1
|
Bagge J, Mahmood H, Janes J, Vomstein K, Blønd L, Hölmich LR, Freude K, Nehlin JO, Barfod KW, Hölmich P. Chondrogenic and Osteogenic In Vitro Differentiation Performance of Unsorted and Sorted CD34 +, CD146 +, and CD271 + Stem Cells Derived from Microfragmented Adipose Tissue of Patients with Knee Osteoarthritis. J Clin Med 2025; 14:1184. [PMID: 40004714 PMCID: PMC11856665 DOI: 10.3390/jcm14041184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Treatment of knee osteoarthritis (OA) with autologous stem cells from microfragmented adipose tissue (MFAT) has shown promising but varying results. Multiple stem cell types, including CD34+, CD146+, and CD271+ stem cells, have been identified within MFAT. Patient-specific heterogeneity in stem cell populations and the content of highly potent cells may be determining factors for a successful treatment outcome. The current study aimed to identify the most promising stem cell type in MFAT to treat OA, focusing on their chondrogenic and osteogenic differentiation performance. Methods: CD34+, CD146+, and CD271+ stem cells from the MFAT of eight patients with knee OA were separated using magnetic-activated cell sorting (MACS) and analyzed as subtypes. Unsorted cells were used as a control. Chondrogenic and osteogenic in vitro differentiation were assessed through Safranin-O and H&E staining, pellet size, and qPCR for chondrogenesis, as well as Alizarin Red S staining and qPCR for osteogenesis. Results: CD34+, CD146+, and CD271+ stem cells were doubled using MACS. All subtypes were able to undergo osteogenic differentiation with Alizarin Red S staining, revealing a significant increase in calcium deposits of induced cells compared to non-induced controls. CD146+ stem cells showed higher calcium deposition compared to CD34+, CD271+, and unsorted stem cells. All cell types could form chondrogenic pellets. CD271+ stem cells produced more proteoglycans, as shown by Safranin-O staining, than CD34+ and CD146+ stem cells, but not more than the unsorted stem cells. After differentiation induction, all cell types showed an upregulation of most chondrogenic and osteogenic biomarkers. Conclusions: CD146+ stem cells showed the highest osteogenic differentiation performance for calcium deposition, while CD271+ stem cells showed the greatest chondrogenic differentiation performance for proteoglycan formation. The prevalence of these stem cell types may play a critical role in the clinical effectiveness when treating OA.
Collapse
Affiliation(s)
- Jasmin Bagge
- Sports Orthopedic Research Center—Copenhagen (SORC-C), Department of Orthopedic Surgery, Copenhagen University Hospital—Amager and Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark; (H.M.); (K.W.B.); (P.H.)
| | - Haider Mahmood
- Sports Orthopedic Research Center—Copenhagen (SORC-C), Department of Orthopedic Surgery, Copenhagen University Hospital—Amager and Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark; (H.M.); (K.W.B.); (P.H.)
| | - Jennifer Janes
- Veterinary Diagnostic Laboratory, University of Kentucky, 1490 Bull Lea Rd, Lexington, KY 40511, USA;
| | - Kilian Vomstein
- Department of Obstetrics and Gynecology, The Fertility Clinic, Copenhagen University Hospital—Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark;
| | - Lars Blønd
- Department of Orthopedic Surgery, Zealand University Hospital—Køge, Lykkebækvej 1, 4600 Køge, Denmark;
| | - Lisbet R. Hölmich
- Department of Plastic Surgery, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls Vej 1, 2730 Herlev, Denmark;
| | - Kristine Freude
- Disease Stem Cell Models and Embryology, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C, Denmark;
| | - Jan O. Nehlin
- Department of Clinical Research, Copenhagen University Hospital—Amager and Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark;
| | - Kristoffer W. Barfod
- Sports Orthopedic Research Center—Copenhagen (SORC-C), Department of Orthopedic Surgery, Copenhagen University Hospital—Amager and Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark; (H.M.); (K.W.B.); (P.H.)
- Section of Sports Traumatology, Department of Orthopedic Surgery, Copenhagen University Hospital—Bispebjerg, Bispebjerg Bakke 23, 2400 København, Denmark
| | - Per Hölmich
- Sports Orthopedic Research Center—Copenhagen (SORC-C), Department of Orthopedic Surgery, Copenhagen University Hospital—Amager and Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark; (H.M.); (K.W.B.); (P.H.)
| |
Collapse
|
2
|
Wystrychowski G, Simka-Lampa K, Witkowska A, Sobecko E, Skubis-Sikora A, Sikora B, Wojtyna E, Golda A, Gwizdek K, Wróbel M, Sędek Ł, Górczyńska-Kosiorz S, Szweda-Gandor N, Trautsolt W, Francuz T, Kruszniewska-Rajs C, Gola J. Selected microRNA Expression and Protein Regulator Secretion by Adipose Tissue-Derived Mesenchymal Stem Cells and Metabolic Syndrome. Int J Mol Sci 2024; 25:6644. [PMID: 38928349 PMCID: PMC11204268 DOI: 10.3390/ijms25126644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The role of adipose mesenchymal stem cells (Ad-MSCs) in metabolic syndrome remains unclear. We aimed to assess the expression of selected microRNAs in Ad-MSCs of non-diabetic adults in relation to Ad-MSC secretion of protein regulators and basic metabolic parameters. Ten obese, eight overweight, and five normal weight subjects were enrolled: 19 females and 4 males; aged 43.0 ± 8.9 years. Ad-MSCs were harvested from abdominal subcutaneous fat. Ad-MSC cellular expressions of four microRNAs (2-ΔCt values) and concentrations of IL-6, IL-10, VEGF, and IGF-1 in the Ad-MSC-conditioned medium were assessed. The expressions of miR-21, miR-122, or miR-192 did not correlate with clinical parameters (age, sex, BMI, visceral fat, HOMA-IR, fasting glycemia, HbA1c, serum lipids, CRP, and eGFR). Conversely, the expression of miR-155 was lowest in obese subjects (3.69 ± 2.67 × 10-3 vs. 7.07 ± 4.42 × 10-3 in overweight and 10.25 ± 7.05 × 10-3 in normal weight ones, p = 0.04). The expression of miR-155 correlated inversely with BMI (sex-adjusted r = -0.64; p < 0.01), visceral adiposity (r = -0.49; p = 0.03), and serum CRP (r = -0.63; p < 0.01), whereas it correlated positively with serum HDL cholesterol (r = 0.51; p = 0.02). Moreover, miR-155 synthesis was associated marginally negatively with Ad-MSC secretion of IGF-1 (r = -0.42; p = 0.05), and positively with that of IL-10 (r = 0.40; p = 0.06). Ad-MSC expression of miR-155 appears blunted in visceral obesity, which correlates with Ad-MSC IGF-1 hypersecretion and IL-10 hyposecretion, systemic microinflammation, and HDL dyslipidemia. Ad-MSC studies in metabolic syndrome should focus on miR-155.
Collapse
Affiliation(s)
| | - Klaudia Simka-Lampa
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (K.S.-L.); (E.S.); (T.F.)
| | | | - Ewelina Sobecko
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (K.S.-L.); (E.S.); (T.F.)
| | - Aleksandra Skubis-Sikora
- Department of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (A.S.-S.); (B.S.)
| | - Bartosz Sikora
- Department of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (A.S.-S.); (B.S.)
| | - Ewa Wojtyna
- Institute of Medical Sciences, University of Opole, 45-040 Opole, Poland;
| | - Agnieszka Golda
- Alfamed General Practice, 41-100 Siemianowice Slaskie, Poland;
| | - Katarzyna Gwizdek
- Department of Rehabilitation, Faculty of Health Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Marta Wróbel
- Department of Internal Medicine, Diabetology and Cardiometabolic Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Sylwia Górczyńska-Kosiorz
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (S.G.-K.); (N.S.-G.); (W.T.)
| | - Nikola Szweda-Gandor
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (S.G.-K.); (N.S.-G.); (W.T.)
| | - Wanda Trautsolt
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (S.G.-K.); (N.S.-G.); (W.T.)
| | - Tomasz Francuz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (K.S.-L.); (E.S.); (T.F.)
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (C.K.-R.); (J.G.)
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (C.K.-R.); (J.G.)
| |
Collapse
|
3
|
Sun Y, Zhao J, Liu Q, Xu Y, Qin Y, He R, Zheng L, Xie Y, Li C, Wu T, Cao Y, Duan C, Lu H, Hu J. Intranasal delivery of small extracellular vesicles from specific subpopulation of mesenchymal stem cells mitigates traumatic spinal cord injury. J Control Release 2024; 369:335-350. [PMID: 38519036 DOI: 10.1016/j.jconrel.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Vascular injury following spinal cord injury (SCI) can significantly exacerbate secondary SCI and result in neurological dysfunction. Strategies targeting angiogenesis have demonstrated potential in enhancing functional recovery post-SCI. In the context of angiogenesis, the CD146+ and CD271+ subpopulations of mesenchymal stem cells (MSCs) have been recognized for their angiogenic capabilities in tissue repair. Small extracellular vesicles (sEVs) derived from MSCs are nanoscale vesicles containing rich bioactive components that play a crucial role in tissue regeneration. However, the precise role of sEVs derived from CD146+CD271+ UCMSCs (CD146+CD271+ UCMSC-sEVs) in SCI remain unclear. In this study, CD146+CD271+ UCMSC-sEVs were non-invasively administered via intranasal delivery, demonstrating a significant capacity to stimulate angiogenesis and improve functional recovery in mice following SCI. Furthermore, in vitro assessments revealed the effective enhancement of migration and tube formation capabilities of the murine brain microvascular endothelial cell line (bEnd.3) by CD146+CD271+UCMSC-sEVs. MicroRNA array analysis confirmed significant enrichment of multiple microRNAs within CD146+CD271+ UCMSC-sEVs. Subsequent in vivo and in vitro experiments demonstrated that CD146+CD271+ UCMSC-sEVs promote enhanced angiogenesis and improved functional recovery mediated by miR-27a-3p. Further mechanistic studies revealed that miR-27a-3p sourced from CD146+CD271+ UCMSC-sEVs enhances migration and tube formation of bEnd.3 cells in vitro by suppressing the expression of Delta Like Canonical Notch Ligand 4 (DLL4), thereby promoting angiogenesis in vivo. Collectively, our results demonstrate that a crucial role of CD146+CD271+ UCMSC-sEVs in inhibiting DLL4 through the transfer of miR-27a-3p, which leads to the promotion of angiogenesis and improved functional recovery after SCI.
Collapse
Affiliation(s)
- Yi Sun
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Jinyun Zhao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Quanbo Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Yan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Yiming Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Rundong He
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Lifu Zheng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Yong Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Chengjun Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Tianding Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Yong Cao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China.
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha 410008, China; Hunan Engineering Research Center of Sports and Health, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, China.
| |
Collapse
|
4
|
Qiu W, Sun Q, Li N, Chen Z, Wu H, Chen Z, Guo X, Fang F. Superoxide dismutase 2 scavenges ROS to promote osteogenic differentiation of human periodontal ligament stem cells by regulating Smad3 in alveolar bone-defective rats. J Periodontol 2024; 95:469-482. [PMID: 37921754 DOI: 10.1002/jper.23-0469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) is an essential event in alveolar bone regeneration. Oxidative stress may be the main inhibiting factor of hPDLSC osteogenesis. Superoxide dismutase 2 (SOD2) is a key antioxidant enzyme, but its effect on hPDLSC osteogenic differentiation is unclear. METHODS Several surface markers were detected by flow cytometry, and the differentiation potential of hPDLSCs was validated by alkaline phosphatase (ALP), Alizarin Red S, and Oil Red O staining. Osteogenic indicators of hPDLSCs were detected by real-time quantitative polymerase chain reaction (RT-qPCR), Western blotting, and ALP staining. Furthermore, alveolar bone defect rat models were analyzed through micro-CT, hematoxylin and eosin, and Masson staining. The intracellular reactive oxygen species (ROS) level was evaluated by a ROS assay kit. Finally, the expression of SOD2, Smad3, and p-Smad3 in hPDLSCs was detected by RT-qPCR and Western blotting (WB). RESULTS SOD2 positively regulated the gene and protein expressions of ALP, BMP6, and RUNX2 in hPDLSCs (p < 0.05). Ideal bone formation and continuous cortical bone were obtained by transplanting LV-SOD2 hPDLSCs (lentivirus vector for overexpressing SOD2 in hPDLSCs) in vivo. Exogenous H2O2 downregulated osteogenic indicators (ALP, BMP6, RUNX2) in hPDLSCs (p < 0.05); this was reversed by overexpression of SOD2. WB results showed that the Smad3 and p-Smad3 signaling pathways participated in the osteogenic process of SOD2 in hPDLSCs. CONCLUSION SOD2 positively regulated hPDLSC osteogenic differentiation in vitro and in vivo. Mechanistically, SOD2 promotes hPDLSC osteogenic differentiation by regulating the phosphorylation of Smad3 to scavenge ROS. This work provides a theoretical basis for the treatment of alveolar bone regeneration.
