1
|
Tang W, Xie D, Wang X, Liu G, Huang G. Design and decoration of copper nanoparticles into lignosulfonate-starch bionanocomposite: Characterization and evaluation of its therapeutic properties on burn wound. Int J Biol Macromol 2024; 278:134389. [PMID: 39098681 DOI: 10.1016/j.ijbiomac.2024.134389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
In this report, eco-friendly synthesis for the production of copper nanoparticles by employing the sodium lignosulfonate (NaLS) mixed starch composite (NaLS-Starch/Cu NPs). NaLS-Starch mixed hydrogel has notable reducing and stabilizing potential for preparation of Cu nanoparticles. Characterization of NaLS-Starch/Cu NPs bionanocomposite was subjected to analysis of spectroscopic and microscopic techniques, including FE-SEM, TEM, EDS-elemental mapping, particle size distribution, XRD and ICP. TEM images displayed the spherical structured NaLS-Starch/Cu NPs, averaging 5-10 nm size. NaLS-Starch/Cu NPs were applied to cure the induced burn wounds in 60 Wistar rats. A group was considered as control group. The animals were treated with basal, tetracycline 3 % and NaLS-Starch/Cu NPs 3 % for 30 days and the treatment efficacy was determined according to the burn wound area reduction and molecular and histological characteristics. Taken together, these results support therapeutic use of NaLS-Starch/Cu NPs as potent ointment that may be proposed for burn wound healing. NaLS-Starch/Cu NPs ointment increased the levels of platelet-derived growth factors (PDGF) and fibroblast growth factor (bFGF). The mean wound surface, in all groups treated by NaLS-Starch/Cu NPs was larger than control group.
Collapse
Affiliation(s)
- Wenwen Tang
- Department of Medical Cosmetology and Burn & Plastic Surgery, Shanxi Bethune Hospital, No. 99 Longcheng Road, Taiyuan City, Shanxi Province 030000, China
| | - Dong Xie
- Department of Thoracic Surgery, Traditional Chinese medical hospital of Huangdao District Qingdao, Qingdao, Shandong, 266500, China
| | - Xinli Wang
- Department of Neurosurgery, The Fourth People's Hospital of Jinan, No.50, Shifan Road, Tianqiao District, Jinan, 250000, China
| | - Guiyang Liu
- Department of Neurosurgery, The Fourth People's Hospital of Jinan, No.50, Shifan Road, Tianqiao District, Jinan, 250000, China
| | - Guobao Huang
- Department of Burn and Plastic Surgery, Central Hospital Affiliated to Shandong First Medical University, No.105, Jiefang Road, Lixia District, Jinan 250013, Shandong, China.
| |
Collapse
|
2
|
Chen M, Tong X, Sun Y, Dong C, Li C, Wang C, Zhang M, Wen Y, Ye P, Li R, Wan J, Liang S, Shi S. A ferroptosis amplifier based on triple-enhanced lipid peroxides accumulation strategy for effective pancreatic cancer therapy. Biomaterials 2024; 309:122574. [PMID: 38670032 DOI: 10.1016/j.biomaterials.2024.122574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
As an iron dependent regulatory cell death process driven by excessive lipid peroxides (LPO), ferroptosis is recognized as a powerful weapon for pancreatic cancer (PC) therapy. However, the tumor microenvironment (TME) with hypoxia and elevated glutathione (GSH) expression not only inhibits LPO production, but also induces glutathione peroxidase 4 (GPX4) mediated LPO clearance, which greatly compromise the therapeutic outcomes of ferroptosis. To address these issues, herein, a novel triple-enhanced ferroptosis amplifier (denoted as Zal@HM-PTBC) is rationally designed. After intravenous injection, the overexpressed H2O2/GSH in TME induces the collapse of Zal@HM-PTBC and triggers the production of oxygen and reactive oxygen species (ROS), which synergistically amplify the degree of lipid peroxidation (broaden sources). Concurrently, GSH consumption because of the degradation of the hollow manganese dioxide (HM) significantly weakens the activity of GPX4, resulting in a decrease in LPO clearance (reduce expenditure). Moreover, the loading and site-directed release of zalcitabine further promotes autophagy-dependent LPO accumulation (enhance effectiveness). Both in vitro and in vivo results validated that the ferroptosis amplifier demonstrated superior specificity and favorable therapeutic responses. Overall, this triple-enhanced LPO accumulation strategy demonstrates the ability to facilitate the efficacy of ferroptosis, injecting vigorous vitality into the treatment of PC.
Collapse
Affiliation(s)
- Mengyao Chen
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Xiaohan Tong
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Yanting Sun
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Chunyan Dong
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Chen Li
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Chunhui Wang
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Minyi Zhang
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Yixuan Wen
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Pinting Ye
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Ruihao Li
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Jie Wan
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Shujing Liang
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China.
| | - Shuo Shi
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
3
|
Wan XX, Hu XM, Zhang Q, Xiong K. Pretreatment can alleviate programmed cell death in mesenchymal stem cells. World J Stem Cells 2024; 16:773-779. [PMID: 39219726 PMCID: PMC11362856 DOI: 10.4252/wjsc.v16.i8.773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/26/2024] Open
Abstract
In this editorial, we delved into the article titled "Cellular preconditioning and mesenchymal stem cell ferroptosis." This groundbreaking study underscores a pivotal discovery: Ferroptosis, a type of programmed cell death, drastically reduces the viability of donor mesenchymal stem cells (MSCs) after engraftment, thereby undermining the therapeutic value of cell-based therapies. Furthermore, the article proposes that by manipulating ferroptosis mechanisms through preconditioning, we can potentially enhance the survival rate and functionality of MSCs, ultimately amplifying their therapeutic potential. Given the crucial role ferroptosis plays in shaping the therapeutic outcomes of MSCs, we deem it imperative to further investigate the intricate interplay between programmed cell death and the therapeutic effectiveness of MSCs.
Collapse
Affiliation(s)
- Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, Central South University, Changsha 410000, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China.
| |
Collapse
|
4
|
Liu WS, Chen Z, Lu ZM, Dong JH, Wu JH, Gao J, Deng D, Li M. Multifunctional hydrogels based on photothermal therapy: A prospective platform for the postoperative management of melanoma. J Control Release 2024; 371:406-428. [PMID: 38849093 DOI: 10.1016/j.jconrel.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
Preventing the recurrence of melanoma after surgery and accelerating wound healing are among the most challenging aspects of melanoma management. Photothermal therapy has been widely used to treat tumors and bacterial infections and promote wound healing. Owing to its efficacy and specificity, it may be used for postoperative management of tumors. However, its use is limited by the uncontrollable distribution of photosensitizers and the likelihood of damage to the surrounding normal tissue. Hydrogels provide a moist environment with strong biocompatibility and adhesion for wound healing owing to their highly hydrophilic three-dimensional network structure. In addition, these materials serve as excellent drug carriers for tumor treatment and wound healing. It is possible to combine the advantages of both of these agents through different loading modalities to provide a powerful platform for the prevention of tumor recurrence and wound healing. This review summarizes the design strategies, research progress and mechanism of action of hydrogels used in photothermal therapy and discusses their role in preventing tumor recurrence and accelerating wound healing. These findings provide valuable insights into the postoperative management of melanoma and may guide the development of promising multifunctional hydrogels for photothermal therapy.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China
| | - Zhuo Chen
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Jin-Hua Dong
- Women and Children Hospital Affiliated to Jiaxing University, 2468 Middle Ring Eastern Road, Jiaxing City, Zhejiang 314000, People's Republic of China
| | - Jin-Hui Wu
- Ophthalmology Department of the Third Affiliated Hospital of Naval Medical University, Shanghai 201805, People's Republic of China.
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China; Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai 200433, People's Republic of China.
| | - Dan Deng
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China.
| | - Meng Li
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China.
| |
Collapse
|
5
|
Li J, Liu Y, Zhang R, Yang Q, Xiong W, He Y, Ye Q. Insights into the role of mesenchymal stem cells in cutaneous medical aesthetics: from basics to clinics. Stem Cell Res Ther 2024; 15:169. [PMID: 38886773 PMCID: PMC11184751 DOI: 10.1186/s13287-024-03774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
With the development of the economy and the increasing prevalence of skin problems, cutaneous medical aesthetics are gaining more and more attention. Skin disorders like poor wound healing, aging, and pigmentation have an impact not only on appearance but also on patients with physical and psychological issues, and even impose a significant financial burden on families and society. However, due to the complexities of its occurrence, present treatment options cannot produce optimal outcomes, indicating a dire need for new and effective treatments. Mesenchymal stem cells (MSCs) and their secretomics treatment is a new regenerative medicine therapy that promotes and regulates endogenous stem cell populations and/or replenishes cell pools to achieve tissue homeostasis and regeneration. It has demonstrated remarkable advantages in several skin-related in vivo and in vitro investigations, aiding in the improvement of skin conditions and the promotion of skin aesthetics. As a result, this review gives a complete description of recent scientific breakthroughs in MSCs for skin aesthetics and the limitations of their clinical applications, aiming to provide new ideas for future research and clinical transformation.
Collapse
Affiliation(s)
- Junyi Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qianyu Yang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430030, China.
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
6
|
Song L, Luo K, Liu C, Zhao H, Ye L, Wang H. A bismuth-based double-network hydrogel-mediated synergistic photothermal-chemodynamic therapy for accelerated wound healing. J Mater Chem B 2024; 12:4975-4987. [PMID: 38687157 DOI: 10.1039/d4tb00121d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Multidrug-resistant bacterial infections present a significant challenge to wound healing. Non-antibiotic approaches such as photothermal therapy (PTT) and chemodynamic therapy (CDT) are promising but have suboptimal anti-bacterial efficacy. Herein, we developed a green bismuth-based double-network hydrogel (Bi@P-Cu) as a PTT/CDT synergistic platform for accelerated drug-resistant bacteria-infected wound healing. Bismuth (Bi) nanoparticles fabricated using a microwave method were used as a highly efficient and biocompatible PTT agent while the integration of a small amount of CDT agent Cu2+ endowed the hydrogel with excellent mechanical and self-healing properties, markedly increased photothermal efficiency, promoted cell migration ability, and negligible toxicity. Importantly, PTT enhanced the production of hydroxyl radicals in CDT and the destruction of bacterial cell membranes, which in turn enhanced the thermal sensitivity of bacteria. This synergistic anti-bacterial effect, together with the demonstrated capability to promote angiogenesis and anti-inflammation as well as enhanced fibroblast proliferation, led to accelerated wound healing in a full-thickness mouse model of resistant bacterial infection. This study provides an effective and safe strategy to eliminate drug-resistant bacteria and accelerate wound healing through green, non-antibiotic, double-network hydrogel-mediated synergistic PTT and CDT.
Collapse
Affiliation(s)
- Linyan Song
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China.
| | - Kui Luo
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China.
