1
|
Panesso-Gómez S, Cole AJ, Wield A, Anyaeche VI, Shah J, Jiang Q, Ebai T, Sharrow AC, Tseng G, Yoon E, Brown DD, Clark AM, Larsen SD, Eder I, Gau D, Roy P, Dahl KN, Tran L, Jiang H, McAuliffe PF, Lee AV, Buckanovich RJ. Identification of the MRTFA/SRF pathway as a critical regulator of quiescence in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623825. [PMID: 39605642 PMCID: PMC11601311 DOI: 10.1101/2024.11.15.623825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chemoresistance is a major driver of cancer deaths. One understudied mechanism of chemoresistance is quiescence. We used single cell culture to identify, retrieve, and RNA-Seq profile primary quiescent ovarian cancer cells (qOvCa). We found that many qOvCa differentially expressed genes are transcriptional targets of the Myocardin Related Transcription Factor/Serum Response Factor (MRTF/SRF) pathway. We also found that genetic disruption of MRTF-SRF interaction, or an MRTF/SRF inhibitor (CCG257081) impact qOvCa gene expression and induce a quiescent state in cancer cells. Suggesting a broad role for this pathway in quiescence, CCG257081 treatment induced quiescence in breast, lung, colon, pancreatic and ovarian cancer cells. Furthermore, CCG081 (i) maintained a quiescent state in patient derived breast cancer organoids and, (ii) induced tumor growth arrest in ovarian cancer xenografts. Together, these data suggest that MRTF/SRF pathway is a critical regulator of quiescence in cancer and a possible therapeutic target.
Collapse
Affiliation(s)
- Santiago Panesso-Gómez
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander J Cole
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Wield
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vivian I Anyaeche
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jaynish Shah
- Australian Centre for Blood Diseases, Central Clinical School, Monash University and Alfred Health, Melbourne, VIC, Australia
| | - Qi Jiang
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tonge Ebai
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allison C Sharrow
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Euisik Yoon
- Department of Electrical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Daniel D Brown
- Women's Cancer Research Center, Magee-Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amanda M Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott D Larsen
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ian Eder
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | - David Gau
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | - Kris N Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lam Tran
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Hui Jiang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | | | - Adrian V Lee
- Women's Cancer Research Center, Magee-Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ronald J Buckanovich
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Singh MK, Han S, Kim S, Kang I. Targeting Lipid Metabolism in Cancer Stem Cells for Anticancer Treatment. Int J Mol Sci 2024; 25:11185. [PMID: 39456967 PMCID: PMC11508222 DOI: 10.3390/ijms252011185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer stem cells (CSCs), or tumor-initiating cells (TICs), are small subpopulations (0.0001-0.1%) of cancer cells that are crucial for cancer relapse and therapy resistance. The elimination of each CSC is essential for achieving long-term remission. Metabolic reprogramming, particularly lipids, has a significant impact on drug efficacy by influencing drug diffusion, altering membrane permeability, modifying mitochondrial function, and adjusting the lipid composition within CSCs. These changes contribute to the development of chemoresistance in various cancers. The intricate relationship between lipid metabolism and drug resistance in CSCs is an emerging area of research, as different lipid species play essential roles in multiple stages of autophagy. However, the link between autophagy and lipid metabolism in the context of CSC regulation remains unclear. Understanding the interplay between autophagy and lipid reprogramming in CSCs could lead to the development of new approaches for enhancing therapies and reducing tumorigenicity in these cells. In this review, we explore the latest findings on lipid metabolism in CSCs, including the role of key regulatory enzymes, inhibitors, and the contribution of autophagy in maintaining lipid homeostasis. These recent findings may provide critical insights for identifying novel pharmacological targets for effective anticancer treatment.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sungsoo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Yan W, Wang X, Wang W, Guo Q, Huang N, Chen H, Liang XJ, Han Y, Liu D, Zhang J. The p38/MAPK pathway as a therapeutic target to prevent therapeutic escape of breast cancer stem cells. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1867-1880. [PMID: 38951428 DOI: 10.1007/s11427-023-2585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/15/2024] [Indexed: 07/03/2024]
Abstract
Cancer stem cells (CSCs) play an important role in metastasis development, tumor recurrence, and treatment resistance, and are essential for the eradication of cancer. Currently, therapies fail to eradicate CSCs due to their therapeutic stress-induced cellular escape, which leads to enhanced aggressive behaviors compared with CSCs that have never been treated. However, the underlying mechanisms regulating the therapeutic escape remain unknown. To this end, we established a model to isolate the therapeutic escaped CSCs (TSCSCs) from breast CSCs and performed the transcription profile to reveal the mechanism. Mechanistically, we demonstrated that the behavior of therapeutic escape was regulated through the p38/MAPK signaling pathway, resulting in TSCSCs exhibiting enhanced motility and metastasis. Notably, blocking the p38/MAPK signaling pathway effectively reduced motility and metastasis ability both in vitro and in vivo, which were further supported by downregulated motility-related genes and epithelial-mesenchymal transition (EMT)-related proteins vimentin and N-cadherin. The obtained findings reveal the p38/MAPK pathway as a potential therapeutic target for TSCSCs and would provide profound implications for cancer therapy.
Collapse
Affiliation(s)
- Weixiao Yan
- State Key Laboratory of New Pharmaceutical Preparations and Excipients; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Xiaotong Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Wenjing Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Qi Guo
- State Key Laboratory of New Pharmaceutical Preparations and Excipients; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Na Huang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Hao Chen
- State Key Laboratory of New Pharmaceutical Preparations and Excipients; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yu Han
- State Key Laboratory of New Pharmaceutical Preparations and Excipients; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Dandan Liu
- State Key Laboratory of New Pharmaceutical Preparations and Excipients; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China.
| | - Jinchao Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China.
| |
Collapse
|
4
|
Souto EP, Gong P, Landua JD, Srinivasan RR, Ganesan A, Dobrolecki LE, Purdy SC, Pan X, Zeosky M, Chung A, Yi SS, Ford HL, Lewis MT. The interferon/STAT1 signaling axis is a common feature of tumor-initiating cells in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.15.557958. [PMID: 37745510 PMCID: PMC10515955 DOI: 10.1101/2023.09.15.557958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
A tumor cell subpopulation of tumor-initiating cells (TIC), or "cancer stem cells", are associated with therapeutic resistance, as well as both local and distant recurrence. Enriched populations of TIC are identified by markers including aldehyde dehydrogenase (ALDH1) activity, the cell surface marker combination CD44 + /CD24 - , or fluorescent reporters for signaling pathways that regulate TIC function. We showed previously that S ignal T ransducer and A ctivator of T ranscription (STAT)-mediated transcription allows enrichment for TIC in claudin-low models of human triple-negative breast cancer using a STAT-responsive reporter. However, the molecular phenotypes of STAT TIC are not well understood, and there is no existing method to lineage-trace TIC as they undergo cell state changes. Using a new STAT-responsive lineage-tracing (LT) system in conjunction with our original reporter, we enriched for cells with enhanced mammosphere-forming potential in some, but not all, basal-like triple-negative breast cancer (TNBC) xenograft models (TNBC) indicating TIC-related and TIC-independent functions for STAT signaling. Single-cell RNA sequencing (scRNAseq) of reporter-tagged xenografts and clinical samples identified a common interferon (IFN)/STAT1-associated transcriptional state, previously linked to inflammation and macrophage differentiation, in TIC. Surprisingly, most of the genes we identified are not present in previously published TIC signatures derived using bulk RNA sequencing. Finally, we demonstrated that bone marrow stromal cell antigen 2 (BST2), is a cell surface marker of this state, and that it functionally regulates TIC frequency. These results suggest TIC may exploit the IFN/STAT1 signaling axis to promote their activity, and that targeting this pathway may help eliminate TIC. Significance TIC differentially express interferon response genes, which were not previously reported in bulk RNA sequencing-derived TIC signatures, highlighting the importance of coupling single-cell transcriptomics with enrichment to derive TIC signatures.
Collapse
|
5
|
Bai J, Chen Y, Sun Y, Wang X, Wang Y, Guo S, Shang Z, Shao Z. EphA2 promotes the transcription of KLF4 to facilitate stemness in oral squamous cell carcinoma. Cell Mol Life Sci 2024; 81:278. [PMID: 38916835 PMCID: PMC11335203 DOI: 10.1007/s00018-024-05325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024]
Abstract
Ephrin receptor A2 (EphA2), a member of the Ephrin receptor family, is closely related to the progression of oral squamous cell carcinoma (OSCC). Cancer stem cells (CSCs) play essential roles in OSCC development and occurrence. The underlying mechanisms between EphA2 and CSCs, however, are not yet fully understood. Here, we found that EphA2 was overexpressed in OSCC tissues and was associated with poor prognosis. Knockdown of EphA2 dampened the CSC phenotype and the tumour-initiating frequency of OSCC cells. Crucially, the effects of EphA2 on the CSC phenotype relied on KLF4, a key transcription factor for CSCs. Mechanistically, EphA2 activated the ERK signalling pathway, promoting the nuclear translocation of YAP. Subsequently, YAP was bound to TEAD3, leading to the transcription of KLF4. Overall, our findings revealed that EphA2 can enhance the stemness of OSCC cells, and this study identified the EphA2/KLF4 axis as a potential target for treating OSCC.
