1
|
Cui F, Chen W, Wang P, Fan J, Si D, Ma Q, Shi J, He Y. Gold metallene-based ECL biosensor to detect miRNA-126 for coronary artery calcification diagnosis. Biosens Bioelectron 2025; 271:116993. [PMID: 39622155 DOI: 10.1016/j.bios.2024.116993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/30/2024] [Accepted: 11/24/2024] [Indexed: 01/06/2025]
Abstract
Coronary artery calcification (CAC) is a pathological change and independent risk factor in cardiovascular diseases. In this work, a gold-based metallene structure was prepared as sensing interface based on mPEG-SH modified Au nanoparticles for the CAC detection. Firstly, a novel nanovesicle was self-assembled with excellent conductivity. The nanovesicles can confine copper nanoclusters and restrict the intramolecular rotation and vibration of copper nanoclusters. So, the luminescence nanovesicle-based confined-induced electrochemiluminescence (ECL) nanoprobe was prepared. Secondly, a novel Au metallene material was constructed by thermally treating the mPEG-SH modified Au NPs. The disulfide bonds provided a stable cross-linked network of Au nanoparticles to form Au metallene with exceptional electron transfer capacity and abundant active sites, which significantly enhanced the ECL intensity of luminescence nanovesicle. Finally, the sensing system was established with DNA catalytic hairpin assembly technology to detect miR-126-3p in the CAC patients' plasma. Combining with the vascular calcification scores obtained from intravenous ultrasound during interventions, the results showed that miR-126-3p can be used as a biomarker for diagnosing CAC lesions. Moreover, the constructed biosensing system had a better AUC value (0.967) over that of the classical PCR method. This Au metallene-based ECL sensor provided an inspiring plasma sample detection strategy for the early screening and auxiliary diagnosis of CAC patients.
Collapse
Affiliation(s)
- Fengwen Cui
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Weiwei Chen
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jiwen Fan
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Daoyuan Si
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Jingwei Shi
- Department of Laboratory Medicine Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Yuquan He
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
2
|
Huang A, Rao J, Feng X, Li X, Xu T, Yao L. Breaking new ground: Unraveling the USP1/ID3/E12/P21 axis in vascular calcification. Transl Res 2025; 276:1-20. [PMID: 39326697 DOI: 10.1016/j.trsl.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Vascular calcification (VC) poses significant challenges in cardiovascular health. This study employs single-cell transcriptome sequencing to dissect cellular dynamics in this process. We identify distinct cell subgroups, notably in vascular smooth muscle cells (VSMCs), and observe differences between calcified atherosclerotic cores and adjacent regions. Further exploration reveals ID3 as a key gene regulating VSMC function. In vitro experiments demonstrate ID3's interaction with USP1 and E12, modulating cell proliferation and osteogenic differentiation. Animal models confirm the critical role of the USP1/ID3/E12/P21 axis in VC. This study sheds light on a novel regulatory mechanism, offering potential therapeutic targets.
Collapse
Affiliation(s)
- Aoran Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, PR China
| | - Jianyun Rao
- Outpatient Management Office, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, PR China
| | - Xin Feng
- Department of Nephrology, Liaoning electric power central hospital, Shenyang 110000, PR China
| | - Xingru Li
- Department of Nephrology, Liaoning electric power central hospital, Shenyang 110000, PR China
| | - Tianhua Xu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, PR China.
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, PR China.
| |
Collapse
|
3
|
Zhang T, Zhu M, Ma J, Liu Z, Zhang Z, Chen M, Zhao Y, Li H, Wang S, Wei X, Zhang W, Yang X, Little PJ, Kamato D, Hu H, Duan Y, Zhang B, Xiao J, Xu S, Chen Y. Moscatilin inhibits vascular calcification by activating IL13RA2-dependent inhibition of STAT3 and attenuating the WNT3/β-catenin signalling pathway. J Adv Res 2025; 68:445-457. [PMID: 38432393 PMCID: PMC11785559 DOI: 10.1016/j.jare.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
INTRODUCTION Vascular calcification, a devastating vascular complication accompanying atherosclerotic cardiovascular disease and chronic kidney disease, increases the incidence of adverse cardiovascular events and compromises the efficacy of vascular interventions. However, effective therapeutic drugs and treatments to delay or prevent vascular calcification are lacking. OBJECTIVES This study was designed to test the therapeutic effects and mechanism of Moscatilin (also known as dendrophenol) from Dendrobium huoshanense (an eminent traditional Chinese medicine) in suppressing vascular calcification in vitro, ex vivo and in vivo. METHODS Male C57BL/6J mice (25-week-old) were subjected to nicotine and vitamin D3 (VD3) treatment to induce vascular calcification. In vitro, we established the cellular model of osteogenesis of human aortic smooth muscle cells (HASMCs) under phosphate conditions. RESULTS By utilizing an in-house drug screening strategy, we identified Moscatilin as a new naturally-occurring chemical entity to reduce HASMC calcium accumulation. The protective effects of Moscatilin against vascular calcification were verified in cultured HASMCs. Unbiased transcriptional profiling analysis and cellular thermal shift assay suggested that Moscatilin suppresses vascular calcification via binding to interleukin 13 receptor subunit A2 (IL13RA2) and augmenting its expression. Furthermore, IL13RA2 was reduced during HASMC osteogenesis, thus promoting the secretion of inflammatory factors via STAT3. We further validated the participation of Moscatilin-inhibited vascular calcification by the classical WNT/β-catenin pathway, among which WNT3 played a key role in this process. Moscatilin mitigated the crosstalk between WNT3/β-catenin and IL13RA2/STAT3 to reduce osteogenic differentiation of HASMCs. CONCLUSION This study supports the potential of Moscatilin as a new naturally-occurring candidate drug for treating vascular calcification via regulating the IL13RA2/STAT3 and WNT3/β-catenin signalling pathways.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mengmeng Zhu
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jialing Ma
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhenghong Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhidan Zhang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Meijie Chen
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yaping Zhao
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huaxin Li
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shengnan Wang
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoning Wei
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Wenwen Zhang
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Xiaoxiao Yang
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Danielle Kamato
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Hao Hu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Baotong Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
4
|