Collapse
Affiliation(s)
- Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Sun
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongle Wu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolan Guo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Ren H, Zhang L, Zhang X, Yi C, Wu L. Specific lipid magnetic sphere sorted CD146-positive bone marrow mesenchymal stem cells can better promote articular cartilage damage repair. BMC Musculoskelet Disord 2024; 25:253. [PMID: 38561728 PMCID: PMC10983655 DOI: 10.1186/s12891-024-07381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The characteristics and therapeutic potential of subtypes of bone marrow mesenchymal stem cells (BMSCs) are largely unknown. Also, the application of subpopulations of BMSCs in cartilage regeneration remains poorly characterized. The aim of this study was to explore the regenerative capacity of CD146-positive subpopulations of BMSCs for repairing cartilage defects. METHODS CD146-positive BMSCs (CD146 + BMSCs) were sorted by self-developed CD146-specific lipid magnetic spheres (CD146-LMS). Cell surface markers, viability, and proliferation were evaluated in vitro. CD146 + BMSCs were subjected to in vitro chondrogenic induction and evaluated for chondrogenic properties by detecting mRNA and protein expression. The role of the CD146 subpopulation of BMSCs in cartilage damage repair was assessed by injecting CD146 + BMSCs complexed with sodium alginate gel in the joints of a mouse cartilage defect model. RESULTS The prepared CD146-LMS had an average particle size of 193.7 ± 5.24 nm, an average potential of 41.9 ± 6.21 mv, and a saturation magnetization intensity of 27.2 Am2/kg, which showed good stability and low cytotoxicity. The sorted CD146 + BMSCs highly expressed stem cell and pericyte markers with good cellular activity and cellular value-added capacity. Cartilage markers Sox9, Collagen II, and Aggrecan were expressed at both protein and mRNA levels in CD146 + BMSCs cells after chondrogenic induction in vitro. In a mouse cartilage injury model, CD146 + BMSCs showed better function in promoting the repair of articular cartilage injury. CONCLUSION The prepared CD146-LMS was able to sort out CD146 + BMSCs efficiently, and the sorted subpopulation of CD146 + BMSCs had good chondrogenic differentiation potential, which could efficiently promote the repair of articular cartilage injury, suggesting that the sorted CD146 + BMSCs subpopulation is a promising seed cell for cartilage tissue engineering.
Collapse
Affiliation(s)
- Hanru Ren
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China
| | - Lele Zhang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China
| | - Xu Zhang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China
| | - Chengqing Yi
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China.
| | - Lianghao Wu
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, No. 2800, Gongwei Road, Shanghai, 200120, China.
| |
Collapse
|
6
|
Chu H, Zhang S, Zhang Z, Yue H, Liu H, Li B, Yin F. Comparison studies identify mesenchymal stromal cells with potent regenerative activity in osteoarthritis treatment. NPJ Regen Med 2024; 9:14. [PMID: 38561335 PMCID: PMC10984924 DOI: 10.1038/s41536-024-00358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Osteoarthritis affects 15% of people over 65 years of age. It is characterized by articular cartilage degradation and inflammation, leading to joint pain and disability. Osteoarthritis is incurable and the patients may eventually need joint replacement. An emerging treatment is mesenchymal stromal cells (MSCs), with over two hundred clinical trials being registered. However, the outcomes of these trials have fallen short of the expectation, due to heterogeneity of MSCs and uncertain mechanisms of action. It is generally believed that MSCs exert their function mainly by secreting immunomodulatory and trophic factors. Here we used knee osteoarthritis mouse model to assess the therapeutic effects of MSCs isolated from the white adipose or dermal adipose tissue of Prrx1-Cre; R26tdTomato mice and Dermo1-Cre; R26tdTomato mice. We found that the Prrx1-lineage MSCs from the white adipose tissues showed the greatest in vitro differentiation potentials among the four MSC groups and single cell profiling showed that the Prrx1-lineage MSCs contained more stem cells than the Dermo1 counterpart. Only the Prrx1-lineage cells isolated from white adipose tissues showed long-term therapeutic effectiveness on early-stage osteoarthritis models. Mechanistically, Prrx1-lineage MSCs differentiated into Col2+ chondrocytes and replaced the damage cartilage, activated Col1 expressing in resident chondrocytes, and inhibited synovial inflammation. Transcriptome analysis showed that the articular chondrocytes derived from injected MSCs expressed immunomodulatory cytokines, trophic factors, and chondrocyte-specific genes. Our study identified a MSC population genetically marked by Prrx1 that has great multipotentiality and can differentiate into chondrocytes to replace the damaged cartilage.
Collapse
Affiliation(s)
- Hongshang Chu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoyang Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Hua Yue
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Huijuan Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| | - Feng Yin
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.
- Department of Joint and Sports Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
7
|
Tran ANT, Kim HY, Oh SY, Kim HS. CD49f and CD146: A Possible Crosstalk Modulates Adipogenic Differentiation Potential of Mesenchymal Stem Cells. Cells 2023; 13:55. [PMID: 38201259 PMCID: PMC10778538 DOI: 10.3390/cells13010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The lack of appropriate mesenchymal stem cells (MSCs) selection methods has given the challenges for standardized harvesting, processing, and phenotyping procedures of MSCs. Genetic engineering coupled with high-throughput proteomic studies of MSC surface markers arises as a promising strategy to identify stem cell-specific markers. However, the technical limitations are the key factors making it less suitable to provide an appropriate starting material for the screening platform. A more accurate, easily accessible approach is required to solve the issues. METHODS This study established a high-throughput screening strategy with forward versus side scatter gating to identify the adipogenesis-associated markers of bone marrow-derived MSCs (BMSCs) and tonsil-derived MSCs (TMSCs). We classified the MSC-derived adipogenic differentiated cells into two clusters: lipid-rich cells as side scatter (SSC)-high population and lipid-poor cells as SSC-low population. By screening the expression of 242 cell surface proteins, we identified the surface markers which exclusively found in lipid-rich subpopulation as the specific markers for BMSCs and TMSCs. RESULTS High-throughput screening of the expression of 242 cell surface proteins indicated that CD49f and CD146 were specific for BMSCs and TMSCs. Subsequent immunostaining confirmed the consistent specific expression of CD49f and CD146 and in BMSCs and TMSCs. Enrichment of MSCs by CD49f and CD146 surface markers demonstrated that the simultaneous expression of CD49f and CD146 is required for adipogenesis and osteogenesis of mesenchymal stem cells. Furthermore, the fate decision of MSCs from different sources is regulated by distinct responses of cells to differentiation stimulations despite sharing a common CD49f+CD146+ immunophenotype. CONCLUSIONS We established an accurate, robust, transgene-free method for screening adipogenesis associated cell surface proteins. This provided a valuable tool to investigate MSC-specific markers. Additionally, we showed a possible crosstalk between CD49f and CD146 modulates the adipogenesis of MSCs.
Collapse
Affiliation(s)
- An Nguyen-Thuy Tran
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (A.N.-T.T.); (H.Y.K.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ha Yeong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (A.N.-T.T.); (H.Y.K.)
| | - Se-Young Oh
- Department of Convergence Medicine, Ewha Womans University Mokdong Hospital, Ewha Womans University, Seoul 07985, Republic of Korea;
| | - Han Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (A.N.-T.T.); (H.Y.K.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
8
|
Wu L, Zhang X, Yi C, Ren H. CD146-positive adipose-derived stem cells subpopulation enriched by albumin magnetic sphere ameliorates knee osteoarthritis pain and promotes cartilage repair. J Orthop Surg Res 2023; 18:969. [PMID: 38102700 PMCID: PMC10724978 DOI: 10.1186/s13018-023-04434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The use of adipose stem cell (ADSCs) subpopulations in cartilage repair remains poorly characterized. In this study, we constructed an albumin magnetic sphere with specific targeting of CD146 (CD146-AMs) for sorting a subpopulation of CD146-positive ADSCs (CD146 + ADSCs) and explored the role of CD146 + ADSCs on joint pain and cartilage repair in rats with knee osteoarthritis (KOA). METHODS CD146-AMs were prepared and analyzed in materialistic characterization tests. Subpopulations of CD146 + ADSCs were sorted using CD146-AMs. Surface labeling, viability, and proliferation of a subpopulation of CD146 + ADSCs were evaluated in vitro. Molecular characterization of mRNA and protein expression profiles was analyzed by microarray. A rat KOA pain model was established by the iodoacetic acid method, and KOA pain and the promotion of cartilage repair were assessed after treatment with bilateral joint cavity injections of CD146 + ADSCs. RESULTS The CD146-AMs prepared in this study had an average particle size of 242.63 ± 6.74 nm, an average potential of 33.82 ± 3.53 mv, and high CD146 targeting and low cytotoxicity. The positive rate of enriched CD146 + ADSCs was 98.21% and showed a high level of stem cell marker expression and good cell viability. Gene and protein expression profiles showed that CD146 + ADSCs have different cellular functions, especially in regulating inflammation. In the KOA model, low, medium and high concentrations of CD146 + ADSCs were able to improve KOA pain and promote cartilage repair in a concentration-dependent trend. CONCLUSIONS The CD146-AMs prepared in this study were able to safely and efficiently sort out the CD146 + ADSCs subpopulation. The subpopulation of CD146 + ADSCs has a unique molecular profile that ameliorates KOA pain and repairs cartilage damage in rats, providing a new idea for KOA treatment.
Collapse
Affiliation(s)
- Lianghao Wu
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Xu Zhang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Chengqing Yi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China.
| | - Hanru Ren
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China.
| |
Collapse
|
9
|
Hsu SL, Jhan SW, Hsu CC, Wu YN, Wu KLH, Kuo CEA, Chiu HW, Cheng JH. Effect of three clinical therapies on cytokines modulation in the hip articular cartilage and bone improvement in rat early osteonecrosis of the femoral head. Biomed J 2023; 46:100571. [PMID: 36442793 PMCID: PMC10749886 DOI: 10.1016/j.bj.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Extracorporeal shockwave therapy (ESWT) and adipose-derived mesenchymal stem cells (ADSCs) have been used clinically for the treatment of osteonecrosis of the femoral head (ONFH). The study elucidated that ESWT, ADSCs, and combination therapy modulated pro-inflammatory cytokines in the articular cartilage and subchondral bone of early rat ONFH. METHODS ESWT and ADSCs were prepared and isolated for treatment. Micro-CT, pathological analysis, and immunohistochemistry were performed and analysed. RESULTS After treatments, subchondral bone of ONFH was improved in trabecular bone volume (BV/TV) (p < 0.001), thickness (Tb.Th) (p < 0.01 and 0.001), and separation (Tb.Sp) (p < 0.001) and bone mineral density (BMD) (p < 0.001) using micro-CT analysis. The articular cartilage was protected and decreased apoptosis markers after all the treatments. The expression of IL33 (p < 0.001), IL5 (p < 0.001), IL6 (p < 0.001), and IL17A (p < 0.01) was significantly decreased in the ESWT, ADSCs, and Combination groups as compared with ONFH group. The IL33 receptor ST2 was significantly increased after treatment (p < 0.001) as compared with ONFH group. The Combination group (p < 0.01) decreased the expression of IL6 better than the ESWT and ADSCs groups. CONCLUSION ESWT, ADSCs and combination therapy significantly protected articular cartilage and subchondral bone of early rat ONFH by modulating the expression of pro-inflammatory cytokines including, IL33 and its receptor ST2, IL5, IL6, and IL17A.
