1
|
Wang K, Zhu Y, Li M, Yang Y, Zuo D, Sheng J, Zhang X, Wang W, Zhou P, Feng M. Genetically Modified Hepatocytes Targeting Bilirubin and Ammonia Metabolism for the Construction of Bioartificial Liver System. Biomater Res 2024; 28:0043. [PMID: 39011520 PMCID: PMC11246981 DOI: 10.34133/bmr.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/08/2024] [Indexed: 07/17/2024] Open
Abstract
Acute liver failure (ALF) is a complex syndrome that impairs the liver's function to detoxify bilirubin, ammonia, and other toxic metabolites. Bioartificial liver (BAL) aims to help ALF patients to pass through the urgent period by temporarily undertaking the liver's detoxification functions and promoting the recovery of the injured liver. We genetically modified the hepatocellular cell line HepG2 by stably overexpressing genes encoding UGT1A1, OATP1B1, OTC, ARG1, and CPS1. The resulting SynHeps-II cell line, encapsulated by Cytopore microcarriers, dramatically reduced the serum levels of bilirubin and ammonia, as demonstrated both in vitro using patient plasma and in vivo using ALF animal models. More importantly, we have also completed the 3-dimensional (3D) culturing of cells to meet the demands for industrialized rapid and mass production, and subsequently assembled the plasma-cell contacting BAL (PCC-BAL) system to fulfill the requirements of preclinical experiments. Extracorporeal blood purification of ALF rabbits with SynHeps-II-embedded PCC-BAL saved more than 80% of the animals from rapid death. Mechanistically, SynHeps-II therapy ameliorated liver and brain inflammation caused by high levels of bilirubin and ammonia and promoted liver regeneration by modulating the nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways. Also, SynHeps-II treatment reduced cerebral infiltration of neutrophils, reduced reactive oxygen species (ROS) levels, and mitigated hepatic encephalopathy. Taken together, SynHeps-II cell-based BAL was promising for the treatment of ALF patients and warrants clinical trials.
Collapse
Affiliation(s)
- Ke Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuankui Zhu
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mengqing Li
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yaxi Yang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dianbao Zuo
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junfeng Sheng
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinhai Zhang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Wang
- Wuhan TOGO Medical Technology Co. Ltd., Wuhan, Hubei 430205, China
| | - Ping Zhou
- Wuhan TOGO Medical Technology Co. Ltd., Wuhan, Hubei 430205, China
| | - Mingqian Feng
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
2
|
Choi SY, Kim TH, Kim MJ, Mun SJ, Kim TS, Jung KK, Oh IU, Oh JH, Son MJ, Lee JH. Validating Well-Functioning Hepatic Organoids for Toxicity Evaluation. TOXICS 2024; 12:371. [PMID: 38787150 PMCID: PMC11126009 DOI: 10.3390/toxics12050371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
"Organoids", three-dimensional self-organized organ-like miniature tissues, are proposed as intermediary models that bridge the gap between animal and human studies in drug development. Despite recent advancements in organoid model development, studies on toxicity using these models are limited. Therefore, in this study, we aimed to analyze the functionality and gene expression of pre- and post-differentiated human hepatic organoids derived from induced pluripotent stem cells and utilize them for toxicity assessment. First, we confirmed the functional similarity of this hepatic organoid model to the human liver through various functional assessments, such as glycogen storage, albumin and bile acid secretion, and cytochrome P450 (CYP) activity. Subsequently, utilizing these functionally validated hepatic organoids, we conducted toxicity evaluations with three hepatotoxic substances (ketoconazole, troglitazone, and tolcapone), which are well known for causing drug-induced liver injury, and three non-hepatotoxic substances (sucrose, ascorbic acid, and biotin). The organoids effectively distinguished between the toxicity levels of substances with and without hepatic toxicity. We demonstrated the potential of hepatic organoids with validated functionalities and genetic characteristics as promising models for toxicity evaluation by analyzing toxicological changes occurring in hepatoxic drug-treated organoids.
Collapse
Affiliation(s)
- Seo Yoon Choi
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (S.Y.C.); (T.H.K.); (M.J.K.); (T.S.K.); (I.U.O.); (J.H.O.)
| | - Tae Hee Kim
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (S.Y.C.); (T.H.K.); (M.J.K.); (T.S.K.); (I.U.O.); (J.H.O.)
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Min Jeong Kim
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (S.Y.C.); (T.H.K.); (M.J.K.); (T.S.K.); (I.U.O.); (J.H.O.)
| | - Seon Ju Mun
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea;
| | - Tae Sung Kim
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (S.Y.C.); (T.H.K.); (M.J.K.); (T.S.K.); (I.U.O.); (J.H.O.)
| | - Ki Kyung Jung
- Division of Pharmacological Drug Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea;
| | - Il Ung Oh
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (S.Y.C.); (T.H.K.); (M.J.K.); (T.S.K.); (I.U.O.); (J.H.O.)
| | - Jae Ho Oh
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (S.Y.C.); (T.H.K.); (M.J.K.); (T.S.K.); (I.U.O.); (J.H.O.)
| | - Myung Jin Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea;
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Jin Hee Lee
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (S.Y.C.); (T.H.K.); (M.J.K.); (T.S.K.); (I.U.O.); (J.H.O.)
| |
Collapse
|
3
|
Xie R, Pal V, Yu Y, Lu X, Gao M, Liang S, Huang M, Peng W, Ozbolat IT. A comprehensive review on 3D tissue models: Biofabrication technologies and preclinical applications. Biomaterials 2024; 304:122408. [PMID: 38041911 PMCID: PMC10843844 DOI: 10.1016/j.biomaterials.2023.122408] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
The limitations of traditional two-dimensional (2D) cultures and animal testing, when it comes to precisely foreseeing the toxicity and clinical effectiveness of potential drug candidates, have resulted in a notable increase in the rate of failure during the process of drug discovery and development. Three-dimensional (3D) in-vitro models have arisen as substitute platforms with the capacity to accurately depict in-vivo conditions and increasing the predictivity of clinical effects and toxicity of drug candidates. It has been found that 3D models can accurately represent complex tissue structure of human body and can be used for a wide range of disease modeling purposes. Recently, substantial progress in biomedicine, materials and engineering have been made to fabricate various 3D in-vitro models, which have been exhibited better disease progression predictivity and drug effects than convention models, suggesting a promising direction in pharmaceutics. This comprehensive review highlights the recent developments in 3D in-vitro tissue models for preclinical applications including drug screening and disease modeling targeting multiple organs and tissues, like liver, bone, gastrointestinal tract, kidney, heart, brain, and cartilage. We discuss current strategies for fabricating 3D models for specific organs with their strengths and pitfalls. We expand future considerations for establishing a physiologically-relevant microenvironment for growing 3D models and also provide readers with a perspective on intellectual property, industry, and regulatory landscape.
Collapse
Affiliation(s)
- Renjian Xie
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China
| | - Vaibhav Pal
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Yanrong Yu
- School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China
| | - Xiaolu Lu
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China
| | - Mengwei Gao
- School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China
| | - Shijie Liang
- School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China
| | - Miao Huang
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China
| | - Weijie Peng
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China; School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China.
