1
|
Feng Y, Jiang Z, Chen C, Hu L, Jiang Q, Wang Y, Cheng Z, Wang F, Yang G, Wang Y. Laminin expression profiles of osteogenic-and chondrogenic-induced dECM sheets. BIOMATERIALS ADVANCES 2025; 169:214127. [PMID: 39637724 DOI: 10.1016/j.bioadv.2024.214127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Decellularized extracellular matrix sheets (dECMSs) produced by stem cells have attracted attention because they preserve the natural biological activity of the ECM to direct lineage-specific differentiation with less immunogenicity. As a core ECM protein, laminin modulates cellular phenotype and differentiation. Nevertheless, no studies thus far have explored the distribution and abundance of laminins in diverse dECMSs. Herein, we first compared the differential expression of laminins among dECMSs in osteogenic-induced medium (OI-dECMS), chondrogenic-induced medium (CI-dECMS), and standard medium (dECMS), employing a defined mass spectrometry (MS)-based proteomic analysis. In vitro, dECMSs were verified to be successfully decellularized. Cluster analysis identified a marked fluctuation in the expression of 7 laminins and 17 laminin-associated proteins in OI-dECMS vs dECMS and CI-dECMS vs dECMS. Two significantly changed pathways were selected from the KEGG pathway enrichment analysis: the FAK/ERK pathway and the PI3K/AKT pathway. Moreover, Alkaline Phosphatase (ALP) activity, Alcian blue staining, and RT-qPCR results for recellularization showed that CI-dECMS promotes chondrogenesis while OI-dECMS inhibits osteogenesis compared with dECMS. In vivo experiments were conducted to implant dECMSs in a rat osteochondral defect, demonstrating that dECMS and CI-dECMS promoted bone and cartilage repair. Furthermore, the inhibitory analysis was performed to verify the function of specific laminin isoforms modulating osteogenesis and chondrogenesis, which might be related to FAK/ERK and PI3K/AKT pathways. In summary, this study constructed dECMS, OI-dECMS, and CI-dECMS and uncovered the internal comprehensive molecular regulatory network centralized by laminins, thus proposing a biomimetic substitute for bone and cartilage regeneration.
Collapse
Affiliation(s)
- Yuting Feng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Chaozhen Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Ling Hu
- Department of Stomatology, Integrated Traditional and Western Medicine Hospital of Linping District, Hangzhou 311100, China
| | - Qifeng Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yuchen Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhenxuan Cheng
- Affiliated Stomatology Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310059, China
| | - Fang Wang
- Department of Stomatology, Integrated Traditional and Western Medicine Hospital of Linping District, Hangzhou 311100, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
2
|
Hoveidaei AH, Sadat-Shojai M, Nabavizadeh SS, Niakan R, Shirinezhad A, MosalamiAghili S, Tabaie S. Clinical challenges in bone tissue engineering - A narrative review. Bone 2025; 192:117363. [PMID: 39638083 DOI: 10.1016/j.bone.2024.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Bone tissue engineering (BTE) has emerged as a promising approach to address large bone defects caused by trauma, infections, congenital malformations, and tumors. This review focuses on scaffold design, cell sources, growth factors, and vascularization strategies, highlighting their roles in developing effective treatments. We explore the complexities of balancing mechanical properties, porosity, and biocompatibility in scaffold materials, alongside optimizing mesenchymal stem cell delivery methods. The critical role of growth factors in bone regeneration and the need for controlled release systems are discussed. Vascularization remains a significant hurdle, with strategies such as angiogenic factors, co-culture systems, and bioprinting under investigation. Mechanical challenges, tissue responses, and inflammation management are examined, alongside gene therapy's potential for enhancing osteogenesis and angiogenesis via both viral and non-viral delivery methods. The review emphasizes the impact of patient-specific factors on bone healing outcomes and the importance of personalized approaches. Future directions are described, emphasizing the necessity of interdisciplinary cooperation to advance the field of BTE and convert laboratory results into clinically feasible solutions.
Collapse
Affiliation(s)
- Amir Human Hoveidaei
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| | - Mehdi Sadat-Shojai
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Sara S Nabavizadeh
- Otolaryngology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Niakan
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Sean Tabaie
- Department of Orthopaedic Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
3
|
Wei L, Chen P, Shi L, Li G, Feng X, Zhao Y, Wang J, Chen ZS, Hu Z, Cui M, Zhou B. Composite Graphene for the Dimension- and Pore-Size-Mediated Stem Cell Differentiation to Bone Regenerative Medicine. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7307-7323. [PMID: 39843162 DOI: 10.1021/acsami.4c17554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
As one of the most promising means to repair diseased tissues, stem cell therapy with immense potential to differentiate into mature specialized cells has been rapidly developed. However, the clinical application of stem-cell-dominated regenerative medicine was heavily hindered by the loss of pluripotency during the long-term in vitro expansion. Here, a composite three-dimensional (3D) graphene-based biomaterial, denoted as GO-Por-CMP@CaP, with hierarchical pore structure (micro- to macropore), was developed to guide the directional differentiation of human umbilical cord MSCs (hucMSCs) into osteoblasts. GO-Por-CMP@CaP could act as a high-efficiency living composite material without a "dead space", effectively regulating the cellular response. The 3D topological structure generated via the two-step modification on two-dimensional graphene could effectively mimic the natural 3D microenvironment of cells, enhancing the stem cell attachment, which is not only conducive for the proliferation of stem cells but also beneficial for the osteogenic differentiation. Meanwhile, the wide existence of interconnected macropores was favorable for bone ingrowth, capillary formation, as well as the nutrients transportation. Furthermore, the concurrent existence of micro- and mesopores significantly promoted the extracellular matrix (ECM) adsorption, which ensured cellular attachment, leading to multiscale osteointegration. Both in vitro and in vivo assay demonstrated the above three factors collaborated mutually with nanosized calcium phosphate (CaP, with chemical similarities to the inorganic components of bone), which provided abundant adhesive sites to adequately induce osteogenic differentiation in the absence of any soluble growth factors. Proteomic analysis experiments confirmed that GO-Por-CMP@CaP promoted the differentiation of hucMSCs cells into osteoblasts by affecting the PI3K-Akt signaling pathway through the up-regulation of SPP1 protein. Our study offers a pure material-based stem cell differentiation regulating behavior via engineering the dimension and porosity of material, which provides insights into the design and development of substitutes to bone repair materials.
Collapse
Affiliation(s)
- Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong PR China
| | - Peilei Chen
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong PR China
| | - Lin Shi
- Weifang People's Hospital, Shandong Second Medical University, Weifang 261035, Shandong PR China
| | - Gentao Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong PR China
| | - Xiaozhe Feng
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong PR China
| | - Yao Zhao
- Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261035, Shandong PR China
| | - Jiangyun Wang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong PR China
| | - Zhe-Sheng Chen
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong PR China
| | - Zhenbo Hu
- Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261035, Shandong PR China
| | - Min Cui
- Department of Pain Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong PR China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong PR China
| |
Collapse
|
4
|
Yang H, Xu Y, Cheong S, Xie C, Zhu Y, Xu S, Lu F, He Y. Mobilization of subcutaneous fascia contributes to the vascularization and function of acellular adipose matrix via formation of vascular matrix complex. Mater Today Bio 2025; 30:101461. [PMID: 39866780 PMCID: PMC11764388 DOI: 10.1016/j.mtbio.2025.101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025] Open
Abstract
Regenerative biomaterials are commonly used for soft-tissue repair in both pre-clinical and clinical settings, but their effectiveness is often limited by poor regenerative outcomes and volume loss. Efficient vascularization is crucial for the long-term survival and function of these biomaterials in vivo. Despite numerous pro-vascularization strategies developed over the past decades, the fundamental mechanisms of vascularization in regenerative biomaterials remain largely unexplored. In this study, we employed matrix-tracing, vessel-tracing, cell-tracing, and matrix analysis techniques, etc. to investigate the vascularization process of acellular adipose matrix (AAM) implants in a murine model. Here, we show that the mobilization of subcutaneous fascia contributes to the vascularization in AAM implants. Tracing techniques revealed that the subcutaneous fascia migrates to encase the AAM implants, bringing along fascia-embedded blood vessels, thus forming a vascular matrix complex (VMC) on the implant surface. Restricting fascia mobilization or removing fascia tissue significantly reduced AAM vascularization and hindered the regenerative process, leading to implant collapse at a later stage. Notably, VMC exhibited a dynamic matrix remodeling process closely aligned with implant vascularization. Our findings highlight the crucial role of subcutaneous fascia mobility in facilitating the vascularization of AAM implants, offering a novel direction and target for guaranteeing long-term survival and function of regenerative biomaterials in vivo.
Collapse
Affiliation(s)
- Han Yang
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Yidan Xu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Sousan Cheong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Cuiying Xie
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Yufan Zhu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Shujie Xu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Yunfan He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| |
Collapse
|
5
|
Li Y, Wu J, Ye P, Cai Y, Shao M, Zhang T, Guo Y, Zeng S, Pathak JL. Decellularized Extracellular Matrix Scaffolds: Recent Advances and Emerging Strategies in Bone Tissue Engineering. ACS Biomater Sci Eng 2024; 10:7372-7385. [PMID: 39492720 DOI: 10.1021/acsbiomaterials.4c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Bone tissue engineering (BTE) is a complex biological process involving the repair of bone tissue with proper neuronal network and vasculature as well as bone surrounding soft tissue. Synthetic biomaterials used for BTE should be biocompatible, support bone tissue regeneration, and eventually be degraded in situ and replaced with the newly generated bone tissue. Recently, various forms of bone graft materials such as hydrogel, nanofiber scaffolds, and 3D printed composite scaffolds have been developed for BTE application. Decellularized extracellular matrix (DECM), a kind of natural biological material obtained from specific tissues and organs, has certain advantages over synthetic and exogenous biomaterial-derived bone grafts. Moreover, DECM can be developed from a wide range of biological sources and possesses strong molding abilities, natural 3D structures, and bioactive factors. Although DECM has shown robust osteogenic, proangiogenic, immunomodulatory, and bone defect healing potential, the rapid degradation and limited mechanical properties should be improved for bench-to-bed translation in BTE. This review summarizes the recent advances in DECM-based BTE and discusses emerging strategies of DECM-based BTE.
Collapse
Affiliation(s)
- Yunyang Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| | - Jingwen Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Hangzhou CASbios Medical Co., Hangzhou 310000, P. R. China
| | - Peilin Ye
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai 519040, P. R. China
| | - Yilin Cai
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| | - Mingfei Shao
- Hangzhou CASbios Medical Co., Hangzhou 310000, P. R. China
| | - Tong Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yanchuan Guo
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Sujuan Zeng
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| | - Janak L Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| |
Collapse
|
6
|
Zhang S, Guo Y, Lu Y, Liu F, Heng BC, Deng X. The considerations on selecting the appropriate decellularized ECM for specific regeneration demands. Mater Today Bio 2024; 29:101301. [PMID: 39498148 PMCID: PMC11532911 DOI: 10.1016/j.mtbio.2024.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
An ideal biomaterial should create a customized tissue-specific microenvironment that can facilitate and guide the tissue repair process. Due to its good biocompatibility and similar biochemical properties to native tissues, decellularized extracellular matrix (dECM) generally yields enhanced regenerative outcomes, with improved morphological and functional recovery. By utilizing various decellularization techniques and post-processing protocols, dECM can be flexibly prepared in different states from various sources, with specifically customized physicochemical properties for different tissues. To initiate a well-orchestrated tissue-regenerative response, dECM exerts multiple effects at the wound site by activating various overlapping signaling pathways to promote cell adhesion, proliferation, and differentiation, as well as suppressing inflammation via modulation of various immune cells, including macrophages, T cells, and mastocytes. Functional tissue repair is likely the main aim when employing the optimized dECM biomaterials. Here, we review the current applications of different kinds of dECMs in an attempt to improve the efficiency of tissue regeneration, highlighting key considerations on developing dECM for specific tissue engineering applications.