Cui X, Zhang L, Lin L, Hu Y, Zhang M, Sun B, Zhang Z, Lu M, Guan X, Hao J, Li Y, Li C. Notoginsenoside R1-Protocatechuic aldehyde reduces vascular inflammation and calcification through increasing the release of nitric oxide to inhibit TGFβR1-YAP/TAZ pathway in vascular smooth muscle cells. Int Immunopharmacol 2024; 143:113574. [PMID: 39520961 DOI: 10.1016/j.intimp.2024.113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Vascular calcification is a significant factor contributing to the rupture of vulnerable atherosclerotic plaques, ultimately leading to cardiovascular disease. However, no effective treatments are currently available to slow the progression of vascular calcification. Notoginsenoside R1 (R1) and protocatechuic aldehyde (PCAD), primary active components extracted from Panax notoginseng and Salvia miltiorrhiza Burge, have shown potential in mitigating endothelial injury and atherosclerosis. This study investigated the effects of R1-PCAD on nitric oxide (NO) production in endothelial cells (ECs) and its role in counteracting vascular calcification and inflammation. Additionally, it explored the mechanisms underlying these effects. To simulate atherosclerotic calcification, apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat diet and given intraperitoneal injections of vitamin D3. Treatment with the R1-PCAD combination improved endothelial function, reduced inflammation in the aorta, and lowered calcium deposition. Mechanistically, R1-PCAD enhanced eNOS-Ser1177 phosphorylation by activating the AMPKα/Akt pathway, which stimulated NO production and eNOS activation in ECs. In an in vitro co-culture model involving vascular smooth muscle cells (VSMCs) and ECs, R1-PCAD similarly reduced inflammation and calcification in VSMCs triggered by β-glycerophosphate, with these effects partially dependent on NO levels and EC functionality. Further investigation revealed that R1-PCAD facilitated NO release from ECs, which subsequently inhibited TGFβR1 activation in VSMCs. This inhibition reduced Smad2/3 activation and nuclear translocation of YAP/TAZ, thereby diminishing inflammation and calcification in VSMCs. These findings suggest that R1-PCAD alleviates vascular inflammation and calcification primarily via the NO-TGFβR1-YAP/TAZ signaling pathway. This study presents a promising new approach for treating vascular calcification by targeting intercellular signaling pathways.
Collapse
MESH Headings
- Animals
- Nitric Oxide/metabolism
- Ginsenosides/pharmacology
- Ginsenosides/therapeutic use
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Mice
- Signal Transduction/drug effects
- Catechols/pharmacology
- Catechols/therapeutic use
- Benzaldehydes/pharmacology
- Benzaldehydes/therapeutic use
- Vascular Calcification/drug therapy
- Vascular Calcification/pathology
- Vascular Calcification/metabolism
- Mice, Inbred C57BL
- Male
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Adaptor Proteins, Signal Transducing/metabolism
- Humans
- Transcription Factors/metabolism
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Atherosclerosis/drug therapy
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Cells, Cultured
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Xinhai Cui
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lei Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Lin Lin
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuanlong Hu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Muxin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Bowen Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiuya Guan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jiaqi Hao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yunlun Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
5
|
Huang M, Wang C, Li P, Lu H, Li A, Xu S. Role of immune dysregulation in peri-implantitis. Front Immunol 2024; 15:1466417. [PMID: 39555067 PMCID: PMC11563827 DOI: 10.3389/fimmu.2024.1466417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024] Open
Abstract
Peri-implantitis, a complex condition that can lead to dental implant failure, is characterized by inflammatory destruction resulting from immune dysregulation. Oral microbial dysbiosis and foreign body stimulation are the main factors contributing to such dysregulation, impairing immune cell function and triggering an inflammatory response. Immune dysregulation plays a critical role in the pathophysiology of peri-implantitis, impacting the balance of T cell subsets, the production of inflammatory factors, and immune-related molecular signaling pathways. Understanding the relationship between immune dysregulation and peri-implantitis is crucial for developing targeted strategies for clinical diagnosis and individualized treatment planning. This review explores the similarities and differences in the immune microenvironment of oral bacterial infections and foreign body rejection, analyzes the relevant molecular signaling pathways, and identifies new key targets for developing innovative immunotherapeutic drugs and effective and personalized treatment modalities for peri-implantitis. Additionally, it addresses the challenges and potential directions for translating immunotherapy into clinical practice for peri-implantitis, offering insights that bridge the gaps in current literature and pave the way for future research.
Collapse
Affiliation(s)
- Mingshu Huang
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Chao Wang
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Ping Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Hongye Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - An Li
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Zhu XX, Meng XY, Chen G, Su JB, Fu X, Xu AJ, Liu Y, Hou XH, Qiu HB, Sun QY, Hu JY, Lv ZL, Sun HJ, Jiang HB, Han ZJ, Zhu J, Lu QB. Nesfatin-1 enhances vascular smooth muscle calcification through facilitating BMP-2 osteogenic signaling. Cell Commun Signal 2024; 22:488. [PMID: 39394127 PMCID: PMC11468037 DOI: 10.1186/s12964-024-01873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Vascular calcification (VC) arises from the accumulation of calcium salts in the intimal or tunica media layer of the aorta, contributing to higher risk of cardiovascular events and mortality. Despite this, the mechanisms driving VC remain incompletely understood. We previously described that nesfatin-1 functioned as a switch for vascular smooth muscle cells (VSMCs) plasticity in hypertension and neointimal hyperplasia. In this study, we sought to investigate the role and mechanism of nesfatin-1 in VC. The expression of nesfatin-1 was measured in calcified VSMCs and aortas, as well as in patients. Loss- and gain-of-function experiments were evaluated the roles of nesfatin-1 in VC pathogenesis. The transcription activation of nesfatin-1 was detected using a mass spectrometry. We found higher levels of nesfatin-1 in both calcified VSMCs and aortas, as well as in patients with coronary calcification. Loss-of-function and gain-of-function experiments revealed that nesfatin-1 was a key regulator of VC by facilitating the osteogenic transformation of VSMCs. Mechanistically, nesfatin-1 promoted the de-ubiquitination and stability of BMP-2 via inhibiting the E3 ligase SYTL4, and the interaction of nesfatin-1 with BMP-2 potentiated BMP-2 signaling and induced phosphorylation of Smad, followed by HDAC4 phosphorylation and nuclear exclusion. The dissociation of HDAC4 from RUNX2 elicited RUNX2 acetylation and subsequent nuclear translocation, leading to the transcription upregulation of OPN, a critical player in VC. From a small library of natural compounds, we identified that Curculigoside and Chebulagic acid reduced VC development via binding to and inhibiting nesfatin-1. Eventually, we designed a mass spectrometry-based DNA-protein interaction screening to identify that STAT3 mediated the transcription activation of nesfatin-1 in the context of VC. Overall, our study demonstrates that nesfatin-1 enhances BMP-2 signaling by inhibiting the E3 ligase SYTL4, thereby stabilizing BMP-2 and facilitating the downstream phosphorylation of SMAD1/5/9 and HDAC4. This signaling cascade leads to RUNX2 activation and the transcriptional upregulation of MSX2, driving VC. These insights position nesfatin-1 as a potential therapeutic target for preventing or treating VC, advancing our understanding of the molecular mechanisms underlying this critical cardiovascular condition.