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA; Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Materials Research Institute, Pennsylvania State University, University Park, PA, USA; Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Penn State University, Hershey, PA, 17033, USA; Department of Medical Oncology, Cukurova University, Adana, 01130, Turkey; Biotechnology Research and Application Center, Cukurova University, Adana, 01130, Turkey.
| |
Collapse
|
4
|
Yang S, Ooka M, Margolis RJ, Xia M. Liver three-dimensional cellular models for high-throughput chemical testing. CELL REPORTS METHODS 2023; 3:100432. [PMID: 37056374 PMCID: PMC10088249 DOI: 10.1016/j.crmeth.2023.100432] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Drug-induced hepatotoxicity is a leading cause of drug withdrawal from the market. High-throughput screening utilizing in vitro liver models is critical for early-stage liver toxicity testing. Traditionally, monolayer human hepatocytes or immortalized liver cell lines (e.g., HepG2, HepaRG) have been used to test compound liver toxicity. However, monolayer-cultured liver cells sometimes lack the metabolic competence to mimic the in vivo condition and are therefore largely appropriate for short-term toxicological testing. They may not, however, be adequate for identifying chronic and recurring liver damage caused by drugs. Recently, several three-dimensional (3D) liver models have been developed. These 3D liver models better recapitulate normal liver function and metabolic capacity. This review describes the current development of 3D liver models that can be used to test drugs/chemicals for their pharmacologic and toxicologic effects, as well as the advantages and limitations of using these 3D liver models for high-throughput screening.
Collapse
Affiliation(s)
- Shu Yang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Masato Ooka
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan Jared Margolis
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
A comprehensive transcriptomic comparison of hepatocyte model systems improves selection of models for experimental use. Commun Biol 2022; 5:1094. [PMID: 36241695 PMCID: PMC9568534 DOI: 10.1038/s42003-022-04046-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
The myriad of available hepatocyte in vitro models provides researchers the possibility to select hepatocyte-like cells (HLCs) for specific research goals. However, direct comparison of hepatocyte models is currently challenging. We systematically searched the literature and compared different HLCs, but reported functions were limited to a small subset of hepatic functions. To enable a more comprehensive comparison, we developed an algorithm to compare transcriptomic data across studies that tested HLCs derived from hepatocytes, biliary cells, fibroblasts, and pluripotent stem cells, alongside primary human hepatocytes (PHHs). This revealed that no HLC covered the complete hepatic transcriptome, highlighting the importance of HLC selection. HLCs derived from hepatocytes had the highest transcriptional resemblance to PHHs regardless of the protocol, whereas the quality of fibroblasts and PSC derived HLCs varied depending on the protocol used. Finally, we developed and validated a web application (HLCompR) enabling comparison for specific pathways and addition of new HLCs. In conclusion, our comprehensive transcriptomic comparison of HLCs allows selection of HLCs for specific research questions and can guide improvements in culturing conditions.
Collapse
|
6
|
Li W, Wang Z, Lin R, Huang S, Miao H, Zou L, Liu K, Cui X, Wang Z, Zhang Y, Jiang C, Qiu S, Ma J, Wu W, Liu Y. Lithocholic acid inhibits gallbladder cancer proliferation through interfering glutaminase-mediated glutamine metabolism. Biochem Pharmacol 2022; 205:115253. [PMID: 36176239 DOI: 10.1016/j.bcp.2022.115253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022]
Abstract
Lithocholic acid (LCA), one of the most common metabolic products of bile acids (BAs), is originally synthesized in the liver, stored in the gallbladder, and released to the intestine, where it assists absorption of lipid-soluble nutrients. LCA has recently emerged as a powerful reagent to inhibit tumorigenesis; however, the anti-tumor activity and molecular mechanisms of LCA in gallbladder cancer (GBC) remain poorly acknowledged. Here, we analyzed serum levels of LCA in human GBC and found that LCA was significantly downregulated in these patients, and reduced LCA levels were associated with poor clinical outcomes. Treatment of xenografts with LCA impeded tumor growth. Furthermore, LCA treatment in GBC cell lines decreased glutaminase (GLS) expression, glutamine (Gln) consumption, and GSH/GSSG and NADPH/NADP+ ratios, leading to cellular ferroptosis. In contrast, GLS overexpression in tumor cells fully restored GBC proliferation and decreased ROS imbalance, thus suppressing ferroptosis. Our findings reveal that LCA functions as a tumor-suppressive factor in GBC by downregulating GLS-mediated glutamine metabolism and subsequently inducing ferroptosis. This study may offer a new therapeutic strategy tailored to improve the treatment of GBC.
Collapse
Affiliation(s)
- Weijian Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China; Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
| | - Zeyu Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China; Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
| | - Ruirong Lin
- Department of Gastrointestinal Surgical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fujian, Fuzhou 350014, China
| | - Shuai Huang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Huijie Miao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China; Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
| | - Lu Zou
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China; Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
| | - Ke Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China; Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
| | - Xuya Cui
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China; Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
| | - Ziyi Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China; Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
| | - Yijian Zhang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China; Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China; Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chengkai Jiang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China; Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
| | - Shimei Qiu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China; Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
| | - Jiyao Ma
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China; Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
| | - Wenguang Wu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China; Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China; Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China.
| |
Collapse
|
7
|
Guo L, Zhu Z, Gao C, Chen K, Lu S, Yan H, Liu W, Wang M, Ding Y, Huang L, Wang X. Development of Biomimetic Hepatic Lobule-Like Constructs on Silk-Collagen Composite Scaffolds for Liver Tissue Engineering. Front Bioeng Biotechnol 2022; 10:940634. [PMID: 35814001 PMCID: PMC9260023 DOI: 10.3389/fbioe.2022.940634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Constructing an engineered hepatic lobule-mimetic model is challenging owing to complicated lobular architecture and crucial hepatic functionality. Our previous study has demonstrated the feasibility of using silk fibroin (SF) scaffolds as functional templates for engineering hepatic lobule-like constructs. But the unsatisfactory chemical and physical performances of the SF-only scaffold and the inherent defect in the functional activity of the carcinoma-derived seeding cells remain to be addressed to satisfy the downstream application demand. In this study, SF-collagen I (SFC) composite scaffolds with improved physical and chemical properties were fabricated, and their utilization for bioengineering a more hepatic lobule-like construct was explored using the immortalized human hepatocyte-derived liver progenitor-like cells (iHepLPCs) and endothelial cells incorporated in the dynamic culture system. The SFC scaffolds prepared through the directional lyophilization process showed radially aligned porous structures with increased swelling ratio and porosity, ameliorative mechanical stiffness that resembled the normal liver matrix more closely, and improved biocompatibility. The iHepLPCs displayed a hepatic plate-like distribution and differentiated into matured hepatocytes with improved hepatic function in vitro and in vivo. Moreover, hepatocyte–endothelial cell interphase arrangement was generated in the co-culture compartment with improved polarity, bile capillary formation, and enhanced liver functions compared with the monocultures. Thus, a more biomimetic hepatic lobule-like model was established and could provide a valuable and robust platform for various applications, including bioartificial liver and drug screening.