- Core Facility Center, Capital Medical University, Beijing, 100069, P. R. China
| | - Chen Liu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China.
| | - Huanying Zhao
- Core Facility Center, Capital Medical University, Beijing, 100069, P. R. China
| | - Ling Ye
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China.
| | - Hao Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.
| |
Collapse
|
7
|
Jia P, Zou Y, Jiang J. S-Nitrosylated CuS Hybrid Hydrogel Patches with Robust Antibacterial and Repair-Promoting Activity for Infected Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307629. [PMID: 38073365 DOI: 10.1002/smll.202307629] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Indexed: 05/25/2024]
Abstract
Development of wound dressing with robust antibacterial and repair-promoting activity has always been an urgent biomedical task during the past years. The therapeutic effect of current hydrogel dressings containing single bioactive agent like nanoparticle or gas is still unsatisfactory for the treatment of infected wound. Herein, a CuS/NO co-loaded hydrogel (CuS/NO Gel) is proposed, which is constructed by sequential polymerization, reduction, and S-nitrosylation of CuS hybrid hydrogel with disulfide bonds. These CuS/NO Gel patches show good mechanical stability, high photothermal activity and excellent biocompatibility. When being applied to treat infected wound, CuS/NO Gel can not only eliminate infection effectively by the synergistic effect of mild photothermal heating and boosted NO release in infection phase, but also promote vascularization and collagen deposition due to the synchronous supply of Cu ion nutrients and low concentration NO signaling molecules in wound repair phase. Compared to hydrogel dressings with individual active agent (CuS Gel or NO Gel), CuS/NO Gel exhibits better antibacterial and repair-promoting activity both in vitro and in vivo. Therefore, this CuS/NO Gel holds great promise in the future clinical treatment against infected wound.
Collapse
Affiliation(s)
- Pengpeng Jia
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yu Zou
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jiang Jiang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
8
|
Diao W, Li P, Jiang X, Zhou J, Yang S. Progress in copper-based materials for wound healing. Wound Repair Regen 2024; 32:314-322. [PMID: 37822053 DOI: 10.1111/wrr.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023]
Abstract
Chronic wounds have become the leading cause of death, particularly among diabetic patients. Chronic wounds affect ~6.5 million patients each year, according to statistics, and wound care and management incur significant financial costs. The rising prevalence of chronic wounds, combined with the limitations of current treatments, necessitates the development of new and innovative approaches to accelerate wound healing. Copper has been extensively studied for its antibacterial and anti-inflammatory activities. Copper in its nanoparticle form could have better biological properties and many applications in health care.
Collapse
Affiliation(s)
- Wuliang Diao
- Department of Plastic Surgery, Xiangya Third Hospital, Central South University, Changsha, Hunan, China
| | - Peiting Li
- Department of Plastic Surgery, Xiangya Third Hospital, Central South University, Changsha, Hunan, China
| | - Xilin Jiang
- Department of General Surgery, Zhongfang Hospital, Hunan University of Medicine, Huaihua, Hunan, China
| | - Jianda Zhou
- Department of Plastic Surgery, Xiangya Third Hospital, Central South University, Changsha, Hunan, China
| | - Songbo Yang
- Department of General Surgery, People's Hospital of Tianzhu County, Guizhou, China
| |
Collapse
|
9
|
Li J, Zhao M, Liang J, Geng Z, Fan Y, Sun Y, Zhang X. Hollow Copper Sulfide Photothermal Nanodelivery Platform Boosts Angiogenesis of Diabetic Wound by Scavenging Reactive Oxygen Species. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4395-4407. [PMID: 38247262 DOI: 10.1021/acsami.3c15593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Sharply rising oxidative stress and ineffectual angiogenesis have imposed restrictions on diabetic wound healing. Here, a photothermal-responsive nanodelivery platform (HHC) was prepared by peroxidase (CAT)-loaded hollow copper sulfide dispersed in photocurable methacrylamide hyaluronan. The HHC could scavenge reactive oxygen species (ROS) and promote angiogenesis by photothermally driven CAT and Cu2+ release. Under near-infrared light irradiation, the HHC presented safe photothermal performance (<43 °C), efficient bacteriostatic ability against E. coli and S. aureus. It could rapidly release CAT into the external environment for decomposing H2O2 and oxygen generation to alleviate oxidative stress while promoting fibroblast migration and VEGF protein expression of endothelial cells by reducing intracellular ROS levels. The nanodelivery platform presented satisfactory therapeutic effects on murine diabetic wound healing by modulating tissue inflammation, promoting collagen deposition and increasing vascularization in the neodermis. This HHC provided a viable strategy for diabetic wound dressing design.
Collapse
Affiliation(s)
- Jiadong Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Mingda Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- Sichuan Testing Centre for Biomaterials and Medical Devices, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
10
|
Ruhoff V, Arastoo MR, Moreno-Pescador G, Bendix PM. Biological Applications of Thermoplasmonics. NANO LETTERS 2024; 24:777-789. [PMID: 38183300 PMCID: PMC10811673 DOI: 10.1021/acs.nanolett.3c03548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024]
Abstract
Thermoplasmonics has emerged as an extraordinarily versatile tool with profound applications across various biological domains ranging from medical science to cell biology and biophysics. The key feature of nanoscale plasmonic heating involves remote activation of heating by applying laser irradiation to plasmonic nanostructures that are designed to optimally convert light into heat. This unique capability paves the way for a diverse array of applications, facilitating the exploration of critical biological processes such as cell differentiation, repair, signaling, and protein functionality, and the advancement of biosensing techniques. Of particular significance is the rapid heat cycling that can be achieved through thermoplasmonics, which has ushered in remarkable technical innovations such as accelerated amplification of DNA through quantitative reverse transcription polymerase chain reaction. Finally, medical applications of photothermal therapy have recently completed clinical trials with remarkable results in prostate cancer, which will inevitably lead to the implementation of photothermal therapy for a number of diseases in the future. Within this review, we offer a survey of the latest advancements in the burgeoning field of thermoplasmonics, with a keen emphasis on its transformative applications within the realm of biosciences.
Collapse
Affiliation(s)
| | - Mohammad Reza Arastoo
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | - Guillermo Moreno-Pescador
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
- Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Poul Martin Bendix
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| |
Collapse
|
11
|
Huang Y, Chen Y, Cheng G, Li W, Zhang H, Yu C, Fang J, Zuo J, Li Y, Xu L, Sun D. A TA/Cu 2+ Nanoparticle Enhanced Carboxymethyl Chitosan-Based Hydrogel Dressing with Antioxidant Properties and Promoting Wound Healing. Int J Nanomedicine 2024; 19:231-245. [PMID: 38223881 PMCID: PMC10788072 DOI: 10.2147/ijn.s445844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024] Open
Abstract
Background As the first line of immune defense and the largest organ of body, skin is vulnerable to damage caused by surgery, burns, collisions and other factors. Wound healing in the skin is a long and complex physiological process that is influenced by a number of different factors. Proper wound care can greatly improve the speed of wound healing and reduce the generation of scars. However, traditional wound dressings (bandages, gauze, etc.) often used in clinical practice have a single function, lack of active ingredients and are limited in use. Hydrogels with three-dimensional network structure are a potential biomedical material because of their physical and chemical environment similar to extracellular matrix. In particular, hydrogel dressings with low price, good biocompatibility, degradability, antibacterial and angiogenic activity are favored by the public. Methods Here, a carboxymethyl chitosan-based hydrogel dressing (CMCS-TA/Cu2+) reinforced by copper ion crosslinked tannic acid (TA/Cu2+) nanoparticles was developed. This study investigated the physical and chemical characteristics, cytotoxicity, and angiogenesis of TA/Cu2+ nanoparticles and CMCS-TA/Cu2+ hydrogels. Furthermore, a full-thickness skin defect wound model was employed to assess the in vivo wound healing capacity of hydrogel dressings. Results The introduction of TA/Cu2+ nanoparticles not only could increase the mechanical properties of the hydrogel but also continuously releases copper ions to promote cell migration (the cell migration could reach 92% at 48 h) and tubule formation, remove free radicals and promote wound healing (repair rate could reach 90% at 9 days). Conclusion Experiments have proved that CMCS-TA/Cu2+ hydrogel has good cytocompatibility, antioxidant and wound healing ability, providing an advantageous solution for skin repair.
Collapse
Affiliation(s)
- Yongjun Huang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Yong Chen
- Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, People’s Hospital, Qingyuan, 511518, People’s Republic of China
| | - Guoyun Cheng
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Wenqiang Li
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong, Guangzhou Sport University, Guangzhou, 510500, People’s Republic of China
| | - Hongan Zhang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
- The Second Clinical School of Medicine, Southern Medical University, Guangzhou, 510260, People’s Republic of China
| | - Chaoqun Yu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Jia Fang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Jieyi Zuo
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Ying Li
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Lei Xu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Dawei Sun
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| |
Collapse
|
12
|
Shen L, Hu J, Yuan Y, Wang X, Jiang Q. Photothermal-promoted multi-functional gallic acid grafted chitosan hydrogel containing tannic acid miniaturized particles for peri-implantitis. Int J Biol Macromol 2023; 253:127366. [PMID: 37827419 DOI: 10.1016/j.ijbiomac.2023.127366] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Peri-implantitis, a leading cause of implant failure, currently lacks effective therapeutic strategies. Given that bacterial infection and reactive oxygen species overabundance serve as primary pathogenic and triggering factors, respectively, an adhesive hydrogel has been created for in-situ injection. The hydrogel is a gallic acid-grafted chitosan (CS-GA) hydrogel containing tannic acid miniaturized particles (TAMP). This provides antibacterial and antioxidant properties. Therefore, this study aims to evaluate the potential role of this hydrogel in preventing and treating peri-implantitis via several experiments. It undergoes rapid formation within a span of over 20 s via an oxidative crosslinking reaction catalyzed by horseradish peroxidase and hydrogen peroxide, demonstrating robust adhesion, superior cell compatibility, and a sealing effect. Furthermore, the incorporation of TAMP offer photothermal properties to the hydrogel, enabling it to enhance the viability, migration, and antioxidant activity of co-cultured human gingival fibroblasts when subjected 0.5 W/cm2 808 nm near-infrared (NIR) irradiation. At higher irradiation power, the hydrogel exhibits progressive improvements in its antibacterial efficacy against Porphyromonas gingivalis and Fusobacterium nucleatum. It attains rates of 83.11 ± 5.42 % and 83.48 ± 6.855 %, respectively, under 1 W/cm2 NIR irradiation. In summary, the NIR-controlled CS-GA/TAMP hydrogel, exhibiting antibacterial and antioxidant properties, represents a promising approach for the prophylaxis and management of peri-implantitis.