Collapse
Affiliation(s)
- Xue-Xue Zhu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
- Department of Physiology, Eberhard-Karls-University of Tübingen, Tübingen University, Tübingen, 72076, Germany
| | - Xin-Yu Meng
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Guo Chen
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jia-Bao Su
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214122, China
| | - Xiao Fu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - An-Jing Xu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yao Liu
- Department of Ultrasound, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Xiao-Hui Hou
- Department of Ultrasound, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Hong-Bo Qiu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Qing-Yi Sun
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jin-Yi Hu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Zhuo-Lin Lv
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Hai-Jian Sun
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Hai-Bin Jiang
- Department of Cardiology, Wuxi No.2 People's Hospital (Jiangnan University Medical Center), Wuxi School of Medicine, Jiangnan University, Wuxi, 214001, China.
| | - Zhi-Jun Han
- Department of Clinical Research Center, Jiangnan University Medical Center (Wuxi No.2 People's Hospital), Wuxi School of Medicine, Jiangnan University, Wuxi, 214001, China.
| | - Jian Zhu
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214122, China.
| | - Qing-Bo Lu
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
7
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, Liu L. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol 2024; 76:103321. [PMID: 39186883 PMCID: PMC11388786 DOI: 10.1016/j.redox.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Cell death constitutes a critical component of the pathophysiology of cardiovascular diseases. A growing array of non-apoptotic forms of regulated cell death (RCD)-such as necroptosis, ferroptosis, pyroptosis, and cuproptosis-has been identified and is intimately linked to various cardiovascular conditions. These forms of RCD are governed by genetically programmed mechanisms within the cell, with epigenetic modifications being a common and crucial regulatory method. Such modifications include DNA methylation, RNA methylation, histone methylation, histone acetylation, and non-coding RNAs. This review recaps the roles of DNA methylation, RNA methylation, histone modifications, and non-coding RNAs in cardiovascular diseases, as well as the mechanisms by which epigenetic modifications regulate key proteins involved in cell death. Furthermore, we systematically catalog the existing epigenetic pharmacological agents targeting novel forms of RCD and their mechanisms of action in cardiovascular diseases. This article aims to underscore the pivotal role of epigenetic modifications in precisely regulating specific pathways of novel RCD in cardiovascular diseases, thus offering potential new therapeutic avenues that may prove more effective and safer than traditional treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
8
|
Liang X, Li Y, Wang P, Liu H. Key regulators of vascular calcification in chronic kidney disease: Hyperphosphatemia, BMP2, and RUNX2. PeerJ 2024; 12:e18063. [PMID: 39308809 PMCID: PMC11416758 DOI: 10.7717/peerj.18063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Vascular calcification is quite common in patients with end-stage chronic kidney disease and is a major trigger for cardiovascular complications in these patients. These complications significantly impact the survival rate and long-term prognosis of individuals with chronic kidney disease. Numerous studies have demonstrated that the development of vascular calcification involves various pathophysiological mechanisms, with the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) being of utmost importance. High phosphate levels, bone morphogenetic protein 2 (BMP2), and runt-related transcription factor 2 (RUNX2) play crucial roles in the osteogenic transdifferentiation process of VSMCs. This article primarily reviews the molecular mechanisms by which high phosphate, BMP2, and RUNX2 regulate vascular calcification secondary to chronic kidney disease, and discusses the complex interactions among these factors and their impact on the progression of vascular calcification. The insights provided here aim to offer new perspectives for future research on the phenotypic switching and osteogenic transdifferentiation of VSMCs, as well as to aid in optimizing clinical treatment strategies for this condition, bearing significant clinical and scientific implications.
Collapse
Affiliation(s)
- Xinhua Liang
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Zhanjiang, Guangdong Province, China
| | - Yankun Li
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Zhanjiang, Guangdong Province, China
| | - Peng Wang
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Zhanjiang, Guangdong, China
| | - Huafeng Liu
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Zhanjiang, Guangdong, China
| |
Collapse
|
9
|
Zhang X, Zhu M, Zeng P, Guan M, Zhang H, Duan S, Huang H, Liu Y, Cong H, Chen Y. Identification of circulating microRNA-126-3p as a new biomarker for coronary artery calcification. SAGE Open Med 2024; 12:20503121241272646. [PMID: 39161400 PMCID: PMC11331480 DOI: 10.1177/20503121241272646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Objective Several circulating microRNAs, including microRNA-126-3p, have been identified as diagnostic and prognostic biomarker of cardiovascular disease. However, whether microRNA-126-3p is an independent risk predictor for coronary artery calcification is unclear. Methods In this prospective single-center study, we collected blood samples from coronary artery atherosclerosis patients (n = 54), patients with coronary artery calcification (n = 33) and controls (n = 56). Total RNA was extracted from plasma and blood cells with TRIzol reagents. The microRNA-126-3p level was determined via quantitative real-time polymerase chain reaction (RT-PCR). Results MicroRNA-126-3p levels were significantly increased in patients with coronary artery calcification than in coronary artery atherosclerosis patients or controls. The highest expression of microRNA-126-3p was observed in patients with moderate calcification who were diagnosed with Grade 2 calcification by coronary angiography. Age, microRNA-126-3p expression in veins, hypertension and diabetes significantly influence the occurrence of coronary artery calcification, among which diabetes and venous microRNA-126-3p expression were found to be independent risk factors for coronary artery calcification. Conclusions Taken together, the data in this study suggest that circulating microRNA-126-3p may be a novel noninvasive biomarker for coronary artery calcification. Regulating microRNA-126-3p expression may be an effective and promising strategy for the diagnosis and treatment of cardiovascular diseases, especially coronary artery calcification.