Collapse
Affiliation(s)
- Lina Guo
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Ziqing Zhu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Chuanzhou Gao
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Kaiwen Chen
- School of Bioengineering, State Key Laboratory of Fine Chemistry, Dalian University of Technology, Dalian, China
| | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Hexin Yan
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - Wenming Liu
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - Mingqi Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yanfang Ding
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Lin Huang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
- *Correspondence: Lin Huang, ; Xiuli Wang,
| | - Xiuli Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
- General Surgery Center, Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Lin Huang, ; Xiuli Wang,
| |
Collapse
|
8
|
Xie X, Maharjan S, Kelly C, Liu T, Lang RJ, Alperin R, Sebastian S, Bonilla D, Gandolfo S, Boukataya Y, Siadat SM, Zhang YS, Livermore C. Customizable Microfluidic Origami Liver-on-a-Chip (oLOC). ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2100677. [PMID: 35754760 PMCID: PMC9231824 DOI: 10.1002/admt.202100677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 05/03/2023]
Abstract
The design and manufacture of an origami-based liver-on-a-chip device are presented, together with demonstrations of the chip's effectiveness at recapitulating some of the liver's key in vivo architecture, physical microenvironment, and functions. Laser-cut layers of polyimide tape are folded together with polycarbonate nanoporous membranes to create a stack of three adjacent flow chambers separated by the membranes. Endothelial cells are seeded in the upper and lower flow chambers to simulate sinusoids, and hepatocytes are seeded in the middle flow chamber. Nutrients and metabolites flow through the simulated sinusoids and diffuse between the vascular pathways and the hepatocyte layers, mimicking physiological microcirculation. Studies of cell viability, metabolic functions, and hepatotoxicity of pharmaceutical compounds show that the endothelialized liver-on-a-chip model is conducive to maintaining hepatocyte functions and evaluation of the hepatotoxicity of drugs. Our unique origami approach speeds chip development and optimization, effectively simplifying the laboratory-scale fabrication of on-chip models of human tissues without necessarily reducing their structural and functional sophistication.
Collapse
Affiliation(s)
- Xin Xie
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Chastity Kelly
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Tian Liu
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | | | - Roger Alperin
- Department of Mathematics, San Jose State University, San Jose, CA 95192
| | - Shikha Sebastian
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Diana Bonilla
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Sakura Gandolfo
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Yasmine Boukataya
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | | | - Yu Shrike Zhang
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Carol Livermore
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
9
|
Lin J, Yang Q, Guo J, Li M, Hao Z, He J, Li J. Gut Microbiome Alterations and Hepatic Metabolic Flexibility in the Gansu Zokor, Eospalax cansus: Adaptation to Hypoxic Niches. Front Cardiovasc Med 2022; 9:814076. [PMID: 35402538 PMCID: PMC8984292 DOI: 10.3389/fcvm.2022.814076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The Gansu zokor (Eospalax cansus), a typical subterranean rodent endemic to the Chinese Loess Plateau, spends almost its whole life in its self-constructed underground burrows and has strong adaptability to ambient hypoxia. Energy adaptation is the key to supporting hypoxia tolerance, and recent studies have shown that the intestinal microbiota has an evident effect on energy metabolism. However, how the gut microbiome of Gansu zokor will change in response to hypoxia and the metabolic role played by the microbiome have not been reported. Thus, we exposed Gansu zokors to severe hypoxia of 6.5% of O2 (6 or 44 h) or moderate hypoxia of 10.5% of O2 (44 h or 4 weeks), and then analyzed 16S rRNA sequencing, metagenomic sequencing, metagenomic binning, liver carbohydrate metabolites, and the related molecular levels. Our results showed that the hypoxia altered the microbiota composition of Gansu zokor, and the relative contribution of Ileibacterium to carbohydrate metabolism became increased under hypoxia, such as glycolysis and fructose metabolism. Furthermore, Gansu zokor liver enhanced carbohydrate metabolism under the short-term (6 or 44 h) hypoxia but it was suppressed under the long-term (4 weeks) hypoxia. Interestingly, under all hypoxia conditions, Gansu zokor liver exhibited enhanced fructose-driven metabolism through increased expression of the GLUT5 fructose transporter, ketohexokinase (KHK), aldolase B (ALDOB), and aldolase C (ALDOC), as well as increased KHK enzymatic activity and fructose utilization. Overall, our results suggest that the altered gut microbiota mediates the carbohydrate metabolic pattern under hypoxia, possibly contributing to the hepatic metabolic flexibility in Gansu zokor, which leads to better adaptation to hypoxic environments.
Collapse
|
10
|
Wang J, Huang D, Yu H, Cheng Y, Ren H, Zhao Y. Developing tissue engineering strategies for liver regeneration. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
11
|
Liu WM, Zhou X, Chen CY, Lv DD, Huang WJ, Peng Y, Wu HP, Chen Y, Tang D, Guo LN, Wang XL, Zhang HD, Liu XH, Yang LQ, Yu WF, Yan HX. Establishment of Functional Liver Spheroids From Human Hepatocyte-Derived Liver Progenitor-Like Cells for Cell Therapy. Front Bioeng Biotechnol 2021; 9:738081. [PMID: 34858956 PMCID: PMC8630579 DOI: 10.3389/fbioe.2021.738081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
Globally, about two million people die from liver diseases every year. Liver transplantation is the only reliable therapy for severe end-stage liver disease, however, the shortage of organ donors is a huge limitation. Human hepatocytes derived liver progenitor-like cells (HepLPCs) have been reported as a novel source of liver cells for development of in vitro models, cell therapies, and tissue-engineering applications, but their functionality as transplantation donors is unclear. Here, a 3-dimensional (3D) co-culture system using HepLPCs and human umbilical vein endothelial cells (HUVECs) was developed. These HepLPC spheroids mimicked the cellular interactions and architecture of mature hepatocytes, as confirmed through ultrastructure morphology, gene expression profile and functional assays. HepLPCs encapsulated in alginate beads are able to mitigate liver injury in mice treated with carbon tetrachloride (CCL4), while alginate coating protects the cells from immune attack. We confirmed these phenomena due to HUVECs producing glial cell line-derived neurotrophic factor (GDNF) to promote HepLPCs maturation and enhance HepLPCs tight junction through MET phosphorylation. Our results display the efficacy and safety of the alginate microencapsulated spheroids in animal model with acute liver injury (ALF), which may suggest a new strategy for cell therapy.
Collapse
Affiliation(s)
- Wen-Ming Liu
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - Xu Zhou
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - Cai-Yang Chen
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - Dong-Dong Lv
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Wei-Jian Huang
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - Yuan Peng
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong-Ping Wu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yi Chen
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - Li-Na Guo
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiu-Li Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Hong-Dan Zhang
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai, China
| | - Xiao-Hua Liu
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - Li-Qun Yang
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - He-Xin Yan
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.,Shanghai Celliver Biotechnology Co. Ltd., Shanghai, China.,Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Xu Q. Human Three-Dimensional Hepatic Models: Cell Type Variety and Corresponding Applications. Front Bioeng Biotechnol 2021; 9:730008. [PMID: 34631680 PMCID: PMC8497968 DOI: 10.3389/fbioe.2021.730008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Owing to retained hepatic phenotypes and functions, human three-dimensional (3D) hepatic models established with diverse hepatic cell types are thought to recoup the gaps in drug development and disease modeling limited by a conventional two-dimensional (2D) cell culture system and species-specific variability in drug metabolizing enzymes and transporters. Primary human hepatocytes, human hepatic cancer cell lines, and human stem cell-derived hepatocyte-like cells are three main hepatic cell types used in current models and exhibit divergent hepatic phenotypes. Primary human hepatocytes derived from healthy hepatic parenchyma resemble in vivo-like genetic and metabolic profiling. Human hepatic cancer cell lines are unlimitedly reproducible and tumorigenic. Stem cell-derived hepatocyte-like cells derived from patients are promising to retain the donor's genetic background. It has been suggested in some studies that unique properties of cell types endue them with benefits in different research fields of in vitro 3D modeling paradigm. For instance, the primary human hepatocyte was thought to be the gold standard for hepatotoxicity study, and stem cell-derived hepatocyte-like cells have taken a main role in personalized medicine and regenerative medicine. However, the comprehensive review focuses on the hepatic cell type variety, and corresponding applications in 3D models are sparse. Therefore, this review summarizes the characteristics of different cell types and discusses opportunities of different cell types in drug development, liver disease modeling, and liver transplantation.