Collapse
Affiliation(s)
- Junqiang Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yunqing Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinmiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yifan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shutian Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhe Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Day Surgery Center, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Aalam SMM, Nguyen LV, Ritting ML, Kannan N. Clonal tracking in cancer and metastasis. Cancer Metastasis Rev 2024; 43:639-656. [PMID: 37910295 PMCID: PMC11500829 DOI: 10.1007/s10555-023-10149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
The eradication of many cancers has proven challenging due to the presence of functionally and genetically heterogeneous clones maintained by rare cancer stem cells (CSCs), which contribute to disease progression, treatment refractoriness, and late relapse. The characterization of functional CSC activity has necessitated the development of modern clonal tracking strategies. This review describes viral-based and CRISPR-Cas9-based cellular barcoding, lineage tracing, and imaging-based approaches. DNA-based cellular barcoding technology is emerging as a powerful and robust strategy that has been widely applied to in vitro and in vivo model systems, including patient-derived xenograft models. This review also highlights the potential of these methods for use in the clinical and drug discovery contexts and discusses the important insights gained from such approaches.
Collapse
Affiliation(s)
| | - Long Viet Nguyen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Megan L Ritting
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Nagarajan Kannan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
- Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, MN, USA.
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Bamodu OA, Chung CC, Pisanic TR, Wu ATH. The intricate interplay between cancer stem cells and cell-of-origin of cancer: implications for therapeutic strategies. Front Oncol 2024; 14:1404628. [PMID: 38800385 PMCID: PMC11116576 DOI: 10.3389/fonc.2024.1404628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background Cancer stem cells (CSCs) have emerged as pivotal players in tumorigenesis, disease progression, and resistance to therapies. Objective This comprehensive review delves into the intricate relationship between CSCs and the cell-of-origin in diverse cancer types. Design Comprehensive review of thematically-relevant literature. Methods We explore the underlying molecular mechanisms that drive the conversion of normal cells into CSCs and the impact of the cell-of-origin on CSC properties, tumor initiation, and therapeutic responses. Moreover, we discuss potential therapeutic interventions targeting CSCs based on their distinct cell-of-origin characteristics. Results Accruing evidence suggest that the cell-of-origin, the cell type from which the tumor originates, plays a crucial role in determining the properties of CSCs and their contribution to tumor heterogeneity. Conclusion By providing critical insights into the complex interplay between CSCs and their cellular origins, this article aims to enhance our understanding of cancer biology and pave the way for more effective and personalized cancer treatments.
Collapse
Affiliation(s)
- Oluwaseun Adebayo Bamodu
- Directorate of Postgraduate Studies, School of Clinical Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Chen-Chih Chung
- Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Thomas R. Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology - Cancer Genetics and Epigenetics, Johns Hopkins University, Baltimore, MD, United States
| | - Alexander T. H. Wu
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
8
|
Marrone L, Romano S, Malasomma C, Di Giacomo V, Cerullo A, Abate R, Vecchione MA, Fratantonio D, Romano MF. Metabolic vulnerability of cancer stem cells and their niche. Front Pharmacol 2024; 15:1375993. [PMID: 38659591 PMCID: PMC11039812 DOI: 10.3389/fphar.2024.1375993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Cancer stem cells (CSC) are the leading cause of the failure of anti-tumor treatments. These aggressive cancer cells are preserved and sustained by adjacent cells forming a specialized microenvironment, termed niche, among which tumor-associated macrophages (TAMs) are critical players. The cycle of tricarboxylic acids, fatty acid oxidation path, and electron transport chain have been proven to play central roles in the development and maintenance of CSCs and TAMs. By improving their oxidative metabolism, cancer cells are able to extract more energy from nutrients, which allows them to survive in nutritionally defective environments. Because mitochondria are crucial bioenergetic hubs and sites of these metabolic pathways, major hopes are posed for drugs targeting mitochondria. A wide range of medications targeting mitochondria, electron transport chain complexes, or oxidative enzymes are currently investigated in phase 1 and phase 2 clinical trials against hard-to-treat tumors. This review article aims to highlight recent literature on the metabolic adaptations of CSCs and their supporting macrophages. A focus is provided on the resistance and dormancy behaviors that give CSCs a selection advantage and quiescence capacity in particularly hostile microenvironments and the role of TAMs in supporting these attitudes. The article also describes medicaments that have demonstrated a robust ability to disrupt core oxidative metabolism in preclinical cancer studies and are currently being tested in clinical trials.
Collapse
Affiliation(s)
- Laura Marrone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Chiara Malasomma
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Valeria Di Giacomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Andrea Cerullo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Rosetta Abate
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Deborah Fratantonio
- Department of Medicine and Surgery, LUM University Giuseppe Degennaro, Bari, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
Neagu AN, Whitham D, Bruno P, Arshad A, Seymour L, Morrissiey H, Hukovic AI, Darie CC. Onco-Breastomics: An Eco-Evo-Devo Holistic Approach. Int J Mol Sci 2024; 25:1628. [PMID: 38338903 PMCID: PMC10855488 DOI: 10.3390/ijms25031628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Known as a diverse collection of neoplastic diseases, breast cancer (BC) can be hyperbolically characterized as a dynamic pseudo-organ, a living organism able to build a complex, open, hierarchically organized, self-sustainable, and self-renewable tumor system, a population, a species, a local community, a biocenosis, or an evolving dynamical ecosystem (i.e., immune or metabolic ecosystem) that emphasizes both developmental continuity and spatio-temporal change. Moreover, a cancer cell community, also known as an oncobiota, has been described as non-sexually reproducing species, as well as a migratory or invasive species that expresses intelligent behavior, or an endangered or parasite species that fights to survive, to optimize its features inside the host's ecosystem, or that is able to exploit or to disrupt its host circadian cycle for improving the own proliferation and spreading. BC tumorigenesis has also been compared with the early embryo and placenta development that may suggest new strategies for research and therapy. Furthermore, BC has also been characterized as an environmental disease or as an ecological disorder. Many mechanisms of cancer progression have been explained by principles of ecology, developmental biology, and evolutionary paradigms. Many authors have discussed ecological, developmental, and evolutionary strategies for more successful anti-cancer therapies, or for understanding the ecological, developmental, and evolutionary bases of BC exploitable vulnerabilities. Herein, we used the integrated framework of three well known ecological theories: the Bronfenbrenner's theory of human development, the Vannote's River Continuum Concept (RCC), and the Ecological Evolutionary Developmental Biology (Eco-Evo-Devo) theory, to explain and understand several eco-evo-devo-based principles that govern BC progression. Multi-omics fields, taken together as onco-breastomics, offer better opportunities to integrate, analyze, and interpret large amounts of complex heterogeneous data, such as various and big-omics data obtained by multiple investigative modalities, for understanding the eco-evo-devo-based principles that drive BC progression and treatment. These integrative eco-evo-devo theories can help clinicians better diagnose and treat BC, for example, by using non-invasive biomarkers in liquid-biopsies that have emerged from integrated omics-based data that accurately reflect the biomolecular landscape of the primary tumor in order to avoid mutilating preventive surgery, like bilateral mastectomy. From the perspective of preventive, personalized, and participatory medicine, these hypotheses may help patients to think about this disease as a process governed by natural rules, to understand the possible causes of the disease, and to gain control on their own health.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Angiolina I. Hukovic
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| |
Collapse
|
10
|
Duong HQ, Hoang MC, Nguyen TH, Nguyen PT, Le VT, Dao TN, Ngo VL, Dang TH. Aldehyde Dehydrogenase-1A1 (ALDH1A1): The Novel Regulator of Chemoresistance in Pancreatic Cancer Cells. Cancer Control 2024; 31:10732748241305835. [PMID: 39611960 PMCID: PMC11607765 DOI: 10.1177/10732748241305835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Aldehyde dehydrogenase-1A1 (ALDH1A1), a member of a superfamily of 19 isozymes, exhibits various biological functions and is involved in several important physiological and pathological processes, including those associated with various diseases including cancers such as pancreatic cancer. Chemotherapy is one of the most important strategies for the treatment of pancreatic cancer; however, the chemoresistance exhibited by pancreatic cancer cells is a leading cause of chemotherapy failure. It has been reported that overexpression of ALDH1A1 significantly correlates with poor prognosis and tumor aggressiveness, and is clinically associated with chemoresistance. Additionally, ALDH1A1 may serve as a novel regulator for the diagnosis and prognosis of cancer resistance. In particular, ALDH1A1 can promote cancer progression by facilitating the manifestation of cancer stem cell properties. However, the molecular mechanism by which ALDH1A1 clinically regulates the development of chemoresistance, and its role in prognosis and cancer stem cells, including pancreatic cancer stem cells, remain unclear. Therefore, the current review aims to summarize the clinical functions of ALDH1A1 as a novel regulator of chemoresistance, prognosis, and cancer stem cell development in pancreatic cancer.