Collapse
Affiliation(s)
- Shihan Zhang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yixuan Lu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Fangyong Liu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- NMPA Key Laboratory for Dental Materials, Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
7
|
Ren Y, Zheng J, Cao Y, Zhu Y, Ling Z, Zhang Z, Huang M. Diagnostic significance of LncRNA MIAT in periodontitis and the molecular mechanisms influencing periodontal ligament fibroblasts via the miR-204-5p/DKK1 axis. Arch Oral Biol 2024; 168:106066. [PMID: 39190957 DOI: 10.1016/j.archoralbio.2024.106066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE This study investigated the clinical importance of long noncoding RNA myocardial infarction-associated transcript (MIAT) in periodontitis and its impact on the functional regulation of human periodontal ligament fibroblasts (hPDLFs). METHODS Ninety-eight periodontitis patients and 74 healthy controls were enrolled. In vitro cellular models were created using Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) to stimulate hPDLFs. Real-time quantitative polymerase chain reaction was used to measure mRNA levels of MIAT and osteogenic factors. Inflammation factor concentration was assessed using an enzyme-linked immunosorbent assay. Cell viability and apoptosis were examined by cell counting kit -8 and flow cytometry assay. The targeting relationship was verified by the dual-luciferase reporter and RNA Immunoprecipitation assay. RESULTS Highly expressed MIAT and Dicckopf-1 (DDK1), and lowly expressed miR-204-5p were found in the gingival crevicular fluid of periodontitis patients and Pg-LPS induced hPDLFs. MIAT has a sensitivity of 76.53 % and a specificity of 86.49 % for identifying patients with periodontitis among healthy individuals. MIAT acts as a sponge for miR-204-5p and upregulates DDK1 mRNA expression. Silencing of MIAT diminished the promotion of apoptosis and inflammation in hPDLFs by Pg-LPS and enhanced osteogenic differentiation. However, a miR-204-5p inhibitor significantly reversed the effect of silenced MIAT. CONCLUSIONS MIAT may act as a promising biomarker for periodontitis. It modulates apoptosis, inflammation, and osteogenic differentiation of PDLFs by focusing on the miR-204-5p/DKK1 axis, indicating its potential as a new therapeutic target for treating periodontitis.
Collapse
Affiliation(s)
- Yu Ren
- Department of stomatology, Dental Well Institute of Temporomandibular Joint Research, Chengdu, China; LESHAN Vocational and Technical College, Leshan, China
| | - Jiwen Zheng
- LESHAN Vocational and Technical College, Leshan, China; Department of stomatology, Leshan Weiduo Dental, Leshan, China
| | - Yang Cao
- Department of stomatology, Leshan Jiajiang Weiduo Dental, Leshan, China
| | - Yu Zhu
- Department of stomatology, Leshan Weiduo Dental, Leshan, China
| | - Zhuo Ling
- Department of stomatology, Dental Well Institute of Temporomandibular Joint Research, Chengdu, China
| | - Zhiqiang Zhang
- Department of stomatology, Dental Well Institute of Temporomandibular Joint Research, Chengdu, China
| | - Mingke Huang
- LESHAN Vocational and Technical College, Leshan, China; Department of stomatology, Leshan Weiduo Dental, Leshan, China.
| |
Collapse
|
8
|
Yamashita D, Hamano S, Hasegawa D, Sugii H, Itoyama T, Ikeya M, Maeda H. Establishment of Periodontal Ligament Stem Cell-like Cells Derived from Feeder-Free Cultured Induced Pluripotent Stem Cells. Stem Cells Dev 2024. [PMID: 39504137 DOI: 10.1089/scd.2024.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
The periodontal ligament (PDL) is a fibrous connective tissue that connects the cementum of the root to the alveolar bone. PDL stem cells (PDLSCs) contained in the PDL can differentiate into cementoblasts, osteoblasts, and PDL fibroblasts, with essential roles in periodontal tissue regeneration. Therefore, PDLSCs are expected to be useful in periodontal tissue regeneration therapy. In a previous study, we differentiated induced pluripotent stem cells (iPSCs) into PDLSC-like cells (iPDLSCs), which expressed PDL-related markers and mesenchymal stem cell (MSC) markers; they also exhibited high proliferation and multipotency. However, the iPSCs used in this differentiation method were cultured on mouse embryonic fibroblasts; thus, they constituted on-feeder iPSCs (OF-iPSCs). Considering the risk of contamination with feeder cell-derived components, iPDLSCs differentiated from OF-iPSCs (ie, OF-iPDLSCs) are unsuitable for clinical applications. In this study, we aimed to obtain PDLSC-like cells from feeder-free iPSCs (FF-iPSCs) using OF-iPDLSC differentiation method. First, we differentiated FF-iPSCs into neural crest cell-like cells (FF-iNCCs) and confirmed that FF-iNCCs expressed NCC markers (eg, Nestin and p75NTR). Then, we cultured FF-iNCCs on human primary PDL cell-derived extracellular matrix for 2 weeks; the resulting cells were named FF-iPDLSCs. FF-iPDLSCs exhibited higher expression of PDL-related and MSC markers compared with OF-iPDLSCs. FF-iPDLSCs also demonstrated proliferation and multipotency in vitro. Finally, we analyzed the ability of FF-iPDLSCs to form periodontal tissue in vivo upon subcutaneous transplantation with β-tricalcium phosphate scaffolds into dorsal tissues of immunodeficient mice. Eight weeks after transplantation, FF-iPDLSCs had formed osteocalcin-positive bone/cementum-like tissues and collagen 1-positive PDL-like fibers. These results suggested that we successfully obtained PDLSC-like cells from FF-iPSCs. Our findings will contribute to the development of novel periodontal regeneration therapies.
Collapse
Affiliation(s)
- Daiki Yamashita
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Sayuri Hamano
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Daigaku Hasegawa
- Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan
| | - Hideki Sugii
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tomohiro Itoyama
- Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
9
|
Hou W, Sun C, Han X, Fan M, Qiao W. NEDD4L affects stability of the CHEK2/TP53 axis through ubiquitination modification to enhance osteogenic differentiation of periodontal ligament stem cells. Connect Tissue Res 2024; 65:433-446. [PMID: 39373023 DOI: 10.1080/03008207.2024.2406794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/09/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Checkpoint kinase 2 (CHEK2) and its regulated tumor protein p53 (TP53) have been correlated with osteogenic differentiation of osteoblast-like cells. Based on bioinformatics predictions, this study aims to investigate the effect of the CHEK2/TP53 axis on osteogenic differentiation of periodontal ligament stem cells (PDLSCs) and to explore the regulatory mechanism. METHODS PDLSCs were isolated from human impacted wisdom teeth, and they were cultured in normal medium (NM) or osteogenic medium (OM). Protein levels of CHEK2 and TP53 were examined using western blot analysis. Osteogenic differentiation ability of PDLSCs was analyzed by measuring marker proteins (RUNX2, OCN, and OSX), ALP activity, and ALP staining. Molecular interaction between NEDD4 like E3 ubiquitin protein ligase (NEDD4L) and CHEK2 was examined by ubiquitination and co-immunoprecipitation assays. Gain- and loss-of function assays of NEDD4L, CHEK2, and TP53 were performed to analyze their function in osteogenic differentiation of PDLSCs. A rat model of mandibular bone defect was generated for in vivo validation. RESULTS NEDD4L was upregulated, while CHEK2 and TP53 were downregulated in PDLSCs cultured in OM. CHEK2 protected TP53 from degradation, while NEDD4L reduced CHEK2 protein level by ubiquitination modification. NEDD4L silencing reduced osteogenic differentiation ability of PDLSCs both in vitro and in vivo, which was restored by CHEK2 silencing. By contrast, CHEK2 overexpression blocked the osteogenic differentiation of PDLSCs in vitro. CONCLUSION This study demonstrates that NEDD4L affects protein stability of the CHEK2/TP53 axis through ubiquitination modification, thus increasing osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Wenyue Hou
- Outpatient Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Changsheng Sun
- Department of Stomatology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Xue Han
- Harbin Hou Kaiyu Dental Clinic, Harbin, Heilongjiang, P.R. China
| | - Mingyu Fan
- Harbin Hou Kaiyu Dental Clinic, Harbin, Heilongjiang, P.R. China
| | - Wenjuan Qiao
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
10
|
Miao J, Wu Y, Sun Z, Miao X, Lu T, Zhao J, Lu Q. Valid inference for machine learning-assisted genome-wide association studies. Nat Genet 2024; 56:2361-2369. [PMID: 39349818 DOI: 10.1038/s41588-024-01934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/29/2024] [Indexed: 11/10/2024]
Abstract
Machine learning (ML) has become increasingly popular in almost all scientific disciplines, including human genetics. Owing to challenges related to sample collection and precise phenotyping, ML-assisted genome-wide association study (GWAS), which uses sophisticated ML techniques to impute phenotypes and then performs GWAS on the imputed outcomes, have become increasingly common in complex trait genetics research. However, the validity of ML-assisted GWAS associations has not been carefully evaluated. Here, we report pervasive risks for false-positive associations in ML-assisted GWAS and introduce Post-Prediction GWAS (POP-GWAS), a statistical framework that redesigns GWAS on ML-imputed outcomes. POP-GWAS ensures valid and powerful statistical inference irrespective of imputation quality and choice of algorithm, requiring only GWAS summary statistics as input. We employed POP-GWAS to perform a GWAS of bone mineral density derived from dual-energy X-ray absorptiometry imaging at 14 skeletal sites, identifying 89 new loci and revealing skeletal site-specific genetic architecture. Our framework offers a robust analytic solution for future ML-assisted GWAS.
Collapse
Affiliation(s)
- Jiacheng Miao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Yixuan Wu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongxuan Sun
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Xinran Miao
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Tianyuan Lu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jiwei Zhao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA.
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
11
|
Chen J, Hu C, Lu X, Yang X, Zhu M, Ma X, Yang Y. ALDH2 alleviates inflammation and facilitates osteogenic differentiation of periodontal ligament stem cells in periodontitis by blocking ferroptosis via activating Nrf2. Funct Integr Genomics 2024; 24:184. [PMID: 39370484 DOI: 10.1007/s10142-024-01465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
This paper elucidated the effects and mechanisms of aldehyde dehydrogenase 2 (ALDH2) on periodontitis. Rat model of periodontitis and periodontal ligament stem cell (PDLSC) model of periodontitis were constructed. PDLSC were transfected by ALDH2 overexpression vectors, and then treated by ML385 (Nrf2 inhibitor), ferrostatin-1 (ferroptosis inhibitor) and FIN56 (ferroptosis inducer), respectively. ALDH2, nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase 4 (GPX4) proteins was evaluated by immunohistochemistry and Western blot. Ferroptosis-related factors, including Fe2+ and glutathione (GSH), were assessed by commercial kits. Pro-inflammatory factors (interleukin-6 [IL-6] and tumor necrosis factor-α [TNF-α]) and osteogenic differentiation-related proteins (osteocalcin [OCN] and runt-related transcription factor 2 [RUNX2]) were scrutinized by commercial kits and Western blot. In both periodontal tissues of periodontitis rats and PDLSC model of periodontitis, down-regulated ALDH2, Nrf2, GPX4 and GSH, but elevated Fe2+ level was discovered. ALDH2 overexpression in PDLSC resulted in an increase in Nrf2 expression. In PDLSC model of periodontitis, ALDH2 increased GPX4 and GSH levels, decreased Fe2+, IL-6 and TNF-α levels, and elevated OCN and RUNX2 expression. However, these effects of ALDH2 were counteracted by ML385. Additionally, the suppression of ALDH2 on IL-6 and TNF-α levels and promotion of it on OCN and RUNX2 expression in PDLSC model of periodontitis was further intensified by ferrostatin-1, but reversed by FIN56. ALDH2 may alleviate inflammation and facilitate osteogenic differentiation of PDLSC in periodontitis by hindering ferroptosis via activating Nrf2, suggesting it to be a promising candidate for treating periodontitis.