Collapse
Affiliation(s)
- Xia Zhang
- Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Mengmeng Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Peng Zeng
- College of Life Sciences, Nankai University, Tianjin, China
| | - Mingxiu Guan
- Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Hongyu Zhang
- Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Shaohua Duan
- Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Heli Huang
- Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Yulian Liu
- Tianjin Xiu Peng Biotechnology Development Co., Ltd., Tianjin, China
| | - Hongliang Cong
- Department of Cardiovascular Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
10
|
Xu Y, Zhang H, Chen Y, Pober JS, Zhou M, Zhou JH, Min W. SRF SUMOylation modulates smooth muscle phenotypic switch and vascular remodeling. Nat Commun 2024; 15:6919. [PMID: 39134547 PMCID: PMC11319592 DOI: 10.1038/s41467-024-51350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Serum response factor (SRF) controls gene transcription in vascular smooth muscle cells (VSMCs) and regulates VSMC phenotypic switch from a contractile to a synthetic state, which plays a key role in the pathogenesis of cardiovascular diseases (CVD). It is not known how post-translational SUMOylation regulates the SRF activity in CVD. Here we show that Senp1 deficiency in VSMCs increased SUMOylated SRF and the SRF-ELK complex, leading to augmented vascular remodeling and neointimal formation in mice. Mechanistically, SENP1 deficiency in VSMCs increases SRF SUMOylation at lysine 143, reducing SRF lysosomal localization concomitant with increased nuclear accumulation and switching a contractile phenotype-responsive SRF-myocardin complex to a synthetic phenotype-responsive SRF-ELK1 complex. SUMOylated SRF and phospho-ELK1 are increased in VSMCs from coronary arteries of CVD patients. Importantly, ELK inhibitor AZD6244 prevents the shift from SRF-myocardin to SRF-ELK complex, attenuating VSMC synthetic phenotypes and neointimal formation in Senp1-deficient mice. Therefore, targeting the SRF complex may have a therapeutic potential for the treatment of CVD.
Collapse
Affiliation(s)
- Yue Xu
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- State Key Laboratory of Ophthalmology and Guangdong Province Key Laboratory of Ophthalmology and Visual Science, Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haifeng Zhang
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Yuxin Chen
- Cardiovascular Medical Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jordan S Pober
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Min Zhou
- Cardiovascular Medical Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Jenny Huanjiao Zhou
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| | - Wang Min
- Cardiovascular Medical Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
11
|
Yang Y, Yuan L, Xiong H, Guo K, Zhang M, Yan T, Wang W, Zhou S, Sun H, Zhang S, Duan Y, Hu Y. Inhibition of vascular calcification by Compound Danshen Dripping Pill through multiple mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155618. [PMID: 38678949 DOI: 10.1016/j.phymed.2024.155618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Vascular calcification refers to the abnormal accumulation of calcium in the walls of blood vessels and is a risk factor often overlooked in cardiovascular disease. However, there is currently no specific drug for treating vascular calcification. Compound Danshen Dripping Pill (CDDP) is widely used to treat cardiovascular diseases, but its effect on vascular calcification has not been reported. PURPOSE We investigated the effects of CDDP on vascular calcification in ApoE-/- mice and in vitro and elucidated its mechanism of action. STUDY DESIGN Firstly, we found that CDDP has the potential to improve calcification based on network pharmacology analysis. Then, we performed the following experiments: in vivo, ApoE-/- mice were fed a high-fat diet randomly supplemented with CDDP for 16 weeks. Atherosclerosis and vascular calcification were determined. In vitro, human aortic smooth muscle cells (HASMCs), human umbilical vein endothelial cells (HUVECs), and human aortic endothelial cells (HAECs) were used to determine the mechanisms for CDDP-inhibited vascular calcification. RESULTS In this study, we observed that CDDP reduced intimal calcification in atherosclerotic lesions of ApoE-deficient mice fed a high-fat diet, as well as the calcification in cultured SMCs and ECs. Mechanistically, CDDP inhibited the Wnt/β-catenin pathway by up-regulating the expression of DKK1 and LRP6, which are upstream inhibitors of Wnt, leading to a reduction in the expression of osteoblastic transition markers (ALP, OPN, BMP2, and RUNX2). Furthermore, CDDP enhanced the secretion of DKK1, which plays a role in mediating EC-SMC crosstalk in calcification. Additionally, VC contributes to vascular aging by inhibiting Sirt1 and increasing senescence parameters (SA-β-gal, p21, and p16). However, CDDP reversed these changes by activating Sirt1. CDDP also reduced the levels of pro-inflammatory cytokines and the senescence-associated secretory phenotype in vivo and in vitro. CONCLUSIONS Our study suggests that CDDP reduces vascular calcification by regulating the DKK1/LRP6/β-catenin signaling pathway in ECs/SMCs and interactions with the crosstalk of ECs and SMCs. It also reduces the senescence of ECs/SMCs, contributing to the Sirt1 activation, indicating CDDP's novel role in ameliorating vascular calcification.
Collapse
Affiliation(s)
- Yanfang Yang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Liying Yuan
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Hui Xiong
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, China
| | - Kaimin Guo
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, China
| | - Mengying Zhang
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, China
| | - Tengteng Yan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wenjia Wang
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, China
| | - Shuiping Zhou
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, China
| | - He Sun
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yajun Duan
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Yunhui Hu
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, China.
| |
Collapse
|
12
|
Qi L, Xing J, Yuan Y, Lei M. Noncoding RNAs in atherosclerosis: regulation and therapeutic potential. Mol Cell Biochem 2024; 479:1279-1295. [PMID: 37418054 PMCID: PMC11116212 DOI: 10.1007/s11010-023-04794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/18/2023] [Indexed: 07/08/2023]
Abstract
Atherosclerosis, a chronic disease of arteries, results in high mortality worldwide as the leading cause of cardiovascular disease. The development of clinically relevant atherosclerosis involves the dysfunction of endothelial cells and vascular smooth muscle cells. A large amount of evidence indicates that noncoding RNAs, such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), are involved in various physiological and pathological processes. Recently, noncoding RNAs were identified as key regulators in the development of atherosclerosis, including the dysfunction of endothelial cells, and vascular smooth muscle cells and it is pertinent to understand the potential function of noncoding RNAs in atherosclerosis development. In this review, the latest available research relates to the regulatory role of noncoding RNAs in the progression of atherosclerosis and the therapeutic potential for atherosclerosis is summarized. This review aims to provide a comprehensive overview of the regulatory and interventional roles of ncRNAs in atherosclerosis and to inspire new insights for the prevention and treatment of this disease.
