure. This review examines the feasibility of targeting epigenetic mechanisms using a sequential approach to eliminate residual therapy-arrested populations, that might possibly prevent recovery and disease recurrence.
Collapse
Affiliation(s)
- Christiana O Appiah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Manjulata Singh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Lauren May
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ishita Bakshi
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ashish Vaidyanathan
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Gordon Ginder
- Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Steven Grant
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Richmond, VA, United States
| | - Harry Bear
- Department of Surgery, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, VA, United States; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Richmond, VA, United States
| | - Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
12
|
Yang X, Mei C, Raza SHA, Ma X, Wang J, Du J, Zan L. Interactive regulation of DNA demethylase gene TET1 and m 6A methyltransferase gene METTL3 in myoblast differentiation. Int J Biol Macromol 2022; 223:916-930. [PMID: 36375665 DOI: 10.1016/j.ijbiomac.2022.11.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
DNA methylation (5mC) and mRNA N6-methyladenosine (m6A) play an essential role in gene transcriptional regulation. DNA methylation has been well established to be involved in skeletal muscle development. Interacting regulatory mechanisms between DNA methylation and mRNA m6A modification have been identified in a variety of biological processes. However, the effect of m6A on skeletal muscle differentiation and the underlying mechanisms are still unclear. It is also unknown whether there is an interaction between DNA methylation and mRNA m6A modification in skeletal myogenesis. In the present study, we used m6A-IP-qPCR, LC-MS/MS and dot blot assays to determine that the DNA demethylase gene, TET1, exhibited increased m6A levels and decreased mRNA expression during bovine skeletal myoblast differentiation. Dual-luciferase reporter assays and RIP experiments demonstrated that METTL3 suppressed TET1 expression by regulating TET1 mRNA stability in a m6A-YTHDF2-dependent manner. Furthermore, TET1 mediated DNA demethylation of itself, MYOD1 and MYOG, thereby stimulating their expression to promote myogenic differentiation. Ectopic expression of TET1 rescued the effect of METTL3 knockdown on reduced myotubes. In contrast, TET1 knockdown impaired the myogenic differentiation promoted by METTL3 overexpression. Moreover, ChIP experiments found that TET1 could bind and demethylate METTL3 DNA, which enhanced METTL3 expression. In addition, TET1 knockdown decreased m6A levels. ChIP assays also showed that TET1 knockdown contributed to the binding of H3K4me3 and H3K27me3 to METTL3 DNA. Our results revealed a negative feedback regulatory loop between TET1 and METTL3 in myoblast differentiation, which unveiled the interplay among DNA methylation, RNA methylation and histone methylation in skeletal myogenesis.
Collapse
Affiliation(s)
- Xinran Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinhao Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiawei Du
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
13
|
Quercetin Mediated TET1 Expression Through MicroRNA-17 Induced Cell Apoptosis in Melanoma Cells. Biochem Genet 2022; 61:762-777. [PMID: 36136257 DOI: 10.1007/s10528-022-10286-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/08/2022] [Indexed: 11/02/2022]
Abstract
A previous report suggested that the expression of ten-eleven translocation (TET) proteins is abnormal in certain cancers. Quercetin has been demonstrated as anti-cancer role in cancer development. In order to explore the inhibitory effect and mechanism of quercetin on uveal melanoma cells, the expression of TET proteins was analyzed in the present study. Our results suggest that the expression of TET1 was increased following treatment with quercetin in OCM-1, SK-MEL-1, and B16 cells. In addition, quercetin treatment induced apoptosis and inhibited migration and invasion. To further investigate the association of the expression of TET1 with cell growth, apoptosis, migration, and invasion, cell lines in which TET1 was knocked-down or overexpressed were constructed. The results showed that the increased expression of TET1-induced apoptosis, increased 5-hydroxymethylcytosine (5 hmC). and inhibited invasion. Our bioinformatics studies indicated that TET1 is a target gene of microRNA-17 (miR-17) Our results showed that inhibition of the expression of miR-17 resulted in increased TET1 expression in OCM-1 cells. Furthermore, our results indicated that quercetin treatment increased TET1 expression and inhibited melanoma growth in nude mice. Taken together, our results suggest that quercetin can regulate cell proliferation and apoptosis through TET1 via miR-17 in melanoma cells.
Collapse
|
14
|
Feng J, Meng X. Histone modification and histone modification-targeted anti-cancer drugs in breast cancer: Fundamentals and beyond. Front Pharmacol 2022; 13:946811. [PMID: 36188615 PMCID: PMC9522521 DOI: 10.3389/fphar.2022.946811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/15/2022] [Indexed: 12/21/2022] Open
Abstract
Dysregulated epigenetic enzymes and resultant abnormal epigenetic modifications (EMs) have been suggested to be closely related to tumor occurrence and progression. Histone modifications (HMs) can assist in maintaining genome stability, DNA repair, transcription, and chromatin modulation within breast cancer (BC) cells. In addition, HMs are reversible, dynamic processes involving the associations of different enzymes with molecular compounds. Abnormal HMs (e.g. histone methylation and histone acetylation) have been identified to be tightly related to BC occurrence and development, even though their underlying mechanisms remain largely unclear. EMs are reversible, and as a result, epigenetic enzymes have aroused wide attention as anti-tumor therapeutic targets. At present, treatments to restore aberrant EMs within BC cells have entered preclinical or clinical trials. In addition, no existing studies have comprehensively analyzed aberrant HMs within BC cells; in addition, HM-targeting BC treatments remain to be further investigated. Histone and non-histone protein methylation is becoming an attractive anti-tumor epigenetic therapeutic target; such methylation-related enzyme inhibitors are under development at present. Consequently, the present work focuses on summarizing relevant studies on HMs related to BC and the possible mechanisms associated with abnormal HMs. Additionally, we also aim to analyze existing therapeutic agents together with those drugs approved and tested through pre-clinical and clinical trials, to assess their roles in HMs. Moreover, epi-drugs that target HMT inhibitors and HDAC inhibitors should be tested in preclinical and clinical studies for the treatment of BC. Epi-drugs that target histone methylation (HMT inhibitors) and histone acetylation (HDAC inhibitors) have now entered clinical trials or are approved by the US Food and Drug Administration (FDA). Therefore, the review covers the difficulties in applying HM-targeting treatments in clinics and proposes feasible approaches for overcoming such difficulties and promoting their use in treating BC cases.
Collapse
|
15
|
Regulation and Therapeutic Targeting of MTHFD2 and EZH2 in KRAS-Mutated Human Pulmonary Adenocarcinoma. Metabolites 2022; 12:metabo12070652. [PMID: 35888776 PMCID: PMC9324032 DOI: 10.3390/metabo12070652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Activating KRAS mutations occur in about 30% of pulmonary adenocarcinoma (AC) cases and the discovery of specific inhibitors of G12C-mutated KRAS has considerably improved the prognosis for a subgroup of about 14% of non-small cell lung cancer (NSCLC) patients. However, even in patients with a KRAS G12C mutation, the overall response rate only reaches about 40% and mutations other than G12C still cannot be targeted. Despite the fact that one-carbon metabolism (1CM) and epigenetic regulation are known to be dysregulated by aberrant KRAS activity, we still lack evidence that co-treatment with drugs that regulate these factors might ameliorate response rates and patient prognosis. In this study, we show a direct dependency of Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) and Enhancer of Zeste Homolog 2 (EZH2) expression on mutationally activated KRAS and their prognostic relevance in KRAS-mutated AC. We show that aberrant KRAS activity generates a vulnerability of AC cancer cell lines to both MTHFD2 and EZH2 inhibitors. Importantly, co-inhibition of both factors was synergistically effective and comparable to KRASG12C inhibition alone, paving the way for their use in a therapeutic approach for NSCLC cancer patients.