Collapse
Affiliation(s)
- Jia Chen
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Chen Hu
- Department of Oral and Maxillofacial Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xun Lu
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Xiaoqin Yang
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Meng Zhu
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Xiaozhou Ma
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Yiqiang Yang
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
12
|
Yang J, Su J, Sun Z, Song Y, Zhang Y, Zhang Z, Wei J, Shi X, Jiang N, Ge X. Youthful small extracellular vesicles restore the function and reparative capacity of inflammatory-impaired periodontal ligament stem cells via delivering protein biglycan for bone regeneration. J Nanobiotechnology 2024; 22:508. [PMID: 39182069 PMCID: PMC11344428 DOI: 10.1186/s12951-024-02752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024] Open
Abstract
Regenerating inflamed bone defects represents a severe clinical challenge due to the undesirable inflammatory microenvironment. The inflammatory stimulus poses a weighty threat to the regenerative capacity of endogenously derived mesenchymal stem cells (MSCs), which are mainly responsible for osteogenic differentiation, thereby resulting in compromised endogenous bone formation. Consequently, alleviating the biological characteristics of inflammatory-impaired MSCs is crucial for promoting inflamed bone regeneration. Nano-sized small extracellular vesicles (sEVs) have emerged as promising therapeutic tools to orchestrate MSCs fate due to their intrinsic biocompatibility and encapsulated bioactive contents. In the present study, we extracted sEVs from youthful and adult dental pulp MSCs and explored their ability to recover inflammation-compromised periodontal ligament stem cells (IPDLSCs). The results indicated that both types of sEVs were capable of facilitating IPDLSCs osteogenesis. However, young sEVs exhibited a more robust potential at a lower concentration compared to adult sEVs. Mechanically, young sEVs enhanced the expression of bone morphogenetic protein 4 (BMP4) via delivering the protein Biglycan, which correspondingly promoted the osteogenic capability of IPDLSCs. Collectively, our findings emphasized that young sEVs hold enormous potential to rescue the inherent function and regenerative competence of inflammation-impaired MSCs, shedding light on their promising therapeutic prospects for infected bone regeneration.
Collapse
Affiliation(s)
- Jiaqi Yang
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Junxiang Su
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Department of Stomatology, Shanxi Provincial Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Zhuo Sun
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yeqing Song
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yimei Zhang
- First Clinic Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Ziqian Zhang
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jizhen Wei
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xin Shi
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Nan Jiang
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Xuejun Ge
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.
| |
Collapse
|
13
|
Li Y, Mei Z, Deng P, Zhou S, Qian A, Zhang X, Li J. Unraveling the mechanism in l-Caldesmon regulating the osteogenic differentiation of PDLSCs: An innovative perspective. Cell Signal 2024; 118:111147. [PMID: 38513808 DOI: 10.1016/j.cellsig.2024.111147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Maxillofacial bone defect is one of the common symptoms in maxillofacial, which affects the function and aesthetics of maxillofacial region. Periodontal ligament stem cells (PDLSCs) are extensively used in bone tissue engineering. The mechanism that regulates the osteogenic differentiation of PDLSCs remains not fully elucidated. Previous studies demonstrated that l-Caldesmon (l-CALD, or CALD1) might be involved in the osteogenic differentiation of PDLSCs. Here, the mechanism by which CALD1 regulates the osteogenic differentiation of PDLSCs is investigated. The osteogenic differentiation of PDLSCs is enhanced with Cald1 knockdown. Whole transcriptome sequencing (RNA-seq) analysis shows that bone morphogenetic proteins (BMP) signaling pathway and Wingless type (Wnt) pathway have significant change with Cald1 knockdown, and the expressions of Wnt-induced secreted protein 1 (WISP1), BMP2, Smad1/5/9, and p-Smad1/5/9 are significantly upregulated, while Glycogen synthase kinase 3β (GSK3β) and p-GSK3β are downregulated. In addition, subcutaneous implantation in nude mice shows that knockdown of Cald1 enhances the osteogenic differentiation of PDLSCs in vivo. Taken together, this study demonstrates that knockdown of Cald1 enhances the osteogenic differentiation of PDLSCs by BMP and Wnt signaling pathways, and provides a novel approach for subsequent clinical treatment.
Collapse
Affiliation(s)
- Yuejia Li
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Ziyi Mei
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Pingmeng Deng
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Sha Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Aizhuo Qian
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Xiya Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China..
| |
Collapse
|
14
|
Feng M, Wang R, Deng L, Yang Y, Xia S, Liu F, Luo L. Arrestin beta-2 deficiency exacerbates periodontal inflammation by mediating activating transcription factor 6 activation and abnormal remodelling of the extracellular matrix. J Clin Periodontol 2024; 51:742-753. [PMID: 38267365 DOI: 10.1111/jcpe.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
AIM To investigate the specific role of arrestin beta-2 (ARRB2) in the progression of periodontitis and the underlying mechanisms. MATERIALS AND METHODS Single-cell RNA sequencing data were used to analyse gene expression in periodontal tissues from healthy controls and patients with periodontitis. Real-time quantitative polymerase chain reaction, Western blotting and immunohistochemical staining were performed to detect the expression of ARRB2. Furthermore, a ligature-induced periodontitis model was created. Using radiographic and histological methods, RNA sequencing and luciferase assay, the role of ARRB2 in periodontitis and the underlying mechanisms were explored. Finally, the therapeutic effect of melatonin, an inhibitor of activating transcription factor 6 (ATF6), on periodontitis in mice was assessed in both in vivo and in vitro experiments. RESULTS ARRB2 expression was up-regulated in inflammatory periodontal tissue. In the ligature-induced mouse model, Arrb2 knockout exacerbated alveolar bone loss (ABL) and extracellular matrix (ECM) degradation. ARRB2 exerted a negative regulatory effect on ATF6, an essential targeted gene. Melatonin ameliorated ABL and an imbalance in ECM remodelling in Arrb2-deficient periodontitis mice. CONCLUSIONS ARRB2 mediates ECM remodelling via inhibition of the ATF6 signalling pathway, which ultimately exerts a protective effect on periodontal tissues.
Collapse
Affiliation(s)
- Meiting Feng
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Ruiling Wang
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Li Deng
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yanan Yang
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Siying Xia
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Feng Liu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Otolaryngology Institute of Shanghai JiaoTong University, Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijun Luo
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
15
|
He S, Wen N, Chen X, Liu C, Xiao X, Li X, Yuan L, Mu Y. Emulsion template fabricated heterogeneous bilayer gelatin-based scaffolds with sustained-delivery of lycium barbarum glycopeptide for periodontitis treatment. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1379-1399. [PMID: 38529842 DOI: 10.1080/09205063.2024.2329455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
Periodontitis is a chronic inflammatory disease raising the risks of tooth-supporting structures destruction and even tooth loss. The way to reconstruct periodontal bone tissues in inflammatory microenvironment has been long in demand for periodontitis treatment. In this study, the lycium barbarum glycopeptide (LbGP) loaded gelatin-based scaffolds were fabricated for periodontitis treatment. Gelatin microspheres with suitable size were prepared by emulsification and gathered by oxidized sodium alginate to prepare heterogeneous bilayer gelatin-based scaffolds, and then they were loaded with LbGP. The prepared scaffolds possessed interconnected porous microstructures, good degradation properties, sufficient mechanical properties, sustained release behavior and well biocompatibility. In vitro experiments suggested that the LbGP loaded gelatin-based scaffolds could inhibit the expression of inflammatory factors (IL-1β, IL-6, and TNF-α), promote the expression of anti-inflammatory factor (IL-10), and the expression of osteogenic markers (BMP2, Runx2, ALP, and OCN) in PDLSCs under the LPS-stimulated inflammatory microenvironment. Moreover, in rat periodontitis models, the LbGP gelatin-based scaffolds would reduce the alveolar bone resorption of rats, increase the collagen fiber content of periodontal membrane, alleviate local inflammation and improve the expression of osteogenesis-related factors. Therefore, the LbGP loaded gelatin-based scaffolds in this study will provide a potential therapeutic strategy for periodontitis treatment.
Collapse
Affiliation(s)
- Siqi He
- School of Stomatology, Southwest Medical University, Luzhou, China
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Nan Wen
- School of Stomatology, Southwest Medical University, Luzhou, China
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xun Chen
- School of Stomatology, Southwest Medical University, Luzhou, China
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Cong Liu
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xun Xiao
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinlun Li
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lun Yuan
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yandong Mu
- School of Stomatology, Southwest Medical University, Luzhou, China
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
16
|
Kawabata S, Nakasa T, Nekomoto A, Yimiti D, Miyaki S, Adachi N. Osteophyte Cartilage as a Potential Source for Minced Cartilage Implantation: A Novel Approach for Articular Cartilage Repair in Osteoarthritis. Int J Mol Sci 2024; 25:5563. [PMID: 38791601 PMCID: PMC11122408 DOI: 10.3390/ijms25105563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Osteoarthritis (OA) is a common joint disorder characterized by cartilage degeneration, often leading to pain and functional impairment. Minced cartilage implantation (MCI) has emerged as a promising one-step alternative for large cartilage defects. However, the source of chondrocytes for MCI remains a challenge, particularly in advanced OA, as normal cartilage is scarce. We performed in vitro studies to evaluate the feasibility of MCI using osteophyte cartilage, which is present in patients with advanced OA. Osteophyte and articular cartilage samples were obtained from 22 patients who underwent total knee arthroplasty. Chondrocyte migration and proliferation were assessed using cartilage fragment/atelocollagen composites to compare the characteristics and regenerative potential of osteophytes and articular cartilage. Histological analysis revealed differences in cartilage composition between osteophytes and articular cartilage, with higher expression of type X collagen and increased chondrocyte proliferation in the osteophyte cartilage. Gene expression analysis identified distinct gene expression profiles between osteophytes and articular cartilage; the expression levels of COL2A1, ACAN, and SOX9 were not significantly different. Chondrocytes derived from osteophyte cartilage exhibit enhanced proliferation, and glycosaminoglycan production is increased in both osteophytes and articular cartilage. Osteophyte cartilage may serve as a viable alternative source of MCI for treating large cartilage defects in OA.
Collapse
Affiliation(s)
- Shingo Kawabata
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City 734-8551, Japan; (S.K.); (A.N.); (D.Y.); (N.A.)
| | - Tomoyuki Nakasa
- Department of Artificial Joints and Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City 734-8551, Japan
| | - Akinori Nekomoto
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City 734-8551, Japan; (S.K.); (A.N.); (D.Y.); (N.A.)
| | - Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City 734-8551, Japan; (S.K.); (A.N.); (D.Y.); (N.A.)
| | - Shigeru Miyaki
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima City 734-8551, Japan;
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City 734-8551, Japan; (S.K.); (A.N.); (D.Y.); (N.A.)
| |
Collapse
|
17
|
Zhang H, Wang W, Qian Y, Zhang L. Extracellular matrix of ameloblastoma-derived negatively regulates osteogenic differentiation. Oral Dis 2024; 30:2362-2372. [PMID: 37498913 DOI: 10.1111/odi.14697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/24/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVE To investigate the effects of key pathogenic genes involved in the development of jaw ameloblastoma (AB) and its associated extracellular matrix (ECM) on osteogenic differentiation in order to provide a theoretical foundation for future research into bone aggressiveness of AB. METHODS The essential genes were identified by five AB patients for whole-exome sequencing and the microarray datasets GES38494 and GES132472. Moreover, the expression of key genes and their encoded proteins in AB tissues was explored. In addition, AB-derived the decellularized ECM (ABdECM) tissues were generated by the decellularization technique. Furthermore, the osteogenic development of periodontal ligament stem cells (PDLSCs) was mimicked by simulating the effects of the AB tumor microenvironment (TME). RESULTS The AB essential genes including COL1A2, COL4A2, FBN1, and HPSE were discovered. Among them, the expression of HPSE was down-regulated, while that of COL1A2, COL4A2, and FBN1 was noticeably upregulated in AB compared with normal gingival tissues of the jaws. In vitro osteogenic differentiation of PDLSCs was suppressed by the ABdECM. CONCLUSIONS Abnormal ECM proteins encoded by COL4A2, COL1A2, FBN1, and HPSE genes can cause disturbance in the ECM environment of AB and promote bone resorption.