Collapse
Affiliation(s)
- Shan-Ling Hsu
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Orthopedic Surgery, Sports Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shun-Wun Jhan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Orthopedic Surgery, Sports Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chieh-Cheng Hsu
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Orthopedic Surgery, Sports Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-No Wu
- School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-En Aurea Kuo
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Leisure and Sports Management, Cheng Shiu University, Kaohsiung, Taiwan
| | - Hung-Wen Chiu
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jai-Hong Cheng
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Leisure and Sports Management, Cheng Shiu University, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Milián L, Molina P, Oliver-Ferrándiz M, Fernández-Sellers C, Monzó A, Sánchez-Sánchez R, Braza-Boils A, Mata M, Zorio E. Cadaveric Adipose-Derived Stem Cells for Regenerative Medicine and Research. Int J Mol Sci 2023; 24:15696. [PMID: 37958680 PMCID: PMC10647636 DOI: 10.3390/ijms242115696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Advances in regenerative medicine have enabled the search for new solutions to current health problems in so far unexplored fields. Thus, we focused on cadaveric subcutaneous fat as a promising source of adipose-derived stem cells (ADSCs) that have potential to differentiate into different cell lines. With this aim, we isolated and characterized ADSCs from cadaveric samples with a postmortem interval ranging from 30 to 55 h and evaluated their ability to differentiate into chondrocytes or osteocytes. A commercial ADSC line was used as reference. Morphological and protein expression analyses were used to confirm the final stage of differentiation. Eight out of fourteen samples from patients were suitable to complete the whole protocol. Cadaveric ADSCs exhibited features of stem cells based upon several markers: CD29 (84.49 ± 14.07%), CD105 (94.38 ± 2.09%), and CD44 (99.77 ± 0.32%). The multiparametric assessment of differentiation confirmed the generation of stable lines of chondrocytes and osteocytes. In conclusion, we provide evidence supporting the feasibility of obtaining viable postmortem human subcutaneous fat ADSCs with potential application in tissue engineering and research fields.
Collapse
Affiliation(s)
- Lara Milián
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; (L.M.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Pilar Molina
- Department of Pathology, Instituto de Medicina Legal y Ciencias Forenses, 46010 Valencia, Spain; (P.M.); (C.F.-S.); (A.M.)
- CAFAMUSME Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (R.S.-S.); (A.B.-B.); (E.Z.)
| | - María Oliver-Ferrándiz
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; (L.M.)
| | - Carlos Fernández-Sellers
- Department of Pathology, Instituto de Medicina Legal y Ciencias Forenses, 46010 Valencia, Spain; (P.M.); (C.F.-S.); (A.M.)
- CAFAMUSME Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (R.S.-S.); (A.B.-B.); (E.Z.)
| | - Ana Monzó
- Department of Pathology, Instituto de Medicina Legal y Ciencias Forenses, 46010 Valencia, Spain; (P.M.); (C.F.-S.); (A.M.)
- CAFAMUSME Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (R.S.-S.); (A.B.-B.); (E.Z.)
| | - Rafael Sánchez-Sánchez
- CAFAMUSME Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (R.S.-S.); (A.B.-B.); (E.Z.)
| | - Aitana Braza-Boils
- CAFAMUSME Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (R.S.-S.); (A.B.-B.); (E.Z.)
- CIBERCV, Center for Biomedical Network Research on Cardiovascular Diseases, 28015 Madrid, Spain
| | - Manuel Mata
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; (L.M.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Esther Zorio
- CAFAMUSME Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (R.S.-S.); (A.B.-B.); (E.Z.)
- CIBERCV, Center for Biomedical Network Research on Cardiovascular Diseases, 28015 Madrid, Spain
- Inherited Cardiac Diseases Unit, Cardiology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Department of Medicine, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|
11
|
Roberts EL, Abraham BD, Dang T, Gysel E, Mehrpouyan S, Alizadeh AH, Koch TG, Kallos MS. Computer controlled expansion of equine cord blood mesenchymal stromal cells on microcarriers in 3 L vertical-wheel ® bioreactors. Front Bioeng Biotechnol 2023; 11:1250077. [PMID: 37929186 PMCID: PMC10622666 DOI: 10.3389/fbioe.2023.1250077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are an ideal cell source for allogenic cell therapy due to their immunomodulatory and differentiation properties. Equine MSCs (eMSCs) have been found to be a promising treatment for equine joint injuries including meniscal injuries, cartilage degradation, and osteoarthritis. Although the use of eMSCs has shown efficacy in preliminary studies, challenges associated with biomanufacturing remain. To achieve the required cell numbers for clinical application, bioreactor-based processes are required. Initial studies have shown that eMSCs can be cultivated in microcarrier-based, stirred suspension bioreactor culture at the laboratory 0.1 L scale using a Vertical-Wheel® (VW) bioreactor. However, investigations regarding scale up of these processes to the required biomanufacturing scales are required. This study investigated the scale-up of a equine cord blood MSC (eCB-MSC) bioprocess in VW bioreactors at three scales. This included scale-up from the 0.1-0.5 L bioreactor, scale-up from static culture to the 3 L computer-controlled bioreactor, and scale-up into the 3 L computer-controlled bioreactor using a mock clinical trial process. Results from the various scale-up experiments demonstrated similar cell expansion at the various tested scales. The 3 L computer-controlled system resulted in a final cell densities of 1.5 × 105 cells/cm2 on average, achieving 1.5 × 109 harvested cells. Biological testing of the cells showed that cell phenotype and functionality were maintained after scale-up. These findings demonstrate the scalability of an eCB-MSC bioprocess using microcarriers in VW bioreactors to achieve clinically relevant cell numbers, a critical step to translate MSC treatments from research to clinical applications. This study also represents the first known published study expanding any cell type in the 3 L VW bioreactor.
Collapse
Affiliation(s)
- E. L. Roberts
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - B. D. Abraham
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - T. Dang
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - E. Gysel
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - S. Mehrpouyan
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - A. H. Alizadeh
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - T. G. Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- eQcell Inc, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - M. S. Kallos
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Anastasio AT, Bagheri K, Adams SB. Contemporary Review: The Use of Adipocyte-Derived Mesenchymal Stem Cells in Pathologies of the Foot and Ankle. FOOT & ANKLE ORTHOPAEDICS 2023; 8:24730114231207643. [PMID: 37929076 PMCID: PMC10623921 DOI: 10.1177/24730114231207643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Affiliation(s)
| | - Kian Bagheri
- Department of Orthopedic Surgery, Duke University Hospital, Durham, NC, USA
- Campbell University School of Osteopathic Medicine, Lillington, NC, USA
| | - Samuel B. Adams
- Department of Orthopedic Surgery, Duke University Hospital, Durham, NC, USA
| |
Collapse
|
13
|
Smolinska A, Bzinkowska A, Rybkowska P, Chodkowska M, Sarnowska A. Promising Markers in the Context of Mesenchymal Stem/Stromal Cells Subpopulations with Unique Properties. Stem Cells Int 2023; 2023:1842958. [PMID: 37771549 PMCID: PMC10533301 DOI: 10.1155/2023/1842958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
The heterogeneity of the mesenchymal stem/stromal cells (MSCs) population poses a challenge to researchers and clinicians, especially those observed at the population level. What is more, the lack of precise evidences regarding MSCs developmental origin even further complicate this issue. As the available evidences indicate several possible pathways of MSCs formation, this diverse origin may be reflected in the unique subsets of cells found within the MSCs population. Such populations differ in specialization degree, proliferation, and immunomodulatory properties or exhibit other additional properties such as increased angiogenesis capacity. In this review article, we attempted to identify such outstanding populations according to the specific surface antigens or intracellular markers. Described groups were characterized depending on their specialization and potential therapeutic application. The reports presented here cover a wide variety of properties found in the recent literature, which is quite scarce for many candidates mentioned in this article. Even though the collected information would allow for better targeting of specific subpopulations in regenerative medicine to increase the effectiveness of MSC-based therapies.
Collapse
Affiliation(s)
- Agnieszka Smolinska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Aleksandra Bzinkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Paulina Rybkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Magdalena Chodkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| |
Collapse
|
14
|
Qin Y, Ge G, Yang P, Wang L, Qiao Y, Pan G, Yang H, Bai J, Cui W, Geng D. An Update on Adipose-Derived Stem Cells for Regenerative Medicine: Where Challenge Meets Opportunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207334. [PMID: 37162248 PMCID: PMC10369252 DOI: 10.1002/advs.202207334] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/24/2023] [Indexed: 05/11/2023]
Abstract
Over the last decade, adipose-derived stem cells (ADSCs) have attracted increasing attention in the field of regenerative medicine. ADSCs appear to be the most advantageous cell type for regenerative therapies owing to their easy accessibility, multipotency, and active paracrine activity. This review highlights current challenges in translating ADSC-based therapies into clinical settings and discusses novel strategies to overcome the limitations of ADSCs. To further establish ADSC-based therapies as an emerging platform for regenerative medicine, this review also provides an update on the advancements in this field, including fat grafting, wound healing, bone regeneration, skeletal muscle repair, tendon reconstruction, cartilage regeneration, cardiac repair, and nerve regeneration. ADSC-based therapies are expected to be more tissue-specific and increasingly important in regenerative medicine.
Collapse
Affiliation(s)
- Yi Qin
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Gaoran Ge
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Peng Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Liangliang Wang
- Department of OrthopaedicsThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouJiangsu213000China
| | - Yusen Qiao
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangJiangsu212013China
| | - Huilin Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Jiaxiang Bai
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Dechun Geng
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| |
Collapse
|
15
|
Wen J, Li H, Dai H, Hua S, Long X, Li H, Ivanovski S, Xu C. Intra-articular nanoparticles based therapies for osteoarthritis and rheumatoid arthritis management. Mater Today Bio 2023; 19:100597. [PMID: 36910270 PMCID: PMC9999238 DOI: 10.1016/j.mtbio.2023.100597] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023] Open
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are chronic and progressive inflammatory joint diseases that affect a large population worldwide. Intra-articular administration of various therapeutics is applied to alleviate pain, prevent further progression, and promote cartilage regeneration and bone remodeling in both OA and RA. However, the effectiveness of intra-articular injection with traditional drugs is uncertain and controversial due to issues such as rapid drug clearance and the barrier afforded by the dense structure of cartilage. Nanoparticles can improve the efficacy of intra-articular injection by facilitating controlled drug release, prolonged retention time, and enhanced penetration into joint tissue. This review systematically summarizes nanoparticle-based therapies for OA and RA management. Firstly, we explore the interaction between nanoparticles and joints, including articular fluids and cells. This is followed by a comprehensive analysis of current nanoparticles designed for OA/RA, divided into two categories based on therapeutic mechanisms: direct therapeutic nanoparticles and nanoparticles-based drug delivery systems. We highlight nanoparticle design for tissue/cell targeting and controlled drug release before discussing challenges of nanoparticle-based therapies for efficient OA and RA treatment and their future clinical translation. We anticipate that rationally designed local injection of nanoparticles will be more effective, convenient, and safer than the current therapeutic approach.
Collapse
Affiliation(s)
- Juan Wen
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
| | - Huimin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Huan Dai
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
| | - Shu Hua
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210009, China
| | - Sašo Ivanovski
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
- Corresponding author. School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia.