Collapse
Affiliation(s)
- Qianqian Xu
- School of Chinese Medicine, and Centre for Cancer and Inflammation Research, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
13
|
Three-Dimensional Liver Culture Systems to Maintain Primary Hepatic Properties for Toxicological Analysis In Vitro. Int J Mol Sci 2021; 22:ijms221910214. [PMID: 34638555 PMCID: PMC8508724 DOI: 10.3390/ijms221910214] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 12/13/2022] Open
Abstract
Drug-induced liver injury (DILI) is the major reason for failures in drug development and withdrawal of approved drugs from the market. Two-dimensional cultures of hepatocytes often fail to reliably predict DILI: hepatoma cell lines such as HepG2 do not reflect important primary-like hepatic properties and primary human hepatocytes (pHHs) dedifferentiate quickly in vitro and are, therefore, not suitable for long-term toxicity studies. More predictive liver in vitro models are urgently required in drug development and compound safety evaluation. This review discusses available human hepatic cell types for in vitro toxicology analysis and their usage in established and emerging three-dimensional (3D) culture systems. Generally, 3D cultures maintain or improve primary hepatic functions (including expression of drug-metabolizing enzymes) of different liver cells for several weeks of culture, thus allowing long-term and repeated-dose toxicity studies. Spheroid cultures of pHHs have been comprehensively tested, but also other cell types such as HepaRG benefit from 3D culture systems. Emerging 3D culture techniques include usage of induced pluripotent stem-cell-derived hepatocytes and primary-like upcyte cells, as well as advanced culture techniques such as microfluidic liver-on-a-chip models. In-depth characterization of existing and emerging 3D hepatocyte technologies is indispensable for successful implementation of such systems in toxicological analysis.
Collapse
|
14
|
Kukla DA, Khetani SR. Bioengineered Liver Models for Investigating Disease Pathogenesis and Regenerative Medicine. Semin Liver Dis 2021; 41:368-392. [PMID: 34139785 DOI: 10.1055/s-0041-1731016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Owing to species-specific differences in liver pathways, in vitro human liver models are utilized for elucidating mechanisms underlying disease pathogenesis, drug development, and regenerative medicine. To mitigate limitations with de-differentiated cultures, bioengineers have developed advanced techniques/platforms, including micropatterned cocultures, spheroids/organoids, bioprinting, and microfluidic devices, for perfusing cell cultures and liver slices. Such techniques improve mature functions and culture lifetime of primary and stem-cell human liver cells. Furthermore, bioengineered liver models display several features of liver diseases including infections with pathogens (e.g., malaria, hepatitis C/B viruses, Zika, dengue, yellow fever), alcoholic/nonalcoholic fatty liver disease, and cancer. Here, we discuss features of bioengineered human liver models, their uses for modeling aforementioned diseases, and how such models are being augmented/adapted for fabricating implantable human liver tissues for clinical therapy. Ultimately, continued advances in bioengineered human liver models have the potential to aid the development of novel, safe, and efficacious therapies for liver disease.
Collapse
Affiliation(s)
- David A Kukla
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R Khetani
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
15
|
Li WJ, Zhu XJ, Yuan TJ, Wang ZY, Bian ZQ, Jing HS, Shi X, Chen CY, Fu GB, Huang WJ, Shi YP, Liu Q, Zeng M, Zhang HD, Wu HP, Yu WF, Zhai B, Yan HX. An extracorporeal bioartificial liver embedded with 3D-layered human liver progenitor-like cells relieves acute liver failure in pigs. Sci Transl Med 2021; 12:12/551/eaba5146. [PMID: 32641490 DOI: 10.1126/scitranslmed.aba5146] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Clinical advancement of the bioartificial liver is hampered by the lack of expandable human hepatocytes and appropriate bioreactors and carriers to encourage hepatic cells to function during extracorporeal circulation. We have recently developed an efficient approach for derivation of expandable liver progenitor-like cells from human primary hepatocytes (HepLPCs). Here, we generated immortalized and functionally enhanced HepLPCs by introducing FOXA3, a hepatocyte nuclear factor that enables potentially complete hepatic function. When cultured on macroporous carriers in an air-liquid interactive bioartificial liver (Ali-BAL) support device, the integrated cells were alternately exposed to aeration and nutrition and grew to form high-density three-dimensional constructs. This led to highly efficient mass transfer and supported liver functions such as albumin biosynthesis and ammonia detoxification via ureagenesis. In a porcine model of drug overdose-induced acute liver failure (ALF), extracorporeal Ali-BAL treatment for 3 hours prevented hepatic encephalopathy and led to markedly improved survival (83%, n = 6) compared to ALF control (17%, n = 6, P = 0.02) and device-only (no-cell) therapy (0%, n = 6, P = 0.003). The blood ammonia concentrations, as well as the biochemical and coagulation indices, were reduced in Ali-BAL-treated pigs. Ali-BAL treatment attenuated liver damage, ameliorated inflammation, and enhanced liver regeneration in the ALF porcine model and could be considered as a potential therapeutic avenue for patients with ALF.
Collapse
Affiliation(s)
- Wei-Jian Li
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Xue-Jing Zhu
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai 210201, China
| | - Tian-Jie Yuan
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China.,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhen-Yu Wang
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Zheng-Qian Bian
- Training Center, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Hong-Shu Jing
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Xiao Shi
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Cai-Yang Chen
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Gong-Bo Fu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wei-Jian Huang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yao-Ping Shi
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Qian Liu
- Department of Laboratory Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Min Zeng
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai 210201, China
| | - Hong-Dan Zhang
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai 210201, China
| | - Hong-Ping Wu
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai 210201, China
| | - Wei-Feng Yu
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China. .,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China.