Collapse
|
16
|
New mechanistic insights of the pathogenicity of high-risk cytomegalovirus (CMV) strains derived from breast cancer: Hope for new cancer therapy options. EBioMedicine 2022; 81:104103. [PMID: 35709661 PMCID: PMC9201002 DOI: 10.1016/j.ebiom.2022.104103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
|
17
|
Qi J, Cui D, Wu QN, Zhao Q, Chen ZH, Li L, Birchmeier W, Yu Y, Tao R. Targeting Wnt/β-Catenin Signaling by TET1/FOXO4 Inhibits Metastatic Spreading and Self-Renewal of Cancer Stem Cells in Gastric Cancer. Cancers (Basel) 2022; 14:3232. [PMID: 35805009 PMCID: PMC9264907 DOI: 10.3390/cancers14133232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/19/2022] Open
Abstract
Metastasis is the main cause of death for patients suffering gastric cancer. Epithelial-mesenchymal transition (EMT) and cancer stem cells (CSC) are critical attributes of metastasis, both of which are regulated tightly by DNA methylation and Wnt/β-catenin signaling. Here, we studied the functions of DNA dioxygenase TET1 in regulating Wnt signaling and in gastric cancer metastasis. Knocking-down and overexpressing TET1 in gastric cancer cells promoted and inhibited metastatic spreading to the liver in immune-deficient mice, respectively. TET1 showed inhibitory effects on metastasis-related features -EMT and CSC, which were reversed by interfering with Wnt/β-catenin signaling. RNA-sequencing identified FOXO4 as a direct transactivating target of TET1. FOXO4 directly interacted with β-catenin and recruited it in the cytoplasm, so as to inhibit β-catenin-mediated transcription of Wnt target genes, including CSC marker EpCAM. Moreover, modulation of FOXO4 could reverse the effects of TET1 manipulation on EMT and self-renewal of CSCs. The analysis with clinical samples confirmed the value of FOXO4 as an independent prognostic predictor of patients' overall survival. Taken together, regulation of Wnt signaling by TET1/FOXO4 is essential for metastasis-associated cellular properties, and targeting TET1/FOXO4/β-catenin pathway may serve as promising therapeutics in the prevention and treatment of gastric cancer metastasis.
Collapse
Affiliation(s)
- Jingjing Qi
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China; (J.Q.); (D.C.); (L.L.)
- Tumor Epigenetics Laboratory, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - Di Cui
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China; (J.Q.); (D.C.); (L.L.)
- Cancer Center, Department of Gastroenterology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Qi-Nian Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Q.-N.W.); (Q.Z.)
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Q.-N.W.); (Q.Z.)
| | - Zhan-Hong Chen
- Department of Oncology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China;
| | - Lianjie Li
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China; (J.Q.); (D.C.); (L.L.)
| | - Walter Birchmeier
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany;
| | - Yong Yu
- Tumor Epigenetics Laboratory, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - Ran Tao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China; (J.Q.); (D.C.); (L.L.)
- Cancer Center, Department of Gastroenterology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China
| |
Collapse
|
18
|
Ji Y, Xu X, Long C, Wang J, Ding L, Zheng Z, Wu H, Yang L, Tao L, Gao F. SMYD2 aggravates gastrointestinal stromal tumor via upregulation of EZH2 and downregulation of TET1. Cell Death Dis 2022; 8:274. [PMID: 35668081 PMCID: PMC9170715 DOI: 10.1038/s41420-022-01038-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
SMYD2, as an oncogene, has been involved in multiple types of cancer, but the potential role of SMYD2 in gastrointestinal stromal tumors (GIST) remains enigmatic and requires further investigation. Hence, this study was conducted with the main objective of analyzing the effect of SMYD2 on GIST. GIST and adjacent normal tissues were collected from 46 patients with GIST where the expression of EZH2, SMYD2, and TET1 was determined, followed by the analysis of their interactions. The functional role of SMYD2 in cell biological functions was determined using a loss-of-function assay in GIST-T1 cells. Nude mouse xenograft experiments were performed to verify the role of the SMYD2/EZH2/TET1 axis in GIST in vivo. EZH2 was upregulated in GIST tissues and cell lines, which was positively correlated with SMYD2 expression and inversely correlated with TET1 expression in GIST tissues. EZH2 silencing due to SMYD2 inhibition reduced GIST-T1 cell proliferation and accelerated cell senescence. EZH2 repressed TET1 expression by promoting H3K27me3 methylation in the TET1 promoter region. TET1 inhibition reversed the effect of EZH2 silencing on the biological functions of GIST-T1 cells. In vivo data further revealed the promoting effect of SMYD2 on the progression of GIST by regulating the EZH2/TET1 axis. Overall, this study demonstrates that SMYD2 can increase EZH2 expression while suppressing TET1 expression, thus accelerating GIST, and creating new treatment opportunities for GIST.
Collapse
Affiliation(s)
- Yong Ji
- Department of General Gastrointestinal Surgery, Jingjiang People's Hospital, 214500, Jingjiang, P.R. China
| | - Xiaofeng Xu
- Department of Clinical Laboratory, Jingjiang People's Hospital, 214500, Jingjiang, P.R. China
| | - Cong Long
- Department of Clinical Laboratory, Jingjiang People's Hospital, 214500, Jingjiang, P.R. China
| | - Jianjiang Wang
- Department of General Surgery, Jingjiang People's Hospital, 214500, Jingjiang, P.R. China
| | - Li Ding
- Department of Clinical Laboratory, Jingjiang People's Hospital, 214500, Jingjiang, P.R. China
| | - Zhizhong Zheng
- Department of Clinical Laboratory, Jingjiang People's Hospital, 214500, Jingjiang, P.R. China
| | - Huiping Wu
- Department of Science and Education, Jingjiang People's Hospital, 214500, Jingjiang, P.R. China
| | - Liu Yang
- Department of Clinical Laboratory, Jingjiang People's Hospital, 214500, Jingjiang, P.R. China
| | - Lan Tao
- Central Laboratory, Jingjiang People's Hospital, 214500, Jingjiang, P.R. China
| | - Feng Gao
- Department of General Surgery, Jingjiang People's Hospital, 214500, Jingjiang, P.R. China.
| |
Collapse
|
19
|
Alzahayqa M, Jamous A, Khatib AAH, Salah Z. TET1 Isoforms Have Distinct Expression Pattern, Localization and Regulation in Breast Cancer. Front Oncol 2022; 12:848544. [PMID: 35646706 PMCID: PMC9133332 DOI: 10.3389/fonc.2022.848544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/08/2022] [Indexed: 12/22/2022] Open
Abstract
TET1 regulates gene expression by demethylating their regulatory sequences through the conversion of 5-methylcytosine to 5-hyroxymethylcytosine. TET1 plays important roles in tissue homeostasis. In breast cancer, TET1 was shown to play controversial roles. Moreover, TET1 has at least two isoforms (long and short) that have distinct expression pattern and apparently different functions in tissue development and disease including breast cancer. We hypothesized that TET1 isoforms have different expression patterns, localization and regulation in different types of breast cancer. To prove our hypothesis, we studied the expression of TET1 isoforms in basal and luminal breast cancer cell lines, as well as in basal and luminal breast cancer animal models. We also studied the effect of different hormones on the expression of the two isoforms. Moreover, we assessed the distribution of the isoforms between the cytoplasm and nucleus. Finally, we overexpressed the full length in a breast cancer cell line and tested its effect on cancer cell behavior. In this study, we demonstrate that while Estrogen and GnRH downregulate the expression of long TET1, they lead to upregulation of short TET1 expression. In addition, we uncovered that luminal cells show higher expression level of the long isoform. We also show that while all TET1 isoforms are almost depleted in a basal breast cancer animal model, the expression of the short isoform is induced in luminal breast cancer model. The short form is expressed mainly in the cytoplasm while the long isoform is expressed mainly in the nucleus. Finally, we show that long TET1 overexpression suppresses cell oncogenic phenotypes. In conclusion, our data suggest that TET1 isoforms have distinct expression pattern, localization and regulation in breast cancer and that long TET1 suppresses oncogenic phenotypes, and that further studies are necessary to elucidate the functional roles of different TET1 isoforms in breast cancer.