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
- Corresponding author. School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia.
| |
Collapse
|
16
|
Goh D, Yang Y, Lee EH, Hui JHP, Yang Z. Managing the Heterogeneity of Mesenchymal Stem Cells for Cartilage Regenerative Therapy: A Review. Bioengineering (Basel) 2023; 10:bioengineering10030355. [PMID: 36978745 PMCID: PMC10045936 DOI: 10.3390/bioengineering10030355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/12/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Articular cartilage defects commonly result from trauma and are associated with significant morbidity. Since cartilage is an avascular, aneural, and alymphatic tissue with a poor intrinsic healing ability, the regeneration of functional hyaline cartilage remains a difficult clinical problem. Mesenchymal stem cells (MSCs) are multipotent cells with multilineage differentiation potential, including the ability to differentiate into chondrocytes. Due to their availability and ease of ex vivo expansion, clinicians are increasingly applying MSCs in the treatment of cartilage lesions. However, despite encouraging pre-clinical and clinical data, inconsistencies in MSC proliferative and chondrogenic potential depending on donor, tissue source, cell subset, culture conditions, and handling techniques remain a key barrier to widespread clinical application of MSC therapy in cartilage regeneration. In this review, we highlight the strategies to manage the heterogeneity of MSCs ex vivo for more effective cartilage repair, including reducing the MSC culture expansion period, and selecting MSCs with higher chondrogenic potential through specific genetic markers, surface markers, and biophysical attributes. The accomplishment of a less heterogeneous population of culture-expanded MSCs may improve the scalability, reproducibility, and standardisation of MSC therapy for clinical application in cartilage regeneration.
Collapse
Affiliation(s)
- Doreen Goh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block Level 11, Singapore 119288, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore 11751, Singapore
| | - Yanmeng Yang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block Level 11, Singapore 119288, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore 11751, Singapore
- Critical Analytics for Manufacturing Personalised-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Eng Hin Lee
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block Level 11, Singapore 119288, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore 11751, Singapore
- Critical Analytics for Manufacturing Personalised-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - James Hoi Po Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block Level 11, Singapore 119288, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore 11751, Singapore
| | - Zheng Yang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block Level 11, Singapore 119288, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore 11751, Singapore
- Critical Analytics for Manufacturing Personalised-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Correspondence: ; Tel.: +65-6516-5398
| |
Collapse
|
17
|
Zhang C, Wang G, Lin H, Shang Y, Liu N, Zhen Y, An Y. Cartilage 3D bioprinting for rhinoplasty using adipose-derived stem cells as seed cells: Review and recent advances. Cell Prolif 2023; 56:e13417. [PMID: 36775884 PMCID: PMC10068946 DOI: 10.1111/cpr.13417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 02/14/2023] Open
Abstract
Nasal deformities due to various causes affect the aesthetics and use of the nose, in which case rhinoplasty is necessary. However, the lack of cartilage for grafting has been a major problem and tissue engineering seems to be a promising solution. 3D bioprinting has become one of the most advanced tissue engineering methods. To construct ideal cartilage, bio-ink, seed cells, growth factors and other methods to promote chondrogenesis should be considered and weighed carefully. With continuous progress in the field, bio-ink choices are becoming increasingly abundant, from a single hydrogel to a combination of hydrogels with various characteristics, and more 3D bioprinting methods are also emerging. Adipose-derived stem cells (ADSCs) have become one of the most popular seed cells in cartilage 3D bioprinting, owing to their abundance, excellent proliferative potential, minimal morbidity during harvest and lack of ethical considerations limitations. In addition, the co-culture of ADSCs and chondrocytes is commonly used to achieve better chondrogenesis. To promote chondrogenic differentiation of ADSCs and construct ideal highly bionic tissue-engineered cartilage, researchers have used a variety of methods, including adding appropriate growth factors, applying biomechanical stimuli and reducing oxygen tension. According to the process and sequence of cartilage 3D bioprinting, this review summarizes and discusses the selection of hydrogel and seed cells (centered on ADSCs), the design of printing, and methods for inducing the chondrogenesis of ADSCs.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Hongying Lin
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yujia Shang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China.,Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Na Liu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China.,Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
18
|
Korntner SH, Di Nubila A, Gaspar D, Zeugolis DI. Macromolecular crowding in animal component-free, xeno-free and foetal bovine serum media for human bone marrow mesenchymal stromal cell expansion and differentiation. Front Bioeng Biotechnol 2023; 11:1136827. [PMID: 36949882 PMCID: PMC10025396 DOI: 10.3389/fbioe.2023.1136827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Cell culture media containing undefined animal-derived components and prolonged in vitro culture periods in the absence of native extracellular matrix result in phenotypic drift of human bone marrow stromal cells (hBMSCs). Methods: Herein, we assessed whether animal component-free (ACF) or xeno-free (XF) media formulations maintain hBMSC phenotypic characteristics more effectively than foetal bovine serum (FBS)-based media. In addition, we assessed whether tissue-specific extracellular matrix, induced via macromolecular crowding (MMC) during expansion and/or differentiation, can more tightly control hBMSC fate. Results: Cells expanded in animal component-free media showed overall the highest phenotype maintenance, as judged by cluster of differentiation expression analysis. Contrary to FBS media, ACF and XF media increased cellularity over time in culture, as measured by total DNA concentration. While MMC with Ficoll™ increased collagen deposition of cells in FBS media, FBS media induced significantly lower collagen synthesis and/or deposition than the ACF and XF media. Cells expanded in FBS media showed higher adipogenic differentiation than ACF and XF media, which was augmented by MMC with Ficoll™ during expansion. Similarly, Ficoll™ crowding also increased chondrogenic differentiation. Of note, donor-to-donor variability was observed for collagen type I deposition and trilineage differentiation capacity of hBMSCs. Conclusion: Collectively, our data indicate that appropriate screening of donors, media and supplements, in this case MMC agent, should be conducted for the development of clinically relevant hBMSC medicines.
Collapse
Affiliation(s)
- Stefanie H. Korntner
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Alessia Di Nubila
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Diana Gaspar
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research and School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- *Correspondence: Dimitrios I. Zeugolis,
| |
Collapse
|
19
|
Chen J, Chen Q, Qiu Y, Chang L, Yu Z, Li Y, Chang SJ, Chen Z, Lin X. CD146 + mural cells from infantile hemangioma display proangiogenic ability and adipogenesis potential in vitro and in xenograft models. Front Oncol 2023; 13:1063673. [PMID: 37182177 PMCID: PMC10172585 DOI: 10.3389/fonc.2023.1063673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Objective Infantile hemangioma (IH), the most common infantile vascular neoplasm, is uniquely characterized by rapid proliferation followed by slow spontaneous involution lasting for years. In IH lesions, perivascular cells are the most dynamic cell subset during the transition from the proliferation phase to the involution phase, and we aimed to systematically study this kind of cell. Methods and results CD146-selective microbeads were used to isolate IH-derived mural-like cells (HemMCs). Mesenchymal markers of HemMCs were detected by flow cytometry, and the multilineage differentiation potential of HemMCs was detected by specific staining after conditioned culture. CD146-selected nonendothelial cells from IH samples showed characteristics of mesenchymal stem cells with distinct angiogenesis-promoting effects detected by transcriptome sequencing. HemMCs spontaneously differentiated into adipocytes 2 weeks after implantation into immunodeficient mice, and almost all HemMCs had differentiated into adipocytes within 4 weeks. HemMCs could not be induced to differentiate into endothelial cells in vitro. However, 2 weeks after implantation in vivo, HemMCs in combination with human umbilical vein endothelial cells (HUVECs) formed GLUT1+ IH-like blood vessels, which spontaneously involuted into adipose tissue 4 weeks after implantation. Conclusions In conclusion, we identified a specific cell subset that not only showed behavior consistent with the evolution of IH but also recapitulated the unique course of IH. Thus, we speculate that proangiogenic HemMCs may be a potential target for the construction of hemangioma animal models and the study of IH pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaoxi Lin
- *Correspondence: Zongan Chen, ; Xiaoxi Lin,
| |
Collapse
|
20
|
Wang Y, Chen Y, Wei Y. Osteoarthritis animal models for biomaterial-assisted osteochondral regeneration. BIOMATERIALS TRANSLATIONAL 2022; 3:264-279. [PMID: 36846505 PMCID: PMC9947734 DOI: 10.12336/biomatertransl.2022.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/26/2022] [Accepted: 12/10/2022] [Indexed: 03/01/2023]
Abstract
Clinical therapeutics for the regeneration of osteochondral defects (OCD) in the early stages of osteoarthritis remain an enormous challenge in orthopaedics. For in-depth studies of tissue engineering and regenerative medicine in terms of OCD treatment, the utility of an optimal OCD animal model is crucial for assessing the effects of implanted biomaterials on the repair of damaged osteochondral tissues. Currently, the most frequently used in vivo animal models for OCD regeneration include mice, rats, rabbits, dogs, pigs, goats, sheep, horses and nonhuman primates. However, there is no single "gold standard" animal model to accurately recapitulate human disease in all aspects, thus understanding the benefits and limitations of each animal model is critical for selecting the most suitable one. In this review, we aim to elaborate the complex pathological changes in osteoarthritic joints and to summarise the advantages and limitations of OCD animal models utilised for biomaterial testing along with the methodology of outcome assessment. Furthermore, we review the surgical procedures of OCD creation in different species, and the novel biomaterials that promote OCD regeneration. Above all, it provides a significant reference for selection of an appropriate animal model for use in preclinical in vivo studies of biomaterial-assisted osteochondral regeneration in osteoarthritic joints.
Collapse
Affiliation(s)
- Yi Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yangyang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yulong Wei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding author: Yulong Wei,
| |
Collapse
|
21
|
Li X, Dai B, Guo J, Zhu Y, Xu J, Xu S, Yao Z, Chang L, Li Y, He X, Chow DHK, Zhang S, Yao H, Tong W, Ngai T, Qin L. Biosynthesized Bandages Carrying Magnesium Oxide Nanoparticles Induce Cortical Bone Formation by Modulating Endogenous Periosteal Cells. ACS NANO 2022; 16:18071-18089. [PMID: 36108267 DOI: 10.1021/acsnano.2c04747] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bone grafting is frequently conducted to treat bone defects caused by trauma and tumor removal, yet with significant medical and socioeconomic burdens. Space-occupying bone substitutes remain challenging in the control of osteointegration, and meanwhile activation of endogenous periosteal cells by using non-space-occupying implants to promote new bone formation becomes another therapeutic strategy. Here, we fabricated a magnesium-based artificial bandage with optimal micropatterns for activating periosteum-associated biomineralization. Collagen was self-assembled on the surface of magnesium oxide nanoparticles embedded electrospun fibrous membranes as a hierarchical bandage structure to facilitate the integration with periosteum in situ. After the implantation on the surface of cortical bone in vivo, magnesium ions were released to generate a pro-osteogenic immune microenvironment by activating the endogenous periosteal macrophages into M2 phenotype and, meanwhile, promote blood vessel formation and neurite outgrowth. In a cortical bone defect model, magnesium-based artificial bandage guided the surrounding newly formed bone tissue to cover the defected area. Taken together, our study suggests that the strategy of stimulating bone formation can be achieved with magnesium delivery to periosteum in situ and the proposed periosteal bandages act as a bioactive media for accelerating bone healing.
Collapse
Affiliation(s)
- Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Yuwei Zhu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Zhi Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Ye Li
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Xuan He
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Shian Zhang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| |
Collapse
|
22
|
Liu Y, Huang L, Zeng Y, Li M, Xie H, Shen B. Intra-articular injection of stromal vascular fraction for knee degenerative joint disease: a concise review of preclinical and clinical evidence. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1959-1970. [PMID: 35524910 DOI: 10.1007/s11427-021-2090-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Autologous fat-derived stromal vascular fraction (SVF) is a mixed cell population that has been used for many years in regenerative plastic surgery. In terms of animal and clinical research, this concise review was performed to evaluate the efficacy of SVF in knee degenerative joint disease (KDJD), which could cause pain, disability and severely affect patients' lives. Thirteen studies retrieved and screened from the databases were included, including six animal studies and seven clinical trials. The meta-analysis of clinical research shows that intra-articular injection of SVF, in combination with adjuvant surgery, could alleviate pain and improve early functional recovery for patients with KDJD at Kellgren-Lawrence (KL) grades II-III.