| | - He-Xin Yan
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China. .,Shanghai Celliver Biotechnology Co. Ltd., Shanghai 210201, China.,Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China.,Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
16
|
Wang X, Zhang W, Yang Y, Wang J, Qiu H, Liao L, Oikawa T, Wauthier E, Sethupathy P, Reid LM, Liu Z, He Z. A MicroRNA-Based Network Provides Potential Predictive Signatures and Reveals the Crucial Role of PI3K/AKT Signaling for Hepatic Lineage Maturation. Front Cell Dev Biol 2021; 9:670059. [PMID: 34141708 PMCID: PMC8204022 DOI: 10.3389/fcell.2021.670059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background Functions of miRNAs involved in tumorigenesis are well reported, yet, their roles in normal cell lineage commitment remain ambiguous. Here, we investigated a specific "transcription factor (TF)-miRNA-Target" regulatory network during the lineage maturation of biliary tree stem cells (BTSCs) into adult hepatocytes (hAHeps). Method Bioinformatic analysis was conducted based on our RNA-seq and microRNA-seq datasets with four human hepatic-lineage cell lines, including hBTSCs, hepatic stem cells (hHpSCs), hepatoblasts (hHBs), and hAHeps. Short time-series expression miner (STEM) analysis was performed to reveal the time-dependent dynamically changed miRNAs and mRNAs. GO and KEGG analyses were applied to reveal the potential function of key miRNAs and mRNAs. Then, the miRDB, miRTarBase, TargetScan, miRWalk, and DIANA-microT-CDS databases were adopted to predict the potential targets of miRNAs while the TransmiR v2.0 database was used to obtain the experimentally supported TFs that regulate miRNAs. The TCGA, Kaplan-Meier Plotter, and human protein atlas (HPA) databases and more than 10 sequencing data, including bulk RNA-seq, microRNA-seq, and scRNA-seq data related to hepatic development or lineage reprogramming, were obtained from both our or other published studies for validation. Results STEM analysis showed that during the maturation from hBTSCs to hAHeps, 52 miRNAs were downwardly expressed and 928 mRNA were upwardly expressed. Enrichment analyses revealed that those 52 miRNAs acted as pluripotency regulators for stem cells and participated in various novel signaling pathways, including PI3K/AKT, MAPK, and etc., while 928 mRNAs played important roles in liver-functional metabolism. With an extensive sorting of those key miRNAs and mRNAs based on the target prediction results, 23 genes were obtained which not only functioned as the targets of 17 miRNAs but were considered critical for the hepatic lineage commitment. A "TF-miRNA-Target" regulatory network for hepatic lineage commitment was therefore established and had been well validated by various datasets. The network revealed that the PI3K/AKT pathway was gradually suppressed during the hepatic commitment. Conclusion A total of 17 miRNAs act as suppressors during hepatic maturation mainly by regulating 23 targets and modulating the PI3K/AKT signaling pathway. The regulatory network uncovers possible signatures and guidelines enabling us to identify or obtain the functional hepatocytes for future study.
Collapse
Affiliation(s)
- Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Yong Yang
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiansong Wang
- Department of Traumatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hua Qiu
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lijun Liao
- Department of Anesthesiology and Pain Management, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tsunekazu Oikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Eliane Wauthier
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC, United States
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| | - Lola M Reid
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC, United States
| | - Zhongmin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| |
Collapse
|
17
|
Zahmatkesh E, Ghanian MH, Zarkesh I, Farzaneh Z, Halvaei M, Heydari Z, Moeinvaziri F, Othman A, Ruoß M, Piryaei A, Gramignoli R, Yakhkeshi S, Nüssler A, Najimi M, Baharvand H, Vosough M. Tissue-Specific Microparticles Improve Organoid Microenvironment for Efficient Maturation of Pluripotent Stem-Cell-Derived Hepatocytes. Cells 2021; 10:1274. [PMID: 34063948 PMCID: PMC8224093 DOI: 10.3390/cells10061274] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
Liver organoids (LOs) are receiving considerable attention for their potential use in drug screening, disease modeling, and transplantable constructs. Hepatocytes, as the key component of LOs, are isolated from the liver or differentiated from pluripotent stem cells (PSCs). PSC-derived hepatocytes are preferable because of their availability and scalability. However, efficient maturation of the PSC-derived hepatocytes towards functional units in LOs remains a challenging subject. The incorporation of cell-sized microparticles (MPs) derived from liver extracellular matrix (ECM), could provide an enriched tissue-specific microenvironment for further maturation of hepatocytes inside the LOs. In the present study, the MPs were fabricated by chemical cross-linking of a water-in-oil dispersion of digested decellularized sheep liver. These MPs were mixed with human PSC-derived hepatic endoderm, human umbilical vein endothelial cells, and mesenchymal stromal cells to produce homogenous bioengineered LOs (BLOs). This approach led to the improvement of hepatocyte-like cells in terms of gene expression and function, CYP activities, albumin secretion, and metabolism of xenobiotics. The intraperitoneal transplantation of BLOs in an acute liver injury mouse model led to an enhancement in survival rate. Furthermore, efficient hepatic maturation was demonstrated after ex ovo transplantation. In conclusion, the incorporation of cell-sized tissue-specific MPs in BLOs improved the maturation of human PSC-derived hepatocyte-like cells compared to LOs. This approach provides a versatile strategy to produce functional organoids from different tissues and offers a novel tool for biomedical applications.
Collapse
Affiliation(s)
- Ensieh Zahmatkesh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (E.Z.); (Z.F.); (Z.H.); (F.M.); (S.Y.)
- Department of Developmental Biology, University of Science and Culture, Tehran 1665659911, Iran
| | - Mohammad Hossein Ghanian
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (M.H.G.); (I.Z.); (M.H.)
| | - Ibrahim Zarkesh
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (M.H.G.); (I.Z.); (M.H.)
| | - Zahra Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (E.Z.); (Z.F.); (Z.H.); (F.M.); (S.Y.)
| | - Majid Halvaei
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (M.H.G.); (I.Z.); (M.H.)
| | - Zahra Heydari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (E.Z.); (Z.F.); (Z.H.); (F.M.); (S.Y.)
- Department of Developmental Biology, University of Science and Culture, Tehran 1665659911, Iran
| | - Farideh Moeinvaziri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (E.Z.); (Z.F.); (Z.H.); (F.M.); (S.Y.)
- Department of Developmental Biology, University of Science and Culture, Tehran 1665659911, Iran
| | - Amnah Othman
- Department of Traumatology, Siegfried Weller Institute, University of Tübingen, 72076 Tübingen, Germany; (A.O.); (M.R.); (A.N.)
| | - Marc Ruoß
- Department of Traumatology, Siegfried Weller Institute, University of Tübingen, 72076 Tübingen, Germany; (A.O.); (M.R.); (A.N.)
| | - Abbas Piryaei
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Roberto Gramignoli
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Saeed Yakhkeshi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (E.Z.); (Z.F.); (Z.H.); (F.M.); (S.Y.)
| | - Andreas Nüssler
- Department of Traumatology, Siegfried Weller Institute, University of Tübingen, 72076 Tübingen, Germany; (A.O.); (M.R.); (A.N.)
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental & Clinical Research, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (E.Z.); (Z.F.); (Z.H.); (F.M.); (S.Y.)
- Department of Developmental Biology, University of Science and Culture, Tehran 1665659911, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (E.Z.); (Z.F.); (Z.H.); (F.M.); (S.Y.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| |
Collapse
|
18
|
Ingelman-Sundberg M, Lauschke VM. 3D human liver spheroids for translational pharmacology and toxicology. Basic Clin Pharmacol Toxicol 2021; 130 Suppl 1:5-15. [PMID: 33872466 DOI: 10.1111/bcpt.13587] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Drug development is a failure-prone endeavour, and more than 85% of drugs fail during clinical development, showcasing that current preclinical systems for compound selection are clearly inadequate. Liver toxicity remains a major reason for safety failures. Furthermore, all efforts to develop pharmacological therapies for a variety of chronic liver diseases, such as non-alcoholic steatohepatitis (NASH) and fibrosis, remain unsuccessful. Considering the time and expense of clinical trials, as well as the substantial burden on patients, new strategies are thus of paramount importance to increase clinical success rates. To this end, human liver spheroids are becoming increasingly utilized as they allow to preserve patient-specific phenotypes and functions for multiple weeks in culture. We here review the recent application of such systems for i) predictive and mechanistic analyses of drug hepatotoxicity, ii) the evaluation of hepatic disposition and metabolite formation of low clearance drugs and iii) the development of drugs for metabolic and infectious liver diseases, including NASH, fibrosis, malaria and viral hepatitis. We envision that with increasing dissemination, liver spheroids might become the new gold standard for such applications in translational pharmacology and toxicology.