Collapse
Affiliation(s)
| | - Abrar Jamous
- Department of Molecular Biology and Biochemistry, Al Quds University, Jerusalem, Palestine
| | - Areej A H Khatib
- Women Health Research Unit, McGill University Health Center, Montreal, QC, Canada
| | - Zaidoun Salah
- Molecular Genetics and Genetic Toxicology Program, Arab American University, Ramallah, Palestine
| |
Collapse
|
20
|
Adamczyk M, Rawłuszko-Wieczorek AA, Wirstlein P, Nowicki M, Jagodziński PP, Wender-Ozegowska E, Kedzia M. Assessment of TET1 gene expression, DNA methylation and H3K27me3 level of its promoter region in eutopic endometrium of women with endometriosis and infertility. Biomed Pharmacother 2022; 150:112989. [PMID: 35489280 DOI: 10.1016/j.biopha.2022.112989] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/02/2022] Open
Abstract
Endometriosis is the cause of infertility. The eutopic endometrium of women with endometriosis showed an aberrant expression pattern of multitude genes. The role of TET1 protein in the pathogenesis of endometriosis and related infertility is not sufficiently known. Further, knowledge on TET1 transcriptional control still remains incomplete. The aim of the study was assessment of TET1 gene expression, DNA methylation and H3K27me3 level of its promoter region in eutopic endometrium of women with endometriosis and infertility. The study included 44 infertile patients with endometriosis (IWE) and 77 infertile (IW) and fertile (FW) patients without endometriosis. The research material was eutopic endometrium. The TET1 mRNA level was analyzed by qPCR. Western blot was used to evaluate the level of TET1 protein. The level of DNA methylation and H3K27me3 level of TET1 gene's promoter region were assessed using HRM and ChIP qPCR, respectively. The level of TET1 expression (TET1 mRNA; TET1 protein level) was lower in IWE during the implantation window (p < 0.001; p = 0.0329). The level of TET1 DNA methylation was higher in the secretory endometrium in mild and advanced IWE (p < 0.004; p < 0.008). H3K27me3 level did not differ between the study groups. The diminished expression of TET1 gene during the secretory phase, may account for the aberrant process of embryonic implantation in infertile endometriosis patients. DNA hypermethylation of TET1 gene is a potential relevant regulator of its expression. H3K27me3 occupancy does not affect the expression of TET1 gene in our study group.
Collapse
Affiliation(s)
- Magdalena Adamczyk
- Department of Reproduction, Poznan University of Medical Sciences, 60-535, Poland.
| | | | - Przemysław Wirstlein
- Department of Reproduction, Poznan University of Medical Sciences, 60-535, Poland
| | - Michał Nowicki
- Department of Histology and Embriology, Poznan University of Medical Sciences, 60-781, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781, Poland
| | - Ewa Wender-Ozegowska
- Department of Reproduction, Poznan University of Medical Sciences, 60-535, Poland
| | - Malgorzata Kedzia
- Department of Reproduction, Poznan University of Medical Sciences, 60-535, Poland
| |
Collapse
|
21
|
Wu Q, Nie DY, Ba-Alawi W, Ji Y, Zhang Z, Cruickshank J, Haight J, Ciamponi FE, Chen J, Duan S, Shen Y, Liu J, Marhon SA, Mehdipour P, Szewczyk MM, Dogan-Artun N, Chen W, Zhang LX, Deblois G, Prinos P, Massirer KB, Barsyte-Lovejoy D, Jin J, De Carvalho DD, Haibe-Kains B, Wang X, Cescon DW, Lupien M, Arrowsmith CH. PRMT inhibition induces a viral mimicry response in triple-negative breast cancer. Nat Chem Biol 2022; 18:821-830. [PMID: 35578032 PMCID: PMC9337992 DOI: 10.1038/s41589-022-01024-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/27/2022] [Indexed: 01/01/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with the worst prognosis and few effective therapies. Here we identified MS023, an inhibitor of type I protein arginine methyltransferases (PRMTs), which has antitumor growth activity in TNBC. Pathway analysis of TNBC cell lines indicates that the activation of interferon responses before and after MS023 treatment is a functional biomarker and determinant of response, and these observations extend to a panel of human-derived organoids. Inhibition of type I PRMT triggers an interferon response through the antiviral defense pathway with the induction of double-stranded RNA, which is derived, at least in part, from inverted repeat Alu elements. Together, our results represent a shift in understanding the antitumor mechanism of type I PRMT inhibitors and provide a rationale and biomarker approach for the clinical development of type I PRMT inhibitors. ![]()
Type I PRMT inhibition elicits potent antitumor activity associated with increased interferon response and intron-retained dsRNA accumulation, suggesting its potential combination with immune checkpoint inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Qin Wu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.
| | - David Y Nie
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Wail Ba-Alawi
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - YiShuai Ji
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - ZiWen Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jennifer Cruickshank
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jillian Haight
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Felipe E Ciamponi
- Molecular Biology and Genetic Engineering Center (CBMEG), Medicinal Chemistry Center (CQMED), Structural Genomics Consortium (SGC-UNICAMP), University of Campinas-UNICAMP, Campinas, Brazil
| | - Jocelyn Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shili Duan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yudao Shen
- Departments of Pharmacological Sciences and Oncological Sciences, Mount Sinai Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jing Liu
- Departments of Pharmacological Sciences and Oncological Sciences, Mount Sinai Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Parinaz Mehdipour
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | | | - Nergiz Dogan-Artun
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - WenJun Chen
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Lan Xin Zhang
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Genevieve Deblois
- Institute for Research in Immunology and Cancer (IRIC), University of Montréal, Montréal, Quebec, Canada.,Faculty of Pharmacy, University of Montreal, Montreal, Quebec, Canada
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Katlin B Massirer
- Molecular Biology and Genetic Engineering Center (CBMEG), Medicinal Chemistry Center (CQMED), Structural Genomics Consortium (SGC-UNICAMP), University of Campinas-UNICAMP, Campinas, Brazil
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Mount Sinai Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel D De Carvalho
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Benjamin Haibe-Kains
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Vector Institute, Toronto, Ontario, Canada
| | - XiaoJia Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mathieu Lupien
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. .,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. .,Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. .,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Chan N, Huang J, Ma G, Zeng H, Donahue K, Wang Y, Li L, Xu W. The transcriptional elongation factor CTR9 demarcates PRC2-mediated H3K27me3 domains by altering PRC2 subtype equilibrium. Nucleic Acids Res 2022; 50:1969-1992. [PMID: 35137163 PMCID: PMC8887485 DOI: 10.1093/nar/gkac047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
CTR9 is the scaffold subunit in polymerase-associated factor complex (PAFc), a multifunctional complex employed in multiple steps of RNA Polymerase II (RNAPII)-mediated transcription. CTR9/PAFc is well known as an evolutionarily conserved elongation factor that regulates gene activation via coupling with histone modifications enzymes. However, little is known about its function to restrain repressive histone markers. Using inducible and stable CTR9 knockdown breast cancer cell lines, we discovered that the H3K27me3 levels are strictly controlled by CTR9. Quantitative profiling of histone modifications revealed a striking increase of H3K27me3 levels upon loss of CTR9. Moreover, loss of CTR9 leads to genome-wide expansion of H3K27me3, as well as increased recruitment of PRC2 on chromatin, which can be reversed by CTR9 restoration. Further, CTR9 depletion triggers a PRC2 subtype switch from the less active PRC2.2, to the more active PRC2.1 with higher methyltransferase activity. As a consequence, CTR9 depletion generates vulnerability that renders breast cancer cells hypersensitive to PRC2 inhibitors. Our findings that CTR9 demarcates PRC2-mediated H3K27me3 levels and genomic distribution provide a unique mechanism that explains the transition from transcriptionally active chromatin states to repressive chromatin states and sheds light on the biological functions of CTR9 in development and cancer.