Collapse
Affiliation(s)
- Yuan Liu
- Orthopedics Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liping Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Zeng
- Orthopedics Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingyang Li
- Orthopedics Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bin Shen
- Orthopedics Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
23
|
Lipid nanoparticle-encapsulated VEGFa siRNA facilitates cartilage formation by suppressing angiogenesis. Int J Biol Macromol 2022; 221:1313-1324. [PMID: 36108749 DOI: 10.1016/j.ijbiomac.2022.09.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 12/18/2022]
Abstract
Cartilage is an important tissue that is widely found in joints, ears, nose and other organs. The limited capacity to regenerate makes cartilage reconstruction an urgent clinical demand. Due to the avascular nature of cartilage, we hypothesized that inhibition of vascularization contributes to cartilage formation. Here, we used VEGFa siRNA to inhibit the infiltration of the local vascular system. Optimized lipid nanoparticles were prepared by microfluidics for the delivery of siRNA. Then, we constructed a tissue engineering scaffold. Both seed cells and VEGFa siRNA-LNPs were loaded in a GELMA hydrogel. Subcutaneous implantation experiments in nude mice indicate that this is a promising strategy for cartilage reconstruction. The regenerated cartilage was superior, with significant upregulation of SOX9, COL-II and ACAN. This is attributed to an environment deficient in oxygen and nutrients, which facilitates cartilage formation by upregulating HIF-1α and FOXO transcription factors. In conclusion, a GelMA/Cells+VEGFa siRNA-LNPs scaffold was constructed to achieve superior cartilage regeneration.
Collapse
|
24
|
Song Y, Jorgensen C. Mesenchymal Stromal Cells in Osteoarthritis: Evidence for Structural Benefit and Cartilage Repair. Biomedicines 2022; 10:biomedicines10061278. [PMID: 35740299 PMCID: PMC9219878 DOI: 10.3390/biomedicines10061278] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) presents a major clinical challenge to rheumatologists and orthopedists due to the lack of available drugs reducing structural degradation. Mesenchymal stromal cells (MSCs) may represent new therapeutic approaches in cartilage regeneration. In this review, we highlight the latest knowledge on the biological properties of MSC, such as their chondrogenic and immunomodulatory potential, and we give a brief overview of the effects of MSCs in preclinical and clinical studies of OA treatment and also compare different MSC sources, with the adipose tissue-derived MSCs being promising. Then, we focus on their structural benefit in treating OA and summarize the current evidence for the assessment of cartilage in OA according to magnetic resonance imaging (MRI) and second-look arthroscopy after MSC therapy. Finally, this review provides a brief perspective on enhancing the activity of MSCs.
Collapse
|
25
|
Li M, Yin H, Yan Z, Li H, Wu J, Wang Y, Wei F, Tian G, Ning C, Li H, Gao C, Fu L, Jiang S, Chen M, Sui X, Liu S, Chen Z, Guo Q. The immune microenvironment in cartilage injury and repair. Acta Biomater 2022; 140:23-42. [PMID: 34896634 DOI: 10.1016/j.actbio.2021.12.006] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023]
Abstract
The ability of articular cartilage to repair itself is limited because it lacks blood vessels, nerves, and lymph tissue. Once damaged, it can lead to joint swelling and pain, accelerating the progression of osteoarthritis. To date, complete regeneration of hyaline cartilage exhibiting mechanical properties remains an elusive goal, despite the many available technologies. The inflammatory milieu created by cartilage damage is critical for chondrocyte death and hypertrophy, extracellular matrix breakdown, ectopic bone formation, and progression of cartilage injury to osteoarthritis. In the inflammatory microenvironment, mesenchymal stem cells (MSCs) undergo aberrant differentiation, and chondrocytes begin to convert or dedifferentiate into cells with a fibroblast phenotype, thereby resulting in fibrocartilage with poor mechanical qualities. All these factors suggest that inflammatory problems may be a major stumbling block to cartilage repair. To produce a milieu conducive to cartilage repair, multi-dimensional management of the joint inflammatory microenvironment in place and time is required. Therefore, this calls for elucidation of the immune microenvironment of cartilage repair after injury. This review provides a brief overview of: (1) the pathogenesis of cartilage injury; (2) immune cells in cartilage injury and repair; (3) effects of inflammatory cytokines on cartilage repair; (4) clinical strategies for treating cartilage defects; and (5) strategies for targeted immunoregulation in cartilage repair. STATEMENT OF SIGNIFICANCE: Immune response is increasingly considered the key factor affecting cartilage repair. It has both negative and positive regulatory effects on the process of regeneration and repair. Proinflammatory factors are secreted in large numbers, and necrotic cartilage is removed. During the repair period, immune cells can secrete anti-inflammatory factors and chondrogenic cytokines, which can inhibit inflammation and promote cartilage repair. However, inflammatory factors persist, which accelerate the degradation of the cartilage matrix. Furthermore, in an inflammatory microenvironment, MSCs undergo abnormal differentiation, and chondrocytes begin to transform or dedifferentiate into fibroblast-like cells, forming fibrocartilage with poor mechanical properties. Consequently, cartilage regeneration requires multi-dimensional regulation of the joint inflammatory microenvironment in space and time to make it conducive to cartilage regeneration.
Collapse
|
26
|
Liu Y, Liu Y, Wu M, Zou R, Mao S, Cong P, Hou M, Jin H, Zhao Y, Bao Y. Adipose-derived mesenchymal stem cell-loaded β-chitin nanofiber hydrogel promote wound healing in rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:12. [PMID: 35050422 PMCID: PMC8776676 DOI: 10.1007/s10856-021-06630-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/28/2021] [Indexed: 05/14/2023]
Abstract
Because of stem cells are limited by the low efficiency of their cell homing and survival in vivo, cell delivery systems and scaffolds have attracted a great deal of attention for stem cells' successful clinical practice. β-chitin nanofibers (β-ChNF) were prepared from squid pens in this study. Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy proved that β-ChNFs with the diameter of 5 to 10 nm were prepared. β-ChNF dispersion became gelled upon the addition of cell culture medium. Cell culture experiments showed that β-ChNFs exhibited negligible cytotoxicity towards ADSCs and L929 cells, and it was found that more exosomes were secreted by the globular ADSCs grown in the β-ChNF hydrogel. The vivo experiments of rats showed that the ADSCs-loaded β-ChNF hydrogel could directly cover the wound surface and significantly accelerate the wound healing and promote the generation of epithelization, granulation tissue and collagen. In addition, the ADSCs-loaded β-ChNF hydrogel clearly regulated the expressions of VEGFR, α-SMA, collagen I and collagen III. Finally, we showed that ADSCs-loaded β-ChNF hydrogel activated the TGFβ/smad signaling. The neutralization of TGFβ markedly reduced Smad phosphorylation and the expressions of TIMP1, VEGFR and α-SMA. Taken together, these findings suggest that ADSCs-loaded β-ChNF hydrogel promises for treating wounds that are challenge to heal via conventional methods. Graphical abstract.
Collapse
Affiliation(s)
- Ying Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, 110016, China
| | - Yunen Liu
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, 110016, China
| | - Mi Wu
- Jihua Laboratory, Foshan, 528200, China
| | - Rufei Zou
- Jihua Laboratory, Foshan, 528200, China
| | - Shun Mao
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, 110016, China
| | - Peifang Cong
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, 110016, China
| | - Mingxiao Hou
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, 110016, China
| | - Hongxu Jin
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, 110016, China.
| | - Yan Zhao
- Jihua Laboratory, Foshan, 528200, China.
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
27
|
Yuan X, Li L, Liu H, Luo J, Zhao Y, Pan C, Zhang X, Chen Y, Gou M. Strategies for improving adipose-derived stem cells for tissue regeneration. BURNS & TRAUMA 2022; 10:tkac028. [PMID: 35992369 PMCID: PMC9382096 DOI: 10.1093/burnst/tkac028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/27/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Adipose-derived stem cells (ADSCs) have promising applications in tissue regeneration. Currently, there are only a few ADSC products that have been approved for clinical use. The clinical application of ADSCs still faces many challenges. Here, we review emerging strategies to improve the therapeutic efficacy of ADSCs in tissue regeneration. First, a great quantity of cells is often needed for the stem cell therapies, which requires the advanced cell expansion technologies. In addition cell-derived products are also required for the development of ‘cell-free’ therapies to overcome the drawbacks of cell-based therapies. Second, it is necessary to strengthen the regenerative functions of ADSCs, including viability, differentiation and paracrine ability, for the tissue repair and regeneration required for different physiological and pathophysiological conditions. Third, poor delivery efficiency also restricts the therapeutic effect of ADSCs. Effective methods to improve cell delivery include alleviating harsh microenvironments, enhancing targeting ability and prolonging cell retention. Moreover, we also point out some critical issues about the sources, effectiveness and safety of ADSCs. With these advanced strategies to improve the therapeutic efficacy of ADSCs, ADSC-based treatment holds great promise for clinical applications in tissue regeneration.
Collapse
Affiliation(s)
- Xin Yuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Li Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Haofan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Jing Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Yongchao Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Cheng Pan
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Xue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Yuwen Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| |
Collapse
|
28
|
Yi J, Zhang J, Zhang Q, Chen X, Qi R, Liang R, Wang Y, Wang F, Zhong Y, Zhang X, Chin G, Liu Q, Zhou W, Liu H, Chen J, Ouyang H. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:552-565. [PMID: 35511745 PMCID: PMC9154331 DOI: 10.1093/stcltm/szac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely used as functional components in tissue engineering. However, the immunogenicity and limited pro-angiogenic efficacy of MSCs greatly limited their pro-regenerative ability in allogenic treatment. Herein, utilizing a chemically defined cocktail in the culture system, including cytokines, small molecules, structural protein, and other essential components, we generated the immunoprivileged and pro-angiogenic cells (IACs) derived from human adipose tissues. Conventional adipose-derived MSCs (cADSCs) were used as a control in all the experiments. IACs show typical MSC properties with enhanced stemness capacity and a robust safety profile. IACs induce a significantly milder immune response of allogenic peripheral blood mononuclear cells in an H3K27me3-HLA axis-dependent manner. IACs, through superior paracrine effects, further promote nitric oxide production, anti-apoptotic ability, and the tube formation of human vein endothelial cells. Embedded in a photo-reactive hydrogel (Gel) termed as GelMA/HA-NB/LAP for tissue engineering treatment, IACs promote faster tissue regeneration in a xenogeneic full-thickness skin defect model, eliciting a milder immune response and enhanced blood vessel formation in IACs-treated defect areas. Together with its excellent pro-regenerative potential and robust safety, our findings suggest that IACs may be a promising candidate for clinically relevant stem cell and tissue engineering therapeutics.
Collapse
Affiliation(s)
- Junzhi Yi
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jiayan Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Qin Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Institute of Translational Medicine, Shanghai University, Shanghai, People’s Republic of China
| | - Xuri Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Rujie Qi
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Renjie Liang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Ying Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Fei Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yuliang Zhong
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xianzhu Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Grace Chin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Qi Liu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Wenyan Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Hua Liu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jiansong Chen
- Department of Orthopedic Surgery, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People’s Republic of China
- Jiansong Chen Department of Orthopedic Surgery, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People’s Republic of China.