Collapse
MESH Headings
- Humans
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/therapy
- Atherosclerosis/pathology
- Animals
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gene Expression Regulation
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
Collapse
Affiliation(s)
- Luyao Qi
- Critical Care Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 200137, Shanghai, China
| | - Jixiang Xing
- Peripheral Vascular Department, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300150, Tianjin, China
| | - Yuesong Yuan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, 250014, Jinan, Shandong, China
| | - Ming Lei
- Critical Care Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 200137, Shanghai, China.
| |
Collapse
|
13
|
Li XX, Chen ZD, Sun XJ, Yang YQ, Jin H, Liu NF. Empagliflozin ameliorates vascular calcification in diabetic mice through inhibiting Bhlhe40-dependent NLRP3 inflammasome activation. Acta Pharmacol Sin 2024; 45:751-764. [PMID: 38172306 PMCID: PMC10943241 DOI: 10.1038/s41401-023-01217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) patients exhibit greater susceptibility to vascular calcification (VC), which has a higher risk of death and disability. However, there is no specific drug for VC therapy. NLRP3 inflammasome activation as a hallmark event of medial calcification leads to arterial stiffness, causing vasoconstrictive dysfunction in T2DM. Empagliflozin (EMPA), a sodium-glucose co-transporter 2 inhibitor (SGLT2i), restrains hyperglycemia with definite cardiovascular benefits. Given the anti-inflammatory activity of EMPA, herein we investigated whether EMPA protected against VC in the aorta of T2DM mice by inhibiting NLRP3 inflammasome activation. Since db/db mice receiving a normal diet developed VC at the age of about 20 weeks, we administered EMPA (5, 10, 20 mg·kg-1·d-1, i.g) to 8 week-old db/db mice for 12 weeks. We showed that EMPA intervention dose-dependently ameliorated the calcium deposition, accompanied by reduced expression of RUNX2 and BMP2 proteins in the aortas. We found that EMPA (10 mg·kg-1·d-1 for 6 weeks) also protected against VC in vitamin D3-overloaded mice, suggesting the protective effects independent of metabolism. We showed that EMPA (10 mg·kg-1·d-1) inhibited the abnormal activation of NLRP3 inflammasome in aortic smooth muscle layer of db/db mice. Knockout (KO) of NLRP3 significantly alleviated VC in STZ-induced diabetic mice. The protective effects of EMPA were verified in high glucose (HG)-treated mouse aortic smooth muscle cells (MOVASs). In HG-treated NLRP3 KO MOVASs, EMPA (1 μM) did not cause further improvement. Bioinformatics and Western blot analysis revealed that EMPA significantly increased the expression levels of basic helix-loop-helix family transcription factor e40 (Bhlhe40) in HG-treated MOVASs, which served as a negative transcription factor directly binding to the promotor of Nlrp3. We conclude that EMPA ameliorates VC by inhibiting Bhlhe40-dpendent NLRP3 inflammasome activation. These results might provide potential significance for EMPA in VC therapy of T2DM patients.
Collapse
Affiliation(s)
- Xiao-Xue Li
- Department of Cardiology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Zheng-Dong Chen
- Department of Cardiology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Xue-Jiao Sun
- Department of Cardiology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Yi-Qing Yang
- Department of Cardiology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Hong Jin
- Department of Cardiology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Nai-Feng Liu
- Department of Cardiology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China.
| |
Collapse
|
14
|
Li X, Liu A, Xie C, Chen Y, Zeng K, Xie C, Zhang Z, Luo P, Huang H. The transcription factor GATA6 accelerates vascular smooth muscle cell senescence-related arterial calcification by counteracting the role of anti-aging factor SIRT6 and impeding DNA damage repair. Kidney Int 2024; 105:115-131. [PMID: 37914087 DOI: 10.1016/j.kint.2023.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
Arterial calcification is a hallmark of vascular pathology in the elderly and in individuals with chronic kidney disease (CKD). Vascular smooth muscle cells (VSMCs), after attaining a senescent phenotype, are implicated in the calcifying process. However, the underlying mechanism remains to be elucidated. Here, we reveal an aberrant upregulation of transcriptional factor GATA6 in the calcified aortas of humans, mice with CKD and mice subjected to vitamin D3 injection. Knockdown of GATA6, via recombinant adeno-associated virus carrying GATA6 shRNA, inhibited the development of arterial calcification in mice with CKD. Further gain- and loss-of function experiments in vitro verified the contribution of GATA6 in osteogenic differentiation of VSMCs. Samples of human aorta exhibited a positive relationship between age and GATA6 expression and GATA6 was also elevated in the aortas of old as compared to young mice. Calcified aortas displayed senescent features with VSMCs undergoing premature senescence, blunted by GATA6 downregulation. Notably, abnormal induction of GATA6 in senescent and calcified aortas was rescued in Sirtuin 6 (SIRT6)-transgenic mice, a well-established longevity mouse model. Suppression of GATA6 accounted for the favorable effect of SIRT6 on VSMCs senescence prevention. Mechanistically, SIRT6 inhibited the transcription of GATA6 by deacetylation and increased degradation of transcription factor Nkx2.5. Moreover, GATA6 was induced by DNA damage stress during arterial calcification and subsequently impeded the Ataxia-telangiectasia mutated (ATM)-mediated DNA damage repair process, leading to accelerated VSMCs senescence and osteogenic differentiation. Thus, GATA6 is a novel regulator in VSMCs senescence. Our findings provide novel insight in arterial calcification and a potential new target for intervention.