Collapse
Affiliation(s)
- Ngai Ting Chan
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Gui Ma
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hao Zeng
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kristine Donahue
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yidan Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wei Xu
- To whom correspondence should be addressed. Tel: +1 608 265 5540; Fax: +1 608 262 2824; Email :
| |
Collapse
|
23
|
Li C, Peng C, Jiang Z, Hu H, Lin C, Gao Y, Liu D, Sun B, Wang D. Ginkgo biloba Extract Inhibited Cell Proliferation and Invasion by Stimulating TET2 Expression Through miR-29a in Colorectal Carcinoma Cells. DNA Cell Biol 2022; 41:169-178. [PMID: 34962153 DOI: 10.1089/dna.2021.0418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ginkgo biloba extract (GBE) has antitumor and antioxidant properties, which play a role in regulating gene and protein expression. The ten-eleven translocation (TET) proteins have the ability to regulate epigenetic modifications. However, the abnormal expression of TET2 protein has also been demonstrated in cancer development. In the present study, we analyzed the effects of GBE administration on TET2 expression in human colorectal cancer (CRC). The Cancer Genome Atlas database suggested that the expression of TET2 was lost in CRC. To investigate the expression profiles of TET2, GBE was used to treat CRC cells. The results showed that GBE could increase the expression of TET2 and 5-hydroxymethylcytosine (5hmC). In addition, GBE inhibited cell growth and invasion in SW480 cells. Moreover, to confirm whether TET2 expression affected cell proliferation, apoptosis, migration, and invasion, TET2 was knocked down and a TET2-overexpressing vector was constructed in human CRC cells. The results showed that overexpression of TET2 induced cell proliferation and invasion. Bioinformatic analyses showed that TET2 is a target gene of microRNA-29a (miR-29a). Moreover, reduced expression of miR-29a and increased TET2 expression in CRC cells. GBE was also used to treat a tumor model in nude mice. Compared to the control group, tumor growth was inhibited, and there was increased expression of TET2 in the GBE-treatment group in vivo. In conclusion, these results indicated that GBE inhibited cell proliferation and invasion through TET2 protein expression regulated by miR-29a in the development of CRC.
Collapse
Affiliation(s)
- Chengshun Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chuanni Peng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Haobo Hu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Yongjian Gao
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Da Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Baozhen Sun
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
24
|
Chan CW, Yong CY, Chang HM, Ng PY, Davamani F, Chitra E, Lee VS, Tan KW, Maah MJ, Ng CH. Anticancer chiral and racemic ternary copper(II) complexes: Multiple mechanisms and epigenetic histone methyltransferase enzymes as novel targets. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Role of histone demethylases and histone methyltransferases in triple-negative breast cancer: Epigenetic mnemonics. Life Sci 2022; 292:120321. [PMID: 35031259 DOI: 10.1016/j.lfs.2022.120321] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 12/30/2022]
Abstract
Triple-negative breast cancer (TNBC) is a particularly lethal subtype of breast cancer owing to its heterogeneity, high drug resistance, poor prognosis and lack of therapeutic targets. Recent insights into the complexity of TNBC have been explained by epigenetic regulation and its ability to modulate certain oncogenes and tumour suppressor genes. This has opened an emerging area in anti-cancer therapy using epigenetic modulating drugs, highlighting the epigenetic reprogramming during tumorigenesis and tumour development. Histone methylation and demethylation are such dynamic epigenetic mechanisms mediated by histone methyltransferases (HMTs) and histone demethylases (HDMs), respectively. The interplay between HMTs and HDMs in histone methylation extrapolates their viability as druggable epigenetic targets in TNBC. In this review, we aim to summarize recent progress in the field of epigenetics focusing on HMTs and HDMs in TNBC development and their potential use in targeted therapy for TNBC management.
Collapse
|
26
|
Adibfar S, Elveny M, Kashikova HS, Mikhailova MV, Farhangnia P, Vakili-Samiani S, Tarokhian H, Jadidi-Niaragh F. The molecular mechanisms and therapeutic potential of EZH2 in breast cancer. Life Sci 2021; 286:120047. [PMID: 34653429 DOI: 10.1016/j.lfs.2021.120047] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 02/08/2023]
Abstract
Due to its high occurrence and mortality rate, breast cancer has been studied from various aspects as one of the cancer field's hot topics in the last decade. Epigenetic alterations are spoused to be highly effective in breast cancer development. Enhancer of zeste homolog 2 (EZH2) is an enzymatic epi-protein that takes part in most vital cell functions by its different action modes. EZH2 is suggested to be dysregulated in specific breast cancer types, particularly in advanced stages. Mounting evidence revealed that EZH2 overexpression or dysfunction affects the pathophysiology of breast cancer. In this review, we discuss biological aspects of the EZH2 molecule with a focus on its newly identified action mechanisms. We also highlight how EZH2 plays an essential role in breast cancer initiation, progression, metastasis, and invasion, which emerged as a worthy target for treating breast cancer in different approaches.
Collapse
Affiliation(s)
- Sara Adibfar
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marischa Elveny
- DS & CI Research Group, Universitas Sumatera Utara, Medan, Indonesia
| | | | | | - Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Immunology Board for Transplantation and Advanced Cellular Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sajjad Vakili-Samiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Tarokhian
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Integrated Medicine and Aging Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Liu W, Wu G, Xiong F, Chen Y. Advances in the DNA methylation hydroxylase TET1. Biomark Res 2021; 9:76. [PMID: 34656178 PMCID: PMC8520278 DOI: 10.1186/s40364-021-00331-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/03/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The ten-eleven translocation 1 (TET1) protein is a 5-methylcytosine hydroxylase that belongs to the TET protein family of human α-ketoglutarate oxygenases. TET1 recognizes and binds to regions of high genomic 5'-CpG-3' dinucleotide density, such as CpG islands, initiates the DNA demethylation program, and maintains DNA methylation and demethylation balance to maintain genomic methylation homeostasis and achieve epigenetic regulation. This article reviews the recent research progress of TET1 in the mechanism of demethylation, stem cells and immunity, various malignant tumours and other clinical diseases. CONCLUSION TET1 acts as a key factor mediating demethylation, the mechanism of which still remains to be investigated in detail. TET1 is also critical in maintaining the differentiation pluripotency of embryonic stem cells and plays anti- or oncogenic roles in combination with different signalling pathways in different tumours. In certain tumours, its role is still controversial. In addition, the noncatalytic activity of TET1 has gradually attracted attention and has become a new direction of research in recent years.
Collapse
Affiliation(s)
- Wenzheng Liu
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Guanhua Wu
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Fei Xiong
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yongjun Chen
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
28
|
Li W, Wu H, Sui S, Wang Q, Xu S, Pang D. Targeting Histone Modifications in Breast Cancer: A Precise Weapon on the Way. Front Cell Dev Biol 2021; 9:736935. [PMID: 34595180 PMCID: PMC8476812 DOI: 10.3389/fcell.2021.736935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Histone modifications (HMs) contribute to maintaining genomic stability, transcription, DNA repair, and modulating chromatin in cancer cells. Furthermore, HMs are dynamic and reversible processes that involve interactions between numerous enzymes and molecular components. Aberrant HMs are strongly associated with tumorigenesis and progression of breast cancer (BC), although the specific mechanisms are not completely understood. Moreover, there is no comprehensive overview of abnormal HMs in BC, and BC therapies that target HMs are still in their infancy. Therefore, this review summarizes the existing evidence regarding HMs that are involved in BC and the potential mechanisms that are related to aberrant HMs. Moreover, this review examines the currently available agents and approved drugs that have been tested in pre-clinical and clinical studies to evaluate their effects on HMs. Finally, this review covers the barriers to the clinical application of therapies that target HMs, and possible strategies that could help overcome these barriers and accelerate the use of these therapies to cure patients.