Collapse
Affiliation(s)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Huang WJ, Zhou X, Fu GB, Ding M, Wu HP, Zeng M, Zhang HD, Xu LY, Gao Y, Wang HY, Yan HX. The combined induction of liver progenitor cells and the suppression of stellate cells by small molecules reverts chronic hepatic dysfunction. Am J Cancer Res 2021; 11:5539-5552. [PMID: 33859762 PMCID: PMC8039967 DOI: 10.7150/thno.54457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/18/2021] [Indexed: 01/10/2023] Open
Abstract
Rationale: We developed a cocktail of soluble molecules mimicking the in vivo milieu supporting liver regeneration that could convert mature hepatocytes to expandable liver progenitor-like cells in vitro. This study aimed to induce endogenous liver progenitor cells by the administration of the soluble molecules to provide an alternative approach for the resolution of liver fibrosis. Methods: In vitro cultured hepatocyte-derived liver progenitor-like cells (HepLPCs) were transplanted into CCL4-treated mice to investigate the therapeutic effect against liver fibrosis. Next, we used HGF in combination with a cocktail of small molecules (Y-27632, A-83-01, and CHIR99021 (HACY)) to induce endogenous CD24+ liver progenitor cells and to inhibit the activation of hepatic stellate cells (HSCs) during CCL4-induced hepatic injury. RNA sequencing was performed to further clarify the features of HACY-induced CD24+ cells compared with CCL4-induced CD24+ cells and in vitro derived HepLPCs. Finally, we evaluated the expansion of HACY-induced CD24+ cells in human hepatocyte-spheroids from fibrotic liver tissues. Results: HepLPCs exhibited the capacity to alleviate liver fibrosis after transplantation into CCL4-treated mice. The in vivo administration of HACY not only induced the conversion of mature hepatocytes (MHs) to CD24+ progenitor cells but prevented the activation of HSCs, thus leading to enhanced improvement of liver fibrosis in CCL4-treated mice. Compared to CD24+ cells induced by CCL4 alone, HACY-induced CD24+ cells retained an enhanced level of hepatic function and could promote the restoration of liver function that exhibited comparable gene expression profiles with HepLPCs. CD24+ cells were also observed in human liver fibrotic tissues and were expanded in three-dimensional (3D) hepatic spheroids in the presence of HACY in vitro. Conclusions: Hepatocyte-derived liver progenitor-like cells are crucial for liver regeneration during chronic hepatic injuries. The administration of HACY, which allowed the induction of endogenous CD24+ progenitor cells and the inactivation of HSCs, exerts beneficial effects in the treatment of liver fibrosis by re-establishing a balance favoring liver regeneration while preventing fibrotic responses.
Collapse
|
20
|
Pan T, Tao J, Chen Y, Zhang J, Getachew A, Zhuang Y, Wang N, Xu Y, Tan S, Fang J, Yang F, Lin X, You K, Gao Y, Li YX. Robust expansion and functional maturation of human hepatoblasts by chemical strategy. Stem Cell Res Ther 2021; 12:151. [PMID: 33632328 PMCID: PMC7908723 DOI: 10.1186/s13287-021-02233-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/15/2021] [Indexed: 12/23/2022] Open
Abstract
Background Chemically strategies to generate hepatic cells from human pluripotent stem cells (hPSCs) for the potential clinical application have been improved. However, producing high quality and large quantities of hepatic cells remain challenging, especially in terms of step-wise efficacy and cost-effective production requires more improvements. Methods Here, we systematically evaluated chemical compounds for hepatoblast (HB) expansion and maturation to establish a robust, cost-effective, and reproducible methodology for self-renewal HBs and functional hepatocyte-like cell (HLC) production. Results The established chemical cocktail could enable HBs to proliferate nearly 3000 folds within 3 weeks with preserved bipotency. Moreover, those expanded HBs could be further efficiently differentiated into homogenous HLCs which displayed typical morphologic features and functionality as mature hepatocytes including hepatocyte identity marker expression and key functional activities such as cytochrome P450 metabolism activities and urea secretion. Importantly, the transplanted HBs in the injured liver of immune-defect mice differentiated as hepatocytes, engraft, and repopulate in the injured loci of the recipient liver. Conclusion Together, this chemical compound-based HLC generation method presents an efficient and cost-effective platform for the large-scale production of functional human hepatic cells for cell-based therapy and drug discovery application. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02233-9.
Collapse
Affiliation(s)
- Tingcai Pan
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong Province, China
| | - Jiawang Tao
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Yan Chen
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiaye Zhang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Anteneh Getachew
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Yuanqi Zhuang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ning Wang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yingying Xu
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shenglin Tan
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Ji Fang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Fan Yang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xianhua Lin
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Kai You
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong Province, China.
| | - Yin-Xiong Li
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China. .,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,University of Chinese Academy of Science, Beijing, 100049, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| |
Collapse
|
21
|
Serras AS, Rodrigues JS, Cipriano M, Rodrigues AV, Oliveira NG, Miranda JP. A Critical Perspective on 3D Liver Models for Drug Metabolism and Toxicology Studies. Front Cell Dev Biol 2021; 9:626805. [PMID: 33732695 PMCID: PMC7957963 DOI: 10.3389/fcell.2021.626805] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
The poor predictability of human liver toxicity is still causing high attrition rates of drug candidates in the pharmaceutical industry at the non-clinical, clinical, and post-marketing authorization stages. This is in part caused by animal models that fail to predict various human adverse drug reactions (ADRs), resulting in undetected hepatotoxicity at the non-clinical phase of drug development. In an effort to increase the prediction of human hepatotoxicity, different approaches to enhance the physiological relevance of hepatic in vitro systems are being pursued. Three-dimensional (3D) or microfluidic technologies allow to better recapitulate hepatocyte organization and cell-matrix contacts, to include additional cell types, to incorporate fluid flow and to create gradients of oxygen and nutrients, which have led to improved differentiated cell phenotype and functionality. This comprehensive review addresses the drug-induced hepatotoxicity mechanisms and the currently available 3D liver in vitro models, their characteristics, as well as their advantages and limitations for human hepatotoxicity assessment. In addition, since toxic responses are greatly dependent on the culture model, a comparative analysis of the toxicity studies performed using two-dimensional (2D) and 3D in vitro strategies with recognized hepatotoxic compounds, such as paracetamol, diclofenac, and troglitazone is performed, further highlighting the need for harmonization of the respective characterization methods. Finally, taking a step forward, we propose a roadmap for the assessment of drugs hepatotoxicity based on fully characterized fit-for-purpose in vitro models, taking advantage of the best of each model, which will ultimately contribute to more informed decision-making in the drug development and risk assessment fields.
Collapse
Affiliation(s)
- Ana S. Serras
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Madalena Cipriano
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Armanda V. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
22
|
Jiang H, Jin Y, Yan H, Xu Z, Yang B, He Q, Luo P. Hepatotoxicity of FDA-approved small molecule kinase inhibitors. Expert Opin Drug Saf 2020; 20:335-348. [PMID: 33356646 DOI: 10.1080/14740338.2021.1867104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Given their importance in cellular processes and association with numerous diseases, protein kinases have emerged as promising targets for drugs. The FDA has approved greater than fifty small molecule kinase inhibitors (SMKIs) since 2001. Nevertheless, severe hepatotoxicity and related fatal cases have grown as a potential challenge in the advancement of these drugs, and the identification and diagnosis of drug-induced liver injury (DILI) are thorny problems for clinicians.Areas covered: This article summarizes the progression and analyzes the significant features in the study of SMKI hepatotoxicity, including clinical observations and investigations of the underlying mechanisms.Expert opinion: The understanding of SMKI-associated hepatotoxicity relies on the development of preclinical models and improvement of clinical assessment. With a full understanding of the role of inflammation in DILI and the mediating role of cytokines in inflammation, cytokines are promising candidates as sensitive and specific biomarkers for DILI. The emergence of three-dimensional spheroid models demonstrates potential use in providing clinically relevant data and predicting hepatotoxicity of SMKIs.