Collapse
Affiliation(s)
- Hong-Quan Duong
- Laboratory Center, Hanoi University of Public Health, Hanoi, Vietnam
| | - Minh-Cong Hoang
- Laboratory Department, Yenphong Medical Center, Bacninh, Vietnam
| | - Thi-Hue Nguyen
- Laboratory Department, Bacgiang General Hospital, Bacgiang, Vietnam
| | | | - Van-Thu Le
- Laboratory Center, Hanoi University of Public Health, Hanoi, Vietnam
| | - Thi-Nguyet Dao
- Pathology Department, Ducgiang General Hospital, Hanoi, Vietnam
| | - Van-Lang Ngo
- Faculty of Biomedical Sciences, Phenikaa University, Hanoi, Vietnam
| | - The-Hung Dang
- Laboratory Center, Hanoi University of Public Health, Hanoi, Vietnam
| |
Collapse
|
11
|
Sharma D, Hager CG, Shang L, Tran L, Zhu Y, Ma A, Magnuson B, Lesko MW, Wicha MS, Burness ML. The BET degrader ZBC260 suppresses stemness and tumorigenesis and promotes differentiation in triple-negative breast cancer by disrupting inflammatory signaling. Breast Cancer Res 2023; 25:144. [PMID: 37968653 PMCID: PMC10648675 DOI: 10.1186/s13058-023-01715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/20/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Breast cancer stem cells (BCSCs) are resistant to standard therapies, facilitate tumor dissemination, and contribute to relapse and progression. Super-enhancers are regulators of stemness, and BET proteins, which are critical for super-enhancer function, are a potential therapeutic target. Here, we investigated the effects of BET proteins on the regulation of breast cancer stemness using the pan-BET degrader ZBC260. METHODS We evaluated the effect of ZBC260 on CSCs in TNBC cell lines. We assessed the effect of ZBC260 on cellular viability and tumor growth and measured its effects on cancer stemness. We used RNA sequencing and stemness index to determine the global transcriptomic changes in CSCs and bulk cells and further validated our findings by qPCR, western blot, and ELISA. RESULTS ZBC260 potently inhibited TNBC growth both in vitro and in vivo. ZBC260 reduced stemness as measured by cell surface marker expression, ALDH activity, tumorsphere number, and stemness index while increasing differentiated cells. GSEA analysis indicated preferential downregulation of stemness-associated and inflammatory genes by ZBC260 in ALDH+ CSCs. CONCLUSIONS The BET degrader ZBC260 is an efficient degrader of BET proteins that suppresses tumor progression and decreases CSCs through the downregulation of inflammatory genes and pathways. Our findings support the further development of BET degraders alone and in combination with other therapeutics as CSC targeting agents.
Collapse
Affiliation(s)
- Deeksha Sharma
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Cody G Hager
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Li Shang
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Lam Tran
- Department of Biostatistics, University of Michigan, NCRC 26-319S, SPC 2800, 2800 Plymouth Rd, Ann Arbor, MI, USA
| | - Yongyou Zhu
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Elevate Bio, Cambridge, MA, USA
| | - Aihui Ma
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- University of Delaware, Newark, DE, USA
| | - Brian Magnuson
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Matthew W Lesko
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Upstate Medical University, Syracuse, NY, USA
| | - Max S Wicha
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Monika L Burness
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
McGonigal S, Wu R, Grimley E, Turk EG, Zhai Y, Cho KR, Buckanovich RJ. A putative role for ALDH inhibitors and chemoprevention of BRCA-mutation-driven tumors. Gynecol Oncol 2023; 176:139-146. [PMID: 37535994 PMCID: PMC10653209 DOI: 10.1016/j.ygyno.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Aldehyde dehydrogenase (ALDH) enzymatic activity is a marker of cancer-initiating cells (CIC) in many tumor types. Our group and others have found that ALDH1A family inhibitors (ALDHi) can preferentially induce death of ovarian CIC in established ovarian cancer. We sought to determine if ALDHi, by targeting CIC at the time of tumor initiation, could function as a chemopreventive for ovarian cancer. As BRCA1/2 mutation carriers represent a population who could benefit from an ovarian cancer chemopreventive, we focused on BRCA mutation-associated tumor cell lines and murine tumor models. We found that, compared to BRCA wild-type cells, BRCA mutant ovarian cancer cells are more sensitive to the ALDHi673A. Similarly, while 673A treatment of wild-type fallopian tube epithelial (FTE) cells is non-toxic, 673A induces death in FTE cells with BRCA1 knockdown. Using a murine fallopian tube organoid model of ovarian carcinogenesis, we show that 673A reduced organoid complexity and significantly reduce colony formation of BRCA-mutant cells. Organoids that persisted after 673A treatment were predominantly BRCA1wt, but NF1 mutant, suggesting a resistance mechanism. Finally, using the BPRN (Brca1, Trp53, Rb1, Nf1 inactivated) mouse model of tubo-ovarian cancer, we evaluated the impact of intermittent 673A therapy on carcinogenesis. 673A treatment resulted in a significant reduction in serous tubal intraepithelial carcinoma (STIC) lesions and carcinomas. Collectively, the findings suggest that ALDHi, such as 673A, could serve as chemopreventive agents for BRCA1/2 mutation carriers.
Collapse
Affiliation(s)
- Stacy McGonigal
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rong Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ed Grimley
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ekrem G Turk
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yali Zhai
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kathleen R Cho
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ronald J Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Khan SU, Rayees S, Sharma P, Malik F. Targeting redox regulation and autophagy systems in cancer stem cells. Clin Exp Med 2023; 23:1405-1423. [PMID: 36473988 DOI: 10.1007/s10238-022-00955-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Cancer is a dysregulated cellular level pathological condition that results in tumor formation followed by metastasis. In the heterogeneous tumor architecture, cancer stem cells (CSCs) are essential to push forward the progression of tumors due to their strong pro-tumor properties such as stemness, self-renewal, plasticity, metastasis, and being poorly responsive to radiotherapy and chemotherapeutic agents. Cancer stem cells have the ability to withstand various stress pressures by modulating transcriptional and translational mechanisms, and adaptable metabolic changes. Owing to CSCs heterogeneity and plasticity, these cells display varied metabolic and redox profiles across different types of cancers. It has been established that there is a disparity in the levels of Reactive Oxygen Species (ROS) generated in CSCs vs Non-CSC and these differential levels are detected across different tumors. CSCs have unique metabolic demands and are known to change plasticity during metastasis by passing through the interchangeable epithelial and mesenchymal-like phenotypes. During the metastatic process, tumor cells undergo epithelial to mesenchymal transition (EMT) thus attaining invasive properties while leaving the primary tumor site, similarly during the course of circulation and extravasation at a distant organ, these cells regain their epithelial characteristics through Mesenchymal to Epithelial Transition (MET) to initiate micrometastasis. It has been evidenced that levels of Reactive Oxygen Species (ROS) and associated metabolic activities vary between the epithelial and mesenchymal states of CSCs. Similarly, the levels of oxidative and metabolic states were observed to get altered in CSCs post-drug treatments. As oxidative and metabolic changes guide the onset of autophagy in cells, its role in self-renewal, quiescence, proliferation and response to drug treatment is well established. This review will highlight the molecular mechanisms useful for expanding therapeutic strategies based on modulating redox regulation and autophagy activation to targets. Specifically, we will account for the mounting data that focus on the role of ROS generated by different metabolic pathways and autophagy regulation in eradicating stem-like cells hereafter referred to as cancer stem cells (CSCs).
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sheikh Rayees
- PK PD Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Pankaj Sharma
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
14
|
Cole AJ, Panesso-Gómez S, Shah JS, Ebai T, Jiang Q, Gumusoglu-Acar E, Bello MG, Vlad A, Modugno F, Edwards RP, Buckanovich RJ. Quiescent Ovarian Cancer Cells Secrete Follistatin to Induce Chemotherapy Resistance in Surrounding Cells in Response to Chemotherapy. Clin Cancer Res 2023; 29:1969-1983. [PMID: 36795892 PMCID: PMC10192102 DOI: 10.1158/1078-0432.ccr-22-2254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/22/2022] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
PURPOSE We recently reported that the transcription factor NFATC4, in response to chemotherapy, drives cellular quiescence to increase ovarian cancer chemoresistance. The goal of this work was to better understand the mechanisms of NFATC4-driven ovarian cancer chemoresistance. EXPERIMENTAL DESIGN We used RNA sequencing to identify NFATC4-mediated differential gene expression. CRISPR-Cas9 and FST (follistatin)-neutralizing antibodies were used to assess impact of loss of FST function on cell proliferation and chemoresistance. ELISA was used to quantify FST induction in patient samples and in vitro in response to chemotherapy. RESULTS We found that NFATC4 upregulates FST mRNA and protein expression predominantly in quiescent cells and FST is further upregulated following chemotherapy treatment. FST acts in at least a paracrine manner to induce a p-ATF2-dependent quiescent phenotype and chemoresistance in non-quiescent cells. Consistent with this, CRISPR knockout (KO) of FST in ovarian cancer cells or antibody-mediated neutralization of FST sensitizes ovarian cancer cells to chemotherapy treatment. Similarly, CRISPR KO of FST in tumors increased chemotherapy-mediated tumor eradication in an otherwise chemotherapy-resistant tumor model. Suggesting a role for FST in chemoresistance in patients, FST protein in the abdominal fluid of patients with ovarian cancer significantly increases within 24 hours of chemotherapy exposure. FST levels decline to baseline levels in patients no longer receiving chemotherapy with no evidence of disease. Furthermore, elevated FST expression in patient tumors is correlated with poor progression-free, post-progression-free, and overall survival. CONCLUSIONS FST is a novel therapeutic target to improve ovarian cancer response to chemotherapy and potentially reduce recurrence rates.