Collapse
Affiliation(s)
- Wei Li
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Hao Wu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shiyao Sui
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Qin Wang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shouping Xu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Da Pang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
29
|
Bisserier M, Mathiyalagan P, Zhang S, Elmastour F, Dorfmüller P, Humbert M, David G, Tarzami S, Weber T, Perros F, Sassi Y, Sahoo S, Hadri L. Regulation of the Methylation and Expression Levels of the BMPR2 Gene by SIN3a as a Novel Therapeutic Mechanism in Pulmonary Arterial Hypertension. Circulation 2021; 144:52-73. [PMID: 34078089 PMCID: PMC8293289 DOI: 10.1161/circulationaha.120.047978] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 03/17/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Epigenetic mechanisms are critical in the pathogenesis of pulmonary arterial hypertension (PAH). Previous studies have suggested that hypermethylation of the BMPR2 (bone morphogenetic protein receptor type 2) promoter is associated with BMPR2 downregulation and progression of PAH. Here, we investigated for the first time the role of SIN3a (switch-independent 3a), a transcriptional regulator, in the epigenetic mechanisms underlying hypermethylation of BMPR2 in the pathogenesis of PAH. METHODS We used lung samples from PAH patients and non-PAH controls, preclinical mouse and rat PAH models, and human pulmonary arterial smooth muscle cells. Expression of SIN3a was modulated using a lentiviral vector or a siRNA in vitro and a specific adeno-associated virus serotype 1 or a lentivirus encoding for human SIN3a in vivo. RESULTS SIN3a is a known transcriptional regulator; however, its role in cardiovascular diseases, especially PAH, is unknown. It is interesting that we detected a dysregulation of SIN3 expression in patients and in rodent models, which is strongly associated with decreased BMPR2 expression. SIN3a is known to regulate epigenetic changes. Therefore, we tested its role in the regulation of BMPR2 and found that BMPR2 is regulated by SIN3a. It is interesting that SIN3a overexpression inhibited human pulmonary arterial smooth muscle cells proliferation and upregulated BMPR2 expression by preventing the methylation of the BMPR2 promoter region. RNA-sequencing analysis suggested that SIN3a downregulated the expression of DNA and histone methyltransferases such as DNMT1 (DNA methyltransferase 1) and EZH2 (enhancer of zeste 2 polycomb repressive complex 2) while promoting the expression of the DNA demethylase TET1 (ten-eleven translocation methylcytosine dioxygenase 1). Mechanistically, SIN3a promoted BMPR2 expression by decreasing CTCF (CCCTC-binding factor) binding to the BMPR2 promoter. Last, we identified intratracheal delivery of adeno-associated virus serotype human SIN3a to be a beneficial therapeutic approach in PAH by attenuating pulmonary vascular and right ventricle remodeling, decreasing right ventricle systolic pressure and mean pulmonary arterial pressure, and restoring BMPR2 expression in rodent models of PAH. CONCLUSIONS All together, our study unveiled the protective and beneficial role of SIN3a in pulmonary hypertension. We also identified a novel and distinct molecular mechanism by which SIN3a regulates BMPR2 in human pulmonary arterial smooth muscle cells. Our study also identified lung-targeted SIN3a gene therapy using adeno-associated virus serotype 1 as a new promising therapeutic strategy for treating patients with PAH.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prabhu Mathiyalagan
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shihong Zhang
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Firas Elmastour
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Dorfmüller
- Hôpital Marie Lannelongue, Department of Pathology, Le Plessis Robinson, France
| | - Marc Humbert
- Université Paris-Sud, and Université Paris-Saclay, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France
- Service de Pneumologie et Soins Intensifs Respiratoires and INSERM U999, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, Paris, France
| | - Gregory David
- New York University School of Medicine, New York, NY, USA
| | - Sima Tarzami
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington DC, USA
| | - Thomas Weber
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Yassine Sassi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susmita Sahoo
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
30
|
The Roles of DNA Demethylases in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:ph14070628. [PMID: 34209564 PMCID: PMC8308559 DOI: 10.3390/ph14070628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancers (TNBCs) are very heterogenous, molecularly diverse, and are characterized by a high propensity to relapse or metastasize. Clinically, TNBC remains a diagnosis of exclusion by the lack of hormone receptors (Estrogen Receptor (ER) and Progesterone Receptor (PR)) as well as the absence of overexpression and/or amplification of HER2. DNA methylation plays an important role in breast cancer carcinogenesis and TNBCs have a distinct DNA methylation profile characterized by marked hypomethylation and lower gains of methylations compared to all other subtypes. DNA methylation is regulated by the balance of DNA methylases (DNMTs) and DNA demethylases (TETs). Here, we review the roles of TETs as context-dependent tumor-suppressor genes and/or oncogenes in solid tumors, and we discuss the current understandings of the oncogenic role of TET1 and its therapeutic implications in TNBCs.
Collapse
|
31
|
Bownes LV, Williams AP, Marayati R, Stafman LL, Markert H, Quinn CH, Wadhwani N, Aye JM, Stewart JE, Yoon KJ, Mroczek-Musulman E, Beierle EA. EZH2 inhibition decreases neuroblastoma proliferation and in vivo tumor growth. PLoS One 2021; 16:e0246244. [PMID: 33690617 PMCID: PMC7942994 DOI: 10.1371/journal.pone.0246244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023] Open
Abstract
Investigation of the mechanisms responsible for aggressive neuroblastoma and its poor prognosis is critical to identify novel therapeutic targets and improve survival. Enhancer of Zeste Homolog 2 (EZH2) is known to play a key role in supporting the malignant phenotype in several cancer types and knockdown of EZH2 has been shown to decrease tumorigenesis in neuroblastoma cells. We hypothesized that the EZH2 inhibitor, GSK343, would affect cell proliferation and viability in human neuroblastoma. We utilized four long-term passage neuroblastoma cell lines and two patient-derived xenolines (PDX) to investigate the effects of the EZH2 inhibitor, GSK343, on viability, motility, stemness and in vivo tumor growth. Immunoblotting confirmed target knockdown. Treatment with GSK343 led to significantly decreased neuroblastoma cell viability, migration and invasion, and stemness. GSK343 treatment of mice bearing SK-N-BE(2) neuroblastoma tumors resulted in a significant decrease in tumor growth compared to vehicle-treated animals. GSK343 decreased viability, and motility in long-term passage neuroblastoma cell lines and decreased stemness in neuroblastoma PDX cells. These data demonstrate that further investigation into the mechanisms responsible for the anti-tumor effects seen with EZH2 inhibitors in neuroblastoma cells is warranted.
Collapse
Affiliation(s)
- Laura V. Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Adele P. Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Laura L. Stafman
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hooper Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nikita Wadhwani
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jamie M. Aye
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jerry E. Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Karina J. Yoon
- Division of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
32
|
Ferrer AI, Trinidad JR, Sandiford O, Etchegaray JP, Rameshwar P. Epigenetic dynamics in cancer stem cell dormancy. Cancer Metastasis Rev 2021; 39:721-738. [PMID: 32394305 DOI: 10.1007/s10555-020-09882-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer remains one of the most challenging diseases despite significant advances of early diagnosis and therapeutic treatments. Cancerous tumors are composed of various cell types including cancer stem cells capable of self-renewal, proliferation, differentiation, and invasion of distal tumor sites. Most notably, these cells can enter a dormant cellular state that is resistant to conventional therapies. Thereby, cancer stem cells have the intrinsic potential for tumor initiation, tumor growth, metastasis, and tumor relapse after therapy. Both genetic and epigenetic alterations are attributed to the formation of multiple tumor types. This review is focused on how epigenetic dynamics involving DNA methylation and DNA oxidations are implicated in breast cancer and glioblastoma multiforme. The emergence and progression of these cancer types rely on cancer stem cells with the capacity to enter quiescence also known as a dormant cellular state, which dictates the distinct tumorigenic aggressiveness between breast cancer and glioblastomas.
Collapse
Affiliation(s)
- Alejandra I Ferrer
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jonathan R Trinidad
- Department of Biological Sciences, Rutgers University, Newark, NJ, 07102, USA
| | - Oleta Sandiford
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | | | - Pranela Rameshwar
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
33
|
Wen Y, Hou Y, Yi X, Sun S, Guo J, He X, Li T, Cai J, Wang Z. EZH2 activates CHK1 signaling to promote ovarian cancer chemoresistance by maintaining the properties of cancer stem cells. Theranostics 2021; 11:1795-1813. [PMID: 33408782 PMCID: PMC7778604 DOI: 10.7150/thno.48101] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Ovarian cancer is a fatal malignant gynecological tumor. Ovarian cancer stem cells (OCSCs) contribute to resistance to chemotherapy. The polycomb group protein enhancer of zeste homolog 2 (EZH2) plays a key role in maintaining CSCs. Here, we aimed to investigate the specific mechanism by which EZH2 regulates CSCs to result in chemoresistance and poor prognosis of ovarian cancer. Methods: We used a nude mouse model to obtain a cell line enriched for OCSCs, named SK-3rd cells. The CRISPR and Cas9 endonuclease system was used to establish an EZH2-knockout SK-3rd ovarian cancer cell line. High-throughput PCR array and bioinformatics methods were used to screen the EZH2 target involved in CSC stemness. A luciferase reporter assay and chromatin immunoprecipitation assay were performed to identify activation of CHK1 by EZH2. We evaluated associations between EZH2/CHK1 expression and the chemoresistance and prognosis of ovarian cancer patients. Results: EZH2 plays a critical role in maintaining ovarian CSC stemness and chemo-resistance. CHK1 is an EZH2 target involved in CSC stemness. Knockdown of EZH2 in ovarian CSCs decreased CHK1 expression, while CHK1 overexpression was sufficient to reverse the inhibitory effect on spheroid formation and chemoresistance caused by repression of EZH2. In addition, EZH2 was also shown to play a unique role in activating rather than repressing CHK1 signaling through binding to the CHK1 promoter in epithelial ovarian cancer cells. Finally, in clinical samples, ovarian cancer patients with high levels of EZH2 and CHK1 not only were more resistant to platinum but also had a poorer prognosis. Conclusions: Our data revealed a previously unidentified functional and mechanistic link between EZH2 levels, CHK1 signaling activation, and ovarian CSCs and provided strong evidence that EZH2 promotes ovarian cancer chemoresistance and recurrence.