Collapse
Affiliation(s)
- Lipei Shen
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Jiangqi Hu
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yafei Yuan
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Xiaoyu Wang
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Qingsong Jiang
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
13
|
Wang R, Huang Z, Xiao Y, Huang T, Ming J. Photothermal therapy of copper incorporated nanomaterials for biomedicine. Biomater Res 2023; 27:121. [PMID: 38001505 PMCID: PMC10675977 DOI: 10.1186/s40824-023-00461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Studies have reported on the significance of copper incorporated nanomaterials (CINMs) in cancer theranostics and tissue regeneration. Given their unique physicochemical properties and tunable nanostructures, CINMs are used in photothermal therapy (PTT) and photothermal-derived combination therapies. They have the potential to overcome the challenges of unsatisfactory efficacy of conventional therapies in an efficient and non-invasive manner. This review summarizes the recent advances in CINMs-based PTT in biomedicine. First, the classification and structure of CINMs are introduced. CINMs-based PTT combination therapy in tumors and PTT guided by multiple imaging modalities are then reviewed. Various representative designs of CINMs-based PTT in bone, skin and other organs are presented. Furthermore, the biosafety of CINMs is discussed. Finally, this analysis delves into the current challenges that researchers face and offers an optimistic outlook on the prospects of clinical translational research in this field. This review aims at elucidating on the applications of CINMs-based PTT and derived combination therapies in biomedicine to encourage future design and clinical translation.
Collapse
Affiliation(s)
| | | | | | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
14
|
Tang Z, Liu Y, Xiang H, Dai X, Huang X, Ju Y, Ni N, Huang R, Gao H, Zhang J, Fan X, Su Y, Chen Y, Gu P. Bifunctional MXene-Augmented Retinal Progenitor Cell Transplantation for Retinal Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302747. [PMID: 37379237 PMCID: PMC10477897 DOI: 10.1002/advs.202302747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/07/2023] [Indexed: 06/30/2023]
Abstract
Retinal degeneration, characterized by the progressive loss of retinal neurons, is the leading cause of incurable visual impairment. Retinal progenitor cells (RPCs)-based transplantation can facilitate sight restoration, but the clinical efficacy of this process is compromised by the imprecise neurogenic differentiation of RPCs and undermining function of transplanted cells surrounded by severely oxidative retinal lesions. Here, it is shown that ultrathin niobium carbide (Nb2 C) MXene enables performance enhancement of RPCs for retinal regeneration. Nb2 C MXene with moderate photothermal effect markedly improves retinal neuronal differentiation of RPCs by activating intracellular signaling, in addition to the highly effective RPC protection by scavenging free radicals concurrently, which has been solidly evidenced by the comprehensive biomedical assessments and theoretical calculations. A dramatically increased neuronal differentiation is observed upon subretinal transplantation of MXene-assisted RPCs into the typical retinal degeneration 10 (rd10) mice, thereby contributing to the efficient restoration of retinal architecture and visual function. The dual-intrinsic function of MXene synergistically aids RPC transplantation, which represents an intriguing paradigm in vision-restoration research filed, and will broaden the multifunctionality horizon of nanomedicine.
Collapse
Affiliation(s)
- Zhimin Tang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Yan Liu
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Huijing Xiang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Xinyue Dai
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Xiaolin Huang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Yahan Ju
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Ni Ni
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Rui Huang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Huiqin Gao
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Jing Zhang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Xianqun Fan
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Yun Su
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Ping Gu
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| |
Collapse
|
15
|
Guo Y, Xie B, Jiang M, Yuan L, Jiang X, Li S, Cai R, Chen J, Jiang X, He Y, Tao G. Facile and eco-friendly fabrication of biocompatible hydrogel containing CuS@Ser NPs with mechanical flexibility and photothermal antibacterial activity to promote infected wound healing. J Nanobiotechnology 2023; 21:266. [PMID: 37563585 PMCID: PMC10416498 DOI: 10.1186/s12951-023-02035-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Bacterial infections can significantly impede wound healing and pose a serious threat to the patient's life. The excessive use of antibiotics to combat bacterial infections has led to the emergence of multi-drug-resistant bacteria. Therefore, there is a pressing need for alternative approaches, such as photothermal therapy (PTT), to address this issue. In this study, for the first time, CuS NPs with photothermal properties were synthesized using sericin as a biological template, named CuS@Ser NPs. This method is simple, green, and does not produce toxic and harmful by-products. These nanoparticles were incorporated into a mixture (XK) of xanthan gum and konjac glucomannan (KGM) to obtain XK/CuS NPs composite hydrogel, which could overcome the limitations of current wound dressings. The composite hydrogel exhibited excellent mechanical flexibility, photothermal response, and biocompatibility. It also demonstrated potent antibacterial properties against both Gram-positive and negative bacteria via antibacterial experiments and accelerated wound healing in animal models. Additionally, it is proved that the hydrogel promoted tissue regeneration by stimulating collagen deposition, angiogenesis, and reducing inflammation. In summary, the XK/CuS NPs composite hydrogel presents a promising alternative for the clinical management of infected wounds, offering a new approach to promote infected wound healing.
Collapse
Affiliation(s)
- Ye Guo
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Bingqing Xie
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Min Jiang
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Lingling Yuan
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xueyu Jiang
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Silei Li
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Rui Cai
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Junliang Chen
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xia Jiang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yun He
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Gang Tao
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
16
|
Gao Y, Cai L, Li D, Li L, Wu Y, Ren W, Song Y, Zhu L, Wu Y, Xu H, Luo C, Wang T, Lei Z, Tao L. Extended characterization of IL-33/ST2 as a predictor for wound age determination in skin wound tissue samples of humans and mice. Int J Legal Med 2023:10.1007/s00414-023-03025-x. [PMID: 37246991 DOI: 10.1007/s00414-023-03025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
Interleukin (IL)-33, an important inflammatory cytokine, is highly expressed in skin wound tissue and serum of humans and mice, and plays an essential role in the process of skin wound healing (SWH) dependent on the IL-33/suppression of tumorigenicity 2 (ST2) pathway. However, whether IL-33 and ST2 themselves, as well as their interaction, can be applied for skin wound age determination in forensic practice remains incompletely characterized. Human skin samples with injured intervals of a few minutes to 24 hours (hs) and mouse skin samples with injured intervals of 1 h to 14 days (ds) were collected. Herein, the results demonstrated that IL-33 and ST2 are increased in the human skin wounds, and that in mice skin wounds, there is an increase over time, with IL-33 expression peaking at 24 hs and 10 ds, and ST2 expression peaking at 12 hs and 7 ds. Notably, the relative quantity of IL-33 and ST2 proteins < 0.35 suggested a wound age of 3 hs; their relative quantity > 1.0 suggested a wound age of 24 hs post-mouse skin wounds. In addition, immunofluorescent staining results showed that IL-33 and ST2 were consistently expressed in the cytoplasm of F4/80-positive macrophages and CD31-positive vascular endothelial cells with or without skin wounds, whereas nuclear localization of IL-33 was absent in α-SMA-positive myofibroblasts with skin wounds. Interestingly, IL-33 administration facilitated the wound area closure by increasing the proliferation of cytokeratin (K) 14 -positive keratinocytes and vimentin-positive fibroblasts. In contrast, treating with its antagonist (i.e., anti-IL-33) or receptor antagonist (e.g., anti-ST2) exacerbated the aforementioned pathological changes. Moreover, treatment with IL-33 combined with anti-IL-33 or anti-ST2 reversed the effect of IL-33 on facilitating skin wound closure, suggesting that IL-33 administration facilitated skin wound closure through the IL-33/ST2 signaling pathway. Collectively, these findings indicate that the detection of IL-33/ST2 might be a reliable biomarker for the determination of skin wound age in forensic practice.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Luwei Cai
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Dongya Li
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Lili Li
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, 215021, Jiangsu, China
| | - Yulu Wu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Wenjing Ren
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yirui Song
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Luwen Zhu
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Youzhuang Wu
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Heng Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Tao Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Ziguang Lei
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Luyang Tao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
17
|
Jia P, Zou Y, Jiang J. CuS Hybrid Hydrogel for Near-Infrared-Enhanced Infected Wound Healing: A Gelatin-Assisted Synthesis and Direct Incorporation Strategy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22929-22943. [PMID: 37139829 DOI: 10.1021/acsami.3c02241] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Developing antibacterial hydrogels, with good mechanical strength and self-healing ability to resist bacterial invasion and accelerate skin regeneration, is critical for infected full-thickness skin wound treatment. Herein, we report a gelatin-assisted synthesis and direct incorporation strategy to construct a CuS hybrid hydrogel for infected wound healing applications. CuS nanodots (NDs) were synthesized directly inside a gelatin host matrix (Gel-CuS), and these tightly confined and evenly distributed CuS NDs displayed superb dispersibility and stability against oxidation. Gel-CuS was then used to crosslink with oxidized dextran (ODex) to form a Gel-CuS-8/ODex hydrogel (8 stands for the concentration of CuS, in mM) via a facile Schiff-base reaction, which exhibited improved mechanical properties, excellent adhesion and self-healing ability, suitable swelling and degradation behavior, and good biocompatibility. The Gel-CuS-8/ODex hydrogel can act as an efficient antibacterial agent due to its photothermal and photodynamic properties under a 1064 nm laser irradiation. Furthermore, in animal experiments, when being applied as wound dressing, the Gel-CuS-8/ODex hydrogel significantly promoted infected full-thickness cutaneous wound healing through improved epidermis and granulation tissue formation and accelerated generation of new blood vessels, hair follicles, and collagen deposition after proper near-infrared irradiation treatment. This work provides a promising strategy to synthesize functional inorganic nanomaterials tightly and evenly embedded inside modified natural hydrogel networks for wound healing applications.
Collapse
Affiliation(s)
- Pengpeng Jia
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yu Zou
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jiang Jiang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
18
|
He J, Ye G, Ma H, Jia S, Ma J, Lv J, Jia D, Song Y, Liu F, Li P, Wang J, Gyal K, Gou K, La M, Zeng R. Multifunctional Bletilla striata polysaccharide/copper/peony leaf sponge for the full-stage wound healing. Int J Biol Macromol 2023; 240:124487. [PMID: 37068538 DOI: 10.1016/j.ijbiomac.2023.124487] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
Conventional wound dressings fail to satisfy the requirements and needs of wounds in various stages. It is challenging to develop a multifunctional dressing that is hemostatic, antibacterial, anti-inflammatory, and promotes wound healing. Therefore, this study aimed to develop a multifunctional sponge dressing for the full-stage wound healing based on copper and two natural products, Bletilla striata polysaccharide (BSP) and peony leaf extract (PLE). The developed BSP-Cu-PLE sponges were characterized by SEM, XRD, FTIR, and XPS to assess micromorphology and elemental composition. Their properties and bioactivities were also verified by the further experiments, whereby the findings revealed that the BSP-Cu-PLE sponges had improved water absorption and porosity while exhibiting excellent antioxidative, biocompatible, and biodegradable properties. Moreover, the antibacterial test revealed that BSP-Cu-PLE sponges had superior antibacterial activity against S. aureus and E. coli. Furthermore, the hemostatic activity of BSP-Cu-PLE sponges was significantly enhanced in a rat liver trauma model. Most notably, further studies have demonstrated that the BSP-Cu-PLE sponges could significantly (p < 0.05) accelerate the healing process of skin wounds by stimulating collagen deposition, promoting angiogenesis, and decreasing inflammatory cells. In summary, the BSP-Cu-PLE sponges could provide a new strategy for application in clinical setting for full-stage wound healing.