Collapse
Affiliation(s)
- Alexander J. Cole
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Santiago Panesso-Gómez
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jaynish S. Shah
- Australian Centre for Blood Diseases, Central Clinical School, Monash University and Alfred Health, Melbourne, VIC, Australia
| | - Tonge Ebai
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qi Jiang
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Ece Gumusoglu-Acar
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maya G. Bello
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anda Vlad
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francesmary Modugno
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert P. Edwards
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald J. Buckanovich
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Ghosh S, Mitra P, Saha U, Nandi R, Jena S, Ghosh A, Roy SS, Acharya M, Biswas NK, Singh S. NOTCH pathway inactivation reprograms stem-like oral cancer cells to JAK-STAT dependent state and provides the opportunity of synthetic lethality. Transl Oncol 2023; 32:101669. [PMID: 37054548 PMCID: PMC10122064 DOI: 10.1016/j.tranon.2023.101669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND We have recently provided the evidence of interconvertible cellular states, driving non-genetic heterogeneity among stem-like oral cancer cells (oral-SLCCs). Here, NOTCH pathway-activity status is explored as one of the possible mechanisms behind this stochastic plasticity. METHODS Oral-SLCCs were enriched in 3D-spheroids. Constitutively-active and inactive status of NOTCH pathway was achieved by genetic or pharmacological approaches. RNA sequencing and real-time PCR was performed for gene expression studies. in vitro cytotoxicity assessments were performed by AlamarBlue assay and in vivo effects were studied by xenograft growth in zebrafish embryo. RESULTS We have observed stochastic plasticity in oral-SLCCs, spontaneously maintaining both NOTCH-active and inactive states. While cisplatin refraction was associated with post-treatment adaptation to the active-state of NOTCH pathway, oral-SLCCs with inactive NOTCH pathway status showed aggressive tumor growth and poor prognosis. RNAseq analysis clearly suggested the upregulation of JAK-STAT pathway in NOTCH pathway-inactive subset. The 3D-spheroids with lower NOTCH-activity status displayed significantly higher sensitivity to JAK-selective drugs, Ruxolitinib or Tofacitinib or siRNA mediated downregulation of tested partners STAT3/4. Oral-SLCCs were programmed to adapt the inactive status of NOTCH pathway by exposing to γ-secretase inhibitors, LY411575 or RO4929097, followed by targeting with JAK-inhibitors, Ruxolitinib or Tofacitinib. This approach resulted in a very significant inhibition in viability of 3D-spheroids as well as xenograft initiation in Zebrafish embryos. CONCLUSION Study revealed for the first time that NOTCH pathway-inactive state exhibit activation of JAK-STAT pathways, as synthetic lethal pair. Therefore, co-inhibition of these pathway may serve as novel therapeutic strategy against aggressive oral cancer.
Collapse
Affiliation(s)
- Subhashis Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Paromita Mitra
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Uday Saha
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Rimpa Nandi
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Subhashree Jena
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Arnab Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Shantanu Saha Roy
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Moulinath Acharya
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Nidhan Kumar Biswas
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Sandeep Singh
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India.
| |
Collapse
|
16
|
Han X, Li M, Xu J, Fu J, Wang X, Wang J, Xia T, Wang S, Ma G. miR-1275 targets MDK/AKT signaling to inhibit breast cancer chemoresistance by lessening the properties of cancer stem cells. Int J Biol Sci 2023; 19:89-103. [PMID: 36594100 PMCID: PMC9760432 DOI: 10.7150/ijbs.74227] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022] Open
Abstract
Chemoresistance is a major obstacle in the neoadjuvant chemotherapy (NCT) of locally advanced breast cancer (LABC). Identification of miRNAs as prognostic biomarkers may help overcome chemoresistance of breast cancer (BC). This study aimed to evaluate the expression level of miR-1275 in plasma samples and its biological functions in the chemoresistance of BC. The expression levels of miR-1275 in plasma samples and cells were measured by RT-qPCR. CRISPR/Cas9-mediated gene editing was used to construct miR-1275 knock-out cells in MCF-7. We found that miR-1275 was significantly downregulated in plasma from patients resistant to chemotherapy and in chemoresistant BC cell lines, while patients with low levels of miR-1275 showed poor overall survival. miR-1275 knock-out promoted chemoresistance in BC cells by increasing the properties of cancer stem cells (CSCs). Mechanistically, we identified that MDK was determined to be direct downstream protein of miR-1275 which initiated PI3K/Akt signaling in breast cancer cells. We demonstrated that the high expression level of miR-1275 in plasma predicted better response to NCT. The reduction of miR-1275 promoted BC cells chemoresistance by increasing CSCs properties via targeting MDK/AKT axis. The potential of miR-1275 as a new prognostic biomarker and therapeutic target of BC patients was identified.
Collapse
Affiliation(s)
- Xu Han
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 211166, Nanjing, China
| | - Minghui Li
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Jin Xu
- Department of Breast and Thyroid Surgery, Nanjing First Hospital, Nanjing Medical University, 210029 Nanjing, China
| | - Jingyue Fu
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Xinyang Wang
- Department of Thyroid and Breast, The Second Affiliated Hospital of Nantong University, 226000, Nantong, China
| | - Jingyi Wang
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Lane, 213003, Changzhou, China
| | - Tiansong Xia
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.,✉ Corresponding authors: Dr. Ge Ma, Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China. E-mail: ; Dr. Shui Wang, Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China. Tel: 0086-25-83718836, Fax: 0086-25-83718836, E-mail:
| | - Ge Ma
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.,✉ Corresponding authors: Dr. Ge Ma, Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China. E-mail: ; Dr. Shui Wang, Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China. Tel: 0086-25-83718836, Fax: 0086-25-83718836, E-mail:
| |
Collapse
|
17
|
Wei Y, Li Y, Chen Y, Liu P, Huang S, Zhang Y, Sun Y, Wu Z, Hu M, Wu Q, Wu H, Liu F, She T, Ning Z. ALDH1: A potential therapeutic target for cancer stem cells in solid tumors. Front Oncol 2022; 12:1026278. [PMID: 36387165 PMCID: PMC9650078 DOI: 10.3389/fonc.2022.1026278] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Solid tumors can be divided into benign solid tumors and solid malignant tumors in the academic community, among which malignant solid tumors are called cancers. Cancer is the second leading cause of death in the world, and the global incidence of cancer is increasing yearly New cancer patients in China are always the first. After the concept of stem cells was introduced in the tumor community, the CSC markers represented by ALDH1 have been widely studied due to their strong CSC cell characteristics and potential to be the driving force of tumor metastasis. In the research results in the past five years, it has been found that ALDH1 is highly expressed in various solid cancers such as breast cancer, lung cancer, colorectal cancer, liver cancer, gastric cancer, cervical cancer, esophageal cancer, ovarian cancer, head,and neck cancer. ALDH1 can activate and transform various pathways (such as the USP28/MYC signaling pathway, ALDH1A1/HIF-1α/VEGF axis, wnt/β-catenin signaling pathway), as well as change the intracellular pH value to promote formation and maintenance, resulting in drug resistance in tumors. By targeting and inhibiting ALDH1 in tumor stem cells, it can enhance the sensitivity of drugs and inhibit the proliferation, differentiation, and metastasis of solid tumor stem cells to some extent. This review discusses the relationship and pathway of ALDH1 with various solid tumors. It proposes that ALDH1 may serve as a diagnosis and therapeutic target for CSC, providing new insights and new strategies for reliable tumor treatment.
Collapse
Affiliation(s)
- Yaolu Wei
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yan Li
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yenan Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Pei Liu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Sheng Huang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yuping Zhang
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanling Sun
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhe Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hongnian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Fuxing Liu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Tonghui She
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Zhifeng Ning
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| |
Collapse
|
18
|
Barbolina MV. Targeting Microtubule-Associated Protein Tau in Chemotherapy-Resistant Models of High-Grade Serous Ovarian Carcinoma. Cancers (Basel) 2022; 14:4535. [PMID: 36139693 PMCID: PMC9496900 DOI: 10.3390/cancers14184535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Relapsed, recurrent, chemotherapy-resistant high-grade serous ovarian carcinoma is the deadliest stage of this disease. Expression of microtubule-associated protein tau (tau) has been linked to resistance to paclitaxel treatment. Here, I used models of platinum-resistant and created models of platinum/paclitaxel-resistant high-grade serous ovarian carcinoma to examine the impact of reducing tau expression on cell survival and tumor burden in cell culture and xenograft and syngeneic models of the disease. Tau was overexpressed in platinum/paclitaxel-resistant models; expression of phosphoSer396 and phosphoThr181 species was also found. A treatment with leucomethylene blue reduced the levels of tau in treated cells, was cytotoxic in cell cultures, and efficiently reduced the tumor burden in xenograft models. Furthermore, a combination of leucomethylene blue and paclitaxel synergized in eliminating cancer cells in cell culture and xenograft models. These findings underscore the feasibility of targeting tau as a treatment option in terminal-stage high-grade serous ovarian cancer.