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, People’s Republic of China
- Corresponding authors: Hongwei Ouyang, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China.
| |
Collapse
|
29
|
Ma L, Huang Z, Wu D, Kou X, Mao X, Shi S. CD146 controls the quality of clinical grade mesenchymal stem cells from human dental pulp. Stem Cell Res Ther 2021; 12:488. [PMID: 34461987 PMCID: PMC8404346 DOI: 10.1186/s13287-021-02559-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/16/2021] [Indexed: 12/29/2022] Open
Abstract
Background Human mesenchymal stem cells from dental pulp (hMSC-DP), including dental pulp stem cells from permanent teeth and exfoliated deciduous teeth, possess unique MSC characteristics such as expression of specific surface molecules and a high proliferation rate. Since hMSC-DP have been applied in numerous clinical studies, it is necessary to establish criteria to evaluate their potency for cell-based therapies. Methods We compared stem cell properties of hMSC-DP at passages 5, 10 and 20 under serum (SE) and serum-free (SF) culture conditions. Cell morphology, proliferation capacity, chromosomal stability, surface phenotypic profiles, differentiation and immunoregulation ability were evaluated. In addition, we assessed surface molecule that regulates hMSC-DP proliferation and immunomodulation. Results hMSC-DP exhibited a decrease in proliferation rate and differentiation potential, as well as a reduced expression of CD146 when cultured under continuous passage conditions. SF culture conditions failed to alter surface marker expression, chromosome stability or proliferation rate when compared to SE culture. SF-cultured hMSC-DP were able to differentiate into osteogenic, adipogenic and neural cells, and displayed the capacity to regulate immune responses. Notably, the expression level of CD146 showed a positive correlation with proliferation, differentiation, and immunomodulation, suggesting that CD146 can serve as a surface molecule to evaluate the potency of hMSC-DP. Mechanistically, we found that CD146 regulates proliferation and immunomodulation of hMSC-DP through the ERK/p-ERK pathway. Conclusion This study indicates that SF-cultured hMSC-DP are appropriate for producing clinical-grade cells. CD146 is a functional surface molecule to assess the potency of hMSC-DP. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02559-4.
Collapse
Affiliation(s)
- Lan Ma
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Zhiqing Huang
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Di Wu
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Xueli Mao
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, People's Republic of China.
| |
Collapse
|
30
|
Li Z, Huang Z, Bai L. Cell Interplay in Osteoarthritis. Front Cell Dev Biol 2021; 9:720477. [PMID: 34414194 PMCID: PMC8369508 DOI: 10.3389/fcell.2021.720477] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a common chronic disease and a significant health concern that needs to be urgently solved. OA affects the cartilage and entire joint tissues, including the subchondral bone, synovium, and infrapatellar fat pads. The physiological and pathological changes in these tissues affect the occurrence and development of OA. Understanding complex crosstalk among different joint tissues and their roles in OA initiation and progression is critical in elucidating the pathogenic mechanism of OA. In this review, we begin with an overview of the role of chondrocytes, synovial cells (synovial fibroblasts and macrophages), mast cells, osteoblasts, osteoclasts, various stem cells, and engineered cells (induced pluripotent stem cells) in OA pathogenesis. Then, we discuss the various mechanisms by which these cells communicate, including paracrine signaling, local microenvironment, co-culture, extracellular vesicles (exosomes), and cell tissue engineering. We particularly focus on the therapeutic potential and clinical applications of stem cell-derived extracellular vesicles, which serve as modulators of cell-to-cell communication, in the field of regenerative medicine, such as cartilage repair. Finally, the challenges and limitations related to exosome-based treatment for OA are discussed. This article provides a comprehensive summary of key cells that might be targets of future therapies for OA.
Collapse
Affiliation(s)
- Zihao Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyu Huang
- Foreign Languages College, Shanghai Normal University, Shanghai, China
| | - Lunhao Bai
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Xu X, Gao J, Liu S, Chen L, Chen M, Yu X, Ma N, Zhang J, Chen X, Zhong L, Yu L, Xu L, Guo Q, Ding J. Magnetic resonance imaging for non-invasive clinical evaluation of normal and regenerated cartilage. Regen Biomater 2021; 8:rbab038. [PMID: 34408910 PMCID: PMC8369076 DOI: 10.1093/rb/rbab038] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
With the development of tissue engineering and regenerative medicine, it is much desired to establish bioimaging techniques to monitor the real-time regeneration efficacy in vivo in a non-invasive way. Herein, we tried magnetic resonance imaging (MRI) to evaluate knee cartilage regeneration after implanting a biomaterial scaffold seeded with chondrocytes, namely, matrix-induced autologous chondrocyte implantation (MACI). After summary of the T2 mapping and the T1-related delayed gadolinium-enhanced MRI imaging of cartilage (dGEMRIC) in vitro and in vivo in the literature, these two MRI techniques were tried clinically. In this study, 18 patients were followed up for 1 year. It was found that there was a significant difference between the regeneration site and the neighboring normal site (control), and the difference gradually diminished with regeneration time up to 1 year according to both the quantitative T1 and T2 MRI methods. We further established the correlation between the quantitative evaluation of MRI and the clinical Lysholm scores for the first time. Hence, the MRI technique was confirmed to be a feasible semi-quantitative yet non-invasive way to evaluate the in vivo regeneration of knee articular cartilage.
Collapse
Affiliation(s)
- Xian Xu
- Department of Radiology, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries of PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Liang Chen
- Institute for Medical Device Control, National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing 102629, China
| | - Min Chen
- Department of Radiology, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xiaoye Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Ning Ma
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries of PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Jun Zhang
- Department of Radiology, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xiaobin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Lisen Zhong
- Department of Radiology, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Liming Xu
- Institute for Medical Device Control, National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing 102629, China
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries of PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| |
Collapse
|
32
|
Han X, Tang S, Wang L, Xu X, Yan R, Yan S, Guo Z, Hu K, Yu T, Li M, Li Y, Zhang F, Gu N. Multicellular Spheroids Formation on Hydrogel Enhances Osteogenic/Odontogenic Differentiation of Dental Pulp Stem Cells Under Magnetic Nanoparticles Induction. Int J Nanomedicine 2021; 16:5101-5115. [PMID: 34349510 PMCID: PMC8327189 DOI: 10.2147/ijn.s318991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Promotion odontogenic differentiation of dental pulp stem cells (DPSCs) is essential for dentin regeneration. Physical cellular microenvironment is of critical importance for stem cells differentiation and influences the function of other biological/chemical factors to differentiation. Methods Based on adjusting the mechanical/interfacial properties of hydrogels, multicellular spheroids (MCSs) of DPSCs generated through self-organization. The spheroids were characterized by immunofluorescent staining and flow cytometry. Quantitative real-time polymerase chain reaction, alkaline phosphatase (ALP) activity assay, ALP staining and Alizarin Red S staining were performed to evaluate the osteogenic/odontogenic differentiation of DPSCs with or without magnetic iron oxide nanoparticles (IONPs) induction. Results MCSs of DPSCs exhibited a significant upregulation of E-cadherin and N-cadherin and enriched CD146 positive subpopulation, along with a stronger osteogenic/odontogenic differentiation ability. Moreover, DPSCs spheroids showed more substantial osteogenic differentiation tendency than the classical two-dimensional cultured DPSCs under the stimulation of magnetic IONPs. Conclusion Three-dimensional spheroids culture of DPSCs based on composite viscoelastic materials combined with mechanical/magnetic stimulation may provide a theoretical basis for the subsequent development of dentin or bone regeneration technology.
Collapse
Affiliation(s)
- Xiao Han
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Shijia Tang
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xueqin Xu
- Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ruhan Yan
- Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Sen Yan
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Ke Hu
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Tingting Yu
- Department of Medical Genetics, School of Basic Medical Science & Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Mengping Li
- Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yuqin Li
- Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ning Gu
- Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
33
|
Scioli MG, Storti G, Bielli A, Sanchez M, Scimeca M, Gimble JM, Cervelli V, Orlandi A. CD146 expression regulates osteochondrogenic differentiation of human adipose-derived stem cells. J Cell Physiol 2021; 237:589-602. [PMID: 34287857 DOI: 10.1002/jcp.30506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 01/12/2023]
Abstract
Tissue engineering aims to develop innovative approaches to repair tissue defects. The use of adipose-derived stem cells (ASCs) in tissue regeneration was extensively investigated for osteochondrogenesis. Among the ASC population, ASCs expressing the CD146 were demonstrated to be multipotent and considered as perivascular stem cells, although the functional role of CD146 expression in these cells remains unclear. Herein, we investigated the influence of CD146 expression on osteochondrogenic differentiation of ASCs. Our results showed that, in two-dimensional culture systems, sorted CD146+ ASCs proliferated less and displayed higher adipogenic and chondrogenic potential than CD146- ASCs. The latter demonstrated a higher osteogenic capacity. Besides this, CD146+ ASCs in three-dimensional Matrigel/endothelial growth medium (EGM) cultures showed the highest angiogenic capability. When cultured in three-dimensional collagen scaffolds, CD146+ ASCs showed a spontaneous chondrogenic differentiation, further enhanced by the EGM medium's addition. Finally, CD146- ASCs seeded on hexafluoroisopropanol silk scaffolds displayed a greater spontaneous osteogenetic capacity. Altogether, these findings demonstrated a functional and relevant influence of CD146 expression in ASC properties and osteochondrogenic commitment. Exploiting the combination of specific differentiation properties of ASC subpopulations and appropriate culture systems could represent a promising strategy to improve the efficacy of new regenerative therapies.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Alessandra Bielli
- Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Sanchez
- Major Equipments and Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Manuel Scimeca
- Anatomic Pathology, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Jeffrey M Gimble
- Department of Pharmacology, Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| |
Collapse
|
34
|
Elahi N, Rizwan M. Progress and prospects of magnetic iron oxide nanoparticles in biomedical applications: A review. Artif Organs 2021; 45:1272-1299. [PMID: 34245037 DOI: 10.1111/aor.14027] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022]
Abstract
Nanoscience has been considered as one of the most substantial research in modern science. The utilization of nanoparticle (NP) materials provides numerous advantages in biomedical applications due to their unique properties. Among various types of nanoparticles, the magnetic nanoparticles (MNPs) of iron oxide possess intrinsic features, which have been efficiently exploited for biomedical purposes including drug delivery, magnetic resonance imaging, Magnetic-activated cell sorting, nanobiosensors, hyperthermia, and tissue engineering and regenerative medicine. The size and shape of nanostructures are the main factors affecting the physicochemical features of superparamagnetic iron oxide nanoparticles, which play an important role in the improvement of MNP properties, and can be controlled by appropriate synthesis strategies. On the other hand, the proper modification and functionalization of the surface of iron oxide nanoparticles have significant effects on the improvement of physicochemical and mechanical features, biocompatibility, stability, and surface activity of MNPs. This review focuses on popular methods of fabrication, beneficial surface coatings with regard to the main required features for their biomedical use, as well as new applications.
Collapse
Affiliation(s)
- Narges Elahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advance Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.,Department of Medical Nanotechnology, School of Advance Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Muhammad Rizwan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Li X, Dai B, Guo J, Zheng L, Guo Q, Peng J, Xu J, Qin L. Nanoparticle-Cartilage Interaction: Pathology-Based Intra-articular Drug Delivery for Osteoarthritis Therapy. NANO-MICRO LETTERS 2021; 13:149. [PMID: 34160733 PMCID: PMC8222488 DOI: 10.1007/s40820-021-00670-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/19/2021] [Indexed: 05/03/2023]
Abstract
Osteoarthritis is the most prevalent chronic and debilitating joint disease, resulting in huge medical and socioeconomic burdens. Intra-articular administration of agents is clinically used for pain management. However, the effectiveness is inapparent caused by the rapid clearance of agents. To overcome this issue, nanoparticles as delivery systems hold considerable promise for local control of the pharmacokinetics of therapeutic agents. Given the therapeutic programs are inseparable from pathological progress of osteoarthritis, an ideal delivery system should allow the release of therapeutic agents upon specific features of disorders. In this review, we firstly introduce the pathological features of osteoarthritis and the design concept for accurate localization within cartilage for sustained drug release. Then, we review the interactions of nanoparticles with cartilage microenvironment and the rational design. Furthermore, we highlight advances in the therapeutic schemes according to the pathology signals. Finally, armed with an updated understanding of the pathological mechanisms, we place an emphasis on the development of "smart" bioresponsive and multiple modality nanoparticles on the near horizon to interact with the pathological signals. We anticipate that the exploration of nanoparticles by balancing the efficacy, safety, and complexity will lay down a solid foundation tangible for clinical translation.