Collapse
Affiliation(s)
- Hongrong Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Weihong Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Yemei Qian
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Lanlan Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| |
Collapse
|
18
|
Chen Y, Huang JH, Kang YB, Yao ZJ, Song JH. Bioinformatics analysis revealed the potential crosstalk genes and molecular mechanisms between intracranial aneurysms and periodontitis. BMC Med Genomics 2024; 17:114. [PMID: 38685029 PMCID: PMC11059758 DOI: 10.1186/s12920-024-01864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
OBJECTIVES The risk of intracranial aneurysms (IAs) development and rupture is significantly higher in patients with periodontitis (PD), suggesting an association between the two. However, the specific mechanisms of association between these two diseases have not been fully investigated. MATERIALS AND METHODS In this study, we downloaded IAs and PD data from the Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified, and functional enrichment analysis was performed. The protein-protein interaction (PPI) network and weighted gene co-expression network analysis (WGCNA) was performed to identified key modules and key crosstalk genes. In addition, the immune cell landscape was assessed and the correlation of key crosstalk genes with each immune cell was calculated. Finally, transcription factors (TFs) regulating key crosstalk genes were explored. RESULTS 127 overlapping DEGs were identified and functional enrichment analysis highlighted the important role of immune reflection in the pathogenesis of IAs and PD. We identified ITGAX and COL4A2 as key crosstalk genes. In addition, the expression of multiple immune cells was significantly elevated in PDs and IAs compared to controls, and both key crosstalk genes were significantly negatively associated with Macrophages M2. Finally, GATA2 was identified as a potential key transcription factor (TF), which regulates two key crosstalk gene. CONCLUSIONS The present study identifies key crosstalk genes and TF in PD and IAs, providing new insights for further study of the co-pathogenesis of PD and IAs from an immune and inflammatory perspective. Also, this is the first study to report the above findings.
Collapse
Affiliation(s)
- Yao Chen
- Department of Neurosurgery, Affiliated Hospital of Putian University, Putian, Fujian Province, China
| | - Jian-Huang Huang
- Department of Neurosurgery, Affiliated Hospital of Putian University, Putian, Fujian Province, China.
| | - Yuan-Bao Kang
- Department of Neurosurgery, Affiliated Hospital of Putian University, Putian, Fujian Province, China
| | - Zheng-Jian Yao
- Department of Neurosurgery, Affiliated Hospital of Putian University, Putian, Fujian Province, China
| | - Jian-Hua Song
- Department of Neurosurgery, Affiliated Hospital of Putian University, Putian, Fujian Province, China
| |
Collapse
|
19
|
Zheng Z, Liu H, Liu S, Luo E, Liu X. Mesenchymal stem cells in craniofacial reconstruction: a comprehensive review. Front Mol Biosci 2024; 11:1362338. [PMID: 38690295 PMCID: PMC11058977 DOI: 10.3389/fmolb.2024.1362338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Craniofacial reconstruction faces many challenges, including high complexity, strong specificity, severe injury, irregular and complex wounds, and high risk of bleeding. Traditionally, the "gold standard" for treating craniofacial bone defects has been tissue transplantation, which involves the transplantation of bone, cartilage, skin, and other tissues from other parts of the body. However, the shape of craniofacial bone and cartilage structures varies greatly and is distinctly different from ordinary long bones. Craniofacial bones originate from the neural crest, while long bones originate from the mesoderm. These factors contribute to the poor effectiveness of tissue transplantation in repairing craniofacial defects. Autologous mesenchymal stem cell transplantation exhibits excellent pluripotency, low immunogenicity, and minimally invasive properties, and is considered a potential alternative to tissue transplantation for treating craniofacial defects. Researchers have found that both craniofacial-specific mesenchymal stem cells and mesenchymal stem cells from other parts of the body have significant effects on the restoration and reconstruction of craniofacial bones, cartilage, wounds, and adipose tissue. In addition, the continuous development and application of tissue engineering technology provide new ideas for craniofacial repair. With the continuous exploration of mesenchymal stem cells by researchers and the continuous development of tissue engineering technology, the use of autologous mesenchymal stem cell transplantation for craniofacial reconstruction has gradually been accepted and promoted. This article will review the applications of various types of mesenchymal stem cells and related tissue engineering in craniofacial repair and reconstruction.
Collapse
Affiliation(s)
| | | | | | - En Luo
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xian Liu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Yi C, Song H, Liang H, Ran Y, Tang J, Chen E, Li F, Fu L, Wang Y, Chen F, Wang Y, Ding Y, Xie Y. TBX3 reciprocally controls key trophoblast lineage decisions in villi during human placenta development in the first trimester. Int J Biol Macromol 2024; 263:130220. [PMID: 38368983 DOI: 10.1016/j.ijbiomac.2024.130220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
Human trophoblastic lineage development is intertwined with placental development and pregnancy outcomes, but the regulatory mechanisms underpinning this process remain inadequately understood. In this study, based on single-nuclei RNA sequencing (snRNA-seq) analysis of the human early maternal-fetal interface, we compared the gene expression pattern of trophoblast at different developmental stages. Our findings reveal a predominant upregulation of TBX3 during the transition from villous cytotrophoblast (VCT) to syncytiotrophoblast (SCT), but downregulation of TBX3 as VCT progresses into extravillous trophoblast cells (EVT). Immunofluorescence analysis verified the primary expression of TBX3 in SCT, partial expression in MKi67-positive VCT, and absence in HLA-G-positive EVT, consistent with our snRNA-seq results. Using immortalized trophoblastic cell lines (BeWo and HTR8/SVneo) and human primary trophoblast stem cells (hTSCs), we observed that TBX3 knockdown impedes SCT formation through RAS-MAPK signaling, while TBX3 overexpression disrupts the cytoskeleton structure of EVT and hinders EVT differentiation by suppressing FAK signaling. In conclusion, our study suggests that the spatiotemporal expression of TBX3 plays a critical role in regulating trophoblastic lineage development via distinct signaling pathways. This underscores TBX3 as a key determinant during hemochorial placental development.
Collapse
Affiliation(s)
- Cen Yi
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Honglan Song
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Hongxiu Liang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yujie Ran
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jing Tang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Enxiang Chen
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Fangfang Li
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Lijuan Fu
- Department of Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China 400021; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China; Department of Basic Medical Sciences, Changsha Medical University, Hunan 410219, China
| | - Yaqi Wang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, 410129, China
| | - Yingxiong Wang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yubin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Youlong Xie
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
21
|
Liang C, Wang G, Liang C, Li M, Sun Y, Tian W, Liao L. Hierarchically patterned triple-layered gelatin-based electrospun membrane functionalized by cell-specific extracellular matrix for periodontal regeneration. Dent Mater 2024; 40:90-101. [PMID: 37923673 DOI: 10.1016/j.dental.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVES Regenerating the periodontium poses a critical challenge in oral medicine. To repair various periodontal defects, it is necessary to adopt a bio-scaffold that provides both the architecture and bioactive cues for local stem cells to migrate, reside, proliferate, and differentiate. The objective of this study is to combine a cell-specific decellularized extracellular matrix (ECM) and a biomimetic electrospinning scaffold to regenerate severely destructed periodontium. METHODS SEM, water contact angle (WCA), live/dead staining, swelling ratio, tensile test and immune-fluorescent staining were used to define the suitable topography for certain dental stem cells seeding and culturing. Transwell assay, CCK-8, Alizarin Red staining and PCR immune-fluorescent staining were used to determine ideal cell-specific ECM for PDLSCs/BMSCs migration, viability, and oriented differentiation. A biodegradable triple-layered electrospun scaffold (TLS) was fabricated by electrospinning with aligned fibers on both surfaces and a polyporous structure in the middle. The morphology and inter-porous structure of the TLS were characterized by SEM and mercury intrusion porosimetry (MIP). The surface of the TLS was functionalized with cell-specific ECM (Bi-ECM-TLS) through decellularization of the cell sheets cultured on the scaffold. The regenerative outcome of Bi-ECM-TLS was assessed by an in-situ rat periodontal defect model. Micro-CT, HE-staining, Masson's trichome staining, Sirius Red staining and Immunofluorescent staining were used for histological analysis. RESULTS Aligned Gelatin/PCL fibrous membrane (GPA) was most effective for both PDLSCs and BMSCs in culture with WCA around 50 degrees and better mechanical strength than the rest. MSCs favored the same type of ECM (cell-specific ECM), and their regenerative properties were effectively induced with better chemotaxis, proliferative and differentiating behaviors. TLS characterization showed that TLS possessed aligned-random-aligned structure and inter-porous structure. In a rat model of periodontal defects, the TLS functionalized by BMSC-specific ECM for bone regeneration and PDLSC-specific ECM demonstrated highest BV/TV ratio, best bone structure and ligament fiber orientation and blood vessel formation, suggesting optimal performance in regenerating both alveolar bone and periodontal ligaments over TLS, single-ECM loaded TLS and r-Bi-ECM-TLS. SIGNIFICANCE This study highlights the importance of combining a cell-specific decellularized ECM and a biomimetic electrospinning scaffold for targeted periodontal tissue regeneration, with potential implications for periodontal tissue engineering and improved patient outcomes.
Collapse
Affiliation(s)
- Chao Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| | - Guanyu Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| | - Cheng Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| | - Maojiao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| | - Yanping Sun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China.
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China.
| |
Collapse
|
22
|
Zhao LM, Da LC, Wang R, Wang L, Jiang YL, Zhang XZ, Li YX, Lei XX, Song YT, Zou CY, Huang LP, Zhang WQ, Zhang QY, Li QJ, Nie R, Zhang Y, Liang Y, Li-Ling J, Xie HQ. Promotion of uterine reconstruction by a tissue-engineered uterus with biomimetic structure and extracellular matrix microenvironment. SCIENCE ADVANCES 2023; 9:eadi6488. [PMID: 37967178 PMCID: PMC10651121 DOI: 10.1126/sciadv.adi6488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
The recurrence rate for severe intrauterine adhesions is as high as 60%, and there is still lack of effective prevention and treatment. Inspired by the nature of uterus, we have developed a bilayer scaffold (ECM-SPS) with biomimetic heterogeneous features and extracellular matrix (ECM) microenvironment of the uterus. As proved by subtotal uterine reconstruction experiments, the mechanical and antiadhesion properties of the bilayer scaffold could meet the requirement for uterine repair. With the modification with tissue-specific cell-derived ECM, the ECM-SPS had the ECM microenvironment signatures of both the endometrium and myometrium and exhibited the property of inducing stem cell-directed differentiation. Furthermore, the ECM-SPS has recruited more endogenous stem cells to promote endometrial regeneration at the initial stage of repair, which was accompanied by more smooth muscle regeneration and a higher pregnancy rate. The reconstructed uterus could also sustain normal pregnancy and live birth. The ECM-SPS may thereby provide a potential treatment for women with severe intrauterine adhesions.
Collapse
Affiliation(s)
- Long-mei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| | - Lin-cui Da
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Reproductive Center of Fujian Maternity and Child Health Care Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Rui Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Long Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan-lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiu-zhen Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ya-xing Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiong-xin Lei
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu-ting Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chen-yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li-ping Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wen-qian Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qing-yi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qian-jin Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Zhang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Liang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jesse Li-Ling
- Center of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui-qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| |
Collapse
|
23
|
Zhang D, Zhang Y, Xia S, Chen L, Xu W, Huo L, Huang D, Shen P, Yang C. Single-cell RNA sequencing reveals neurovascular-osteochondral network crosstalk during temporomandibular joint osteoarthritis: Pilot study in a human condylar cartilage. Heliyon 2023; 9:e20749. [PMID: 37867837 PMCID: PMC10589861 DOI: 10.1016/j.heliyon.2023.e20749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose Temporomandibular joint osteoarthritis (TMJ-OA) is one of the most complex temporomandibular disorders, causing pain and dysfunction. The main pathological feature of TMJ-OA is neurovascular invasion from the subchondral bone to the condylar cartilage. This study aimed to discover the cells and genes that play an important role in the neurovascular-osteochondral network crosstalk in human TMJ-OA. Materials and methods Condylar cartilages from patient with TMJ-OA were divided into OA group, and others from patients with benign condylar hyperplasia (CH) were used as control for further single-cell RNA-sequencing (scRNA-seq). Hematoxylin and eosin staining were performed. The cells and genes in the condylar cartilage were identified and analyzed by scRNA-seq. Results Histological analysis revealed blood vessel invasion and ossification in the TMJ-OA condylar cartilage. The scRNA-seq identified immune cells, endothelial cells, and chondrocytes in the TMJ-OA condylar cartilage. Macrophages, especially M1-like macrophages, contributed to the inflammation, angiogenesis, and innervation. CD31+ endothelial cells contributed to the bone mineralization. The TMJ-OA cartilage chondrocytes highly expressed genes related to inflammation, angiogenesis, innervation, and ossification. The hub genes contributing to these processes in the TMJ-OA chondrocytes included CTGF, FBN1, FN1, EGFR, and ITGA5. Conclusion Our study marks the first time scRNA-seq was used to identify the cells and genes in a human TMJ-OA condylar cartilage, and neurovascular-osteochondral network crosstalk during the human TMJ-OA process was demonstrated. Targeting the crosstalk of these processes may be a potential comprehensive and effective therapeutic strategy for human TMJ-OA.