Collapse
Affiliation(s)
- Maria V Barbolina
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60091, USA
| |
Collapse
|
19
|
Stochastic population dynamics of cancer stemness and adaptive response to therapies. Essays Biochem 2022; 66:387-398. [PMID: 36073715 DOI: 10.1042/ebc20220038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 02/07/2023]
Abstract
Intratumoral heterogeneity can exist along multiple axes: Cancer stem cells (CSCs)/non-CSCs, drug-sensitive/drug-tolerant states, and a spectrum of epithelial-hybrid-mesenchymal phenotypes. Further, these diverse cell-states can switch reversibly among one another, thereby posing a major challenge to therapeutic efficacy. Therefore, understanding the origins of phenotypic plasticity and heterogeneity remains an active area of investigation. While genomic components (mutations, chromosomal instability) driving heterogeneity have been well-studied, recent reports highlight the role of non-genetic mechanisms in enabling both phenotypic plasticity and heterogeneity. Here, we discuss various processes underlying phenotypic plasticity such as stochastic gene expression, chromatin reprogramming, asymmetric cell division and the presence of multiple stable gene expression patterns ('attractors'). These processes can facilitate a dynamically evolving cell population such that a subpopulation of (drug-tolerant) cells can survive lethal drug exposure and recapitulate population heterogeneity on drug withdrawal, leading to relapse. These drug-tolerant cells can be both pre-existing and also induced by the drug itself through cell-state reprogramming. The dynamics of cell-state transitions both in absence and presence of the drug can be quantified through mathematical models. Such a dynamical systems approach to elucidating patterns of intratumoral heterogeneity by integrating longitudinal experimental data with mathematical models can help design effective combinatorial and/or sequential therapies for better clinical outcomes.
Collapse
|
20
|
Bai S, Taylor S, Jamalruddin MA, McGonigal S, Grimley E, Yang D, Bernstein KA, Buckanovich RJ. Targeting Therapeutic Resistance and Multinucleate Giant Cells in CCNE1-Amplified HR-Proficient Ovarian Cancer. Mol Cancer Ther 2022; 21:1473-1484. [PMID: 35732503 PMCID: PMC9452459 DOI: 10.1158/1535-7163.mct-21-0873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/30/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
Approximately 20% of high-grade serous ovarian cancers (HGSOC) have CCNE1 amplification. CCNE1-amplified tumors are homologous recombination (HR) proficient and resistant to standard therapies. Therapy resistance is associated with increased numbers of polyploid giant cancer cells (PGCC). We sought to identify new therapeutic approaches for patients with CCNE1-amplified tumors. Using TCGA data, we find that the mTOR, HR, and DNA checkpoint pathways are enriched in CCNE1-amplified ovarian cancers. Furthermore, Interactome Mapping Analysis linked the mTOR activity with upregulation of HR and DNA checkpoint pathways. Indeed, we find that mTOR inhibitors (mTORi) downregulate HR/checkpoint genes in CCNE1-amplified tumors. As CCNE1-amplified tumors are dependent on the HR pathway for viability, mTORi proved selectively effective in CCNE1-amplified tumors. Similarly, via downregulation of HR genes, mTORi increased CCNE1-amplifed HGSOC response to PARPi. In contrast, overexpression of HR/checkpoint proteins (RAD51 or ATR), induced resistance to mTORi. In vivo, mTORi alone potently reduced CCNE1-amplified tumor growth and the combination of mTORi and PARPi increased response and tumor eradication. Tumors treated with mTORi demonstrated a significant reduction in ALDH+ PGCCs. Finally, as a proof of principle, we identified three patients with CCNE1 amplified tumors who were treated with an mTORi. All three obtained clinical benefits from the therapy. Our studies and clinical experience indicate mTORi are a potential therapeutic approach for patients with CCNE1-amplified tumors.
Collapse
Affiliation(s)
- Shoumei Bai
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah Taylor
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohd Azrin Jamalruddin
- Dept of Microbiology and Molecular. Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Stacy McGonigal
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edward Grimley
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongli Yang
- Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kara A. Bernstein
- Dept of Microbiology and Molecular. Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ronald J. Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Cho JG, Kim SW, Lee A, Jeong HN, Yun E, Choi J, Jeong SJ, Chang W, Oh S, Yoo KH, Lee JB, Yoon S, Lee MS, Park JH, Jung MH, Kim SW, Kim KH, Suh DS, Choi KU, Choi J, Kim J, Kwon BS. MicroRNA-dependent inhibition of WEE1 controls cancer stem-like characteristics and malignant behavior in ovarian cancer. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:803-822. [PMID: 36159587 PMCID: PMC9463562 DOI: 10.1016/j.omtn.2022.08.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/17/2022] [Indexed: 01/22/2023]
|
22
|
Vipparthi K, Hari K, Chakraborty P, Ghosh S, Patel AK, Ghosh A, Biswas NK, Sharan R, Arun P, Jolly MK, Singh S. Emergence of hybrid states of stem-like cancer cells correlates with poor prognosis in oral cancer. iScience 2022; 25:104317. [PMID: 35602941 PMCID: PMC9114525 DOI: 10.1016/j.isci.2022.104317] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022] Open
Abstract
Cancer cell state transitions emerged as powerful mechanisms responsible for drug tolerance and overall poor prognosis; however, evidences were largely missing in oral cancer. Here, by multiplexing phenotypic markers of stem-like cancer cells (SLCCs); CD44, CD24 and aldehyde dehydrogenase (ALDH), we characterized diversity among multiple oral tumor tissues and cell lines. Two distinct patterns of spontaneous transitions with stochastic bidirectional interconversions on ‘ALDH-axis’, and unidirectional non-interconvertible transitions on ‘CD24-axis’ were observed. Interestingly, plastic ‘ALDH-axis’ was harnessed by cells to adapt to a Cisplatin tolerant state. Furthermore, phenotype-specific RNA sequencing suggested the possible maintenance of intermediate hybrid cell states maintaining stemness within the differentiating subpopulations. Importantly, survival analysis with subpopulation-specific gene sets strongly suggested that cell-state transitions may drive non-genetic heterogeneity, resulting in poor prognosis. Therefore, we have described the phenotypic-composition of heterogeneous subpopulations critical for global tumor behavior in oral cancer; which may provide prerequisite knowledge for treatment strategies. Demonstrated population trajectory driven non-genetic heterogeneity in oral cancer Created transition maps for subpopulations using discrete time Markov chain model Demonstrated maintenance of stemness in cells undergoing differentiation Uniquely expressed genes of these subpopulations associated with disease prognosis
Collapse
Affiliation(s)
- Kavya Vipparthi
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Kishore Hari
- Centre for BioSystems Science and Engineering, India Institute of Science, Bengaluru, Karnataka 560012, India
| | - Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, India Institute of Science, Bengaluru, Karnataka 560012, India
| | - Subhashis Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Ankit Kumar Patel
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Arnab Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Nidhan Kumar Biswas
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Rajeev Sharan
- Head and Neck Surgery, Tata Medical Center, Kolkata, West Bengal 700160, India
| | - Pattatheyil Arun
- Head and Neck Surgery, Tata Medical Center, Kolkata, West Bengal 700160, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, India Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sandeep Singh
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| |
Collapse
|
23
|
Tang Y, Yang X, Wang Q, Huang H, Wang Q, Jiang M, Yuan C, Huang Y, Chen Y. ING4 Promotes Stemness Enrichment of Human Renal Cell Carcinoma Cells Through Inhibiting DUSP4 Expression to Activate the p38 MAPK/type I IFN-Stimulated Gene Signaling Pathway. Front Pharmacol 2022; 13:845097. [PMID: 35496267 PMCID: PMC9046557 DOI: 10.3389/fphar.2022.845097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/21/2022] [Indexed: 12/01/2022] Open
Abstract
Renal cell carcinoma (RCC) recurs frequently due to high metastatic spread, resulting in a high mortality. Cancer stem cells play a critical role in initiating the tumor metastasis. Inhibitor of growth 4 (ING4) is a member of the ING family, but its impact on cancer stem cells in RCC is still unknown. In this study, we found that ING4 significantly promoted the sphere-forming size and number of RCC cells under an ultralow-attachment culture condition in vitro, tumor growth and metastasis in vivo, and the expression of some stem-like or pluripotent biomarkers CD44, MYC, OCT4, and NANOG, indicating that ING4 increased the stemness enrichment of RCC cells. Mechanistically, the ING4-activated p38 MAPK pathway possibly upregulated the expression of type I IFN-stimulated genes to promote the formation of RCC stem cells. ING4 could inhibit the expression of DUSP4 to activate p38 MAPK. In addition, selective pharmacological p38 MAPK inhibitors could significantly inhibit stemness enrichment only in ING4-overexpressed RCC cells, suggesting that the p38 MAPK inhibitors might be effective in patients with high ING4 expression in RCC tissue. Taken together, our findings proposed that ING4 might serve as a potential therapeutic target for metastatic RCC, particularly RCC stem cells.