Collapse
Affiliation(s)
| | | | - Hao Yan
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou China
| |
Collapse
|
23
|
Pavlatovská B, Machálková M, Brisudová P, Pruška A, Štěpka K, Michálek J, Nečasová T, Beneš P, Šmarda J, Preisler J, Kozubek M, Navrátilová J. Lactic Acidosis Interferes With Toxicity of Perifosine to Colorectal Cancer Spheroids: Multimodal Imaging Analysis. Front Oncol 2020; 10:581365. [PMID: 33344237 PMCID: PMC7746961 DOI: 10.3389/fonc.2020.581365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is a disease with constantly increasing incidence and high mortality. The treatment efficacy could be curtailed by drug resistance resulting from poor drug penetration into tumor tissue and the tumor-specific microenvironment, such as hypoxia and acidosis. Furthermore, CRC tumors can be exposed to different pH depending on the position in the intestinal tract. CRC tumors often share upregulation of the Akt signaling pathway. In this study, we investigated the role of external pH in control of cytotoxicity of perifosine, the Akt signaling pathway inhibitor, to CRC cells using 2D and 3D tumor models. In 3D settings, we employed an innovative strategy for simultaneous detection of spatial drug distribution and biological markers of proliferation/apoptosis using a combination of mass spectrometry imaging and immunohistochemistry. In 3D conditions, low and heterogeneous penetration of perifosine into the inner parts of the spheroids was observed. The depth of penetration depended on the treatment duration but not on the external pH. However, pH alteration in the tumor microenvironment affected the distribution of proliferation- and apoptosis-specific markers in the perifosine-treated spheroid. Accurate co-registration of perifosine distribution and biological response in the same spheroid section revealed dynamic changes in apoptotic and proliferative markers occurring not only in the perifosine-exposed cells, but also in the perifosine-free regions. Cytotoxicity of perifosine to both 2D and 3D cultures decreased in an acidic environment below pH 6.7. External pH affects cytotoxicity of the other Akt inhibitor, MK-2206, in a similar way. Our innovative approach for accurate determination of drug efficiency in 3D tumor tissue revealed that cytotoxicity of Akt inhibitors to CRC cells is strongly dependent on pH of the tumor microenvironment. Therefore, the effect of pH should be considered during the design and pre-clinical/clinical testing of the Akt-targeted cancer therapy.
Collapse
Affiliation(s)
- Barbora Pavlatovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Markéta Machálková
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Brisudová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Adam Pruška
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Karel Štěpka
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czechia
| | - Jan Michálek
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czechia
| | - Tereza Nečasová
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czechia
| | - Petr Beneš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.,Center for Biological and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Preisler
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Michal Kozubek
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czechia
| | - Jarmila Navrátilová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.,Center for Biological and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| |
Collapse
|
24
|
Gu XQ, Tang D, Wan P, Qin T, Yang TH, Wu J, Ji H, Liu JC, Xue F, Tang YJ, Xia Q. Multiple microRNAs regulate tacrolimus metabolism through CYP3A5. Pharmacol Res 2020; 164:105382. [PMID: 33348024 DOI: 10.1016/j.phrs.2020.105382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 01/19/2023]
Abstract
The CYP3A5 gene polymorphism accounts for the majority of inter-individual variability in tacrolimus pharmacokinetics. We found that the basal expression of CYP3A5 in donor grafts also played a significant role in tacrolimus metabolism under the same genetic conditions after pediatric liver transplantation. Thus, we hypothesized that some potential epigenetic factors could affect CYP3A5 expression and contributed to the variability. We used a high-throughput functional screening for miRNAs to identify miRNAs that had the most abundant expression in normal human liver and could regulate tacrolimus metabolism in HepaRG cells and HepLPCs. Four of these miRNAs (miR-29a-3p, miR-99a-5p, miR-532-5p, and miR-26-5p) were selected for testing. We found that these miRNAs inhibited tacrolimus metabolism that was dependent on CYP3A5. Putative miRNAs targeting key drug-metabolizing enzymes and transporters (DMETs) were selected using an in silico prediction algorithm. Luciferase reporter assays and functional studies showed that miR-26b-5p inhibited tacrolimus metabolism by directly regulating CYP3A5, while miR-29a-5p, miR-99a-5p, and miR-532-5p targeted HNF4α, NR1I3, and NR1I2, respectively, in turn regulating the downstream expression of CYP3A5; the corresponding target gene siRNAs markedly abolished the effects caused by miRNA inhibitors. Also, the expression of miR-29a-3p, miR-99a-5p, miR-532-5p, and miR-26b-5p in donor grafts were negatively correlated with tacrolimus C/D following pediatric liver transplantation. Taken together, our findings identify these miRNAs as novel regulators of tacrolimus metabolism.
Collapse
Affiliation(s)
- Xiang-Qian Gu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Dan Tang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ping Wan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Tian Qin
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Tai-Hua Yang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Ji Wu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Hao Ji
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Jin-Chuan Liu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Feng Xue
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Yuan-Jia Tang
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| |
Collapse
|
25
|
Lee SW, Jung DJ, Jeong GS. Gaining New Biological and Therapeutic Applications into the Liver with 3D In Vitro Liver Models. Tissue Eng Regen Med 2020; 17:731-745. [PMID: 32207030 PMCID: PMC7710770 DOI: 10.1007/s13770-020-00245-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) cell cultures with architectural and biomechanical properties similar to those of natural tissue have been the focus for generating liver tissue. Microarchitectural organization is believed to be crucial to hepatic function, and 3D cell culture technologies have enabled the construction of tissue-like microenvironments, thereby leading to remarkable progress in vitro models of human tissue and organs. Recently, to recapitulate the 3D architecture of tissues, spheroids and organoids have become widely accepted as new practical tools for 3D organ modeling. Moreover, the combination of bioengineering approach offers the promise to more accurately model the tissue microenvironment of human organs. Indeed, the employment of sophisticated bioengineered liver models show long-term viability and functional enhancements in biochemical parameters and disease-orient outcome. RESULTS Various 3D in vitro liver models have been proposed as a new generation of liver medicine. Likewise, new biomedical engineering approaches and platforms are available to more accurately replicate the in vivo 3D microarchitectures and functions of living organs. This review aims to highlight the recent 3D in vitro liver model systems, including micropatterning, spheroids, and organoids that are either scaffold-based or scaffold-free systems. Finally, we discuss a number of challenges that will need to be addressed moving forward in the field of liver tissue engineering for biomedical applications. CONCLUSION The ongoing development of biomedical engineering holds great promise for generating a 3D biomimetic liver model that recapitulates the physiological and pathological properties of the liver and has biomedical applications.