Collapse
Affiliation(s)
| | | | - Simo Xia
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, PR China
| | - Lu Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, PR China
| | - Weifeng Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, PR China
| | - Liang Huo
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, PR China
| | - Dong Huang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, PR China
| | - Pei Shen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, PR China
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, PR China
| |
Collapse
|
24
|
Dadashpour M, Mahmoudi H, Rahimi Z, Janghorbanian Poodeh R, Mousazadeh H, Firouzi-Amandi A, Yazdani Y, Nezami Asl A, Akbarzadeh A. Sustained in vitro delivery of metformin-loaded mesoporous silica nanoparticles for delayed senescence and stemness preservation of adipose-derived stem cells. J Drug Deliv Sci Technol 2023; 87:104769. [DOI: 10.1016/j.jddst.2023.104769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
25
|
Jin C, Wang Z, Li P, Tang J, Jiao T, Li Y, Ou J, Zou D, Li M, Mang X, Liu J, Ma Y, Wu X, Shi J, Chen S, He M, Lu Y, Zhang N, Miao S, Sun F, Wang L, Li K, Yu J, Song W. Decoding the spermatogonial stem cell niche under physiological and recovery conditions in adult mice and humans. SCIENCE ADVANCES 2023; 9:eabq3173. [PMID: 37540753 PMCID: PMC10403211 DOI: 10.1126/sciadv.abq3173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/03/2023] [Indexed: 08/06/2023]
Abstract
The intricate interaction between spermatogonial stem cell (SSC) and testicular niche is essential for maintaining SSC homeostasis; however, this interaction remains largely uncharacterized. In this study, to characterize the underlying signaling pathways and related paracrine factors, we delineated the intercellular interactions between SSC and niche cell in both adult mice and humans under physiological conditions and dissected the niche-derived regulation of SSC maintenance under recovery conditions, thus uncovering the essential role of C-C motif chemokine ligand 24 and insulin-like growth factor binding protein 7 in SSC maintenance. We also established the clinical relevance of specific paracrine factors in human fertility. Collectively, our work on decoding the adult SSC niche serves as a valuable reference for future studies on the aetiology, diagnosis, and treatment of male infertility.
Collapse
Affiliation(s)
- Cheng Jin
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University (Foshan Maternity & Child Healthcare Hospital), Foshan 528000, China
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhipeng Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Pengyu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jielin Tang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Tao Jiao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yiran Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jinhuan Ou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Dingfeng Zou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Mengzhen Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yanni Ma
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Center for Stem Cell and Regeneration Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Chengdu 610052, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jie Shi
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Shitao Chen
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Manman He
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Ning Zhang
- Center for Stem Cell and Regeneration Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Chengdu 610052, China
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Linfang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Center for Stem Cell and Regeneration Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Chengdu 610052, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
26
|
Yanli Z, Jiayao M, Chunqing Z, Yuting Z, Zhiyan Z, Yulin Z, Minghan L, Longquan S, Dehong Y, Wenjuan Y. MY-1-Loaded Nano-Hydroxyapatite Accelerated Bone Regeneration by Increasing Type III Collagen Deposition in Early-Stage ECM via a Hsp47-Dependent Mechanism. Adv Healthc Mater 2023; 12:e2300332. [PMID: 36999955 DOI: 10.1002/adhm.202300332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Indexed: 04/01/2023]
Abstract
The extracellular matrix (ECM) plays a crucial part in regulating stem cell function through its distinctive mechanical and chemical effect. Therefore, it is worth studying how to activate the driving force of osteoblast cells by dynamic changing of ECM and accelerate the bone regeneration. In this research, a novel peptide MY-1 is designed and synthesized. To achieve its sustained releasing, the nano-hydroxyapatite (nHA) is chosen as the carrier of MY-1 by mixed adsorption. The results reveal that the sustainable releasing of MY-1 regulates the synthesis and secretion of ECM from rat bone marrow mesenchymal stem cells (rBMSCs), which promotes the cell migration and osteogenic differentiation in the early stage of bone regeneration. Further analyses demonstrate that MY-1 increases the expression and nuclear translocation of β-catenin, and then upregulates the level of heat shock protein 47 (Hsp47), thereby accelerating the synthesis and secretion of type III collagen (Col III) at the early stage. Finally, the promoted rapid transformation of Col III to Col I at late stage benefits the bone regeneration. Hence, this study can provide a theoretical basis for the local application of MY-1 in bone regeneration.
Collapse
Affiliation(s)
- Zhang Yanli
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Mo Jiayao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zheng Chunqing
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zeng Yuting
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhou Zhiyan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhang Yulin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Li Minghan
- Department of Orthopedics - Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Shao Longquan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yang Dehong
- Department of Orthopedics - Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yan Wenjuan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
27
|
Wang R, Wang H, Mu J, Yuan H, Pang Y, Wang Y, Du Y, Han F. Molecular events in the jaw vascular unit: A traditional review of the mechanisms involved in inflammatory jaw bone diseases. J Biomed Res 2023; 37:313-325. [PMID: 37226540 PMCID: PMC10541772 DOI: 10.7555/jbr.36.20220266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 05/26/2023] Open
Abstract
Inflammatory jaw bone diseases are common in stomatology, including periodontitis, peri-implantitis, medication-related osteonecrosis of the jaw, radiation osteomyelitis of the jaw, age-related osteoporosis, and other specific infections. These diseases may lead to tooth loss and maxillofacial deformities, severely affecting patients' quality of life. Over the years, the reconstruction of jaw bone deficiency caused by inflammatory diseases has emerged as a medical and socioeconomic challenge. Therefore, exploring the pathogenesis of inflammatory diseases associated with jaw bones is crucial for improving prognosis and developing new targeted therapies. Accumulating evidence indicates that the integrated bone formation and dysfunction arise from complex interactions among a network of multiple cell types, including osteoblast-associated cells, immune cells, blood vessels, and lymphatic vessels. However, the role of these different cells in the inflammatory process and the 'rules' with which they interact are still not fully understood. Although many investigations have focused on specific pathological processes and molecular events in inflammatory jaw diseases, few articles offer a perspective of integration. Here, we review the changes and mechanisms of various cell types in inflammatory jaw diseases, with the hope of providing insights to drive future research in this field.
Collapse
Affiliation(s)
- Ruyu Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Haoran Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Junyu Mu
- International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yongchu Pang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
- Department of Orthodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
28
|
Liang C, Liao L, Tian W. Advances Focusing on the Application of Decellularized Extracellular Matrix in Periodontal Regeneration. Biomolecules 2023; 13:673. [PMID: 37189420 PMCID: PMC10136219 DOI: 10.3390/biom13040673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
The decellularized extracellular matrix (dECM) is capable of promoting stem cell proliferation, migration, adhesion, and differentiation. It is a promising biomaterial for application and clinical translation in the field of periodontal tissue engineering as it most effectively preserves the complex array of ECM components as they are in native tissue, providing ideal cues for regeneration and repair of damaged periodontal tissue. dECMs of different origins have different advantages and characteristics in promoting the regeneration of periodontal tissue. dECM can be used directly or dissolved in liquid for better flowability. Multiple ways were developed to improve the mechanical strength of dECM, such as functionalized scaffolds with cells that harvest scaffold-supported dECM through decellularization or crosslinked soluble dECM that can form injectable hydrogels for periodontal tissue repair. dECM has found recent success in many periodontal regeneration and repair therapies. This review focuses on the repairing effect of dECM in periodontal tissue engineering, with variations in cell/tissue sources, and specifically discusses the future trend of periodontal regeneration and the future role of soluble dECM in entire periodontal tissue regeneration.
Collapse
Affiliation(s)
| | - Li Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| |
Collapse
|
29
|
Zhao J, Zhou YH, Zhao YQ, Gao ZR, Ouyang ZY, Ye Q, Liu Q, Chen Y, Tan L, Zhang SH, Feng Y, Hu J, Dusenge MA, Feng YZ, Guo Y. Oral cavity-derived stem cells and preclinical models of jaw-bone defects for bone tissue engineering. Stem Cell Res Ther 2023; 14:39. [PMID: 36927449 PMCID: PMC10022059 DOI: 10.1186/s13287-023-03265-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Jaw-bone defects caused by various diseases lead to aesthetic and functional complications, which can seriously affect the life quality of patients. Current treatments cannot fully meet the needs of reconstruction of jaw-bone defects. Thus, the research and application of bone tissue engineering are a "hot topic." As seed cells for engineering of jaw-bone tissue, oral cavity-derived stem cells have been explored and used widely. Models of jaw-bone defect are excellent tools for the study of bone defect repair in vivo. Different types of bone defect repair require different stem cells and bone defect models. This review aimed to better understand the research status of oral and maxillofacial bone regeneration. MAIN TEXT Data were gathered from PubMed searches and references from relevant studies using the search phrases "bone" AND ("PDLSC" OR "DPSC" OR "SCAP" OR "GMSC" OR "SHED" OR "DFSC" OR "ABMSC" OR "TGPC"); ("jaw" OR "alveolar") AND "bone defect." We screened studies that focus on "bone formation of oral cavity-derived stem cells" and "jaw bone defect models," and reviewed the advantages and disadvantages of oral cavity-derived stem cells and preclinical model of jaw-bone defect models. CONCLUSION The type of cell and animal model should be selected according to the specific research purpose and disease type. This review can provide a foundation for the selection of oral cavity-derived stem cells and defect models in tissue engineering of the jaw bone.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ying-Hui Zhou
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.,National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ya-Qing Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Zheng-Rong Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ze-Yue Ouyang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
30
|
Wang Q, Liu J, Yang X, Zhou H, Li Y. Gold nanoparticles enhance proliferation and osteogenic differentiation of periodontal ligament stem cells by PINK1-mediated mitophagy. Arch Oral Biol 2023; 150:105692. [PMID: 37004436 DOI: 10.1016/j.archoralbio.2023.105692] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVE Evidence suggests that gold nanoparticles (AuNPs) improve osteogenic differentiation of periodontal ligament stem cells (PDLSCs), PTEN-induced putative kinase 1 (PINK1) dependent mitophagy modulates inter-clonal communication among PDLSCs with osteogenic heterogeneity, but the mechanism remains vague. Therefore, the current research assessed the influence of AuNPs on proliferation, osteogenic differentiation and mitophagy of PDLSCs and the potential mechanism was analyzed. METHODS Gold nanospheres with a diameter of 5, 10, 20, 40, and 80 nm were synthesized and characterized through transmission electron microscopy, and rat PDLSCs were isolated using flow sorting. Next, PDLSCs were treated with AuNPs or PINK1 lentivirus to obtain its overexpression or suppression. Proliferation and osteogenic differentiation were evaluated by CCK-8, ALP staining, ARS staining, and immunoblotting of OCN, OPN, RUNX2, ALP, BMP2, and COL1. Mitochondrial quality, homeostasis and quantity were assessed though JC-1 staining, immunoblotting of Tom20, Tim23 and HSP60 and mitochondrial ROS detection. PINK1, Parkin, Beclin1 and LC3 expression was quantified to investigate mitophagy, using RT-qPCR and immunoblotting and the formation of RFP-GFP-LC3-labeled autophagosomes were also measured. RESULTS The proliferation ability of PDLSCs almost reached the maximum under 20 nm AuNPs for 24 h. AuNPs enhanced the proliferation and osteogenic differentiation of PDLSCs, improved mitochondrial quality and homeostasis as well as attenuated mitochondrial quantity. Additionally, mitophagy was enhanced by PDLSCs. Activation of PINK1 synergistically enhanced AuNPs-mediated mitophagy, mitochondrial quality, homeostasis and osteogenic differentiation in PDLSCs, obtaining opposite effects when PINK1 was suppressed. CONCLUSION AuNPs enhance proliferation and osteogenic differentiation of PDLSCs through PINK1-mediated mitophagy.