Collapse
Affiliation(s)
- Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Quanyi Guo
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
36
|
Wei F, Liu S, Chen M, Tian G, Zha K, Yang Z, Jiang S, Li M, Sui X, Chen Z, Guo Q. Host Response to Biomaterials for Cartilage Tissue Engineering: Key to Remodeling. Front Bioeng Biotechnol 2021; 9:664592. [PMID: 34017827 PMCID: PMC8129172 DOI: 10.3389/fbioe.2021.664592] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Biomaterials play a core role in cartilage repair and regeneration. The success or failure of an implanted biomaterial is largely dependent on host response following implantation. Host response has been considered to be influenced by numerous factors, such as immune components of materials, cytokines and inflammatory agents induced by implants. Both synthetic and native materials involve immune components, which are also termed as immunogenicity. Generally, the innate and adaptive immune system will be activated and various cytokines and inflammatory agents will be consequently released after biomaterials implantation, and further triggers host response to biomaterials. This will guide the constructive remolding process of damaged tissue. Therefore, biomaterial immunogenicity should be given more attention. Further understanding the specific biological mechanisms of host response to biomaterials and the effects of the host-biomaterial interaction may be beneficial to promote cartilage repair and regeneration. In this review, we summarized the characteristics of the host response to implants and the immunomodulatory properties of varied biomaterial. We hope this review will provide scientists with inspiration in cartilage regeneration by controlling immune components of biomaterials and modulating the immune system.
Collapse
Affiliation(s)
- Fu Wei
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China.,Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Shuyun Liu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Mingxue Chen
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Beijing, China
| | - Guangzhao Tian
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Kangkang Zha
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhen Yang
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | | | - Muzhe Li
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xiang Sui
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiwei Chen
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Quanyi Guo
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
37
|
Han L, Xu N, Lv S, Yin J, Zheng D, Li X. Enhanced In Vitro and In Vivo Efficacy of Alginate/Silk Protein/Hyaluronic Acid with Polypeptide Microsphere Delivery for Tissue Regeneration of Articular Cartilage. J Biomed Nanotechnol 2021; 17:901-909. [PMID: 34082875 DOI: 10.1166/jbn.2021.3071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alginate/Silk fibroin/hyaluronic acid (ALG/SF/HA) nanocomposites were synthesised using blending, inter-linking, and lyophilization methods. We investigated the physicochemical properties of the resulting nanocomposites, including their water retention, weight loss, porosity and cytocompatibility. The optimum ratios of the ALG/SF/HA scaffolding were 3:6.5:0.5. Nanocomposites with optimum ratios were then prepared by integrating pilose antler polypeptides (PAPS) to poly(lactic-co-glycolic acid) (PLGA) microspheres, and the performance was investigated. PAPS-ALG/SF/HA nanocomposites exhibited desirable adhesions and proliferations. Rabbit cartilage deficiencies was developed by the animal model. The cartilage repair effects deficiencies were detected and analyzed between PAPS-SF/ALG/ALG/SF/HA, and control activity classes. The deficiencies were virtually fully remedied after 13 weeks in the presence of PAPS-ALG/SF/HA class, suggesting that the PAPS-ALG/SF/HA nanocomposites had a positive effects on joint cartilage repair.
Collapse
Affiliation(s)
- Long Han
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Nanwei Xu
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Songwei Lv
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jianjian Yin
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Dong Zheng
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Xin Li
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| |
Collapse
|
38
|
In situ pocket-type microcarrier (PMc) as a therapeutic composite: Regeneration of cartilage with stem cells, genes, and drugs. J Control Release 2021; 332:337-345. [PMID: 32905800 DOI: 10.1016/j.jconrel.2020.08.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
We prepared pocket-type micro-carriers (PMc) with pores larger than 30 μm for use in cell delivery by adding 40 mg pluronic F-127 copolymers (F-127) to biodegradable PLGA dissolved in dichloromethane solution. The controlling the size of the pockets in this way facilitates the adhesion of cells by regulating the size of the pockets according to the cells having various sizes. The size of PMc pores could be controlled within a range of 2 to 30 μm by varying the F-127 content. The ratio of F-127 to DOPA-bPEI was most appropriate at 1: 1, and the pocket size at 10 mg/ml of F-127 was appropriate for adhering 20-30 μm stem cells. F-127 containing SOX9 pDNA, in combination with DOPA-polyethylene-coated gold nanoparticles and dexamethasone loaded in PMcs, promoted cartilage differentiation. Gold nanoparticles complex and dexamethasone (DEX) loaded in PMcs were identified by micro-CT imaging and fluorescence imaging, respectively. By captured in pore generated on/in microspheres, the stem cells were safe and stable for use in delivery, both in vitro and in an animal model. Thus, microsphere pores can safely capture stem cells, and at the same time provide a microenvironment in which the captured stem cells can differentiate into chondrocytes.
Collapse
|
39
|
Comparison of Osteogenic Differentiation Potential of Human Dental-Derived Stem Cells Isolated from Dental Pulp, Periodontal Ligament, Dental Follicle, and Alveolar Bone. Stem Cells Int 2021; 2021:6631905. [PMID: 33927769 PMCID: PMC8049831 DOI: 10.1155/2021/6631905] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 01/09/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) have become promising candidates for regeneration medicine due to their multidifferentiation potential and immunomodulatory ability. Compared with classic MSCs derived from the bone marrow and fat, dental-derived MSCs show high plasticity, accessibility, and applicability. Therefore, they are considered alternative sources for regeneration medicine. Methods Four types of MSCs were isolated from the dental pulp, periodontal ligament, dental follicle, and alveolar bone of the same donor, and there were five different individuals. We analyzed their morphology, immunophenotype, proliferation rate, apoptosis, trilineage differentiation potential, and the gene expression during osteogenic differentiation. Results Our research demonstrated that DPSCs, PDLSCs, DFPCs and ABMMSCs exhibited similar morphology and immunophenotype. DFPCs showed a higher rate of proliferation and apoptosis. When cultured in the trilineage differentiation medium, all types of MSCs presented the differentiation potential of osteogenesis, adipogenesis, and chondrogenesis. Through staining and genetic analysis during osteogenic induction, ABMMSCs and PDLSCs showed the highest osteogenic ability, followed by DPSCs, and DFPCs were the lowest. Conclusions Overall, our results indicated that different dental-derived stem cells possessed different biological characteristics. For bone tissue engineering, ABMMSCs and PDLSCs can be used as optimal candidates of seed cells.
Collapse
|
40
|
Yang Z, Li H, Tian Y, Fu L, Gao C, Zhao T, Cao F, Liao Z, Yuan Z, Liu S, Guo Q. Biofunctionalized Structure and Ingredient Mimicking Scaffolds Achieving Recruitment and Chondrogenesis for Staged Cartilage Regeneration. Front Cell Dev Biol 2021; 9:655440. [PMID: 33842484 PMCID: PMC8027342 DOI: 10.3389/fcell.2021.655440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/05/2021] [Indexed: 11/13/2022] Open
Abstract
It remains scientifically challenging to regenerate injured cartilage in orthopedics. Recently, an endogenous cell recruitment strategy based on a combination of acellular scaffolds and chemoattractants to specifically and effectively recruit host cells and promote chondrogenic differentiation has brought new hope for in situ articular cartilage regeneration. In this study, a transforming growth factor-β3 (TGF-β3)-loaded biomimetic natural scaffold based on demineralized cancellous bone (DCB) and acellular cartilage extracellular matrix (ECM) was developed and found to improve chondral repair by enhancing cell migration and chondrogenesis. The DCB/ECM scaffold has porous microstructures (pore size: 67.76 ± 8.95 μm; porosity: 71.04 ± 1.62%), allowing the prolonged release of TGF-β3 (up to 50% after 42 days in vitro) and infrapatellar fat pad adipose-derived stem cells (IPFSCs) that maintain high cell viability (>96%) and favorable cell distribution and phenotype after seeding onto the DCB/ECM scaffold. The DCB/ECM scaffold itself can also provide a sustained release system to effectively promote IPFSC migration (nearly twofold in vitro). Moreover, TGF-β3 loaded on scaffolds showed enhanced chondrogenic differentiation (such as collagen II, ACAN, and SOX9) of IPFSCs after 3 weeks of culture. After implanting the composite scaffold into the knee joints of rabbits, enhanced chondrogenic differentiation was discovered at 1, 2, and 4 weeks post-surgery, and improved repair of cartilage defects in terms of biochemical, biomechanical, radiological, and histological results was identified at 3 and 6 months post-implantation. To conclude, our study demonstrates that the growth factor (GF)-loaded scaffold can facilitate cell homing, migration, and chondrogenic differentiation and promote the reconstructive effects of in vivo cartilage formation, revealing that this staged regeneration strategy combined with endogenous cell recruitment and pro-chondrogenesis is promising for in situ articular cartilage regeneration.
Collapse
Affiliation(s)
- Zhen Yang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Hao Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yue Tian
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Liwei Fu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Cangjian Gao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Tianyuan Zhao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Fuyang Cao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China.,Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiyao Liao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
41
|
Zha K, Li X, Yang Z, Tian G, Sun Z, Sui X, Dai Y, Liu S, Guo Q. Heterogeneity of mesenchymal stem cells in cartilage regeneration: from characterization to application. NPJ Regen Med 2021; 6:14. [PMID: 33741999 PMCID: PMC7979687 DOI: 10.1038/s41536-021-00122-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Articular cartilage is susceptible to damage but hard to self-repair due to its avascular nature. Traditional treatment methods are not able to produce satisfactory effects. Mesenchymal stem cells (MSCs) have shown great promise in cartilage repair. However, the therapeutic effect of MSCs is often unstable partly due to their heterogeneity. Understanding the heterogeneity of MSCs and the potential of different types of MSCs for cartilage regeneration will facilitate the selection of superior MSCs for treating cartilage damage. This review provides an overview of the heterogeneity of MSCs at the donor, tissue source and cell immunophenotype levels, including their cytological properties, such as their ability for proliferation, chondrogenic differentiation and immunoregulation, as well as their current applications in cartilage regeneration. This information will improve the precision of MSC-based therapeutic strategies, thus maximizing the efficiency of articular cartilage repair.
Collapse
Affiliation(s)
- Kangkang Zha
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhen Yang
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Guangzhao Tian
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiqiang Sun
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xiang Sui
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Yongjing Dai
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| |
Collapse
|
42
|
Zha K, Li X, Tian G, Yang Z, Sun Z, Yang Y, Wei F, Huang B, Jiang S, Li H, Sui X, Liu S, Guo Q. Evaluation of CD49f as a novel surface marker to identify functional adipose-derived mesenchymal stem cell subset. Cell Prolif 2021; 54:e13017. [PMID: 33704842 PMCID: PMC8088464 DOI: 10.1111/cpr.13017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES CD49f is expressed on a variety of stem cells and has certain effects on their cytological functions, such as proliferation and differentiation potential. However, whether CD49f is expressed on the surface of adipose tissue-derived mesenchymal stem cells (ADSCs) and its effect on ADSCs has not been clarified. MATERIALS AND METHODS The effects of in vitro culture passage and inflammatory factor treatment on CD49f expression and the adhesion ability of ADSCs from mice and rats were investigated. CD49f+ cells were selected from rat ADSCs (rADSCs) by magnetic-activated cell sorting (MACS), and the cellular functions of CD49f+ ADSCs and unsorted ADSCs, including their clonogenic, proliferation, adipogenic and osteogenic differentiation, migration and anti-apoptotic capacities, were compared. RESULTS CD49f expression and the adhesion ability of ADSCs decreased with increasing in vitro culture passage number. TNF-α and IFN-γ treatment decreased CD49f expression but increased the adhesion ability of ADSCs. After CD49f was blocked with an anti-CD49f antibody, the adhesion ability of ADSCs was decreased. No significant difference in clonogenic activity was observed between unsorted ADSCs and CD49f+ ADSCs. CD49f+ ADSCs had greater proliferation, adipogenic and osteogenic differentiation, migration and anti-apoptotic capacities than unsorted ADSCs. CONCLUSION In the current study, the expression of CD49f on ADSCs was identified for the first time. The expression of CD49f on ADSCs was influenced by in vitro culture passage number and inflammatory factor treatment. Compared with unsorted ADSCs, CD49f + ADSCs exhibited superior cellular functions, thus may have great application value in mesenchymal stem cell (MSC)-based therapies.