Collapse
|
34
|
Gong H, Li Y, Yuan Y, Li W, Zhang H, Zhang Z, Shi R, Liu M, Liu C, Chen C, Liu H, Chen J. EZH2 inhibitors reverse resistance to gefitinib in primary EGFR wild-type lung cancer cells. BMC Cancer 2020; 20:1189. [PMID: 33276757 PMCID: PMC7716470 DOI: 10.1186/s12885-020-07667-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. In traditional anti-cancer therapy, epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKI) have been proven to be beneficial for patients with EGFR mutations. However, patients with EGFR wild-type NSCLC were usually not respond to EGFR-TKIs. Enhancer of zeste homolog 2 (EZH2) is a key molecular in the PRC2 complex and plays an important role in epigenetic regulation and is overexpressed in variant tumors. EZH2 inhibitors have been reported to sensitize variant tumor cells to anticancer drugs. This study aimed to investigate whether the EZH2 inhibitors, GSK343 and DZNep when combined with gefitinib can reverse EGFR-TKIs resistance in EGFR wild-type NSCLC cells. Methods The RNA-sequencing data of patients with NSCLC [502 patients with lung squamous cell carcinoma, including 49 paracancerous lung tissues and 513 patients with lung adenocarcinoma (LUAD), including 59 paracancerous lung tissues] from the Cancer Genome Atlas (TCGA), were analyzed for EZH2 expression. EZH2 expression was verified in 40 NSCLC tissue cancer samples and their corresponding paracancerous tissues from our institute (TJMUGH) via RT-PCR. A549 and H1299 cells treated with siRNA or EZH2 inhibitors were subjected to cell viability and apoptosis analyses as well to EGFR pathway proteins expression analyses via western blotting. Results EZH2 was upregulated in human NSCLC tissues and correlated with poor prognosis in patients with LUAD based on data from both TCGA and TJMUGH. Both GSK343 and DZNep sensitized EGFR wild-type LUAD cells (A549 and H1299) to gefitinib and suppressed cell viability and proliferation in vitro by downregulating the phosphorylation of EGFR and AKT and by inducing cell apoptosis. Co-administration of EZH2 inhibitors (GSK343 or DZNep) with gefitinib exerted a stronger inhibitory effect on tumor activity, cell proliferation and cell migration than single drug administration in vitro and in vivo. Conclusions These data suggest that the combination of EZH2 inhibitors with EGFR-TKIs may be an effective method for treating NSCLC-patients with EGFR-wild type, who do not want to undergo traditional treatment with chemotherapy.
Collapse
Affiliation(s)
- Hao Gong
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China
| | - Yin Yuan
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Weiting Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Hongbing Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Zihe Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Ruifeng Shi
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Minghui Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Chao Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Chen Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China.
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China. .,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China.
| |
Collapse
|
35
|
Ke Q, Wang K, Fan M, Li M, Luo G, Wang D. Prognostic role of high TET1 expression in patients with solid tumors: A meta-analysis. Medicine (Baltimore) 2020; 99:e22863. [PMID: 33126331 PMCID: PMC7598857 DOI: 10.1097/md.0000000000022863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/03/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recently, increased expression of TET1 has been shown to inhibit tumor development in many studies. Therefore, a meta-analysis was conducted to assess the prognostic role of TET1 in solid tumors. METHODS PubMed, Embase, and the Web of Science (last updated on June 13, 2019) were searched and 16 eligible studies involving 3100 patients were eventually taken forward into the meta-analysis. RESULTS Pooled results indicated that higher TET1 expression in cancer tissues was associated with improved overall survival (OS) [hazard ratio (HR) = 0.736, 95% confidence interval (95% CI) = 0.542-0.998, P = .049]. In the subgroup analysis, higher TET1 expression in respiratory tumors (HR = 0.778, 95% CI = 0.639-0.946, P = .012) and breast cancer in Asian patients (HR = 0.326, 95% CI = 0.199-0.533, P < .001) were significantly associated with better OS. In addition, the association between high TET1 expression and prolonged OS was also statistically significant in the following subgroups; data source from samples (HR = 0.561, 95% CI = 0.384-0.819, P = .003), reported in text (HR = 0.539, 95% CI = 0.312-0.931, P = .027), TET1 protein (HR = 0.635, 95% CI = 0.409-0.984, P = .042), Asians (HR = 0.563, 95% CI = 0.376-0.844, P = .005). CONCLUSION This meta-analysis displays that high expression levels of TET1 in tissues is significantly associated with better survival in patients with solid tumors. This finding can be used as evidence to the tone that TET1 may be a useful target for the treatment of patients with solid tumors in the future.
Collapse
Affiliation(s)
- Qiwei Ke
- Department of Emergency, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003
| | - Kai Wang
- Department of Urology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Jiangning District, Nanjing 211100
| | | | - Mengchao Li
- Department of Emergency, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003
| | - Guanghua Luo
- Comprehensive Laboratory, Changzhou Key Lab of Individualized Diagnosis and Treatment Associated with High Technology Research, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, Jiangsu Province, China
| | - Daming Wang
- Department of Emergency, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003
| |
Collapse
|
36
|
Zhang J, Ying Y, Li M, Wang M, Huang X, Jia M, Zeng J, Ma C, Zhang Y, Li C, Wang X, Shu XS. Targeted inhibition of KDM6 histone demethylases eradicates tumor-initiating cells via enhancer reprogramming in colorectal cancer. Am J Cancer Res 2020; 10:10016-10030. [PMID: 32929331 PMCID: PMC7481431 DOI: 10.7150/thno.47081] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
Tumor-initiating cells (TICs) maintain heterogeneity within tumors and seed metastases at distant sites, contributing to therapeutic resistance and disease recurrence. In colorectal cancer (CRC), strategy that effectively eradicates TICs and is of potential value for clinical use still remains in need. Methods: The anti-tumorigenic activity of a small-molecule inhibitor of KDM6 histone demethylases named GSK-J4 in CRC was evaluated by in vitro assays and in vivo imaging of xenografted tumors. Sphere formation, flow cytometry analysis of cell surface markers and intestinal organoid formation were performed to examine the impact of GSK-J4 on TIC properties. Transcriptome analysis and global profiling of H3K27ac, H3K27me3, and KDM6A levels by ChIP-seq were conducted to elucidate how KDM6 inhibition reshapes epigenetic landscape and thereby eliminating TICs. Results: GSK-J4 alleviated the malignant phenotypes of CRC cells in vitro and in vivo, sensitized them to chemotherapeutic treatment, and strongly repressed TIC properties and stemness-associated gene signatures in these cells. Mechanistically, KDM6 inhibition induced global enhancer reprogramming with a preferential impact on super-enhancer-associated genes, including some key genes that control stemness in CRC such as ID1. Besides, expression of both Kdm6a and Kdm6b was more abundant in mouse intestinal crypt when compared with upper villus and inhibition of their activities blocked intestinal organoid formation. Finally, we unveiled the power of KDM6B in predicting both the overall survival outcome and recurrence of CRC patients. Conclusions: Our study provides a novel rational strategy to eradicate TICs through reshaping epigenetic landscape in CRC, which might also be beneficial for optimizing current therapeutics.