Collapse
|
31
|
Lin H, Wang Q, Quan C, Ren Q, He W, Xiao H. Low-intensity pulsed ultrasound enhances immunomodulation and facilitates osteogenesis of human periodontal ligament stem cells by inhibiting the NF-κB pathway. Cell Tissue Bank 2023; 24:45-58. [PMID: 35644018 PMCID: PMC9148194 DOI: 10.1007/s10561-022-10010-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/22/2022] [Indexed: 01/20/2023]
Abstract
Human periodontal ligament stem cells (hPDLSCs) are vital in cellular regeneration and tissue repair due to their multilineage differentiation potential. Low intensity pulsed ultrasound (LIPUS) has been applied for treating bone and cartilage defects. This study explored the role of LIPUS in the immunomodulation and osteogenesis of hPDLSCs. hPDLSCs were cultured in vitro, and the effect of different intensities of LIPUS (30, 60, and 90 mW/cm2) on hPDLSC viability was measured. hPDLSCs irradiated by LIPUS and stimulated by lipopolysaccharide (LPS) and LIPUS (90 mW/cm2) were co-cultured with peripheral blood mononuclear cells (PBMCs). Levels of immunomodulatory factors in hPDLSCs and inflammatory factors in PBMCs were estimated, along with determination of osteogenesis-related gene expression in LIPUS-irradiated hPDLSCs. The mineralized nodules and alkaline phosphatase (ALP) activity of hPDLSCs and levels of IκBα, p-IκBα, and p65 subunits of NF-κB were determined. hPDLSC viability was increased as LIPUS intensity increased. Immunomodulatory factors were elevated in LIPUS-irradiated hPDLSCs, and inflammatory factors were reduced in PBMCs. Osteogenesis-related genes, mineralized nodules, and ALP activity were promoted in LIPUS-irradiated hPDLSCs. The cytoplasm of hPDLSCs showed increased IκBα and p65 and decreased p-IκBα at increased LIPUS intensity. After LPS and LIPUS treatment, the inhibitory effect of LIPUS irradiation on the NF-κB pathway was partially reversed, and the immunoregulation and osteogenic differentiation of hPDLSCs were decreased. LIPUS irradiation enhanced immunomodulation and osteogenic differentiation abilities of hPDLSCs by inhibiting the NF-κB pathway, and the effect is dose-dependent. This study may offer novel insights relevant to periodontal tissue engineering.
Collapse
Affiliation(s)
- Haiyan Lin
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Road, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China
- Department of Orthodontics, Nanning Angel Stomatological Hospital, No. 20-1, Xinmin Road, Nanning, 530029, Guangxi, People's Republic of China
| | - Qing Wang
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Road, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China
| | - Chuntian Quan
- Department of Orthodontics, Nanning Angel Stomatological Hospital, No. 20-1, Xinmin Road, Nanning, 530029, Guangxi, People's Republic of China
| | - Qingyuan Ren
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Road, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China
| | - Wulin He
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Road, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China.
| | - Hui Xiao
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Road, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China.
| |
Collapse
|
32
|
Ahmadi S, Dadashpour M, Abri A, Zarghami N. Long-term proliferation and delayed senescence of bone marrow-derived human mesenchymal stem cells on metformin co-embedded HA/Gel electrospun composite nanofibers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Xie Q, Lv H, Wang T, Sun J, Li Y, Niu Y, Xie W. Identifying Common Genes and Pathways Associated with Periodontitis and Aging by Bioinformatics Analysis. DISEASE MARKERS 2022; 2022:4199440. [PMID: 36438900 PMCID: PMC9691312 DOI: 10.1155/2022/4199440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 09/29/2023]
Abstract
BACKGROUND This work used bioinformatic analysis to identify the relationship between periodontitis (PD) and aging, which could lead to new treatments for periodontal disease in the elderly. METHOD Four microarray datasets were obtained from the Gene Expression Omnibus (GEO) database and analyzed in R language to identify differentially expressed genes (DEGs). The common DEGs of PD and aging were evaluated as key genes in this investigation by a Venn diagram. These common DEGs were analyzed through additional experiments and analysis, such as pathway analysis and enrichment analysis, and a network of protein-protein interactions (PPIs) was constructed. Cytoscape was used to visualize hub genes and critical modules based on the PPI network. Interaction of TF-genes and miRNAs with hub genes is identified. RESULT 84 common DEGs were found between PD and aging. Cytohubba was performed on the PPI network obtained from STRING tool, and the top 10 genes (MMP2, PDGFRB, CTGF, CD34, CXCL12, VIM, IL2RG, ACTA2, COL4A2, and TAGLN) were selected as hub genes. VIM may be a potential biomarker in the analysis of linked hub gene regulatory networks, and hsa-mir-21 and hsa-mir-125b are predicted to be associated in PD and aging. CONCLUSION This study investigated the key genes and pathways interactions between PD and aging, which may help reveal the correlation between PD and aging. The current research results are obtained by prediction, and follow-up biological experiments are required for further verification.
Collapse
Affiliation(s)
- Qi Xie
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
- Department of Stomatology, Harbin Children's Hospital, Harbin, Heilongjiang 150001, China
| | - Hongyu Lv
- Department of Prosthodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Tianqi Wang
- Department of Prosthodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Jingxuan Sun
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yuekun Li
- Department of Prosthodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yumei Niu
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Weili Xie
- Department of Prosthodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| |
Collapse
|
34
|
Al-Hakim Khalak F, García-Villén F, Ruiz-Alonso S, Pedraz JL, Saenz-del-Burgo L. Decellularized Extracellular Matrix-Based Bioinks for Tendon Regeneration in Three-Dimensional Bioprinting. Int J Mol Sci 2022; 23:12930. [PMID: 36361719 PMCID: PMC9657326 DOI: 10.3390/ijms232112930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/08/2023] Open
Abstract
In the last few years, attempts to improve the regeneration of damaged tendons have been rising due to the growing demand. However, current treatments to restore the original performance of the tissue focus on the usage of grafts; although, actual grafts are deficient because they often cannot provide enough support for tissue regeneration, leading to additional complications. The beneficial effect of combining 3D bioprinting and dECM as a novel bioink biomaterial has recently been described. Tendon dECMs have been obtained by using either chemical, biological, or/and physical treatments. Although decellularization protocols are not yet standardized, recently, different protocols have been published. New therapeutic approaches embrace the use of dECM in bioinks for 3D bioprinting, as it has shown promising results in mimicking the composition and the structure of the tissue. However, major obstacles include the poor structural integrity and slow gelation properties of dECM bioinks. Moreover, printing parameters such as speed and temperature have to be optimized for each dECM bioink. Here, we show that dECM bioink for 3D bioprinting provides a promising approach for tendon regeneration for future clinical applications.
Collapse
Affiliation(s)
- Fouad Al-Hakim Khalak
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
| | - Fátima García-Villén
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
| | - Laura Saenz-del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
35
|
Epigenetic Regulation of Methylation in Determining the Fate of Dental Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:5015856. [PMID: 36187229 PMCID: PMC9522499 DOI: 10.1155/2022/5015856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are crucial in tooth development and periodontal health, and their multipotential differentiation and self-renewal ability play a critical role in tissue engineering and regenerative medicine. Methylation modifications could promote the appropriate biological behavior by postsynthetic modification of DNA or protein and make the organism adapt to developmental and environmental prompts by regulating gene expression without changing the DNA sequence. Methylation modifications involved in DMSC fate include DNA methylation, RNA methylation, and histone modifications, which have been proven to exert a significant effect on the regulation of the fate of DMSCs, such as proliferation, self-renewal, and differentiation potential. Understanding the regulation of methylation modifications on the behavior and the immunoinflammatory responses involved in DMSCs contributes to further study of the mechanism of methylation on tissue regeneration and inflammation. In this review, we briefly summarize the key functions of histone methylation, RNA methylation, and DNA methylation in the differentiation potential and self-renewal of DMSCs as well as the opportunities and challenges for their application in tissue regeneration and disease therapy.
Collapse
|
36
|
Xu F, Zheng Z, Yao M, Zhu F, Shen T, Li J, Zhu C, Yang T, Shao M, Wan Z, Fang C. A regulatory mechanism of a stepwise osteogenesis-mimicking decellularized extracellular matrix on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells. J Mater Chem B 2022; 10:6171-6180. [PMID: 35766339 DOI: 10.1039/d2tb00721e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cell-derived decellularized extracellular matrix (dECM) plays a vital role in controlling cell functions because of its similarity to the in vivo microenvironment. In the process of stem cell differentiation, the composition of the dECM is not constant but is dynamically remolded. However, there is little information regarding the dynamic regulation by the dECM of the osteogenic differentiation of stem cells. Herein, four types of stepwise dECMs (0, 7, 14, and 21 d-ECM) were prepared from bone marrow-derived mesenchymal stem cells (BMSCs) undergoing osteogenic differentiation for 0, 7, 14, and 21 days after decellularization. In vitro experiments were designed to study the regulation of BMSC osteogenesis by dECMs. The results showed that all the dECMs could support the activity and proliferation of BMSCs but had different effects on their osteogenic differentiation. The 14d-ECM promoted the osteogenesis of BMSCs significantly compared with the other dECMs. Proteomic analysis demonstrated that the composition of dECMs changed over time. The 14d ECM had higher amounts of collagen type IV alpha 2 chain (COL4A2) than the other dECMs. Furthermore, COL4A2 was obviously enriched in the activated focal adhesion kinase (FAK)/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways. Thus, the 14d-ECM could promote the osteogenic differentiation of BMSCs, which might be related to the high content of COL4A2 in the 14d-ECM by activating the FAK/PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Fei Xu
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Ziran Zheng
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Mianfeng Yao
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Feiya Zhu
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.
| | - Ting Shen
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.
| | - Jiang Li
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Chao Zhu
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Tianru Yang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.
| | - Mengying Shao
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.
| | - Zicheng Wan
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Changyun Fang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| |
Collapse
|
37
|
PLGA Containing Human Adipose-Derived Stem Cell-Derived Extracellular Vesicles Accelerates the Repair of Alveolar Bone Defects via Transfer of CGRP. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4815284. [PMID: 35726333 PMCID: PMC9206573 DOI: 10.1155/2022/4815284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023]
Abstract
Calcitonin gene-related peptide (CGRP) is an important neuropeptide expressed in the nerve fibers during bone repair. Here, we aimed to pinpoint the role of CGRP in the osteogenic differentiation property of human periodontal ligament stem cells (hPDLSCs) and the resultant repair of alveolar bone defect. The key factor related to the osteogenic differentiation of hPDLSCs was retrieved from the GEO database. After extraction from hADSCs (hADSC-EVs) and identification, EVs were subjected to coculture with hPDLSCs, in which the expression patterns of CGRP and osteogenic differentiation marker proteins (ALP, RUNX2, and OCN), as well as ALP activity, were detected. A novel cell-free tissue-engineered bone (TEB) comprised of PLGA/pDA and hADSC-EVs was implanted into the rats with alveolar bone defects to evaluate the repair of alveolar bone defects. CGRP was enriched in hADSC-EVs. hADSCs delivered CGRP to hPDLSCs through EVs, thereby promoting the osteogenic differentiation potential of hPDLSCs. The PLGA/pDA-EV scaffold released EVs slowly, and its implantation into the rat alveolar bone defect area significantly induced bone defect repair, which was reversed by further knockdown of CGRP. In conclusion, our newly discovered cell-free system consisted of hADSC-EVs, and PLGA/pDA scaffold shows promising function in repairing alveolar bone defects.