Collapse
Affiliation(s)
- Juan He
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Gengsheng Ye
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Hongyu Ma
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Shiami Jia
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Jie Ma
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Jinying Lv
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Duowuni Jia
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Yi Song
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Fangyao Liu
- College of Electronic and Information, Southwest Minzu University, Chengdu 610225, China
| | - Ping Li
- Chengdu integrated TCM&Western Medicine Hospital, Chengdu 610017, China
| | - Jun Wang
- Chengdu integrated TCM&Western Medicine Hospital, Chengdu 610017, China
| | - Kunsang Gyal
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Kaijun Gou
- Institute of Tibetan Plateau, Southwest Minzu University, Chengdu 610225, China.
| | - Mujia La
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Rui Zeng
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| |
Collapse
|
19
|
Xu Z, Dong M, Yin S, Dong J, Zhang M, Tian R, Min W, Zeng L, Qiao H, Chen J. Why traditional herbal medicine promotes wound healing: Research from immune response, wound microbiome to controlled delivery. Adv Drug Deliv Rev 2023; 195:114764. [PMID: 36841332 DOI: 10.1016/j.addr.2023.114764] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/16/2022] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Impaired wound healing in chronic wounds has been a significant challenge for clinicians and researchers for decades. Traditional herbal medicine (THM) has a long history of promoting wound healing, making them culturally accepted and trusted by a great number of people in the world. However, for a long time, the understanding of herbal medicine has been limited and incomplete, particularly in the allopathic medicine-dominated research system. The therapeutic effects of individual components isolated from THM are found less pronounced compared to synthetic chemical medicine, and the clinical efficacy is always inferior to herbs. In the present article, we review and discuss underlying mechanisms of the skin microbiome involved in the wound healing process; THM in regulating immune responses and commensal microbiome. We additionally propose few pioneer ideas and studies in the development of therapeutic strategies for controlled delivery of herbal medicine. This review aims to promote wound care with a focus on wound microbiome, immune response, and topical drug delivery systems. Finally, future development trends, challenges, and research directions are discussed.
Collapse
Affiliation(s)
- Zeyu Xu
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Mei Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shaoping Yin
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jie Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ming Zhang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Rong Tian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wen Min
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210004, PR China
| | - Li Zeng
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hongzhi Qiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jun Chen
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
20
|
Mao Z, Liu Y, Lv X, Jiang Y, Zhang Q, Yang L, Jiang H, Tan R, Tan R. Inter-synergized Neuroprotection of Costunolide Engineered Bone Marrow Mesenchymal Stem Cells Targeting System. Int J Pharm 2023; 639:122823. [PMID: 36921741 DOI: 10.1016/j.ijpharm.2023.122823] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/17/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
Treatment of stroke remains difficult due to the unsatisfactory or unlocalized delivery of small molecule- and cell-based therapeutics in injured brain tissues. This is particularly the case for costunolide (Cos), which is highly neuroprotective and anti-inflammatory but finds great difficulty in reaching the brain. Here, we present that Cos induces the differentiation of bone marrow mesenchymal stem cells (bMSCs) into glia-like cells (C-bMSCs) capable of secreting neurotrophic factors and homing to injured brain tissues. By taking advantage of the homing effect, Cos and C-bMSCs were simultaneously funneled into the damaged brain by: (i) preparing Cos micelles (Cos-M) through entrapping Cos into the amphiphilic copolymer mPEG-PLGA [poly(ethylene oxide) monomethyl ether-poly(lactide-co-glycolide)], and (ii) incorporating Cos-M into C-bMSCs to give an intravenously injectable cell-like composite termed Cos@C-bMSCs, which displayed the inter-synergized neuroprotective efficacy in the cerebral ischemia reperfusion (CIR) injured rats. As desired, in the injured brain area, Cos@C-bMSCs simultaneously released Cos and C-bMSCs (glia-like cells) to repair the injured brain and to secret neurotrophic factors such as nerve growth factor (NGF). In view of the availability and reliability of autologous MSCs, the proof-of-concept design, development, and in vivo efficacy of Cos@C-bMSCs signify a movement in our management of brain damages.
Collapse
Affiliation(s)
- Zhiyuan Mao
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yang Liu
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaojing Lv
- Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Jiang
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qun Zhang
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Li Yang
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hezhong Jiang
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Renxiang Tan
- Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
21
|
Pang Q, Jiang Z, Wu K, Hou R, Zhu Y. Nanomaterials-Based Wound Dressing for Advanced Management of Infected Wound. Antibiotics (Basel) 2023; 12:antibiotics12020351. [PMID: 36830262 PMCID: PMC9952012 DOI: 10.3390/antibiotics12020351] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
The effective prevention and treatment of bacterial infections is imperative to wound repair and the improvement of patient outcomes. In recent years, nanomaterials have been extensively applied in infection control and wound healing due to their special physiochemical and biological properties. Incorporating antibacterial nanomaterials into wound dressing has been associated with improved biosafety and enhanced treatment outcomes compared to naked nanomaterials. In this review, we discuss progress in the application of nanomaterial-based wound dressings for advanced management of infected wounds. Focus is given to antibacterial therapy as well as the all-in-one detection and treatment of bacterial infections. Notably, we highlight progress in the use of nanoparticles with intrinsic antibacterial performances, such as metals and metal oxide nanoparticles that are capable of killing bacteria and reducing the drug-resistance of bacteria through multiple antimicrobial mechanisms. In addition, we discuss nanomaterials that have been proven to be ideal drug carriers for the delivery and release of antimicrobials either in passive or in stimuli-responsive manners. Focus is given to nanomaterials with the ability to kill bacteria based on the photo-triggered heat (photothermal therapy) or ROS (photodynamic therapy), due to their unparalleled advantages in infection control. Moreover, we highlight examples of intelligent nanomaterial-based wound dressings that can detect bacterial infections in-situ while providing timely antibacterial therapy for enhanced management of infected wounds. Finally, we highlight challenges associated with the current nanomaterial-based wound dressings and provide further perspectives for future improvement of wound healing.
Collapse
|
22
|
Wang Q, Chen N, Li M, Yao S, Sun X, Feng X, Chen Y. Light-related activities of metal-based nanoparticles and their implications on dermatological treatment. Drug Deliv Transl Res 2023; 13:386-399. [PMID: 35908132 DOI: 10.1007/s13346-022-01216-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/30/2022]
Abstract
Metal-based nanoparticles (MNPs) represent an emerging class of materials that have attracted enormous attention in many fields. By comparison with other biomaterials, MNPs own unique optical properties which make them a potential alternative to conventional therapeutic agents in medical applications. Especially, owing to the easy access to the skin, the use of MNPs based on their optical properties has gained importance for the treatment of a variety of skin diseases. This review provides an insight into the different optical properties of MNPs, including photoprotection, photocatalysis, and photothermal, and highlights their implications in treating skin disorders, with a special emphasis on their use in infection control. Finally, a perspective on the safety concern of MNPs for dermatological use is discussed and analyzed. The information gathered and presented in this review will help the readers have a comprehensive understanding of utilizing the photo-triggered activity of MNPs for the treatment of skin diseases.
Collapse
Affiliation(s)
- Qiuyue Wang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Naiying Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Mingming Li
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Sicheng Yao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Xinxing Sun
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, 110034, China.
| | - Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China.
| |
Collapse
|
23
|
A novel sprayable thermosensitive hydrogel coupled with zinc modified metformin promotes the healing of skin wound. Bioact Mater 2023; 20:610-626. [PMID: 35846848 PMCID: PMC9256661 DOI: 10.1016/j.bioactmat.2022.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/16/2022] Open
Abstract
A novel sprayable adhesive is established (ZnMet-PF127) by the combination of a thermosensitive hydrogel (Pluronic F127, PF127) and a coordination complex of zinc and metformin (ZnMet). Here we demonstrate that ZnMet-PF127 potently promotes the healing of traumatic skin defect and burn skin injury by promoting cell proliferation, angiogenesis, collagen formation. Furthermore, we find that ZnMet could inhibit reactive oxygen species (ROS) production through activation of autophagy, thereby protecting cell from oxidative stress induced damage and promoting healing of skin wound. ZnMet complex exerts better effects on promoting skin wound healing than ZnCl2 or metformin alone. ZnMet complex also displays excellent antibacterial activity against Staphylococcus aureus or Escherichia coli, which could reduce the incidence of skin wound infections. Collectively, we demonstrate that sprayable PF127 could be used as a new drug delivery system for treatment of skin injury. The advantages of this sprayable system are obvious: (1) It is convenient to use; (2) The hydrogel can cover irregular skin defect sites evenly in a liquid state. In combination with this system, we establish a novel sprayable adhesive (ZnMet-PF127) and demonstrate that it is a potential clinical treatment for traumatic skin defect and burn skin injury.
Collapse
|
24
|
Huang C, Lin B, Chen C, Wang H, Lin X, Liu J, Ren Q, Tao J, Zhao P, Xu Y. Synergistic Reinforcing of Immunogenic Cell Death and Transforming Tumor-Associated Macrophages Via a Multifunctional Cascade Bioreactor for Optimizing Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207593. [PMID: 36245299 DOI: 10.1002/adma.202207593] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/06/2022] [Indexed: 02/05/2023]
Abstract
Immunogenic cell death (ICD) has aroused widespread attention because it can reconstruct a tumor microenvironment and activate antitumor immunity. This study proposes a two-way enhancement of ICD based on a CaO2 @CuS-MnO2 @HA (CCMH) nanocomposite to overcome the insufficient damage-associated molecular patterns (DAMPs) of conventional ICD-inducers. The near-infrared (NIR) irradiation (1064 nm) of CuS nanoparticles generates 1 O2 through photodynamic therapy (PDT) to trigger ICD, and it also damages the Ca2+ buffer function of mitochondria. Additionally, CaO2 nanoparticles react with H2 O to produce a large amount of O2 and Ca2+ , which respectively lead to enhanced PDT and Ca2+ overload during mitochondrial damage, thereby triggering a robust ICD activation. Moreover, oxidative-damaged mitochondrial DNA, induced by PDT and released from tumor cells, reprograms the immunosuppressive tumor microenvironment by transforming tumor-associated macrophages to the M1 subphenotype. This study shows that CCMH with NIR-II irradiation can elicit adequate DAMPs and an active tumor-immune microenvironment for both 4T1 and CT26 tumor models. Combining this method with an immune checkpoint blockade can realize an improved immunotherapy efficacy and long-term protection effect for body.