Collapse
Affiliation(s)
- Yu Tang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, China
| | - Xinyue Yang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, China
| | - Qing Wang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, China
| | - Haoyu Huang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, China
| | - Qinzhi Wang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, China
| | - Min Jiang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, China
| | - Chunluan Yuan
- Department of Oncology, First People’s Hospital of Lianyungang, Lianyungang, China
| | - Yefei Huang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, China
| | - Yansu Chen
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Key Lab of Environment and Health, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Yansu Chen,
| |
Collapse
|
24
|
Suarez-Martinez E, Suazo-Sanchez I, Celis-Romero M, Carnero A. 3D and organoid culture in research: physiology, hereditary genetic diseases and cancer. Cell Biosci 2022; 12:39. [PMID: 35365227 PMCID: PMC8973959 DOI: 10.1186/s13578-022-00775-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/13/2022] [Indexed: 02/08/2023] Open
Abstract
In nature, cells reside in tissues subject to complex cell–cell interactions, signals from extracellular molecules and niche soluble and mechanical signaling. These microenvironment interactions are responsible for cellular phenotypes and functions, especially in normal settings. However, in 2D cultures, where interactions are limited to the horizontal plane, cells are exposed uniformly to factors or drugs; therefore, this model does not reconstitute the interactions of a natural microenvironment. 3D culture systems more closely resemble the architectural and functional properties of in vivo tissues. In these 3D cultures, the cells are exposed to different concentrations of nutrients, growth factors, oxygen or cytotoxic agents depending on their localization and communication. The 3D architecture also differentially alters the physiological, biochemical, and biomechanical properties that can affect cell growth, cell survival, differentiation and morphogenesis, cell migration and EMT properties, mechanical responses and therapy resistance. This latter point may, in part, explain the failure of current therapies and affect drug discovery research. Organoids are a promising 3D culture system between 2D cultures and in vivo models that allow the manipulation of signaling pathways and genome editing of cells in a body-like environment but lack the many disadvantages of a living system. In this review, we will focus on the role of stem cells in the establishment of organoids and the possible therapeutic applications of this model, especially in the field of cancer research.
Collapse
Affiliation(s)
- Elisa Suarez-Martinez
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Av Manuel Siurot sn, 41013, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Suazo-Sanchez
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Av Manuel Siurot sn, 41013, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Celis-Romero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Av Manuel Siurot sn, 41013, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Av Manuel Siurot sn, 41013, Sevilla, Spain. .,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
25
|
Margarit DH, González NS, Romanelli LM, Fendrik AJ, Scagliotti AF, Reale MV. An integrative model of cancer cell differentiation with immunotherapy . Phys Biol 2021; 18. [PMID: 34633296 DOI: 10.1088/1478-3975/ac2e72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/11/2021] [Indexed: 11/11/2022]
Abstract
In order to improve cancer treatments, cancer cell differentiation and immunotherapy are the subjects of several studies in different branches of interdisciplinary sciences. In this work, we develop a new population model that integrates other complementary ones, thus emphasizing the relationship between cancer cells at different differentiation stages and the main immune system cells. For this new system, specific ranges were found where transdifferentiation of differentiated cancer cells can occur. In addition, a specific therapy against cancer stem cells was analysed by simulating cytotoxic cell vaccines. In reference to the latter, the different combinations of parameters that optimize it were studied.
Collapse
Affiliation(s)
- David H Margarit
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J M Gutiérrez 1150, Los Polvorines (B1613), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Nadia S González
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J M Gutiérrez 1150, Los Polvorines (B1613), Buenos Aires, Argentina
| | - Lilia M Romanelli
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J M Gutiérrez 1150, Los Polvorines (B1613), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alejandro J Fendrik
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J M Gutiérrez 1150, Los Polvorines (B1613), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Ariel F Scagliotti
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J M Gutiérrez 1150, Los Polvorines (B1613), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marcela V Reale
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J M Gutiérrez 1150, Los Polvorines (B1613), Buenos Aires, Argentina.,Departamento de Ingeniería e Investigaciones Tecnológicas, Universidad Nacional de La Matanza (UNLaM), Florencio Varela 1903, San Justo (B1754), Buenos Aires, Argentina
| |
Collapse
|
26
|
Stevanovic M, Kovacevic-Grujicic N, Mojsin M, Milivojevic M, Drakulic D. SOX transcription factors and glioma stem cells: Choosing between stemness and differentiation. World J Stem Cells 2021; 13:1417-1445. [PMID: 34786152 PMCID: PMC8567447 DOI: 10.4252/wjsc.v13.i10.1417] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common, most aggressive and deadliest brain tumor. Recently, remarkable progress has been made towards understanding the cellular and molecular biology of gliomas. GBM tumor initiation, progression and relapse as well as resistance to treatments are associated with glioma stem cells (GSCs). GSCs exhibit a high proliferation rate and self-renewal capacity and the ability to differentiate into diverse cell types, generating a range of distinct cell types within the tumor, leading to cellular heterogeneity. GBM tumors may contain different subsets of GSCs, and some of them may adopt a quiescent state that protects them against chemotherapy and radiotherapy. GSCs enriched in recurrent gliomas acquire more aggressive and therapy-resistant properties, making them more malignant, able to rapidly spread. The impact of SOX transcription factors (TFs) on brain tumors has been extensively studied in the last decade. Almost all SOX genes are expressed in GBM, and their expression levels are associated with patient prognosis and survival. Numerous SOX TFs are involved in the maintenance of the stemness of GSCs or play a role in the initiation of GSC differentiation. The fine-tuning of SOX gene expression levels controls the balance between cell stemness and differentiation. Therefore, innovative therapies targeting SOX TFs are emerging as promising tools for combatting GBM. Combatting GBM has been a demanding and challenging goal for decades. The current therapeutic strategies have not yet provided a cure for GBM and have only resulted in a slight improvement in patient survival. Novel approaches will require the fine adjustment of multimodal therapeutic strategies that simultaneously target numerous hallmarks of cancer cells to win the battle against GBM.
Collapse
Affiliation(s)
- Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
- Chair Biochemistry and Molecular Biology, Faculty of Biology, University of Belgrade, Belgrade 11158, Serbia
- Department of Chemical and Biological Sciences, Serbian Academy of Sciences and Arts, Belgrade 11000, Serbia.
| | - Natasa Kovacevic-Grujicic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Milena Milivojevic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| |
Collapse
|
27
|
Ghaderi F, Jokar N, Gholamrezanezhad A, Assadi M, Ahmadzadehfar H. Toward radiotheranostics in cancer stem cells: a promising initial step for tumour eradication. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Gene Expression Profiling of Olfactory Neuroblastoma Helps Identify Prognostic Pathways and Define Potentially Therapeutic Targets. Cancers (Basel) 2021; 13:cancers13112527. [PMID: 34064009 PMCID: PMC8196700 DOI: 10.3390/cancers13112527] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The gene expression profile of ONB defines a group of patients with a dismal prognosis and identifies potentially targetable pathways. Better prognostic stratification may offer new tailored approaches for the treatment and follow-up of ONB. The integration of new therapeutic agents with standard surgical and RT strategies may improve the outcomes in cases with worse prognoses. Furthermore, the ontogenesis of ONB in basal and neural subtypes is mirrored by different transcriptional pathways, paving the way towards different therapeutic approaches. Abstract Olfactory neuroblastoma (ONB) is a rare sinonasal neoplasm with a peculiar behavior, for which limited prognostic factors are available. Herein, we investigate the transcriptional pathways altered in ONB and correlate them with pathological features and clinical outcomes. We analyze 32 ONB patients treated with curative intent at two independent institutions from 2001 to 2019 for whom there is available pathologic and clinical data. We perform gene expression profiling on primary ONB samples and carry out functional enrichment analysis to investigate the key pathways associated with disease-free survival (DFS). The median age is 53.5 years; all patients undergo surgery and a pure endoscopic approach is adopted in the majority of cases (81.2%). Most patients have advanced disease (stages III–IV, 81.2%) and 84.4% undergo adjuvant (chemo)radiotherapy. The median follow-up is 35 months; 11 (26.8%) patients relapse. Clinical characteristics (gender, stage and Hyams’ grade) are not associated with the outcomes. In contrast, TGF-beta binding, EMT, IFN-alpha response, angiogenesis, IL2-STAT5 and IL6-JAK-STAT3 signaling pathways are enriched in patients experiencing recurrence, and significantly associated with shorter DFS. Clustering of transcriptional profiles according to pathological features indicates two distinct molecular groups, defined by either cytokeratin-positive or -negative immunostaining. Definition of the characterizing ONB transcriptomic pathways may pave the way towards tailored treatment approaches.