Collapse
|
38
|
Zeng A, Li H, Liu J, Wu M. The Progress of Decellularized Scaffold in Stomatology. Tissue Eng Regen Med 2022; 19:451-461. [PMID: 35320505 PMCID: PMC9130370 DOI: 10.1007/s13770-022-00432-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 10/18/2022] Open
Abstract
The oral and maxillofacial region contains oral organs and facial soft tissues. Due to the complexity of the structures and functions of this region, the repair of related defects is complicated. Different degrees of defects require different repair methods, which involve a great combination of medicine and art, and the material requirements are extremely high. Hence, clinicians are plagued by contemporary oral repair materials due to the limitations of bone harvesting, immune rejection, low osteogenic activity and other problems. Decellularized extracellular matrix has attracted much attention as a bioactive scaffold material because of its nonimmunogenic properties, good osteogenic properties, slow release of growth factors, promotion of seed cell adhesion and maintenance of stem cell characteristics. This article reviews the sources, preparation methods, application and research progress of extracellular matrix materials in the repair of oral and maxillofacial defects to provide an overview for fundamental research and clinical development.
Collapse
Affiliation(s)
- Ailin Zeng
- School of Stomatology, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, 563006, Guizhou, China
| | - Huiru Li
- School of Stomatology, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, 563006, Guizhou, China
| | - Jianguo Liu
- School of Stomatology, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, 563006, Guizhou, China.
- Special Key Laboratory of Oral Disease Research of Higher Education Institution of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Mingsong Wu
- School of Stomatology, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, 563006, Guizhou, China.
- Special Key Laboratory of Oral Disease Research of Higher Education Institution of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
39
|
Chen Y, Huang H, Li G, Yu J, Fang F, Qiu W. Dental-derived mesenchymal stem cell sheets: a prospective tissue engineering for regenerative medicine. Stem Cell Res Ther 2022; 13:38. [PMID: 35093155 PMCID: PMC8800229 DOI: 10.1186/s13287-022-02716-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Stem cells transplantation is the main method of tissue engineering regeneration treatment, the viability and therapeutic efficiency are limited. Scaffold materials also play an important role in tissue engineering, whereas there are still many limitations, such as rejection and toxic side effects caused by scaffold materials. Cell sheet engineering is a scaffold-free tissue technology, which avoids the side effects of traditional scaffolds and maximizes the function of stem cells. It is increasingly being used in the field of tissue regenerative medicine. Dental-derived mesenchymal stem cells (DMSCs) are multipotent cells that exist in various dental tissues and can be used in stem cell-based therapy, which is impactful in regenerative medicine. Emerging evidences show that cell sheets derived from DMSCs have better effects in the field of regenerative medicine applications. Extracellular matrix (ECM) is the main component of cell sheets, which is a dynamic repository of signalling biological molecules and has a variety of biological functions and may play an important role in the application of cell sheets. In this review, we summarized the application status, mechanisms that sheets and ECM may play and future prospect of DMSC sheets on regeneration medicine.
Collapse
|
40
|
Nowwarote N, Petit S, Ferre FC, Dingli F, Laigle V, Loew D, Osathanon T, Fournier BPJ. Extracellular Matrix Derived From Dental Pulp Stem Cells Promotes Mineralization. Front Bioeng Biotechnol 2022; 9:740712. [PMID: 35155398 PMCID: PMC8829122 DOI: 10.3389/fbioe.2021.740712] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Extracellular matrix (ECM) plays a pivotal role in many physiological processes. ECM macromolecules and associated factors differ according to tissues, impact cell differentiation, and tissue homeostasis. Dental pulp ECM may differ from other oral tissues and impact mineralization. Thus, the present study aimed to identify the matrisome of ECM proteins derived from human dental pulp stem cells (DPSCs) and its ability to regulate mineralization even in cells which do not respond to assaults by mineralization, the human gingival fibroblasts (GF). Methods: ECM were extracted from DPSCs cultured in normal growth medium supplemented with L-ascorbic acid (N-ECM) or in osteogenic induction medium (OM-ECM). ECM decellularization (dECM) was performed using 0.5% triton X-100 in 20 mM ammonium hydroxide after 21 days. Mass spectrometry and proteomic analysis identified and quantified matrisome proteins. Results: The dECM contained ECM proteins but lacked cellular components and mineralization. Interestingly, collagens (COL6A1, COL6A2, and COL6A3) and elastic fibers (FBN1, FBLN2, FN1, and HSPG2) were significantly represented in N-ECM, while annexins (ANXA1, ANXA4, ANXA5, ANXA6, ANXA7, and ANXA11) were significantly overdetected in OM-ECM. GF were reseeded on N-dECM and OM-dECM and cultured in normal or osteogenic medium. GF were able to attach and proliferate on N-dECM and OM-dECM. Both dECM enhanced mineralization of GF at day 14 compared to tissue culture plate (TCP). In addition, OM-dECM promoted higher mineralization of GF than N-dECM although cultured in growth medium. Conclusions: ECM derived from DPSCs proved to be osteoinductive, and this knowledge supported cell-derived ECM can be further utilized for tissue engineering of mineralized tissues.
Collapse
Affiliation(s)
- Nunthawan Nowwarote
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Molecular Oral Pathophysiology, Université de Paris, Sorbonne Université, Paris, France
- Department of Oral Biology, Dental Faculty Garancière, Université de Paris, Paris, France
| | - Stephane Petit
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Molecular Oral Pathophysiology, Université de Paris, Sorbonne Université, Paris, France
| | - Francois Come Ferre
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Molecular Oral Pathophysiology, Université de Paris, Sorbonne Université, Paris, France
| | - Florent Dingli
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, PSL Research University, Paris, France
| | - Victor Laigle
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, PSL Research University, Paris, France
| | - Damarys Loew
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, PSL Research University, Paris, France
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Thanaphum Osathanon, ; Benjamin P. J. Fournier,
| | - Benjamin P. J. Fournier
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Molecular Oral Pathophysiology, Université de Paris, Sorbonne Université, Paris, France
- Department of Oral Biology, Dental Faculty Garancière, Université de Paris, Paris, France
- *Correspondence: Thanaphum Osathanon, ; Benjamin P. J. Fournier,
| |
Collapse
|
41
|
Peptide Nanoparticle-Mediated Combinatorial Delivery of Cancer-Related siRNAs for Synergistic Anti-Proliferative Activity in Triple Negative Breast Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14100957. [PMID: 34681181 PMCID: PMC8540820 DOI: 10.3390/ph14100957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
Triple negative breast cancer (TNBC) is one of the deadliest types of cancer for women of different age groups. Frequently this cancer does not respond to conservative treatment. Combinatorial RNAi can be suggested as an advanced approach to TNBC therapy. Due to the fact that TNBC cells overexpress chemokine receptor 4 we used modular L1 peptide-based nanoparticles modified with CXCR4 ligand for combinatorial delivery of siRNAs suppressing major transduction pathways. TNBC cell line MDA-MB-231 was used as a cellular model. Genes encoding the AQP3, CDC20, and COL4A2 proteins responsible for proliferative activity in TNBC cells were selected as RNAi targets. The siRNA binding ability of the carrier was studied at different charge ratios. The silencing specificity was demonstrated for all siRNAs studied. Alamar Blue proliferation assay has shown significant reduction in the anti-proliferative activity after combinatorial siRNA transfection compared to single siRNA delivery. The most significant synergistic effect has been demonstrated for combinatorial transfection of anti-COL4A2 and anti-CDC20 siRNAs what resulted in 1.5-2 fold inhibition of proliferation and migration of TNBC cells. Based on our findings, we have concluded that combinatorial treatment by CXCR4-ligand modified L1-polyplexes formed with AQP3, CDC20, and COL4A2 siRNAs effectively inhibits proliferation of TNBC cells and can be suggested as useful tool for RNAi-mediated cancer therapy.
Collapse
|
42
|
Comparative Transcriptome Analysis Revealed Genes Involved in Sexual and Polyploid Growth Dimorphisms in Loach ( Misgurnus anguillicaudatus). BIOLOGY 2021; 10:biology10090935. [PMID: 34571812 PMCID: PMC8468957 DOI: 10.3390/biology10090935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Misgurnus anguillicaudatus not only exhibits sexual size dimorphism, but also shows polyploid size dimorphism. Here, we performed comparative transcriptome integration analysis of multiple tissues of diploid and tetraploid M. anguillicaudatus of both sexes. We found that differences in energy metabolism and steroid hormone synthesis levels may be the main causes of sexual and polyploidy growth dimorphisms of M. anguillicaudatus. Fast-growing M. anguillicaudatus (tetraploids, females) have higher levels of energy metabolism and lower steroid hormone synthesis and fatty acid degradation abilities than slow-growing M. anguillicaudatus (diploids, males). Abstract Sexual and polyploidy size dimorphisms are widespread phenomena in fish, but the molecular mechanisms remain unclear. Loach (Misgurnus anguillicaudatus) displays both sexual and polyploid growth dimorphism phenomena, and are therefore ideal models to study these two phenomena. In this study, RNA-seq was used for the first time to explore the differentially expressed genes (DEGs) between both sexes of diploid and tetraploid loaches in four tissues (brain, gonad, liver, and muscle). Results showed that 21,003, 17, and 1 DEGs were identified in gonad, liver, and muscle tissues, respectively, between females and males in both diploids and tetraploids. Regarding the ploidy levels, 4956, 1496, 2187, and 1726 DEGs were identified in the brain, gonad, liver, and muscle tissues, respectively, between tetraploids and diploids of the same sex. When both sexual and polyploid size dimorphisms were considered simultaneously in the four tissues, only 424 DEGs were found in the gonads, indicating that these gonadal DEGs may play an important regulatory role in regulating sexual and polyploid size dimorphisms. Regardless of the sex or ploidy comparison, the significant DEGs involved in glycolysis/gluconeogenesis and oxidative phosphorylation pathways were upregulated in faster-growing individuals, while steroid hormone biosynthesis-related genes and fatty acid degradation and elongation-related genes were downregulated. This suggests that fast-growing loaches (tetraploids, females) have higher energy metabolism levels and lower steroid hormone synthesis and fatty acid degradation abilities than slow-growing loaches (diploids, males). Our findings provide an archive for future systematic research on fish sexual and polyploid dimorphisms.
Collapse
|
43
|
Transcriptome Analysis of Egg Yolk Sialoglycoprotein on Osteogenic Activity in MC3T3-E1 Cells. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, the effects of egg yolk sialoglycoprotein (EYG) on osteogenesis in MC3T3-E1 cells were investigated and the DEGs (differentially expressed genes) were explored by transcriptome analysis. The results found that EYG effectively increased cell proliferation, enhanced ALP activity, promoted the secretion of extracellular matrix protein COL-I and OCN, enhanced bone mineralization activity, exhibiting good osteogenic activity. Further study of the mechanism was explored through transcriptome analysis. Transcriptome analysis showed that 123 DEGs were triggered by EYG, of which 78 genes were downregulated and 45 genes were upregulated. GO (gene ontology) analysis showed that EYG mainly caused differences in gene expression of biological processes and cell composition categories in the top 30 most enriched items. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that EYG inhibited inflammatory factors and downregulated inflammation-related pathways. The results also showed EYG regulated such genes as COL2A1, COL4A1 and COL4A2 to up-regulate pathways including ECM–receptor interaction, focal adhesion and protein digestion and absorption, enhancing the proliferation and differentiation of osteoblasts. Gene expression of COL-I, Runx2, BMP2 and β-catenin was determined by qRT-PCR for verification, which found that EYG significantly increased COL-I, Runx2, BMP2 and β-catenin gene expression, suggesting that BMP-2 mediated osteogenesis pathway was activated.