Collapse
Affiliation(s)
- Cong Huang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Bingquan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chuyao Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huaiming Wang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Xiaosheng Lin
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jiamin Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qingfan Ren
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
25
|
Cui Y, Yan H, Wang H, Zhang Y, Li M, Cui K, Xiao Z, Liu L, Xie W. CuS- 131I-PEG Nanotheranostics-Induced "Multiple Mild-Hyperthermia" Strategy to Overcome Radio-Resistance in Lung Cancer Brachytherapy. Pharmaceutics 2022; 14:pharmaceutics14122669. [PMID: 36559162 PMCID: PMC9785376 DOI: 10.3390/pharmaceutics14122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Brachytherapy is one mainstay treatment for lung cancer. However, a great challenge in brachytherapy is radio-resistance, which is caused by severe hypoxia in solid tumors. In this research, we have developed a PEGylated 131I-labeled CuS nanotheranostics (CuS-131I-PEG)-induced "multiple mild-hyperthermia" strategy to reverse hypoxia-associated radio-resistance. Specifically, after being injected with CuS-131I-PEG nanotheranostics, tumors were irradiated by NIR laser to mildly increase tumor temperature (39~40 °C). This mild hyperthermia can improve oxygen levels and reduce expression of hypoxia-induced factor-1α (HIF-1α) inside tumors, which brings about alleviation of tumor hypoxia and reversion of hypoxia-induced radio-resistance. During the entire treatment, tumors are treated by photothermal brachytherapy three times, and meanwhile mild hyperthermia stimulation is conducted before each treatment of photothermal brachytherapy, which is defined as a "multiple mild-hyperthermia" strategy. Based on this strategy, tumors have been completely inhibited. Overall, our research presents a simple and effective "multiple mild-hyperthermia" strategy for reversing radio-resistance of lung cancer, achieving the combined photothermal brachytherapy.
Collapse
Affiliation(s)
- Yanna Cui
- Department of Nuclear Medicine, Shanghai Chest Hospital & Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hui Yan
- Department of Nuclear Medicine, Shanghai Chest Hospital & Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haoze Wang
- Department of Nuclear Medicine, Shanghai Chest Hospital & Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, China
| | - Yongming Zhang
- Department of Nuclear Medicine, Shanghai Chest Hospital & Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Meng Li
- Department of Nuclear Medicine, Shanghai Chest Hospital & Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, China
| | - Kai Cui
- Department of Nuclear Medicine, Shanghai Chest Hospital & Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zeyu Xiao
- Department of Nuclear Medicine, Shanghai Chest Hospital & Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (Z.X.); (L.L.); (W.X.)
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital & Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (Z.X.); (L.L.); (W.X.)
| | - Wenhui Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital & Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (Z.X.); (L.L.); (W.X.)
| |
Collapse
|
26
|
Xue Y, Zhang L, Liu F, Zhao Y, Zhou J, Hou Y, Bao H, Kong L, Ma F, Han Y. Surface Bandgap Engineering of Nanostructured Implants for Rapid Photothermal Ion Therapy of Bone Defects. Adv Healthc Mater 2022; 11:e2200998. [PMID: 36064207 DOI: 10.1002/adhm.202200998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/31/2022] [Indexed: 01/28/2023]
Abstract
Bone defects are seriously threatening the health of orthopedics patients and it is difficult for implants to accelerate bone regeneration without using bone growth factors. Herein, a fast photothermal ion therapeutic strategy is developed based on the bandgap engineering of nanostructured TiO2 through (Si/P)-dual elemental doping by micro-arc oxidation treatment of titanium implants. The (Si/P)-dual doping can tune the surface bandgap structure of TiO2 by decreasing bandgap and broadening valence band simultaneously, which is confirmed by density functional theory calculations. It not only endows the implants with a mildly photothermal effect under near-infrared (NIR) light irradiation, but also creates an (Si/P) ion-rich microenvironment around the implants. This photothermal ion microenvironment can tune the behaviors of osteoblasts by promoting p38/Smad and ERK signaling pathways of osteoblasts, thus significantly upregulating the expression of osteogenesis genes by the synergistic action of mild photothermal stimulation and increased release of Si/P ions. The in vivo results are also in good agreement with in vitro tests, i.e., under NIR light irradiation, the photothermally responsive TiO2 enhances the bone formation and osteointegration with implants. Therefore, this kind of photothermal ion strategy is a promising remote and noninvasive therapeutic mode for promoting bone regeneration of Ti implants.
Collapse
Affiliation(s)
- Yang Xue
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lan Zhang
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fuwei Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yiwei Zhao
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianhong Zhou
- Institute of Physics & Optoelectronics Technology, Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, China
| | - Yan Hou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Han Bao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Kong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fei Ma
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yong Han
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
27
|
Zhang X, Tan B, Wu Y, Zhang M, Xie X, Liao J. An injectable, self-healing carboxymethylated chitosan hydrogel with mild photothermal stimulation for wound healing. Carbohydr Polym 2022; 293:119722. [DOI: 10.1016/j.carbpol.2022.119722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022]
|
28
|
Zhou L, Min T, Bian X, Dong Y, Zhang P, Wen Y. Rational Design of Intelligent and Multifunctional Dressing to Promote Acute/Chronic Wound Healing. ACS APPLIED BIO MATERIALS 2022; 5:4055-4085. [PMID: 35980356 DOI: 10.1021/acsabm.2c00500] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Currently, the clinic's treatment of acute/chronic wounds is still unsatisfactory due to the lack of functional and appropriate wound dressings. Intelligent and multifunctional dressings are considered the most advanced wound treatment modalities. It is essential to design and develop wound dressings with required functions according to the wound microenvironment in the clinical treatment. This work summarizes microenvironment characteristics of various common wounds, such as acute wound, diabetic wound, burns wound, scalded wound, mucosal wound, and ulcers wound. Furthermore, the factors of transformation from acute wounds to chronic wounds were analyzed. Then we focused on summarizing how researchers fully and thoroughly combined the complex microenvironment with modern advanced technology to ensure the usability and value of the dressing, such as photothermal-sensitive dressings, microenvironment dressing (pH-sensitive dressings, ROS-sensitive dressings, and osmotic pressure dressings), hemostatic dressing, guiding tissue regeneration dressing, microneedle dressings, and 3D/4D printing dressings. Finally, the revolutionary development of wound dressings and how to transform the existing advanced functional dressings into clinical needs as soon as possible have carried out a reasonable and meaningful outlook.
Collapse
Affiliation(s)
- Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Department of Orthopaedics and Trauma, Key Laboratory of Trauma and Neural Regeneration, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Tiantian Min
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaochun Bian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | | - Peixun Zhang
- Department of Orthopaedics and Trauma, Key Laboratory of Trauma and Neural Regeneration, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
29
|
Zhang S, Li J, Ren J, Xue Z, Qi X, Si Q. Cyclic RGD functionalized PLGA nanoparticles loaded with noncovalent complex of indocyanine green with urokinase for synergistic thrombolysis. Front Bioeng Biotechnol 2022; 10:945531. [PMID: 36032719 PMCID: PMC9399888 DOI: 10.3389/fbioe.2022.945531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Thrombotic diseases have the characteristics of long latency period, rapid onset, and high mortality rate, which seriously threaten people's life and health. The aim of this research is to fabricate a novel indocyanine green complex of urokinase (ICG@uPA) and employ the amphiphilic PEG-PLGA polymer to deliver the complex as an enzyme-phototherapeutic synergistic thrombolysis platform. The noncovalent indocyanine green (ICG) complex of urokinase (ICG@uPA) was prepared via supramolecular self-assembly and then encapsulated into cRGD decorated polymeric nanoparticles (cRGD-ICG-uPA NPs) by double-emulsion solvent evaporation method. Then the nanoparticles (NPs) were characterized in terms of particle size, optical properties, in vitro release, etc. The targeting and thrombolytic effect of the nanoparticles were studied both in vitro and in vivo. ICG@uPA and cRGD-ICG-uPA NPs displayed significantly higher photostability and laser energy conversion efficiency than free ICG. Concomitantly, the NPs exhibited selective binding affinity to the activated platelets and specific accumulation in the mouse mesenteric vessel thrombus. Significant thrombolysis was achieved in vivo by photo-assisted synergistic therapy with reduced dose and systemic bleeding risk of uPA. Our results prove that the functional PLGA nanoparticle loaded with the ICG@uPA offers a novel option for effective and safe thrombolytic treatment.
Collapse
Affiliation(s)
- Sha Zhang
- Department of Geriatric Cardiology, Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Jinjie Li
- Centre of Sport Nutrition and Health, Zhengzhou University, Zhengzhou, China
| | - Jiefeng Ren
- Department of Geriatric Cardiology, Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Zaiyao Xue
- Department of Geriatric Cardiology, Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Xinlian Qi
- Department of Geriatric Cardiology, Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Quanjin Si
- Department of the Third Health Care, Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
30
|
Huang X, Wang Q, Mao R, Wang Z, Shen SGF, Mou J, Dai J. Two-dimensional nanovermiculite and polycaprolactone electrospun fibers composite scaffolds promoting diabetic wound healing. J Nanobiotechnology 2022; 20:343. [PMID: 35883146 PMCID: PMC9327406 DOI: 10.1186/s12951-022-01556-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Promoting diabetic wound healing is still a challenge, and angiogenesis is believed to be essential for diabetic wound healing. Vermiculite is a natural clay material that is very easy to obtain and exhibits excellent properties of releasing bioactive ions, buffering pH, adsorption, and heat insulation. However, there are still many unsolved difficulties in obtaining two-dimensional vermiculite and using it in the biomedical field in a suitable form. RESULTS In this study, we present a versatile organic-inorganic composite scaffold, which was constructed by embedding two-dimensional vermiculite nanosheets in polycaprolactone electrospun fibers, for enhancing angiogenesis through activation of the HIF-1α signaling pathway and promoting diabetic wound healing both in vitro and in vivo. CONCLUSIONS Together, the rational-designed polycaprolactone electrospun fibers-based composite scaffolds integrated with two-dimensional vermiculite nanosheets could significantly improve neo-vascularization, re-epithelialization, and collagen formation in the diabetic wound bed, thus promoting diabetic wound healing. This study provides a new strategy for constructing bioactive materials for highly efficient diabetic wound healing.