Collapse
|
37
|
Zhou X, Jiao D, Dou M, Zhang W, Lv L, Chen J, Li L, Wang L, Han X. Curcumin inhibits the growth of triple-negative breast cancer cells by silencing EZH2 and restoring DLC1 expression. J Cell Mol Med 2020; 24:10648-10662. [PMID: 32725802 PMCID: PMC7521266 DOI: 10.1111/jcmm.15683] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/28/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2), an oncogene, is a commonly up‐regulated epigenetic factor in human cancer. Hepatocellular carcinoma deletion gene 1 (DLC1) is an antioncogene that is either expressed at low levels or not expressed in many malignant tumours. Curcumin is a promising anticancer drug that has antitumour effects in many tumours, but its mechanism of action is unclear. Our research demonstrated that EZH2 was up‐regulated in breast cancer (BC) tissues and cells, whereas DLC1 was down‐regulated, and the expression of EZH2 and DLC1 was negatively correlated in BC. By analysing the characteristics of clinical cases, we found that positive expression of EZH2 and negative expression of DLC1 may be predictors of poor prognosis in patients with triple‐negative breast cancer (TNBC). Moreover, knockdown of EZH2 expression restored the expression of DLC1 and inhibited the migration, invasion and proliferation, promoted the apoptosis, and blocked the cell cycle of MDA‐MB‐231 cells. Furthermore, we found that curcumin restored the expression of DLC1 by inhibiting EZH2; it also inhibited the migration, invasion and proliferation of MDA‐MB‐231 cells, promoted their apoptosis and blocked the cell cycle. Finally, xenograft tumour models were used to demonstrate that curcumin restored DLC1 expression by inhibiting EZH2 and also inhibited the growth and promoted the apoptosis of TNBC cells. In conclusion, our results suggest that curcumin can inhibit the migration, invasion and proliferation, promote the apoptosis, block the cycle of TNBC cells and restore the expression of DLC1 by inhibiting the expression of EZH2.
Collapse
Affiliation(s)
- Xueliang Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengmeng Dou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijie Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liying Lv
- Department of Oncology, The Central Hospital of Kaifeng, Kaifeng, China
| | - Jianjian Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lifeng Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liuxing Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Li M, Deng Y, Zhuo M, Zhou H, Kong X, Xia X, Su Z, Chen Q, Guo P, Mo P, Yu C, Li W. Demethylase-independent function of JMJD2D as a novel antagonist of p53 to promote Liver Cancer initiation and progression. Am J Cancer Res 2020; 10:8863-8879. [PMID: 32754284 PMCID: PMC7392006 DOI: 10.7150/thno.45581] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background: As a histone demethylase, JMJD2D can enhance gene expression by specifically demethylating H3K9me2/3 and plays an important role in promoting colorectal cancer progression. However, its role in liver cancer remains unclear. Methods: The expression of JMJD2D was examined in human liver cancer specimens and non-tumorous liver tissues by immunohistochemical or immunoblot analysis. JMJD2D expression was knocked down in liver cancer cells using small hairpin RNAs, and cells were analyzed with Western blot, real-time PCR, cell viability, colony formation, and flow cytometry assays. Cells were also grown as tumor xenografts in nude mice, and the tumor cell proliferation and apoptosis were measured by immunohistochemical analysis. The relationship between JMJD2D and p53 was studied by co-immunoprecipitation, chromatin immunoprecipitation, and electric mobility shift assay. Wild-type and JMJD2D-knockout mice were intraperitoneally injected with diethylnitrosamine (DEN) to induce liver tumors and the liver cancer initiation and progression were investigated. Results: JMJD2D was frequently upregulated in human liver cancer specimens compared with non-tumorous liver tissues. The overall survival of liver cancer patients with high JMJD2D expression was significantly decreased compared to that with low JMJD2D expression. JMJD2D knockdown reduced liver cancer cell proliferation and xenograft tumor growth, sensitized cells to chemotherapeutic drug-induced apoptosis, and increased the expression of cell cycle inhibitor p21 and pro-apoptosis gene PUMA. Genetically, JMJD2D deficiency protected mice against DEN-induced liver cancer initiation and progression. Knockout of tumor suppressor p53 significantly reduced the effects of JMJD2D knockdown on cell proliferation, apoptosis, and the expression of p21 and PUMA, suggesting that JMJD2D regulates liver cancer cell functions in part through inhibiting p53 signaling pathway. Mechanistically, JMJD2D directly interacted with p53 and inhibited p53 recruitment to the p21 and PUMA promoters in a demethylation activity-independent manner, implicating a demethylase-independent function of JMJD2D as a novel p53 antagonist. In addition, JMJD2D could activate Wnt/β-catenin signaling to promote liver cancer cell proliferation. Conclusion: Our study demonstrates that JMJD2D can antagonize the tumor suppressor p53 and activate an oncogenic signaling pathway (such as Wnt/β-catenin signaling pathway) simultaneously to promote liver cancer initiation and progression, suggesting that JMJD2D may serve as a novel target for liver cancer treatment.
Collapse
|
39
|
Sun H, Wang H, Wang X, Aoki Y, Wang X, Yang Y, Cheng X, Wang Z, Wang X. Aurora-A/SOX8/FOXK1 signaling axis promotes chemoresistance via suppression of cell senescence and induction of glucose metabolism in ovarian cancer organoids and cells. Am J Cancer Res 2020; 10:6928-6945. [PMID: 32550913 PMCID: PMC7295065 DOI: 10.7150/thno.43811] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Rationale: Cisplatin derivatives are first-line chemotherapeutic agents for epithelial ovarian cancer. However, chemoresistance remains a major hurdle for successful therapy and the underlying molecular mechanisms are poorly understood at present. Methods: RNA sequencing of organoids (PDO) established from cisplatin-sensitive and -resistant ovarian cancer tissue samples was performed. Glucose metabolism, cell senescence, and chemosensitivity properties were subsequently examined. Immunoprecipitation, mass spectrometry, Fӧrster resonance energy transfer-fluorescence lifetime imaging (FRET-FLIM), luciferase reporter assay, ChIP and animal experiments were conducted to gain insights into the specific functions and mechanisms of action of the serine/threonine kinase, Aurora-A, in ovarian cancer. Results: Aurora-A levels were significantly enhanced in cisplatin-resistant PDO. Furthermore, Aurora-A promoted chemoresistance through suppression of cell senescence and induction of glucose metabolism in ovarian cancer organoids and cells. Mechanistically, Aurora-A bound directly to the transcription factor sex determining region Y-box 8 (SOX8) and phosphorylated the Ser327 site, in turn, regulating genes related to cell senescence and glycolysis, including hTERT, P16, LDHA and HK2, through enhancement of forkhead-box k1 (FOXK1) expression. Conclusions: Aurora-A regulates cell senescence and glucose metabolism to induce cisplatin resistance by participating in the SOX8/FOXK1 signaling axis in ovarian cancer. Our collective findings highlight a novel mechanism of cisplatin resistance and present potential therapeutic targets to overcome chemoresistance in ovarian cancer.
Collapse
|
40
|
Zhang R, Li X, Liu Z, Wang Y, Zhang H, Xu H. EZH2 inhibitors-mediated epigenetic reactivation of FOSB inhibits triple-negative breast cancer progress. Cancer Cell Int 2020; 20:175. [PMID: 32477007 PMCID: PMC7236314 DOI: 10.1186/s12935-020-01260-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/12/2020] [Indexed: 11/10/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer that lacks expression of estrogen receptor (ER) and progesterone receptor (PR) and the human epidermal growth factor receptor 2 (HER2) gene. Chemotherapy remains the standard of care for TNBC treatment, but considerable patients are very resistant to chemotherapy. Mutations or aberrant upregulation of EZH2 occur frequently, and EZH2 inhibitor (EZH2i) showed some preclinic antitumor effects in TNBC. Methods RNA-seq data of 3 TNBC cell lines either treated with 2 μM GSK343, or stably transduced with shEHZ2, compared to untreated controls (GSE112378) were analyzed by Limma R package. The Kaplan–Meier plotter (KM plotter) database was used to assess the relevance of FOSB mRNA expression to relapse-free survival (RFS) in TNBC. Cell number counting and colony formation assays were used to detect the biological effect of FOSB on the growth of TNBC cells in vitro. The effect of FOSB on TNBC tumor growth in vivo was investigated in a mice tumor xenograft model. Luciferase reporter and chromatin immunoprecipitation (Chip) assays were used to determine the regulatory roles of C/EBPβ on FOSB expression. Results We found that FOSB, a member of the activator protein-1 complex, was a direct downstream target of EZH2. FOSB was significantly decreased in TNBC samples and associated with better relapse-free survival (RFS). EZH2-mediated histone 3 trimethylated on lysine 27 (H3K27me3), a marker of silent chromatin conformation, at the FOSB promoter inhibited it expression. Depletion of FOSB in TNBC cells promoted cell proliferation in vitro and tumor growth in vitro by inactivating the p53 pathway and conferred resistant to EZH2 inhibitor (EZH2i). Mechanistically, EZH2i promotes the shift from H3K27me3 to H3K27ac at the FOSB promoter, and recruits the transcription factor C/EBPβ to activate FOSB gene transcription. Conclusion Together, our results suggest that EZH2-mediated epigenetic inactivation of FOSB promotes TNBC expression and demonstrate that reactivation of FOSB expression by C/EBPβ underlies the anti-TNBC action of EZH2is.