Collapse
Affiliation(s)
- Xiaoxue Li
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Aiting Liu
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Chen Xie
- Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Yanlian Chen
- Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Kuan Zeng
- Department of Cardiac Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changming Xie
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Zhengzhipeng Zhang
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Pei Luo
- State Key Laboratory for Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
15
|
Wei X, Shen Z, Zhu M, Fang M, Wang S, Zhang T, Zhang B, Yang X, Lv Z, Duan Y, Jiang M, Ma C, Li Q, Chen Y. The pterostilbene-dihydropyrazole derivative Ptd-1 ameliorates vascular calcification by regulating inflammation. Int Immunopharmacol 2023; 125:111198. [PMID: 37952482 DOI: 10.1016/j.intimp.2023.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Vascular calcification is an independent risk factor for cardiovascular disease. However, there is still a lack of adequate treatment. This study aimed to examine the potential of (E)-1-(5-(2-(4-fluorobenzyloxy)Styryl)-4,6-dimethoxyphenyl)-3-methyl-4,5-dihydro-1H-pyrazole-1-yl) ethyl ketone (Ptd-1) to alleviate vascular calcification. ApoE-deficient mice were fed a high-fat diet for 12/16 weeks to induce intimal calcification, and wild-type mice were induced with a combination of nicotine and vitamin D3 to induce medial calcification. Human aortic smooth muscle cells (HASMCs) and aortic osteogenic differentiation were induced in vitro with phosphate. In the mouse model of atherosclerosis, Ptd-1 significantly ameliorated the progression of atherosclerosis and intimal calcification, and there were significant reductions in lipid deposition and calcium salt deposition in the aorta and aortic root. In addition, Ptd-1 significantly improved medial calcification in vivo and osteogenic differentiation in vitro. Mechanistically, Ptd-1 reduced the levels of the inflammatory factors IL-1β, TNFα and IL-6 in vivo and in vitro. Furthermore, we demonstrated that Ptd-1 could attenuate the expression of p-ERK1/2 and β-catenin, and that the levels of inflammatory factors were elevated in the presence of ERK1/2 and β-catenin agonists. Interestingly, we determined that activation of the ERK1/2 pathway promoted β-catenin expression, which further regulated the IL-6/STAT3 signaling pathway. Ptd-1 blocked ERK1/2 signaling, leading to decreased expression of inflammatory factors, which in turn improved vascular calcification. Taken together, our study reveals that Ptd-1 ameliorates vascular calcification by regulating the production of inflammatory factors, providing new ideas for the treatment of vascular calcification.
Collapse
Affiliation(s)
- Xiaoning Wei
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhenbao Shen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mengmeng Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mengyuan Fang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shengnan Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tingting Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Baotong Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhilin Lv
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, the National Engineering Research Center for Bioengineering Drugs and the Technologies, Nanchang University, Nanchang, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Qingshan Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
16
|
Li J, Li C, Huang Z, Huang C, Liu J, Wu T, Xu S, Mai P, Geng D, Zhou S, Zhang K, Liu Z. Empagliflozin alleviates atherosclerotic calcification by inhibiting osteogenic differentiation of vascular smooth muscle cells. Front Pharmacol 2023; 14:1295463. [PMID: 38094889 PMCID: PMC10716287 DOI: 10.3389/fphar.2023.1295463] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/13/2023] [Indexed: 01/21/2025] Open
Abstract
SGLT-2 inhibitors, such as empagliflozin, have been shown to reduce the occurrence of cardiovascular events and delay the progression of atherosclerosis. However, its role in atherosclerotic calcification remains unclear. In this research, ApoE-/- mice were fed with western diet and empagliflozin was added to the drinking water for 24 weeks. Empagliflozin treatment significantly alleviated arterial calcification assessed by alizarin red and von kossa staining in aortic roots and reduced the lipid levels, while had little effect on body weight and blood glucose levels in ApoE-/- mice. In vitro studies, empagliflozin significantly inhibits calcification of primary vascular smooth muscle cells (VSMCs) and aortic rings induced by osteogenic media (OM) or inorganic phosphorus (Pi). RNA sequencing of VSMCs cultured in OM with or without empagliflozin showed that empagliflozin negatively regulated the osteogenic differentiation of VSMCs. And further studies confirmed that empagliflozin significantly inhibited osteogenic differentiation of VSMCs via qRT-PCR. Our study demonstrates that empagliflozin alleviates atherosclerotic calcification by inhibiting osteogenic differentiation of VSMCs, which addressed a critical need for the discovery of a drug-based therapeutic approach in the treatment of atherosclerotic calcification.
Collapse
Affiliation(s)
- Junping Li
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Changping Li
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhaoqi Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chunling Huang
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Juanzhang Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tao Wu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuwan Xu
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Peibiao Mai
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dengfeng Geng
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuxian Zhou
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kun Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhaoyu Liu
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
17
|
Liu G, Tan L, Zhao X, Wang M, Zhang Z, Zhang J, Gao H, Liu M, Qin W. Anti-atherosclerosis mechanisms associated with regulation of non-coding RNAs by active monomers of traditional Chinese medicine. Front Pharmacol 2023; 14:1283494. [PMID: 38026969 PMCID: PMC10657887 DOI: 10.3389/fphar.2023.1283494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis is the leading cause of numerous cardiovascular diseases with a high mortality rate. Non-coding RNAs (ncRNAs), RNA molecules that do not encode proteins in human genome transcripts, are known to play crucial roles in various physiological and pathological processes. Recently, researches on the regulation of atherosclerosis by ncRNAs, mainly including microRNAs, long non-coding RNAs, and circular RNAs, have gradually become a hot topic. Traditional Chinese medicine has been proved to be effective in treating cardiovascular diseases in China for a long time, and its active monomers have been found to target a variety of atherosclerosis-related ncRNAs. These active monomers of traditional Chinese medicine hold great potential as drugs for the treatment of atherosclerosis. Here, we summarized current advancement of the molecular pathways by which ncRNAs regulate atherosclerosis and mainly highlighted the mechanisms of traditional Chinese medicine monomers in regulating atherosclerosis through targeting ncRNAs.