Collapse
Affiliation(s)
- Xingtai Huang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China
| | - Qirui Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Runyi Mao
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China
| | - Zeying Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China
| | - Steve G F Shen
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China. .,Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Juan Mou
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Jiewen Dai
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, 200011, Shanghai, China.
| |
Collapse
|
31
|
Xiang X, Shi D, Gao J. The Advances and Biomedical Applications of Imageable Nanomaterials. Front Bioeng Biotechnol 2022; 10:914105. [PMID: 35866027 PMCID: PMC9294271 DOI: 10.3389/fbioe.2022.914105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Nanomedicine shows great potential in screening, diagnosing and treating diseases. However, given the limitations of current technology, detection of some smaller lesions and drugs’ dynamic monitoring still need to be improved. With the advancement of nanotechnology, researchers have produced various nanomaterials with imaging capabilities which have shown great potential in biomedical research. Here, we summarized the researches based on the characteristics of imageable nanomaterials, highlighted the advantages and biomedical applications of imageable nanomaterials in the diagnosis and treatment of diseases, and discussed current challenges and prospects.
Collapse
Affiliation(s)
- Xiaohong Xiang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Doudou Shi
- Department of Gastroenterology, The Affiliated Hospital of Yan’an University, Yan’an, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jianbo Gao,
| |
Collapse
|
32
|
Qi X, Tong X, You S, Mao R, Cai E, Pan W, Zhang C, Hu R, Shen J. Mild Hyperthermia-Assisted ROS Scavenging Hydrogels Achieve Diabetic Wound Healing. ACS Macro Lett 2022; 11:861-867. [PMID: 35759676 DOI: 10.1021/acsmacrolett.2c00290] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excessive reactive oxygen species (ROS) production induces oxidative damage to biomolecules, which can lead to the development of chronic diseases. Biocompatible hydrogel antioxidants composed of natural materials, such as polysaccharides and polyphenols, are of significant option for ROS scavenging. However, rapidly achieving hydrogel antioxidants with convenient, economical, safe, and efficient features remains challenging. Herein, facile synthesis of a physically cross-linked polyphenol/polysaccharide hydrogel by introducing tannic acid microsize particles (TAMP) into a cationic guar gum (CG) matrix is reported. Combining antioxidant/photothermal properties of TAMP and mechanical support from injectable CG, the formulated TAMP/CG is explored for treating diabetic wounds. Both in vitro and in vivo assays verify that TAMP/CG can protect the cells from ROS-induced oxidative damage, which can also be strengthened by the local photothermal heating (42 °C) triggered by near-infrared light. Overall, this study establishes the paradigm of enhanced diabetic wound healing by mild hyperthermia-assisted ROS scavenging hydrogels.
Collapse
Affiliation(s)
- Xiaoliang Qi
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xianqin Tong
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shengye You
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ruiting Mao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Erya Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Wenhao Pan
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chenhao Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Rongdang Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| |
Collapse
|
33
|
Light-to-Heat Converting ECM-Mimetic Nanofiber Scaffolds for Neuronal Differentiation and Neurite Outgrowth Guidance. NANOMATERIALS 2022; 12:nano12132166. [PMID: 35808000 PMCID: PMC9268234 DOI: 10.3390/nano12132166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
The topological cues of fibrous scaffolds (in particular extracellular matrix (ECM)-mimetic nanofibers) have already proven to be a powerful tool for influencing neuronal morphology and behavior. Remote photothermal optical treatment provides additional opportunities for neuronal activity regulation. A combination of these approaches can provide “smart” 3D scaffolds for efficient axon guidance and neurite growth. In this study we propose two alternative approaches for obtaining biocompatible photothermal scaffolds: surface coating of nylon nanofibers with light-to-heat converting nanoparticles and nanoparticle incorporation inside the fibers. We have determined photoconversion efficiency of fibrous nanomaterials under near infrared (NIR) irradiation, as well as biocompatible photothermal treatment parameters. We also measured photo-induced intracellular heating upon contact of cells with a plasmonic surface. In the absence of NIR stimulation, our fibrous scaffolds with a fiber diameter of 100 nm induced an increase in the proportion of β3-tubulin positive cells, while thermal stimulation of neuroblastoma cells on nanoparticles-decorated scaffolds enhanced neurite outgrowth and promoted neuronal maturation. We demonstrate that contact guidance decorated fibers can stimulate directional growth of processes of differentiated neural cells. We studied the impact of nanoparticles on the surface of ECM-mimetic scaffolds on neurite elongation and axonal branching of rat hippocampal neurons, both as topographic cues and as local heat sources. We show that decorating the surface of nanofibers with nanoparticles does not affect the orientation of neurites, but leads to strong branching, an increase in the number of neurites per cell, and neurite elongation, which is independent of NIR stimulation. The effect of photothermal stimulation is most pronounced when cultivating neurons on nanofibers with incorporated nanoparticles, as compared to nanoparticle-coated fibers. The resulting light-to-heat converting 3D materials can be used as tools for controlled photothermal neuromodulation and as “smart” materials for reconstructive neurosurgery.
Collapse
|
34
|
Mu R, Campos de Souza S, Liao Z, Dong L, Wang C. Reprograming the immune niche for skin tissue regeneration - From cellular mechanisms to biomaterials applications. Adv Drug Deliv Rev 2022; 185:114298. [PMID: 35439569 DOI: 10.1016/j.addr.2022.114298] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Despite the rapid development of therapeutic approaches for skin repair, chronic wounds such as diabetic foot ulcers remain an unaddressed problem that affects millions of people worldwide. Increasing evidence has revealed the crucial and diverse roles of the immune cells in the development and repair of the skin tissue, prompting new research to focus on further understanding and modulating the local immune niche for comprehensive, 'perfect' regeneration. In this review, we first introduce how different immunocytes and certain stromal cells involved in innate and adaptive immunity coordinate to maintain the immune niche and tissue homeostasis, with emphasis on their specific roles in normal and pathological wound healing. We then discuss novel engineering approaches - particularly biomaterials systems and cellular therapies - to target different players of the immune niche, with three major aims to i) overcome 'under-healing', ii) avoid 'over-healing', and iii) promote functional restoration, including appendage development. Finally, we highlight how these strategies strive to manage chronic wounds and achieve full structural and functional skin recovery by creating desirable 'soil' through modulating the immune microenvironment.
Collapse
|
35
|
Qian H, Shan Y, Gong R, Lin D, Zhang M, Wang C, Wang L. Fibroblasts in Scar Formation: Biology and Clinical Translation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4586569. [PMID: 35602101 PMCID: PMC9119755 DOI: 10.1155/2022/4586569] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022]
Abstract
Scarring, which develops due to fibroblast activation and excessive extracellular matrix deposition, can cause physical, psychological, and cosmetic problems. Fibroblasts are the main type of connective tissue cells and play important roles in wound healing. However, the underlying mechanisms of fibroblast in reaching scarless wound healing require more exploration. Herein, we systematically reviewed how fibroblasts behave in response to skin injuries, as well as their functions in regeneration and scar formation. Several biocompatible materials, including hydrogels and nanoparticles, were also suggested. Moreover, factors that concern transformation from fibroblasts into cancer-associated fibroblasts are mentioned due to a tight association between scar formation and primary skin cancers. These findings will help us better understand skin fibrotic pathogenesis, as well as provide potential targets for scarless wound healing therapies.
Collapse
Affiliation(s)
- Huan Qian
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Shan
- Wenzhou Medical University, Wenzhou, China
| | | | - Danfeng Lin
- Department of Breast Surgery, The First Affifiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengwen Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Wang
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Wang
- Starbody plastic surgery Clinic, Hangzhou, China
| |
Collapse
|
36
|
Wang Z, Hou Z, Wang P, Chen F, Luo X. CuS-PNIPAm Nanoparticles with the Ability to Initiatively Capture Bacteria for Photothermal Treatment of Infected Skin. Regen Biomater 2022; 9:rbac026. [PMID: 35620190 PMCID: PMC9128540 DOI: 10.1093/rb/rbac026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Copper sulfide nanoparticles (CuS NPs) have shown great potential in various application fields, especially in biomedical engineering fields. CuS NPs, with the ability to actively capture and kill bacteria and without the worry of biocompatibility, will greatly expand their applications. Herein, a four-arm star thermo-sensitive polyisopropylacrylamide (4sPNIPAm) was used to modify CuS NPs (CuS-PNIPAm NPs). The obtained nanoparticles displayed the controlled release of copper ions and higher photothermal conversion ability in comparison with contrast materials CuS-PEG NPs and CuS NPs. Aggregation of CuS-PNIPAm NPs at above 34 °C resulted in capturing bacteria by forming the aggregates of nanoparticles-bacteria. Both S. aureus and E. coli co-cultured with CuS-PNIPAm NPs were completely killed upon NIR irradiation in minutes. Furthermore, CuS-PNIPAm NPs were verified to be a photothermal agent without toxic effect. In in vivo experiment, the nanoparticles effectively killed the bacteria in the wound and accelerated the process of wound repairment. Overall, photothermal treatment by CuS-PNIPAm NPs demonstrates the ability to actively capture and kill bacteria, and has a potential in the treatment of infected skin and the regeneration of skin tissues. The therapy will exert a far-reaching impact on the regeneration of stubborn chronic wounds.
Collapse
Affiliation(s)
- Zizhen Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Zishuo Hou
- College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Peiwen Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Fan Chen
- College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Xianglin Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
37
|
Min G, Hong F, Shi C, Zhao Q, Lin N, Liu XY. Biomimetic synthesis of 2D ultra-small copper sulfide nanoflakes based on reconfiguration of the keratin secondary structure for cancer theranostics in the NIR-II region. J Mater Chem B 2022; 10:3152-3161. [PMID: 35355042 DOI: 10.1039/d2tb00046f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional transition metal dichalcogenides have attracted widespread attention in cancer theranostics due to their high specific surface area and excellent photothermal conversion properties. However, their dimensions and biodegradability have limited the exploration of the therapeutic properties of transition metal dichalcogenides. Herein, we explore the mechanism of the keratin α-helix-to-random coil transition, as an actuation mechanism for the controllable design and precise synthesis of two-dimension copper sulfide nanoflakes (CuS NFs) with high absorption in the NIR-II window. Upon mixing keratin and Cu2+, the hydrogen bonds that maintain the α-helix are broken by copper ions to form biuret coordination, while the structure of the α-helix is transformed into a random coil, providing a more scalable space for the growth of CuS NFs. The CuS NFs prepared in this way possess the great advantages of outstanding uniformity, size controllability, and biodegradability. Importantly, the CuS NFs in the NIR-II window show an excellent photothermal conversion efficiency (32.9%) and extraordinary photoacoustic signal. This work updates the fabrication of two-dimensional transition metal dichalcogenides and greatly enhances their competitiveness in the area of cancer theranostics in the NIR-II region, and provides significant theoretical and practical opportunities for the development of keratin using biomimetic synthesis.
Collapse
Affiliation(s)
- Guangzong Min
- College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China.
| | - Fengqiu Hong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Centre for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China. .,Shenzhen Research Institute of Xiamen University, Shenzhen 518063, China
| | - Chenyang Shi
- College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China.