Collapse
Affiliation(s)
- Kangkang Zha
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Guangzhao Tian
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhen Yang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhiqiang Sun
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yu Yang
- The Second People's Hospital of Guiyang, Guiyang, China
| | - Fu Wei
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Bo Huang
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shuangpeng Jiang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Hao Li
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Xiang Sui
- School of Medicine, Nankai University, Tianjin, China
| | - Shuyun Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
43
|
Lu L, Shang X, Liu B, Chen W, Zhang Y, Liu S, Sui X, Wang A, Guo Q. Repair of articular cartilage defect using adipose-derived stem cell-loaded scaffold derived from native cartilage extracellular matrix. J Cell Physiol 2021; 236:4244-4257. [PMID: 33605451 DOI: 10.1002/jcp.30020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to investigate the feasibility of adipose-derived stem cells (ADSCs) as the seed cells of cartilage tissue engineering. ADSCs were isolated from adipose tissue that was harvested under sterile conditions from the inguen fold of porcines and cultured in vitro. Acellular cartilage extracellular matrix (ACECM) scaffolds of pigs were then constructed. Moreover, inflammatory cells, as well as cellular and humoral immune responses, were detected using hematoxylin and eosin staining staining, immunohistochemical staining, and western blot analysis. The results showed that the cartilage complex constructed by ADSCs and ACECM through tissue engineering successfully repaired the cartilage defect of the pig knee joint. The in vivo repair experiment showed no significant difference between chondrocytes, ADSCs, and induced ADSCs, indicating that ADSCs do not require in vitro induction and have the potential for chondrogenic differentiation in the environment around the knee joint. In addition, pig-derived acellular cartilage scaffolds possess no obvious immune inflammatory response when used in xenotransplantation. ADSCs may serve as viable seed cells for cartilage tissue engineering.
Collapse
Affiliation(s)
- Liang Lu
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Xifu Shang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Bin Liu
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Weijian Chen
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Yu Zhang
- Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province, China
| | - Shuyun Liu
- Institute of Orthopaedics, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiang Sui
- Institute of Orthopaedics, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Aiyuan Wang
- Institute of Orthopaedics, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Quanyi Guo
- Institute of Orthopaedics, The Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
44
|
Research Progress on Stem Cell Therapies for Articular Cartilage Regeneration. Stem Cells Int 2021; 2021:8882505. [PMID: 33628274 PMCID: PMC7895563 DOI: 10.1155/2021/8882505] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Injury of articular cartilage can cause osteoarthritis and seriously affect the physical and mental health of patients. Unfortunately, current surgical treatment techniques that are commonly used in the clinic cannot regenerate articular cartilage. Regenerative medicine involving stem cells has entered a new stage and is considered the most promising way to regenerate articular cartilage. In terms of theories on the mechanism, it was thought that stem cell-mediated articular cartilage regeneration was achieved through the directional differentiation of stem cells into chondrocytes. However, recent evidence has shown that the stem cell secretome plays an important role in biological processes such as the immune response, inflammation regulation, and drug delivery. At the same time, the stem cell secretome can effectively mediate the process of tissue regeneration. This new theory has attributed the therapeutic effect of stem cells to their paracrine effects. The application of stem cells is not limited to exogenous stem cell transplantation. Endogenous stem cell homing and in situ regeneration strategies have received extensive attention. The application of stem cell derivatives, such as conditioned media, extracellular vesicles, and extracellular matrix, is an extension of stem cell paracrine theory. On the other hand, stem cell pretreatment strategies have also shown promising therapeutic effects. This article will systematically review the latest developments in these areas, summarize challenges in articular cartilage regeneration strategies involving stem cells, and describe prospects for future development.
Collapse
|
45
|
Kim YS, Mikos AG. Emerging strategies in reprogramming and enhancing the fate of mesenchymal stem cells for bone and cartilage tissue engineering. J Control Release 2021; 330:565-574. [DOI: 10.1016/j.jconrel.2020.12.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
|
46
|
Multiplex Analysis of Adipose-Derived Stem Cell (ASC) Immunophenotype Adaption to In Vitro Expansion. Cells 2021; 10:cells10020218. [PMID: 33499095 PMCID: PMC7911224 DOI: 10.3390/cells10020218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
In order to enhance the therapeutic potential, it is important that sufficient knowledge regarding the dynamic changes of adipose-derived stem cell (ASC) immunophenotypical and biological properties during in vitro growth is available. Consequently, we embarked on a study to follow the evolution of highly defined cell subsets from three unrelated donors in the course of eight passages on tissue culture polystyrene. The co-expression patterns were defined by panels encompassing seven and five cell surface markers, including CD34, CD146, CD166, CD200, CD248, CD271, and CD274 and CD29, CD31, CD36, CD201, and Stro-1, respectively. The analysis was performed using multichromatic flow cytometry. We observed a major paradigm shift, where the CD166-CD34+ combination which was found across all cell subsets early in the culture was replaced by the CD166+ phenotype as the population homogeneity increased with time. At all analysis points, the cultures were dominated by a few major clones that were highly prevalent in most of the donors. The selection process resulted in two predominant clones in the larger panel (CD166+CD34-CD146-CD271- CD274-CD248-CD200- and CD166+CD34+ CD146-CD271-CD274-CD248-CD200-) and one clone in the smaller panel (CD29+CD201+CD36- Stro-1- CD31-). The minor subsets, including CD166+CD34-CD146-CD271+CD274-CD248-CD200- and CD166+CD34+CD146+CD271-CD274-CD248-CD200-, and CD29+CD201-CD36-Stro-1-CD31-, CD29+CD201+CD36-Stro-1+CD31-, and CD29+CD201+CD36+Stro-1-CD31-, in the seven and five marker panels, respectively, were, on the other, hand highly fluctuating and donor-dependent. The results demonstrate that only a limited number of phenotypical repertoires are possible in ASC cultures. Marked differences in their relative occurrence between distinct individuals underscore the need for potency standardization of different ASC preparation to improve the clinical outcome.
Collapse
|
47
|
Adipose-Derived Stem Cells: Current Applications and Future Directions in the Regeneration of Multiple Tissues. Stem Cells Int 2020; 2020:8810813. [PMID: 33488736 PMCID: PMC7787857 DOI: 10.1155/2020/8810813] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/04/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) can maintain self-renewal and enhanced multidifferentiation potential through the release of a variety of paracrine factors and extracellular vesicles, allowing them to repair damaged organs and tissues. Consequently, considerable attention has increasingly been paid to their application in tissue engineering and organ regeneration. Here, we provide a comprehensive overview of the current status of ADSC preparation, including harvesting, isolation, and identification. The advances in preclinical and clinical evidence-based ADSC therapy for bone, cartilage, myocardium, liver, and nervous system regeneration as well as skin wound healing are also summarized. Notably, the perspectives, potential challenges, and future directions for ADSC-related researches are discussed. We hope that this review can provide comprehensive and standardized guidelines for the safe and effective application of ADSCs to achieve predictable and desired therapeutic effects.
Collapse
|
48
|
Shah S, Otsuka T, Bhattacharjee M, Laurencin CT. Minimally Invasive Cellular Therapies for Osteoarthritis Treatment. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00184-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Yang Z, Li H, Yuan Z, Fu L, Jiang S, Gao C, Wang F, Zha K, Tian G, Sun Z, Huang B, Wei F, Cao F, Sui X, Peng J, Lu S, Guo W, Liu S, Guo Q. Endogenous cell recruitment strategy for articular cartilage regeneration. Acta Biomater 2020; 114:31-52. [PMID: 32652223 DOI: 10.1016/j.actbio.2020.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
In the absence of timely and proper treatments, injuries to articular cartilage (AC) can lead to cartilage degeneration and ultimately result in osteoarthritis. Regenerative medicine and tissue engineering techniques are emerging as promising approaches for AC regeneration and repair. Although the use of cell-seeded scaffolds prior to implantation can regenerate and repair cartilage lesions to some extent, these approaches are still restricted by limited cell sources, excessive costs, risks of disease transmission and complex manufacturing practices. Recently developed acellular scaffold approaches that rely on the recruitment of endogenous cells to the injured sites avoid these drawbacks and offer great promise for in situ AC regeneration. Multiple endogenous stem/progenitor cells (ESPCs) are found in joint-resident niches and have the capability to migrate to sites of injury to participate in AC regeneration. However, the natural recruitment of ESPCs is insufficient, and the local microenvironment is hostile after injury. Hence, an endogenous cell recruitment strategy based on the combination of chemoattractants and acellular scaffolds to effectively and specifically recruit ESPCs and improve local microenvironment may provide new insights into in situ AC regeneration. This review provides a brief overview of: (1) the status of endogenous cell recruitment strategy; (2) the subpopulations, potential migration routes (PMRs) of joint-resident ESPCs and their immunomodulatory and reparative effects; (3) chemoattractants and their potential adverse effects; (4) scaffold-based drug delivery systems (SDDSs) that are utilized for in situ AC regeneration; and (5) the challenges and future perspectives of endogenous cell recruitment strategy for AC regeneration. STATEMENT OF SIGNIFICANCE: Although the endogenous cell recruitment strategy for articular cartilage (AC) regeneration has been investigated for several decades, much work remains to be performed in this field. Future studies should have the following aims: (1) reporting the up-to-date progress in the endogenous cell recruitment strategies; (2) determining the subpopulations of ESPCs, the cellular and molecular mechanisms underlying the migration of these cells and their anti-inflammatory, immunomodulatory and reparative effects; (3) elucidating the chemoattractants that enhance ESPC recruitment and their potential adverse effects; and (4) developing advanced SDDSs for chemoattractant dispatch. Herein, we present a systematic overview of the aforementioned issues to provide a better understanding of endogenous cell recruitment strategies for AC regeneration and repair.
Collapse
|
50
|
Wu J, Chen Q, Deng C, Xu B, Zhang Z, Yang Y, Lu T. Exquisite design of injectable Hydrogels in Cartilage Repair. Theranostics 2020; 10:9843-9864. [PMID: 32863963 PMCID: PMC7449920 DOI: 10.7150/thno.46450] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
Cartilage damage is still a threat to human beings, yet there is currently no treatment available to fully restore the function of cartilage. Recently, due to their unique structures and properties, injectable hydrogels have been widely studied and have exhibited high potential for applications in therapeutic areas, especially in cartilage repair. In this review, we briefly introduce the properties of cartilage, some articular cartilage injuries, and now available treatment strategies. Afterwards, we propose the functional and fundamental requirements of injectable hydrogels in cartilage tissue engineering, as well as the main advantages of injectable hydrogels as a therapy for cartilage damage, including strong plasticity and excellent biocompatibility. Moreover, we comprehensively summarize the polymers, cells, and bioactive molecules regularly used in the fabrication of injectable hydrogels, with two kinds of gelation, i.e., physical and chemical crosslinking, which ensure the excellent design of injectable hydrogels for cartilage repair. We also include novel hybrid injectable hydrogels combined with nanoparticles. Finally, we conclude with the advances of this clinical application and the challenges of injectable hydrogels used in cartilage repair.
Collapse
Affiliation(s)
- Jiawei Wu
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University School of Life Sciences
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Qi Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Baoping Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Zeiyan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Tingli Lu
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University School of Life Sciences
| |
Collapse
|