Collapse
Affiliation(s)
- Guoqing Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Liqiang Tan
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaona Zhao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Minghui Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Meifang Liu
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
18
|
Li H, Zhang C, Liu Q. Lumican silencing ameliorates β-glycerophosphate-mediated vascular smooth muscle cell calcification by attenuating the inhibition of APOB on KIF2C activity. Open Med (Wars) 2023; 18:20230790. [PMID: 37711155 PMCID: PMC10499013 DOI: 10.1515/med-2023-0790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 09/16/2023] Open
Abstract
Adverse cardiovascular events are associated with vascular calcification (VC) process, where vascular smooth muscle cells (VSMCs) differentiate into osteoblastic phenotype and deposit hydroxyapatite crystals. Microtubule-associated protein kinesin family member 2C (KIF2C) expression is decreased obviously in VSMC during calcification induction. Accordingly, we investigate the role and potential mechanism of KIF2C on VSMC calcification. The effects of β-glycerophosphate (β-GP)/KIF2C/lumican (LUM) on calcification, calcium content, alkaline phosphatase (ALP) activity, calcification-related markers, Tubulin, the ratio of polymerized (Po) to free (Fr) tubulin, as well as levels of LUM, apolipoprotein B (APOB), and KIF2C were assessed by Alizarin red S staining, calcium assay kit, ALP assay kit, Western blot, immunofluorescence, and quantitative real-time PCR. The interplay between LUM and APOB was estimated using co-immunoprecipitation and immunofluorescence. As a result, β-GP promoted calcification of human VMSCs (HVMSCs) and repressed KIF2C expression. KIF2C overexpression reversed the effect of β-GP on HVSMCs. LUM silencing attenuated β-GP-induced promotion on HVSMC calcification and increased KIF2C expression by interacting with APOB. Collectively, LUM silencing can alleviate β-GP-induced VSMC calcification through mitigating the repression of APOB on KIF2C expression.
Collapse
Affiliation(s)
- Haibin Li
- Department of Vascular Surgery, Ningbo Yinzhou People’s Hospital (The Affiliated People’s Hospital of Ningbo University), Ningbo, Zhejiang, 315040, China
| | - Chunyan Zhang
- Department Emergency, The First Hospital of Qiqihar’er City, Qiqihar’er, Heilongjiang, 161021, China
| | - Qiang Liu
- Department of Vascular Surgery, The First Hospital of Qiqihar’er City, No. 700, Bukui North Street, Longsha District, Qiqihar’er, Heilongjiang, 161021, China
| |
Collapse
|
19
|
Zhao XK, Zhu MM, Wang SN, Zhang TT, Wei XN, Wang CY, Zheng J, Zhu WY, Jiang MX, Xu SW, Yang XX, Duan YJ, Zhang BC, Han JH, Miao QR, Hu H, Chen YL. Transcription factor 21 accelerates vascular calcification in mice by activating the IL-6/STAT3 signaling pathway and the interplay between VSMCs and ECs. Acta Pharmacol Sin 2023; 44:1625-1636. [PMID: 36997664 PMCID: PMC10374894 DOI: 10.1038/s41401-023-01077-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Vascular calcification is caused by the deposition of calcium salts in the intimal or tunica media layer of the aorta, which increases the risk of cardiovascular events and all-cause mortality. However, the mechanisms underlying vascular calcification are not fully clarified. Recently it has been shown that transcription factor 21 (TCF21) is highly expressed in human and mouse atherosclerotic plaques. In this study we investigated the role of TCF21 in vascular calcification and the underlying mechanisms. In carotid artery atherosclerotic plaques collected from 6 patients, we found that TCF21 expression was upregulated in calcific areas. We further demonstrated TCF21 expression was increased in an in vitro vascular smooth muscle cell (VSMC) osteogenesis model. TCF21 overexpression promoted osteogenic differentiation of VSMC, whereas TCF21 knockdown in VSMC attenuated the calcification. Similar results were observed in ex vivo mouse thoracic aorta rings. Previous reports showed that TCF21 bound to myocardin (MYOCD) to inhibit the transcriptional activity of serum response factor (SRF)-MYOCD complex. We found that SRF overexpression significantly attenuated TCF21-induced VSMC and aortic ring calcification. Overexpression of SRF, but not MYOCD, reversed TCF21-inhibited expression of contractile genes SMA and SM22. More importantly, under high inorganic phosphate (3 mM) condition, SRF overexpression reduced TCF21-induced expression of calcification-related genes (BMP2 and RUNX2) as well as vascular calcification. Moreover, TCF21 overexpression enhanced IL-6 expression and downstream STAT3 activation to facilitate vascular calcification. Both LPS and STAT3 could induce TCF21 expression, suggesting that the inflammation and TCF21 might form a positive feedback loop to amplify the activation of IL-6/STAT3 signaling pathway. On the other hand, TCF21 induced production of inflammatory cytokines IL-1β and IL-6 in endothelial cells (ECs) to promote VSMC osteogenesis. In EC-specific TCF21 knockout (TCF21ECKO) mice, VD3 and nicotine-induced vascular calcification was significantly reduced. Our results suggest that TCF21 aggravates vascular calcification by activating IL-6/STAT3 signaling and interplay between VSMC and EC, which provides new insights into the pathogenesis of vascular calcification. TCF21 enhances vascular calcification by activating the IL-6-STAT3 signaling pathway. TCF21 inhibition may be a new potential therapeutic strategy for the prevention and treatment of vascular calcification.