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Centre for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China. .,Shenzhen Research Institute of Xiamen University, Shenzhen 518063, China
| | - Naibo Lin
- College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China.
| | - Xiang-Yang Liu
- College of Ocean and Earth Sciences, State Key Laboratory of Marine Environmental Science (MEL), Xiamen University, Xiamen 361005, China.
| |
Collapse
|
38
|
Xia YN, Zu H, Guo H, Jiang T, Yang S, Yu H, Zhang S, Ding H, Li X, Wang Y, Wang Y, Zhang LW. Preclinical safety and hepatotoxicity evaluation of biomineralized copper sulfide nanoagents. J Nanobiotechnology 2022; 20:185. [PMID: 35414075 PMCID: PMC9004045 DOI: 10.1186/s12951-022-01399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
Albumin-biomineralized copper sulfide nanoparticles (Cu2-xS NPs) have attracted much attention as an emerging phototheranostic agent due to their advantages of facile preparation method and high biocompatibility. However, comprehensive preclinical safety evaluation is the only way to meet its further clinical translation. We herein evaluate detailedly the safety and hepatotoxicity of bovine serum albumin-biomineralized Cu2-xS (BSA@Cu2-xS) NPs with two different sizes in rats. Large-sized (LNPs, 17.8 nm) and small-sized (SNPs, 2.8 nm) BSA@Cu2-xS NPs with great near-infrared absorption and photothermal conversion efficiency are firstly obtained. Seven days after a single-dose intravenous administration, SNPs distributed throughout the body are cleared primarily through the feces, while a large amount of LNPs remained in the liver. A 14-day subacute toxicity study with a 28-day recovery period are conducted, showing long-term hepatotoxicity without recovery for LNPs but reversible toxicity for SNPs. Cellular uptake studies indicate that LNPs prefer to reside in Kupffer cells, leading to prolonged and delayed hepatotoxicity even after the cessation of NPs administration, while SNPs have much less Kupffer cell uptake. RNA-sequencing analysis for gene expression indicates that the inflammatory pathway, lipid metabolism pathway, drug metabolism-cytochrome P450 pathway, cholesterol/bile acid metabolism pathway, and copper ion transport/metabolism pathway are compromised in the liver by two sizes of BSA@Cu2-xS NPs, while only SNPs show a complete recovery of altered gene expression after NPs discontinuation. This study demonstrates that the translational feasibility of small-sized BSA@Cu2-xS NPs as excellent nanoagents with manageable hepatotoxicity.
Collapse
Affiliation(s)
- Ya-Nan Xia
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Rd, Suzhou, 215123, Jiangsu Province, People's Republic of China
| | - He Zu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Rd, Suzhou, 215123, Jiangsu Province, People's Republic of China
| | - Haoxiang Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Rd, Suzhou, 215123, Jiangsu Province, People's Republic of China
| | - Tianyan Jiang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Rd, Suzhou, 215123, Jiangsu Province, People's Republic of China
| | - Siqi Yang
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Huan Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Rd, Suzhou, 215123, Jiangsu Province, People's Republic of China
| | - Shaodian Zhang
- The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Heng Ding
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Rd, Suzhou, 215123, Jiangsu Province, People's Republic of China
| | - Xiaoyu Li
- GeneScience Pharmceuticals Co., Ltd, Changchun, 130012, China
| | - Yangyun Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Rd, Suzhou, 215123, Jiangsu Province, People's Republic of China
| | - Yong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Rd, Suzhou, 215123, Jiangsu Province, People's Republic of China.
| | - Leshuai W Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Rd, Suzhou, 215123, Jiangsu Province, People's Republic of China.
| |
Collapse
|
39
|
Lu HT, Huang GY, Chang WJ, Lu TW, Huang TW, Ho MH, Mi FL. Modification of chitosan nanofibers with CuS and fucoidan for antibacterial and bone tissue engineering applications. Carbohydr Polym 2022; 281:119035. [DOI: 10.1016/j.carbpol.2021.119035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 01/02/2023]
|
40
|
Ying M, Li Q, Wu J, Jiang Y, Xu Z, Ma M, Xu G. CuS@BSA-NB2 Nanoparticles for HER2-Targeted Photothermal Therapy. Front Pharmacol 2022; 12:779591. [PMID: 35126119 PMCID: PMC8815789 DOI: 10.3389/fphar.2021.779591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is characterized by the uncontrolled proliferation of breast epithelial cells under the action of a variety of carcinogens. Although HER2-inhibitors were currently applied for HER2-positive breast cancer patients, they didn't work for patients with resistance to HER2-targeted anti-cancer drugs. In this work, we prepared novel CuS@BSA-NB2 nanoparticles (NPs) for breast cancer photothermal therapy (PTT). The NPs had good biocompatibility due to the Bovine Serum Albumin (BSA) encapsulating and excellent targeting to HER2 because of nanobody 2 (NB2). Under 808 nm laser irradiation, CuS@BSA-NB2 NPs had high photothermal conversion efficiency and photothermal stability. Meanwhile, we constructed a stable cell line of MDA-MB-231/HER2 with a high expression of HER2 protein. Immunofluorescence and ICP-MS assays showed that CuS@BSA-NB2 NPs can be specifically enriched and be ingested in MDA-MB-231/HER2 cells. Furthermore, CuS@BSA-NB2 NPs had shown a more significant photothermal treatment effect than CuS@BSA under certain treatment conditions for MDA-MB-231/HER2. In addition, the cytotoxicity assay demonstrated that CuS@BSA-NB2 NPs had a low toxicity for MDA-MB-231/HER2 cells. The above results suggested that CuS@BSA-NB2 NPs were great photothermal therapeutic agents to reduce the malignant proliferation of breast epithelial cells and have potential for breast cancer therapy.
Collapse
Affiliation(s)
- Ming Ying
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qin Li
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jingbo Wu
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Mingze Ma
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
41
|
Li H, Kang Z, He E, Wu X, Ma X, Yang D, Diao Y, Chen X. Fish-scale derived multifunctional nanofiber membrane for infected wound healing. Biomater Sci 2022; 10:5284-5300. [DOI: 10.1039/d2bm00646d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid development of modern medicine has put forward new requirements for wound infection healing methods in clinical treatment. Despite great achievements have been made in the research and development...
Collapse
|
42
|
Maleki A, He J, Bochani S, Nosrati V, Shahbazi MA, Guo B. Multifunctional Photoactive Hydrogels for Wound Healing Acceleration. ACS NANO 2021; 15:18895-18930. [PMID: 34870413 DOI: 10.1021/acsnano.1c08334] [Citation(s) in RCA: 233] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Light is an attractive tool that has a profound impact on modern medicine. Particularly, light-based photothermal therapy (PTT) and photodynamic therapy (PDT) show great application prospects in the prevention of wound infection and promoting wound healing. In addition, hydrogels have shown attractive advantages in the field of wound dressings due to their excellent biochemical effects. Therefore, multifunctional photoresponsive hydrogels (MPRHs) that integrate the advantages of light and hydrogels are increasingly used in biomedicine, especially in the field of wound repair. However, a comprehensive review of MPRHs for wound regeneration is still lacking. This review first focuses on various types of MPRHs prepared by diverse photosensitizers, photothermal agents (PHTAs) including transition metal sulfide/oxides nanomaterials, metal nanostructure-based PHTAs, carbon-based PHTAs, conjugated polymer or complex-based PHTAs, and/or photodynamic agents (PHDAs) such as ZnO-based, black-phosphorus-based, TiO2-based, and small organic molecule-based PHDAs. We also then discuss how PTT, PDT, and photothermal/photodynamic synergistic therapy can modulate the microenvironments of bacteria to inhibit infection. Overall, multifunctional hydrogels with both therapeutic and tissue regeneration capabilities have been discussed and existing challenges, as well as future research directions in the field of MPRHs and their application in wound management are argued.
Collapse
Affiliation(s)
- Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Jiahui He
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China
| | - Shayesteh Bochani
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Vahideh Nosrati
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Mohammad-Ali Shahbazi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China
| |
Collapse
|
43
|
Li S, Huan Y, Zhu B, Chen H, Tang M, Yan Y, Wang C, Ouyang Z, Li X, Xue J, Wang W. Research progress on the biological modifications of implant materials in 3D printed intervertebral fusion cages. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 33:2. [PMID: 34940930 PMCID: PMC8702412 DOI: 10.1007/s10856-021-06609-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 10/06/2021] [Indexed: 05/26/2023]
Abstract
Anterior spine decompression and reconstruction with bone grafts and fusion is a routine spinal surgery. The intervertebral fusion cage can maintain intervertebral height and provide a bone graft window. Titanium fusion cages are the most widely used metal material in spinal clinical applications. However, there is a certain incidence of complications in clinical follow-ups, such as pseudoarticulation formation and implant displacement due to nonfusion of bone grafts in the cage. With the deepening research on metal materials, the properties of these materials have been developed from being biologically inert to having biological activity and biological functionalization, promoting adhesion, cell differentiation, and bone fusion. In addition, 3D printing, thin-film, active biological material, and 4D bioprinting technology are also being used in the biofunctionalization and intelligent advanced manufacturing processes of implant devices in the spine. This review focuses on the biofunctionalization of implant materials in 3D printed intervertebral fusion cages. The surface modifications of implant materials in metal endoscopy, material biocompatibility, and bioactive functionalizationare summarized. Furthermore, the prospects and challenges of the biofunctionalization of implant materials in spinal surgery are discussed. Fig.a.b.c.d.e.f.g As a pre-selected image for the cover, I really look forward to being selected. Special thanks to you for your comments.
Collapse
Affiliation(s)
- Shan Li
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
- Plastic and Cosmetic Surgery, Hunan Want Want Hospital, Changsha, China
| | - Yifan Huan
- R&D Department, Hunan Yuanpin Cell Biotechnology Co. Ltd., Changsha, China
| | - Bin Zhu
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
| | - Haoxiang Chen
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
| | - Ming Tang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
| | - Yiguo Yan
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
| | - Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
| | - Zhihua Ouyang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
| | - Xuelin Li
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
| | - Jingbo Xue
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China.
| | - Wenjun Wang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China.
| |
Collapse
|
44
|
Kong Y, Duan J, Liu F, Han L, Li G, Sun C, Sang Y, Wang S, Yi F, Liu H. Regulation of stem cell fate using nanostructure-mediated physical signals. Chem Soc Rev 2021; 50:12828-12872. [PMID: 34661592 DOI: 10.1039/d1cs00572c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
One of the major issues in tissue engineering is regulation of stem cell differentiation toward specific lineages. Unlike biological and chemical signals, physical signals with adjustable properties can be applied to stem cells in a timely and localized manner, thus making them a hot topic for research in the fields of biomaterials, tissue engineering, and cell biology. According to the signals sensed by cells, physical signals used for regulating stem cell fate can be classified into six categories: mechanical, light, thermal, electrical, acoustic, and magnetic. In most cases, external macroscopic physical fields cannot be used to modulate stem cell fate, as only the localized physical signals accepted by the surface receptors can regulate stem cell differentiation via nanoscale fibrin polysaccharide fibers. However, surface receptors related to certain kinds of physical signals are still unknown. Recently, significant progress has been made in the development of functional materials for energy conversion. Consequently, localized physical fields can be produced by absorbing energy from an external physical field and subsequently releasing another type of localized energy through functional nanostructures. Based on the above concepts, we propose a methodology that can be utilized for stem cell engineering and for the regulation of stem cell fate via nanostructure-mediated physical signals. In this review, the combined effect of various approaches and mechanisms of physical signals provides a perspective on stem cell fate promotion by nanostructure-mediated physical signals. We expect that this review will aid the development of remote-controlled and wireless platforms to physically guide stem cell differentiation both in vitro and in vivo, using optimized stimulation parameters and mechanistic investigations while driving the progress of research in the fields of materials science, cell biology, and clinical research.