Collapse
|
29
|
Grimley E, Cole AJ, Luong TT, McGonigal SC, Sinno S, Yang D, Bernstein KA, Buckanovich RJ. Aldehyde dehydrogenase inhibitors promote DNA damage in ovarian cancer and synergize with ATM/ATR inhibitors. Am J Cancer Res 2021; 11:3540-3551. [PMID: 33664846 PMCID: PMC7914353 DOI: 10.7150/thno.51885] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
Rationale: Aldehyde dehydrogenase (ALDH) enzymes are often upregulated in cancer cells and associated with therapeutic resistance. ALDH enzymes protect cells by metabolizing toxic aldehydes which can induce DNA double stand breaks (DSB). We recently identified a novel ALDH1A family inhibitor (ALDHi), 673A. We hypothesized that 673A, via inhibition of ALDH1A family members, could induce intracellular accumulation of genotoxic aldehydes to cause DSB and that ALDHi could synergize with inhibitors of the ATM and ATR, proteins which direct DSB repair. Methods: We used immunofluorescence to directly assess levels of the aldehyde 4-hydroxynonenal and comet assays to evaluate DSB. Western blot was used to evaluate activation of the DNA damage response pathways. Cell counts were performed in the presence of 673A and additional aldehydes or aldehyde scavengers. ALDH inhibition results were confirmed using ALDH1A3 CRISPR knockout. Synergy between 673A and ATM or ATR inhibitors was evaluated using the Chou-Talalay method and confirmed in vivo using cell line xenograft tumor studies. Results: The ALDHi 673A cellular accumulation of toxic aldehydes which induce DNA double strand breaks. This is exacerbated by addition of exogenous aldehydes such as vitamin-A (retinaldehyde) and ameliorated by aldehyde scavengers such as metformin and hydralazine. Importantly, ALDH1A3 knockout cells demonstrated increased sensitivity to ATM/ATR inhibitors. And, ALDHi synergized with inhibitors of ATM and ATR, master regulators of the DSB DNA damage response, both in vitro and in vivo. This synergy was evident in homologous recombination (HR) proficient cell lines. Conclusions: ALDHi can be used to induce DNA DSB in cancer cells and synergize with inhibitors the ATM/ATR pathway. Our data suggest a novel therapeutic approach to target HR proficient ovarian cancer cells.
Collapse
|
30
|
Barati M, Akhondi M, Mousavi NS, Haghparast N, Ghodsi A, Baharvand H, Ebrahimi M, Hassani SN. Pluripotent Stem Cells: Cancer Study, Therapy, and Vaccination. Stem Cell Rev Rep 2021; 17:1975-1992. [PMID: 34115316 PMCID: PMC8193020 DOI: 10.1007/s12015-021-10199-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Pluripotent stem cells (PSCs) are promising tools for modern regenerative medicine applications because of their stemness properties, which include unlimited self-renewal and the ability to differentiate into all cell types in the body. Evidence suggests that a rare population of cells within a tumor, termed cancer stem cells (CSCs), exhibit stemness and phenotypic plasticity properties that are primarily responsible for resistance to chemotherapy, radiotherapy, metastasis, cancer development, and tumor relapse. Different therapeutic approaches that target CSCs have been developed for tumor eradication. RESULTS AND DISCUSSION In this review, we first provide an overview of different viewpoints about the origin of CSCs. Particular attention has been paid to views believe that CSCs are probably appeared through dysregulation of very small embryonic-like stem cells (VSELs) which reside in various tissues as the main candidate for tissue-specific stem cells. The expression of pluripotency markers in these two types of cells can strengthen the validity of this theory. In this regard, we discuss the common properties of CSCs and PSCs, and highlight the potential of PSCs in cancer studies, therapeutic applications, as well as educating the immune system against CSCs. CONCLUSION In conclusion, the resemblance of CSCs to PSCs can provide an appropriate source of CSC-specific antigens through cultivation of PSCs which brings to light promising ideas for prophylactic and therapeutic cancer vaccine development.
Collapse
Affiliation(s)
- Mojgan Barati
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Akhondi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Narges Sabahi Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Newsha Haghparast
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Asma Ghodsi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
31
|
Kharkar PS. Cancer Stem Cell (CSC) Inhibitors in Oncology-A Promise for a Better Therapeutic Outcome: State of the Art and Future Perspectives. J Med Chem 2020; 63:15279-15307. [PMID: 33325699 DOI: 10.1021/acs.jmedchem.0c01336] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs), a subpopulation of cancer cells endowed with self-renewal, tumorigenicity, pluripotency, chemoresistance, differentiation, invasive ability, and plasticity, reside in specialized tumor niches and are responsible for tumor maintenance, metastasis, therapy resistance, and tumor relapse. The new-age "hierarchical or CSC" model of tumor heterogeneity is based on the concept of eradicating CSCs to prevent tumor relapse and therapy resistance. Small-molecular entities and biologics acting on various stemness signaling pathways, surface markers, efflux transporters, or components of complex tumor microenvironment are under intense investigation as potential anti-CSC agents. In addition, smart nanotherapeutic tools have proved their utility in achieving CSC targeting. Several CSC inhibitors in clinical development have shown promise, either as mono- or combination therapy, in refractory and difficult-to-treat cancers. Clinical investigations with CSC marker follow-up as a measure of clinical efficacy are needed to turn the "hype" into the "hope" these new-age oncology therapeutics have to offer.
Collapse
Affiliation(s)
- Prashant S Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| |
Collapse
|
32
|
lncRNA HotairM1 Depletion Promotes Self-Renewal of Cancer Stem Cells through HOXA1-Nanog Regulation Loop. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:456-470. [PMID: 33230449 PMCID: PMC7554324 DOI: 10.1016/j.omtn.2020.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 01/10/2023]
Abstract
In cancer cells, a gain of stemness may have profound implications for tumor initiation, aggressiveness, and clinical outcome. However, the molecular mechanisms underlying the self-renewal maintenance of cancer stem-like cells (CSCs) remain elusive. Here, based on analysis of transcriptome sequencing, we identified a long noncoding RNA (lncRNA) named HotairM1, which is weakly expressed in human colorectal carcinoma and uveal melanoma, and a much lower expression in corresponding CSCs. Our results showed that HotairM1 depletion could promote CSC self-renewal and tumor propagation. Mechanistically, HotairM1 recruit EZH2 and SUZ12 to the promoter of its target gene HOXA1, leading to histone H3K27 trimethylation and epigenetic silencing of HOXA1. The silence of HOXA1 subsequently induces the H3K27 acetylation at the enhancer site of Nanog gene to upregulate its expression. The enrichment of Nanog could further inhibit HOXA1 expression, forming a reciprocal regulation loop augmenting the stemness maintaining effect. In summary, our results revealed a lncRNA-based regulatory loop that sustains self-renewal of CSCs, which highlights the critical role of HotairM1 in CSC development through the HOXA1-Nanog signaling loop.
Collapse
|
33
|
Lee SH, Reed-Newman T, Anant S, Ramasamy TS. Regulatory Role of Quiescence in the Biological Function of Cancer Stem Cells. Stem Cell Rev Rep 2020; 16:1185-1207. [DOI: 10.1007/s12015-020-10031-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Zhang J, Ying Y, Li M, Wang M, Huang X, Jia M, Zeng J, Ma C, Zhang Y, Li C, Wang X, Shu XS. Targeted inhibition of KDM6 histone demethylases eradicates tumor-initiating cells via enhancer reprogramming in colorectal cancer. Am J Cancer Res 2020; 10:10016-10030. [PMID: 32929331 PMCID: PMC7481431 DOI: 10.7150/thno.47081] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
Tumor-initiating cells (TICs) maintain heterogeneity within tumors and seed metastases at distant sites, contributing to therapeutic resistance and disease recurrence. In colorectal cancer (CRC), strategy that effectively eradicates TICs and is of potential value for clinical use still remains in need. Methods: The anti-tumorigenic activity of a small-molecule inhibitor of KDM6 histone demethylases named GSK-J4 in CRC was evaluated by in vitro assays and in vivo imaging of xenografted tumors. Sphere formation, flow cytometry analysis of cell surface markers and intestinal organoid formation were performed to examine the impact of GSK-J4 on TIC properties. Transcriptome analysis and global profiling of H3K27ac, H3K27me3, and KDM6A levels by ChIP-seq were conducted to elucidate how KDM6 inhibition reshapes epigenetic landscape and thereby eliminating TICs. Results: GSK-J4 alleviated the malignant phenotypes of CRC cells in vitro and in vivo, sensitized them to chemotherapeutic treatment, and strongly repressed TIC properties and stemness-associated gene signatures in these cells. Mechanistically, KDM6 inhibition induced global enhancer reprogramming with a preferential impact on super-enhancer-associated genes, including some key genes that control stemness in CRC such as ID1. Besides, expression of both Kdm6a and Kdm6b was more abundant in mouse intestinal crypt when compared with upper villus and inhibition of their activities blocked intestinal organoid formation. Finally, we unveiled the power of KDM6B in predicting both the overall survival outcome and recurrence of CRC patients. Conclusions: Our study provides a novel rational strategy to eradicate TICs through reshaping epigenetic landscape in CRC, which might also be beneficial for optimizing current therapeutics.