Collapse
|
44
|
Chen W, Su J, Cai S, Shi C. Cullin3 aggravates the inflammatory response of periodontal ligament stem cells via regulation of SHH signaling and Nrf2. Bioengineered 2021; 12:3089-3100. [PMID: 34193016 PMCID: PMC8806625 DOI: 10.1080/21655979.2021.1943603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It is found that the activation of Sonic Hedgehog (SHH) signaling pathway is related to the degree of inflammation in patients suffering from periodontitis. Cullin3 (CUL3), an important ubiquitin ligase, can control SHH signaling. In this study, we were dedicated to clarify the roles of SHH and CUL3 in P. gingivalis-LPS (Pg-LPS)-treated periodontal ligament stem cells (PDLSCs). In this study, cell viability was detected using cell counting kit-8 (CCK-8). The inflammatory cytokines of PDLSCs were estimated by enzyme-linked immunosorbent assay (ELISA). With the application of western blots, the protein levels of SHH, Gli1 and NF-E2-related factor 2 (Nrf2) were determined. Alkaline phosphatase staining and Alizarin red staining were performed to evaluate the differentiation and mineralization capabilities of PDLSCs. The apoptotic cells were screened using TUNEL staining. The results showed that Pg-LPS inhibited cell viability and triggered inflammation of PDLSCs. Overexpression of CUL3 weakened the differentiation and mineralization capabilities of PDLSCs. Moreover, CUL3 overexpression aggravated inflammation and cell apoptosis induced by Pg-LPS. It is worth noting that although the protein levels of SHH, Gli1 and Nrf2 were elevated in PDLSCs treated with Pg-LPS, overexpression of CUL3 decreased the expressions of Gli1 and Nrf2. Overall, SHH/Gli1 and Nrf2 were involved in the inflammation and cell apoptosis of PDLSCs, which was dominated by CUL3.
Collapse
Affiliation(s)
- Wanhong Chen
- Department of Stomatology, Quanzhou First Hospital, Quanzhou, Fujian, China
| | - Jiangling Su
- Department of Stomatology, Quanzhou First Hospital, Quanzhou, Fujian, China
| | - Shixiong Cai
- Department of Stomatology, Quanzhou First Hospital, Quanzhou, Fujian, China
| | - Chun Shi
- Department of Endodontics and Periodontics, School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
45
|
Cao Y, Wang Y, Li C, Jiang Q, Zhu L. Effect of TNF-α on the proliferation and osteogenesis of human periodontal mesenchymal stem cells. Exp Ther Med 2021; 21:434. [PMID: 33747173 PMCID: PMC7967876 DOI: 10.3892/etm.2021.9851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/24/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of the present study was to investigate the effect of tumor necrosis factor-α (TNF-α) on the proliferation and osteogenesis of human periodontal mesenchymal stem cells (hPDLSCs). Antigen expression in hPDLSCs was detected by flow cytometry. hPDLSCs were divided into four groups: A control group with no TNF-α treatment, and three experimental groups treated with 0.1, 1 and 10 ng/ml TNF-α, respectively. The effect of TNF-α on proliferation of hPDLSCs in vitro was detected using a Cell Counting Kit-8 assay. Differentiation into an osteogenic lineage was detected by alkaline phosphatase sand alizarin red staining, and the mRNA and protein expression levels of runt-related transcription factor 2 (Runx2), osteocalcin (OCN) and type I collagen (Col-I) were detected using reverse transcription-quantitative PCR and western blot respectively. Following treatment with 10 ng/ml TNF-α, proliferation was significantly increased compared with an untreated control group (P<0.01). Additionally, there was a significant inhibition of alkaline phosphatase enzyme activity, alizarin red mineralization node size, and in the gene and protein expression levels of osteogenic differentiation markers, including Runx2, OCN and COL-I (all, P<0.05). Taken together, the results indicated that treatment with 10 ng/ml TNF-α promoted the proliferation of hPDLSCs in vitro and inhibited osteogenic differentiation of hPDLSCs, providing an experimental basis for regulation of hPDLSC-mediated periodontal tissue regeneration.
Collapse
Affiliation(s)
- Yiting Cao
- Department of Pediatric Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Yiwei Wang
- Department of Oral Medicine, Huaian Stomatological Hospital, Huai'an, Jiangsu 223300, P.R. China
| | - Chenlin Li
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Qian Jiang
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Laikuan Zhu
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| |
Collapse
|
46
|
Zhang L, Cheng L, Cui Y, Wu Z, Cai L, Yang L, Duan M, Zhang D, Zhou C, Xie J. The virulence factor GroEL directs the osteogenic and adipogenic differentiation of human periodontal ligament stem cells through the involvement of JNK/MAPK and NF-κB signaling. J Periodontol 2021; 92:103-115. [PMID: 33913537 DOI: 10.1002/jper.20-0869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE GroEL, a bacterial metabolite, is an important stimulator of inflammation. The aim of this study is to confirm the effect of the virulence factor GroEL on differentiation potential of periodontal ligament (PDL) stem cells (PDLSCs) and the potential mechanisms. METHODS PDLSCs were obtained from extracted human premolars. GroEL was administered to osteogenic- and adipogenic-induced hPDLSCs. Alkaline phosphatase (ALP) staining, Alizarin Red staining and Oil Red staining were performed. Gene and protein expression were separately measured by qPCR and Western blotting. The expression and localization of activated signaling factors were confirmed by immunofluorescence staining. The inhibitors of myeloid differentiation factor 88 (MyD88, an adaptor protein of TLRs), JNK/MAPK and NF-κB signaling were used to verify their specific effects. RESULTS First, we found that GroEL inhibited the osteogenic differentiation and enhanced the adipogenic differentiation of hPDLSCs. Next, we found that GroEL increased the expression of TLR2 and TLR4 and GroEL activated JNK/MAPK and NF-κB signaling, which can be blocked by inhibition of MyD88. Finally, we found that inhibition of MyD88 restored GroEL-induced osteogenic and adipogenic differentiation and blocking JNK/MAPK or NF-κB signaling partly restored GroEL effects. CONCLUSION In the current study, we revealed a potential interaction between bacteria and host cells by showing that GroEL directs the osteogenic and adipogenic differentiation of hPDLSCs by the involvement of JNK/MAPK and NF-κB signaling. This study provides evidence that bacterial products can influence the differentiation of stem cells and reveals potential effect of GroEL on the context of tissue regeneration.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zuping Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Zhou M, Hu H, Han Y, Li J, Zhang Y, Tang S, Yuan Y, Zhang X. Long non-coding RNA 01126 promotes periodontitis pathogenesis of human periodontal ligament cells via miR-518a-5p/HIF-1α/MAPK pathway. Cell Prolif 2021; 54:e12957. [PMID: 33231338 PMCID: PMC7791173 DOI: 10.1111/cpr.12957] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/10/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Periodontitis is a prevalent oral inflammatory disease, which can cause periodontal ligament to a local hypoxia environment. However, the mechanism of hypoxia associated long non-coding RNAs (lncRNAs) involved in periodontitis is still largely unknown. METHODS Microarray was performed to detect the expression patterns of lncRNAs in 3 pairs of gingival tissues from patients with periodontitis and healthy controls. The expression of lncRNA 01126 (LINC01126), miR-518a-5p and hypoxia-inducible factor-1α (HIF-1α) in periodontal tissues and in human periodontal ligament cells (hPDLCs) under hypoxia was measured by quantitative real-time polymerase chain reaction or western blot. Fluorescence in situ hybridization and cell fraction assay were performed to determine the subcellular localization of LINC01126 and miR-518a-5p. Overexpression or knockdown of LINC01126 or HIF-1α was used to confirm their biological roles in hPDLCs. MTT assays were performed to evaluate hPDLCs proliferation ability. Flow cytometry was used to detect apoptosis. ELISA was used to measure the expression levels of interleukin (IL)-1β, IL-6, IL-8 and TNF-α. Dual-luciferase reporter assays were performed to assess the binding of miR-518a-5p to LINC01126 and HIF-1α. RNA immunoprecipitation assay was used to identify whether LINC01126 and miR-518a-5p were significantly enriched in AGO-containing micro-ribonucleoprotein complexes. RESULTS We selected LINC01126, which was the most highly expressed lncRNA, to further verify its functions in periodontitis-induced hypoxia. The expression of LINC01126 was increased in periodontal tissues. In vitro experiment demonstrated that LINC01126 suppressed proliferation, promoted apoptosis and inflammation of hPDLCs under hypoxia via sponging miR-518a-5p. Moreover, we identified HIF-1α acted as a direct target of miR-518a-5p in hPDLCs and LINC01126 promoted periodontitis pathogenesis by regulating the miR-518a-5p/HIF-1α/MAPK pathway. CONCLUSION LINC01126 promotes periodontitis pathogenesis of hPDLCs via miR-518a-5p/HIF-1α/MAPK pathway, providing a possible clue for LINC01126-based periodontal therapeutic approaches.
Collapse
Affiliation(s)
- Mi Zhou
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Hui Hu
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Yineng Han
- Department of Oral and Maxillofacial SurgeryPeking University School and Hospital of StomatologyBeijingChina
| | - Jie Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Yang Zhang
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
| | - Song Tang
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
| | - Yu Yuan
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
| | - Xiaonan Zhang
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| |
Collapse
|
48
|
Sui L, Wang J, Xiao Z, Yang Y, Yang Z, Ai K. ROS-Scavenging Nanomaterials to Treat Periodontitis. Front Chem 2020; 8:595530. [PMID: 33330384 PMCID: PMC7672210 DOI: 10.3389/fchem.2020.595530] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
The incidence of periodontitis is very high, and up to 45-50% of people are suffering from periodontitis. Periodontitis is caused by pathogens that invade teeth-supporting tissues such as gingiva, periodontal ligament, and alveolar bone. Pathogens trigger host immune responses characterized by the overproduction of reactive oxygen species (ROS). The development of effective ROS scavengers through nanotechnology has been emerging as a promising strategy for the treatment of periodontitis. Nanomaterial-based antioxidants can effectively scavenge ROS, prevent ROS-mediated tissue damage, and relieve inflammation in periodontitis. This mini-review focuses on the generation of ROS in periodontitis and its molecular mechanism of destroying periodontal tissue. Meanwhile, we summarize the research progress of ROS-scavenging nanomaterials in the treatment of periodontitis and discuss the challenges and prospects of its application.
Collapse
Affiliation(s)
- Lihua Sui
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jianling Wang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zuoxiu Xiao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yuqi Yang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhichun Yang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, China
| | - Kelong Ai
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, China
| |
Collapse
|
49
|
Azam Bozorgi Zarrini, Bozorgi M, Khazaei M, Soleimani M. Decellularized Extracellular Matrices in Bone Tissue Engineering: From Cells to Tissues. Mini-Review. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s1990519x20060127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
50
|
Wu D, Ma L. Downregulating microRNA-152-3p promotes the viability and osteogenic differentiation of periodontal ligament stem cells via targeting integrin alpha 5. Arch Oral Biol 2020; 120:104930. [PMID: 33059275 DOI: 10.1016/j.archoralbio.2020.104930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the role of microRNA-152-3p (miR-152-3p) in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs). DESIGN HPDLSCs were isolated and identified using immunofluorescence staining, and their osteogenic differentiation capability was evaluated by alkaline phosphatase staining and Alizarin Red staining. HPDLSC viability was measured using cell counting kit-8. alkaline phosphatase level in hPDLSCs was measured by enzyme-linked immunosorbent assay. Target gene and potential binding sites between miR-152-3p and integrin alpha 5 (ITGA5) were predicted using TargetScan and confirmed by dual-luciferase reporter assay. Relative expressions of miR-152-3p and factors related to hPDLSC osteogenic differentiation were measured by quantitative real-time polymerase chain reaction and Western blot as needed. RESULTS Collected cells were observed and identified as hPDLSCs. MiR-152-3p expression was downregulated during hPDLSC osteogenic differentiation in a time-dependent manner, and downregulating miR-152-3p promoted cell viability, enhanced alkaline phosphatase level, and increased the expressions of genes related to hPDLSC osteogenic differentiation. ITGA5 was the target gene of miR-152-3p and ITGA5 expression was upregulated during osteogenic differentiation in a time-dependent manner. Silencing ITGA5 partially reversed the effects of downregulating miR-152-3p on hPDLSCs. CONCLUSION Downregulating miR-152-3p may promote hPDLSC viability and osteogenic differentiation via targeting ITGA5, and have potential effects on periodontal and alveolar bone regeneration.
Collapse
Affiliation(s)
- Di Wu
- Department of Stomatology, Jingmen No. 1 People's Hospital, Jingmen City, Hubei Province, 448000, China
| | - Lan Ma
- Department of Stomatology, Jingmen No. 1 People's Hospital, Jingmen City, Hubei Province, 448000, China.
| |
Collapse
|