Collapse
Affiliation(s)
- Ying Kong
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Feng Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266200, China.
| | - Gang Li
- Neurological Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Chunhui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Shuhua Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan, 250012, China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China. .,Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| |
Collapse
|
45
|
Building biointegration of Fe 2O 3-FeOOH coated titanium implant by regulating NIR irradiation in an infected model. Bioact Mater 2021; 8:1-11. [PMID: 34541382 PMCID: PMC8424078 DOI: 10.1016/j.bioactmat.2021.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
Killing bacteria, eliminating biofilm and building soft tissue integration are very important for percutaneous implants which service in a complicated environment. In order to endow Ti implants with above abilities, multifunctional coatings consisted of Fe2O3–FeOOH nanograins as an outer layer and Zn doped microporous TiO2 as an inner layer were fabricated by micro-arc oxidation, hydrothermal treatment and annealing treatment. The microstructures, physicochemical properties and photothermal response of the coatings were observed; their antibacterial efficiencies and cell response in vitro as well as biofilm elimination and soft tissue integration in vivo were evaluated. The results show that with the increased annealing temperature, coating morphologies didn't change obviously, but lattices of β-FeOOH gradually disorganized into amorphous state and rearranged to form Fe2O3. The coating annealed at 450 °C (MA450) had nanocrystallized Fe2O3 and β-FeOOH. With a proper NIR irradiation strategy, MA450 killed adhered bacteria efficiently and increased fibroblast behaviors via up-regulating fibrogenic-related genes in vitro; in an infected model, MA450 eliminated biofilm, reduced inflammatory response and improved biointegration with soft tissue. The good performance of MA450 was due to a synergic effect of photothermal response and released ions (Zn2+ and Fe3+). Nanocrystallized Fe2O3–FeOOH layer endows Ti with good photothermal response. With NIR irradiation, Fe2O3–FeOOH layer improves biointegration in an infected model. Photothermal response combined with released ions gives implants good performance.
Collapse
|
46
|
Gao Y, Tong H, Li J, Li J, Huang D, Shi J, Xia B. Mitochondria-Targeted Nanomedicine for Enhanced Efficacy of Cancer Therapy. Front Bioeng Biotechnol 2021; 9:720508. [PMID: 34490227 PMCID: PMC8418302 DOI: 10.3389/fbioe.2021.720508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022] Open
Abstract
Nanomedicines have been designed and developed to deliver anticancer drugs or exert anticancer therapy more selectively to tumor sites. Recent investigations have gone beyond delivering drugs to tumor tissues or cells, but to intracellular compartments for amplifying therapy efficacy. Mitochondria are attractive targets for cancer treatment due to their important functions for cells and close relationships to tumor occurrence and metastasis. Accordingly, multifunctional nanoplatforms have been constructed for cancer therapy with the modification of a variety of mitochondriotropic ligands, to trigger the mitochondria-mediated apoptosis of tumor cells. On this basis, various cancer therapeutic modalities based on mitochondria-targeted nanomedicines are developed by strategies of damaging mitochondria DNA (mtDNA), increasing reactive oxygen species (ROS), disturbing respiratory chain and redox balance. Herein, in this review, we highlight mitochondria-targeted cancer therapies enabled by nanoplatforms including chemotherapy, photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), sonodynamic therapy (SDT), radiodynamic therapy (RDT) and combined immunotherapy, and discussed the ongoing challenges.
Collapse
Affiliation(s)
- Yan Gao
- College of Science, Key Laboratory of Forest Genetics and Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing, China
| | - Haibei Tong
- College of Science, Key Laboratory of Forest Genetics and Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing, China
| | - Jialiang Li
- College of Science, Key Laboratory of Forest Genetics and Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing, China
| | - Jiachen Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland
| | - Di Huang
- College of Science, Key Laboratory of Forest Genetics and Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing, China
| | - Jisen Shi
- College of Science, Key Laboratory of Forest Genetics and Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing, China
| | - Bing Xia
- College of Science, Key Laboratory of Forest Genetics and Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing, China
| |
Collapse
|
47
|
Disulfiram-loaded copper sulfide nanoparticles for potential anti-glioma therapy. Int J Pharm 2021; 607:120978. [PMID: 34371152 DOI: 10.1016/j.ijpharm.2021.120978] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 01/11/2023]
Abstract
Disulfiram (DSF) is an effective copper (Cu2+)-dependent antitumor agent. In the present study, we explored use of transferrin (Tf)-modified DSF/copper sulfide (CuS) nanocomplex (Tf-DSF/CuS) for glioma therapy. Tf was used as glioma targeting motifs, DSF as an anticancer agent, and CuS as a source of Cu2+ ions and a photothermal agent. DSF was loaded on CuS by metal-chelation, and released from the nanocomplex under acidic condition. The Tf-DSF/CuS complex exhibited high cytotoxic effect in vitro. Notably, cytotoxic activity was correlated with pH triggered release of Cu2+ which initiated non-toxicity to toxicity switch of DSF. Ultrasound-targeted microbubble destruction (UTMD) technique was used for highly selective accumulation of intravenous injected Tf-DSF/CuS in the glioma orthotopic tumor as compared with the free drugs and non-targeted DSF/CuS groups. Magnetic resonance imaging and pathological examinations showed that Tf-DSF/CuS effectively suppressed tumor growth, with an inhibition ratio of ~85%. Additionally, DSF load did not compromise photothermal conversion ability of CuS nanoparticles. Efficacy of the photothermal ablation therapy of Tf-DSF/CuS was evaluated under 808 nm laser irradiation both in vitro and in vivo. These findings show that copper-sulfide based disulfiram nanoparticles are effective agents for anti-glioma therapy.
Collapse
|
48
|
Wang X, Zhong X, Li J, Liu Z, Cheng L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem Soc Rev 2021; 50:8669-8742. [PMID: 34156040 DOI: 10.1039/d0cs00461h] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inorganic nanomaterials that have inherently exceptional physicochemical properties (e.g., catalytic, optical, thermal, electrical, or magnetic performance) that can provide desirable functionality (e.g., drug delivery, diagnostics, imaging, or therapy) have considerable potential for application in the field of biomedicine. However, toxicity can be caused by the long-term, non-specific accumulation of these inorganic nanomaterials in healthy tissues, preventing their large-scale clinical utilization. Over the past several decades, the emergence of biodegradable and clearable inorganic nanomaterials has offered the potential to prevent such long-term toxicity. In addition, a comprehensive understanding of the design of such nanomaterials and their metabolic pathways within the body is essential for enabling the expansion of theranostic applications for various diseases and advancing clinical trials. Thus, it is of critical importance to develop biodegradable and clearable inorganic nanomaterials for biomedical applications. This review systematically summarizes the recent progress of biodegradable and clearable inorganic nanomaterials, particularly for application in cancer theranostics and other disease therapies. The future prospects and opportunities in this rapidly growing biomedical field are also discussed. We believe that this timely and comprehensive review will stimulate and guide additional in-depth studies in the area of inorganic nanomedicine, as rapid in vivo clearance and degradation is likely to be a prerequisite for the future clinical translation of inorganic nanomaterials with unique properties and functionality.
Collapse
Affiliation(s)
- Xianwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, China.
| | | | | | | | | |
Collapse
|
49
|
Zhu W, Cheng Y, Wang C, Pinna N, Lu X. Transition metal sulfides meet electrospinning: versatile synthesis, distinct properties and prospective applications. NANOSCALE 2021; 13:9112-9146. [PMID: 34008677 DOI: 10.1039/d1nr01070k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One-dimensional (1D) electrospun nanomaterials have attracted significant attention due to their unique structures and outstanding chemical and physical properties such as large specific surface area, distinct electronic and mass transport, and mechanical flexibility. Over the past years, the integration of metal sulfides with electrospun nanomaterials has emerged as an exciting research topic owing to the synergistic effects between the two components, leading to novel and interesting properties in energy, optics and catalysis research fields for example. In this review, we focus on the recent development of the preparation of electrospun nanomaterials integrated with functional metal sulfides with distinct nanostructures. These functional materials have been prepared via two efficient strategies, namely direct electrospinning and post-synthesis modification of electrospun nanomaterials. In this review, we systematically present the chemical and physical properties of the electrospun nanomaterials integrated with metal sulfides and their application in electronic and optoelectronic devices, sensing, catalysis, energy conversion and storage, thermal shielding, adsorption and separation, and biomedical technology. Additionally, challenges and further research opportunities in the preparation and application of these novel functional materials are also discussed.
Collapse
Affiliation(s)
- Wendong Zhu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Ya Cheng
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Nicola Pinna
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
50
|
Hypoxia Engineered Bone Marrow Mesenchymal Stem Cells Targeting System with Tumor Microenvironment Regulation for Enhanced Chemotherapy of Breast Cancer. Biomedicines 2021; 9:biomedicines9050575. [PMID: 34069607 PMCID: PMC8160638 DOI: 10.3390/biomedicines9050575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/02/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022] Open
Abstract
Improving the tumor targeting of docetaxel (DTX) would not only be favored for the chemotherapeutic efficacy, but also reduce its side effects. However, the regulation of the tumor microenvironment could further inhibit the growth of tumors. In this study, we introduced a system consisting of hypoxia-engineered bone marrow mesenchymal stem cells (H-bMSCs) and DTX micelles (DTX-M) for breast cancer treatment. First, the stem cell chemotherapy complex system (DTX@H-bMSCs) with tumor-targeting ability was constructed according to the uptake of DTX-M by hypoxia-induced bMSCs (H-bMSCs). DTX micellization improved the uptake efficiency of DTX by H-bMSCs, which equipped DTX@H-bMSCs with satisfactory drug loading and stability. Furthermore, the migration of DTX@H-bMSCs revealed that it could effectively target the tumor site and facilitate the drug transport between cells. Moreover, in vitro and in vivo pharmacodynamics of DTX@H-bMSCs exhibited a superior antitumor effect, which could promote the apoptosis of 4T1 cells and upregulate the expression of inflammatory factors at the tumor site. In brief, DTX@H-bMSCs enhanced the chemotherapeutic effect in breast cancer treatment.
Collapse
|