Collapse
Affiliation(s)
- Sang Woo Lee
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Da Jung Jung
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Gi Seok Jeong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
26
|
Ooka M, Lynch C, Xia M. Application of In Vitro Metabolism Activation in High-Throughput Screening. Int J Mol Sci 2020; 21:ijms21218182. [PMID: 33142951 PMCID: PMC7663506 DOI: 10.3390/ijms21218182] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
In vitro methods which incorporate metabolic capability into the assays allow us to assess the activity of metabolites from their parent compounds. These methods can be applied into high-throughput screening (HTS) platforms, thereby increasing the speed to identify compounds that become active via the metabolism process. HTS was originally used in the pharmaceutical industry and now is also used in academic settings to evaluate biological activity and/or toxicity of chemicals. Although most chemicals are metabolized in our body, many HTS assays lack the capability to determine compound activity via metabolism. To overcome this problem, several in vitro metabolic methods have been applied to an HTS format. In this review, we describe in vitro metabolism methods and their application in HTS assays, as well as discuss the future perspectives of HTS with metabolic activity. Each in vitro metabolism method has advantages and disadvantages. For instance, the S9 mix has a full set of liver metabolic enzymes, but it displays high cytotoxicity in cell-based assays. In vitro metabolism requires liver fractions or the use of other metabolically capable systems, including primary hepatocytes or recombinant enzymes. Several newly developed in vitro metabolic methods, including HepaRG cells, three-dimensional (3D) cell models, and organ-on-a-chip technology, will also be discussed. These newly developed in vitro metabolism approaches offer significant progress in dissecting biological processes, developing drugs, and making toxicology studies quicker and more efficient.
Collapse
|
27
|
Nitta S, Hisasue M, Horiguchi Y, Yamada Y, Kikuchi K, Kubo T, Igarashi H, Neo S. Three-dimensional spheroid culture of canine hepatocyte-like cells derived from bone marrow mesenchymal stem cells. Regen Ther 2020; 15:210-215. [PMID: 33426221 PMCID: PMC7770424 DOI: 10.1016/j.reth.2020.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/30/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Primary cultured hepatocytes are an important model for early safety evaluations of newly developed drugs. Many factors, however, hinder the wider applications of this technology, especially the difficulty to maintain these cells in long-term culture. To date, creating a stable supply of human or animal hepatocytes with proper hepatic function in vitro has not been achieved. Furthermore, frequently harvesting hepatocytes from living donors for use in culture is highly invasive and simply not feasible. We have previously reported that canine bone marrow-derived mesenchymal stem cells (cBMSCs) can be effectively converted into induced hepatocyte-like cells (iHep cells); however, these cells had reduced function in comparison to mature hepatocytes. In recent studies, spheroid formation-based three-dimensional (3D) culture has been noted to greatly increase hepatocyte function; nevertheless, no reports have described the use of this technology for culturing canine hepatocytes. Therefore, in this study, we aimed to establish a 3D spheroid culture using converted canine iHep cells to investigate their function as hepatocytes. Methods The iHep cells were prepared by introducing two genes, namely, the Forkhead box A1 (Foxa1) and hepatocyte nuclear factor 4 homeobox alpha (Hnf4α), into cBMSCs seeded onto an ultra-low attachment microplate to induce spheroid formation. Thereafter, the hepatic functions of these spheroids were evaluated using immunocytochemistry, as well as qualitative and quantitative PCR. Results Notably, albumin was observed in the iHep spheroids and the expression of hepatic genes, such as albumin and drug metabolism CYP genes, could also be detected. Another interesting finding was evident upon further comparing the quantified albumin gene and CYP2E1 gene expressions in the two-dimensional and three-dimensional culture systems; notably, a 100- to 200-fold increase in gene expression levels was observed in the three-dimensional spheroids when compared to those in conventional monolayers. Conclusions Upon incorporating three-dimensional technology, we managed to achieve iHep spheroids that are closer in gene expression to living liver tissue compared to conventional monolayer cultures. Thus, we are one step closer to creating a sustainable in vitro hepatocyte model. Furthermore, we believe that this system is capable of maintaining the stable drug metabolizing capacity of canine hepatocytes in vitro, which might be useful in improving current drug assessment studies.
Collapse
Affiliation(s)
- Suguru Nitta
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Masaharu Hisasue
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Yu Horiguchi
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Yoko Yamada
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Kaoruko Kikuchi
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Takeaki Kubo
- Celltrust Animal Therapeutics Co., Ltd, Yokohama City, Kanagawa, Japan.,Foundation for Biomedical Research and Innovation at Kobe, Research & Development Center for Cell Therapy, Kobe City, Hyogo, Japan
| | - Hirotaka Igarashi
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Sakurako Neo
- Laboratory of Clinical Diagnostics, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| |
Collapse
|
28
|
Naito K, Kanki K. Glycolytic inhibition by resveratrol prevents myoblast cell death caused by glucose deprivation and hypoxia; a possible application to the three-dimensional tissue construction. J Biosci Bioeng 2020; 131:90-97. [PMID: 32950383 DOI: 10.1016/j.jbiosc.2020.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/30/2020] [Accepted: 08/22/2020] [Indexed: 11/28/2022]
Abstract
Decreased cell viability resulting from a severe condition of nutrients deprivation and hypoxia has been the major obstacle in three-dimensional (3D) tissue construction. Therefore, technical improvement which prevents cell death caused by starvation and low oxygen is desired for the development of large, thick tissues. We focused on the anti-glycolytic effect of resveratrol (RSV), a naturally-occurring polyphenol known as a caloric restriction mimetic, and investigated its cytoprotective effect in two-dimensional (2D) and 3D-cell culture using H9c2 rat myoblast cells. Glucose deprivation by culturing with low glucose media caused time- and dose-dependent cell death in H9c2 cells. In contrast, RSV treatment at 100 μM significantly increased the cell viability by preventing cell death. RSV showed anti-glycolytic effect associated with a down-regulation of glycolytic genes (GLUT1, PKM2) and glucose uptake activity, and increased the activation of AMP-activated protein kinase (AMPK), an essential cellular energy sensor activated in the condition of energy deprivation. RSV treatment markedly improved the viability of myoblast cells cultured in a hypoxic, low glucose condition and attenuated the up-regulation of glycolytic genes by hypoxic response. In 3D-cultured model, spheroids constructed with RSV-treated cells showed improved cell viability and intact histological appearance compared with control. These results suggest that glycolytic inhibition by RSV decreases the glucose usage of myoblast cells, therefore, prevents cell death caused by nutrient deprivation and hypoxic condition. Our finding provides useful information to improve cell viability in a condition that nutrients and oxygen are low in supply, and be a possible application to the 3D-tissue construction.
Collapse
Affiliation(s)
- Kyoko Naito
- Department of Biomedical Engineering, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.
| | - Keita Kanki
- Department of Biomedical Engineering, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.
| |
Collapse
|
29
|
Sasikumar S, Chameettachal S, Kingshott P, Cromer B, Pati F. 3D hepatic mimics - the need for a multicentric approach. ACTA ACUST UNITED AC 2020; 15:052002. [PMID: 32460259 DOI: 10.1088/1748-605x/ab971c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The liver is a center of metabolic activity, including the metabolism of drugs, and consequently is prone to drug-induced liver injury. Failure to detect hepatotoxicity of drugs during their development will lead to the withdrawal of the drugs during clinical trials. To avoid such clinical and economic consequences, in vitro liver models that can precisely predict the toxicity of a drug during the pre-clinical phase is necessary. This review describes the different technologies that are used to develop in vitro liver models and the different approaches aimed at mimicking different functional aspects of the liver at the fundamental level. This involves mimicking of the functional and structural units like the sinusoid, the bile canalicular system, and the acinus.
Collapse
Affiliation(s)
- Shyama Sasikumar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India. Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | | | | | | | | |
Collapse
|