Collapse
Affiliation(s)
- Ruishan Zhang
- Department of Breast Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning People's Republic of China
| | - Xiang Li
- Department of Breast Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning People's Republic of China
| | - Zhuangkai Liu
- Department of Breast Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning People's Republic of China
| | - Yuying Wang
- Department of Breast Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning People's Republic of China
| | - Hao Zhang
- Department of Breast Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning People's Republic of China
| | - Hong Xu
- Department of Breast Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning People's Republic of China
| |
Collapse
|
41
|
Zhong X, Liu D, Jiang Z, Li C, Chen L, Xia Y, Liu D, Yao Q, Wang D. Chrysin Induced Cell Apoptosis and Inhibited Invasion Through Regulation of TET1 Expression in Gastric Cancer Cells. Onco Targets Ther 2020; 13:3277-3287. [PMID: 32368086 PMCID: PMC7182457 DOI: 10.2147/ott.s246031] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
Objective Ten-eleven translocation (TET) enzymes that oxidize a 5-methylcytosine (5mC) to yield 5-hydroxymethylcytosine (5hmC) have been responsible for fine-tuning methylation patterns and exhibit role in epigenetic modifications. Chrysin, a natural flavone frequently present in honey, has been recognized to exhibit anti-tumor properties. In this study, we investigated the effects of Chrysin in the expression pattern of TET proteins in gastric cancer (GC) cells. Materials and Methods Using qRT-PCR and Western blot analysis, we analyzed the expression of TET1 in GC cells in vitro following treatment with Chrysin. Immunofluorescence staining detected the expression levels of 5mC and 5hmC. Flow cytometry, wound healing, and Matrigel invasion assays were performed to determine cell proliferation, cell cycle, apoptosis, and migration and invasion of GC cells following treatment with Chrysin, si-TET1, and TET1-KO. Furthermore, a xenograft model was developed to analyze the expression pattern of TET1 on tumor development in vivo. Results qRT-PCR and Western blot assays indicated that treatment with Chrysin significantly promoted the expression of TET1 in GC cells. Immunofluorescence study further confirmed that TET1 and 5hmC levels were significantly enhanced following treatment with Chrysin in MKN45 cells. Moreover, our results suggested that Chrysin could noticeably induce cell apoptosis and inhibit cell migration and invasion. Further, knockdown and overexpression of TET1 were conducted to investigate whether TET1 expression affected cell apoptosis, and cell migration and invasion in MKN45 cells. The results indicated that overexpression of TET1 markedly promoted cell apoptosis and inhibited cell migration and invasion. Furthermore, the TET1 gene knocked out was generated using the CRISPR/Cas9 system. Our data suggested that TET1 expression was associated with GC tumor growth in vivo. Conclusion This study indicated that Chrysin exerted anti-tumor effects through the regulation of TET1 expression in GC and presented TET1 as a novel promising therapeutic target for GC therapy.
Collapse
Affiliation(s)
- Xiaowei Zhong
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, People's Republic of China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, People's Republic of China
| | - Ziping Jiang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Chengshun Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, People's Republic of China
| | - Lin Chen
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, People's Republic of China
| | - Yidan Xia
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Da Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, People's Republic of China
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
42
|
Zhang Q, Thakur C, Fu Y, Bi Z, Wadgaonkar P, Xu L, Liu Z, Liu W, Wang J, Kidder BL, Chen F. Mdig promotes oncogenic gene expression through antagonizing repressive histone methylation markers. Theranostics 2020; 10:602-614. [PMID: 31903140 PMCID: PMC6929976 DOI: 10.7150/thno.36220] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
The mineral dust-induced gene (mdig) is overexpressed in a number of human cancers, suggesting critical roles of this gene played on the pathogenesis of cancers. Unlike several other JmjC-domain containing proteins that exhibit histone demethylase activity, it remains enigmatic whether mdig is involved in the demethylation processes of the histone proteins. Methods: To provide direct evidence suggesting contribution of mdig to the demethylation of histone proteins, we recently examined the histone methylation profiles in human bronchial epithelial cells as well as two cancer cell lines with mdig knockout through CRISPR-Cas9 gene editing. Results: Global histone methylation analysis revealed a pronounced increase of the repressive histone trimethylation in three different cell types with mdig depletion, including trimethylation of lysines 9 and 27 on histone H3 (H3K9me3, H3K27me3) and trimethylation of lysine 20 of histone H4 (H4K20me3). Importantly, data from both ChIP-seq and RNA-seq suggested that genetic disruption of mdig enriches repressive histone trimethylation and inhibits expression of target genes in the oncogenic pathways of cell growth, stemness of the cells, tissue fibrosis, and cell motility. Conclusion: Taken together, our study provides the first insight into the molecular effects of mdig as an antagonist for repressive histone methylation markers and suggests that targeting mdig may represent a new area to explore in cancer therapy.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Yao Fu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Zhuoyue Bi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Liping Xu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 W. Stadium Avenue, West Lafayette, IN 47907, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 W. Stadium Avenue, West Lafayette, IN 47907, USA
- Department of Pharmacology, School of Medicine, Wayne State University, 540 E. Canfield Street, Detroit, MI 48201, USA
| | - Jian Wang
- Department of Pathology, School of Medicine, Wayne State University, 540 E. Canfield Street, Detroit, MI 48201, USA
| | - Benjamin L. Kidder
- Department of Oncology and the Karmanos Cancer Institute, School of Medicine, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
- Department of Oncology and the Karmanos Cancer Institute, School of Medicine, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA
| |
Collapse
|
43
|
Kumar R, Paul AM, Rameshwar P, Pillai MR. Epigenetic Dysregulation at the Crossroad of Women's Cancer. Cancers (Basel) 2019; 11:cancers11081193. [PMID: 31426393 PMCID: PMC6721458 DOI: 10.3390/cancers11081193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
An increasingly number of women of all age groups are affected by cancer, despite substantial progress in our understanding of cancer pathobiology, the underlying genomic alterations and signaling cascades, and cellular-environmental interactions. Though our understanding of women’s cancer is far more complete than ever before, there is no comprehensive model to explain the reasons behind the increased incidents of certain reproductive cancer among older as well as younger women. It is generally suspected that environmental and life-style factors affecting hormonal and growth control pathways might help account for the rise of women’s cancers in younger age, as well, via epigenetic mechanisms. Epigenetic regulators play an important role in orchestrating an orderly coordination of cellular signals in gene activity in response to upstream signaling and/or epigenetic modifiers present in a dynamic extracellular milieu. Here we will discuss the broad principles of epigenetic regulation of DNA methylation and demethylation, histone acetylation and deacetylation, and RNA methylation in women’s cancers in the context of gene expression, hormonal action, and the EGFR family of cell surface receptor tyrosine kinases. We anticipate that a better understanding of the epigenetics of women’s cancers may provide new regulatory leads and further fuel the development of new epigenetic biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Rakesh Kumar
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India.
- Department of Medicine, Division of Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | - Aswathy Mary Paul
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India
- Graduate Degree Program, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pranela Rameshwar
- Department of Medicine, Division of Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - M Radhakrishna Pillai
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India
| |
Collapse
|