Collapse
|
35
|
Pajuelo-Lozano N, Alcalá S, Sainz B, Perona R, Sanchez-Perez I. Targeting MAD2 modulates stemness and tumorigenesis in human Gastric Cancer cell lines. Am J Cancer Res 2020; 10:9601-9618. [PMID: 32863948 PMCID: PMC7449921 DOI: 10.7150/thno.49270] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/12/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Gastric cancer (GC) is a solid tumor that contains subpopulations of cancer stem cells (CSCs), which are considered drivers of tumor initiation and metastasis; responsible for therapeutic resistance; and promoters of tumor relapse. The balance between symmetric and asymmetric division is crucial for stem cell maintenance. The objective of this study is to evaluate the role of MAD2, a key protein for proper mitotic checkpoint activity, in the tumorigenesis of GC. Methods: Gastric cancer stem cells (GCSCs) were obtained from MKN45, SNU638 and ST2957 cell lines. Pluripotency and stemness markers were evaluated by RT-qPCR and autofluorescence and membrane markers by flow cytometry. Relevant signal transduction pathways were studied by WB. We analysed cell cycle progression, migration and invasion after modulation of MAD2 activity or protein expression levels in these in vitro models. In vivo assays were performed in a nude mouse subcutaneous xenograft model. Results: We found that NANOG, CXCR4 and autofluorescence are common and consistent markers for the GCSCs analysed, with other markers showing more variability. The three main signalling pathways (Wnt/β-catenin; Hedgehog and Notch) were activated in GCSCs. Downregulation of MAD2 in MKN45CSCs decreased the expression of markers CXCR4, CD133, CD90, LGR5 and VIM, without affecting cell cycle profile or therapy resistance. Moreover, migration, invasion and tumor growth were clearly reduced, and accordingly, we found that metalloprotease expression decreased. These results were accompanied by a reduction in the levels of transcription factors related with epithelial-to-mesenchymal transition. Conclusions: We can conclude that MAD2 is important for GCSCs stemness and its downregulation in MKN45CSCs plays a central role in GC tumorigenesis, likely through CXCR4-SNAI2-MMP1. Thus, its potential use in the clinical setting should be studied as its functions appear to extend beyond mitosis.
Collapse
|
36
|
Wu JE, Wu YY, Tung CH, Tsai YT, Chen HY, Chen YL, Hong TM. DNA methylation maintains the CLDN1-EPHB6-SLUG axis to enhance chemotherapeutic efficacy and inhibit lung cancer progression. Theranostics 2020; 10:8903-8923. [PMID: 32754286 PMCID: PMC7392003 DOI: 10.7150/thno.45785] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
The loss of cancer-cell junctions and escape from the primary-tumor microenvironment are hallmarks of metastasis. A tight-junction protein, Claudin 1 (CLDN1), is a metastasis suppressor in lung adenocarcinoma. However, as a metastasis suppressor, the underlying molecular mechanisms of CLDN1 has not been well studied. Methods: The signaling pathway regulated by CLDN1 was analyzed by Metacore software and validated by immunoblots. The effect of the CLDN1-EPHB6-ERK-SLUG axis on the formation of cancer stem-like cells, drug resistance and metastasis were evaluated by sphere assay, aldefluor assay, flow cytometry, migration assay, cytotoxicity, soft agar assay, immunoprecipitation assay and xenograft experiments. Furthermore, the methylation-specific PCR, pyrosequencing assay, chromatin immunoprecipitation and reporter assay were used to study the epigenetic and RUNX3-mediated CLDN1 transcription. Finally, the molecular signatures of RUNX3/CLDN1/SLUG were used to evaluate the correlation with overall survival by using gene expression omnibus (GEO) data. Results: We demonstrated that CLDN1 repressed cancer progression via a feedback loop of the CLDN1-EPHB6-ERK1/2-SLUG axis, which repressed metastasis, drug resistance, and cancer stemness, indicating that CLDN1 acts as a metastasis suppressor. CLDN1 upregulated the cellular level of EPHB6 and enhanced its activation, resulting in suppression of ERK1/2 signaling. Interestingly, DNA hypermethylation of the CLDN1 promoter abrogated SLUG-mediated suppression of CLDN1 in low-metastatic cancer cells. In contrast, the histone deacetylase inhibitor trichostatin A or vorinostat facilitated CLDN1 expression in high-metastatic cancer cells and thus increased the efficacy of chemotherapy. Combined treatment with cisplatin and trichostatin A or vorinostat had a synergistic effect on cancer-cell death. Conclusions: This study revealed that DNA methylation maintains CLDN1 expression and then represses lung cancer progression via the CLDN1-EPHB6-ERK1/2-SLUG axis. Because CLDN1 enhances the efficacy of chemotherapy, CLDN1 is not only a prognostic marker but a predictive marker for lung adenocarcinoma patients who are good candidates for chemotherapy. Forced CLDN1 expression in low CLDN1-expressing lung adenocarcinoma will increase the chemotherapy response, providing a novel therapeutic strategy.
Collapse
Affiliation(s)
- Jia-En Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ying Wu
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Hao Tung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yao-Tsung Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yuh-Ling Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tse-Ming Hong
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
37
|
Cancer Stem Cells in Soft-Tissue Sarcomas. Cells 2020; 9:cells9061449. [PMID: 32532153 PMCID: PMC7349510 DOI: 10.3390/cells9061449] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Soft tissue sarcomas (STS) are a rare group of mesenchymal solid tumors with heterogeneous genetic profiles and clinical features. Systemic chemotherapy is the backbone treatment for advanced STS; however, STS frequently acquire resistance to standard therapies, which highlights the need to improve treatments and identify novel therapeutic targets. Increases in the knowledge of the molecular pathways that drive sarcomas have brought to light different molecular alterations that cause tumor initiation and progression. These findings have triggered a breakthrough of targeted therapies that are being assessed in clinical trials. Cancer stem cells (CSCs) exhibit mesenchymal stem cell (MSC) features and represent a subpopulation of tumor cells that play an important role in tumor progression, chemotherapy resistance, recurrence and metastasis. In fact, CSCs phenotypes have been identified in sarcomas, allied to drug resistance and tumorigenesis. Herein, we will review the published evidence of CSCs in STS, discussing the molecular characteristic of CSCs, the commonly used isolation techniques and the new possibilities of targeting CSCs as a way to improve STS treatment and consequently patient outcome.
Collapse
|
38
|
Li H, Feng Z, He ML. Lipid metabolism alteration contributes to and maintains the properties of cancer stem cells. Theranostics 2020; 10:7053-7069. [PMID: 32641978 PMCID: PMC7330842 DOI: 10.7150/thno.41388] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Lipids, the basic components of the cell membrane, execute fundamental roles in almost all the cell activities including cell-cell recognition, signalling transduction and energy supplies. Lipid metabolism is elementary for life sustentation that balances activity between synthesis and degradation. An accumulating amount of data has indicated abnormal lipid metabolism in cancer stem cells (CSCs), and that the alteration of lipid metabolism exerts a great impact on CSCs' properties such as the capability of self-renewal, differentiation, invasion, metastasis, and drug sensitivity and resistance. CSCs' formation and maintenance cannot do without the regulation of fatty acids and cholesterol. In normal cells and embryonic development, fatty acids and cholesterol metabolism are regulated by some important signalling pathways (such as Hedgehog, Notch, Wnt signalling pathways); these signalling pathways also play crucial roles in initiating and/or maintaining CSCs' properties, and such signalling is shown to be commonly modulated by the abnormal lipid metabolism in CSCs; on the other hand, the altered lipid metabolism in turn modifies the cell signalling and generates additional impacts on CSCs. Metabolic rewiring is considered as an ideal hallmark of CSCs, and metabolic alterations would be promising therapeutic targets of CSCs for aggressive tumors. In this review, we summarize the most updated findings of lipid metabolic abnormalities in CSCs and prospect the potential applications of targeting lipid metabolism for anticancer treatment.
Collapse
|
39
|
Cole AJ, Iyengar M, Panesso-Gómez S, O'Hayer P, Chan D, Delgoffe GM, Aird KM, Yoon E, Bai S, Buckanovich RJ. NFATC4 promotes quiescence and chemotherapy resistance in ovarian cancer. JCI Insight 2020; 5:131486. [PMID: 32182216 DOI: 10.1172/jci.insight.131486] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/11/2020] [Indexed: 12/30/2022] Open
Abstract
Development of chemotherapy resistance is a major problem in ovarian cancer. One understudied mechanism of chemoresistance is the induction of quiescence, a reversible nonproliferative state. Unfortunately, little is known about regulators of quiescence. Here, we identify the master transcription factor nuclear factor of activated T cells cytoplasmic 4 (NFATC4) as a regulator of quiescence in ovarian cancer. NFATC4 is enriched in ovarian cancer stem-like cells and correlates with decreased proliferation and poor prognosis. Treatment of cancer cells with cisplatin resulted in NFATC4 nuclear translocation and activation of the NFATC4 pathway, while inhibition of the pathway increased chemotherapy response. Induction of NFATC4 activity resulted in a marked decrease in proliferation, G0 cell cycle arrest, and chemotherapy resistance, both in vitro and in vivo. Finally, NFATC4 drove a quiescent phenotype in part via downregulation of MYC. Together, these data identify NFATC4 as a driver of quiescence and a potential new target to combat chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Alexander J Cole
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mangala Iyengar
- Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Santiago Panesso-Gómez
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick O'Hayer
- Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel Chan
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Greg M Delgoffe
- Tumor Microenvironment Center, UPMC Hillman Cancer Center; and Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine M Aird
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, USA
| | - Shoumei Bai
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ronald J Buckanovich
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|