Collapse
Affiliation(s)
- Xiao-Kang Zhao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Meng-Meng Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Sheng-Nan Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ting-Ting Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiao-Ning Wei
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Cheng-Yi Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Juan Zheng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wen-Ya Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Mei-Xiu Jiang
- The Institute of Translational Medicine, the National Engineering Research Center for Bioengineering Drugs and the Technologies, Nanchang University, Nanchang, 330031, China
| | - Suo-Wen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
- School of Pharmacy, Bengbu Medical College, Bengbu, 233000, China
| | - Xiao-Xiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ya-Jun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Bu-Chun Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Ji-Hong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Qing R Miao
- Diabetes and Obesity Research Center, New York University Long Island School of Medicine, New York, NY, USA
| | - Hao Hu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Yuan-Li Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
20
|
Deng XS, Meng X, Fullerton D, Stone M, Iguidbashian J, Jaggers J. Complement Cross Talks With H-K-ATPase to Upregulate Runx2 in Human Aortic Valve Interstitial Cells. J Surg Res 2023; 286:118-126. [PMID: 36822134 PMCID: PMC10120867 DOI: 10.1016/j.jss.2022.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/16/2022] [Accepted: 12/25/2022] [Indexed: 02/23/2023]
Abstract
INTRODUCTION Calcific aortic valve disease (CAVD) is a slowly progressive fibro-calcific valve leaflet disorder. The underlying pathophysiology is complex and not yet well understood. Complement is known to play a role in the pathogenesis of CAVD by upregulating Runx2 to induce profibrogenic change in human aortic valve interstitial cells (AVICs). Furthermore, H-K-ATPase has independently been shown to induce tissue calcification. Therefore, we hypothesized that complement cross talks with H-K-ATPase to upregulate Runx2 in human AVICs. MATERIALS AND METHODS Human AVICs were isolated from normal and calcified aortic valves. Cells were treated with a variation of complement, H-K-ATPase, or ERK1/2 inhibitors. H-K-ATPase and its association with complement in AVICs were investigated by reverse transcriptase-polymerase chain reaction, immunofluorescence, and Western blot. RESULTS Calcified human AVICs expressed significantly higher H-K-ATPase level than normal human AVICs. Presence of complement C3 with H-K-ATPase is found in AVICs after complement treatment. Complement induced both H-K-ATPase and Runx2 expression in AVICs, which was associated with increased phosphorylation of ERK1/2 and its downstream molecule p-70 S6. Pharmacological inhibition of either H-K-ATPase or Erk1/2 abolished complement-induced Runx2 expression. CONCLUSIONS These findings indicate that complement cross talks with H-K-ATPase to upregulate Runx2 in human AVICs by activation of ERK1/2 signaling pathways. The study revealed the potential role of H-K-ATPase in the pathogenesis of CAVD and therapeutically targeting either complement system or H-K-ATPase may limit the development of CAVD.
Collapse
Affiliation(s)
- Xin-Sheng Deng
- Cardiothoracic Surgery, University of Colorado, Children's Hospital Colorado, Aurora, Colorado; Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Xianzhong Meng
- Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David Fullerton
- Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew Stone
- Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - John Iguidbashian
- Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James Jaggers
- Cardiothoracic Surgery, University of Colorado, Children's Hospital Colorado, Aurora, Colorado; Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
21
|
Du X, Yu M, Ju H, Xue S, Li Y, Wu X, Xu H, Shen Q. Inhibition of MAPK/ERK pathway activation rescues congenital anomalies of the kidney and urinary tract (CAKUT) in Robo2 PB/+ Gen1 PB/+ mice. Biochem Biophys Res Commun 2023; 653:153-160. [PMID: 36870240 DOI: 10.1016/j.bbrc.2023.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/27/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) have been attributed to genetic and environmental factors. However, monogenic and copy number variations cannot sufficiently explain the cause of the majority of CAKUT cases. Multiple genes through various modes of inheritance may lead to CAKUT pathogenesis. We previously showed that Robo2 and Gen1 coregulated the germination of ureteral buds (UB), significantly increasing CAKUT incidence. Furthermore, MAPK/ERK pathway activation is the central mechanism of these two genes. Thus, we explored the effect of the MAPK/ERK inhibitor U0126 in the CAKUT phenotype in Robo2PB/+Gen1PB/+ mice. Intraperitoneal injection of U0126 during pregnancy prevented the development of the CAKUT phenotype in Robo2PB/+Gen1PB/+ mice. Additionally, a single dose of 30 mg/kg U0126 on day 10.5 embryos (E10.5) was most effective for reducing CAKUT incidence and ectopic UB outgrowth in Robo2PB/+Gen1PB/+ mice. Furthermore, embryonic kidney mesenchymal levels of p-ERK were significantly decreased on day E11.5 after U0126 treatment, along with decreased cell proliferation index PHH3 and ETV5 expression. Collectively, Gen1 and Robo2 exacerbated the CAKUT phenotype in Robo2PB/+Gen1PB/+ mice through the MAPK/ERK pathway, increasing proliferation and ectopic UB outgrowth.
Collapse
Affiliation(s)
- Xuanjin Du
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China
| | - Minghui Yu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China
| | - Haixin Ju
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China
| | - Shanshan Xue
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China
| | - Yaxin Li
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China
| | - Xiaohui Wu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China; State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, 200433, China.
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China.
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China.
| |
Collapse
|
22
|
Zhu Y, Jiao Z, Bei Y. Dkk1: a Putative Protector Against Vascular Calcification. J Cardiovasc Transl Res 2023; 16:267-268. [PMID: 36943616 DOI: 10.1007/s12265-022-10292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 03/23/2023]
Affiliation(s)
- Yujiao Zhu
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
| | - Zheng Jiao
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yihua Bei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
23
|
Ahn BY, Jeong Y, Kim S, Zhang Y, Kim SW, Leem YE, Kang JS. Cdon suppresses vascular smooth muscle calcification via repression of the Wnt/Runx2 Axis. Exp Mol Med 2023; 55:120-131. [PMID: 36609601 PMCID: PMC9898282 DOI: 10.1038/s12276-022-00909-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 01/09/2023] Open
Abstract
Osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) is a risk factor associated with vascular diseases. Wnt signaling is one of the major mechanisms implicated in the osteogenic conversion of VSMCs. Since Cdon has a negative effect on Wnt signaling in distinct cellular processes, we sought to investigate the role of Cdon in vascular calcification. The expression of Cdon was significantly downregulated in VSMCs of the aortas of patients with atherosclerosis and aortic stenosis. Consistently, calcification models, including vitamin D3 (VD3)-injected mice and VSMCs cultured with calcifying media, exhibited reduced Cdon expression. Cdon ablation mice (cKO) exhibited exacerbated aortic stiffness and calcification in response to VD3 compared to the controls. Cdon depletion induced the osteogenic conversion of VSMCs accompanied by cellular senescence. The Cdon-deficient aortas showed a significant alteration in gene expression related to cell proliferation and differentiation together with Wnt signaling regulators. Consistently, Cdon depletion or overexpression in VSMCs elevated or attenuated Wnt-reporter activities, respectively. The deletion mutant of the second immunoglobulin domain (Ig2) in the Cdon ectodomain failed to suppress Wnt signaling and osteogenic conversion of VSMCs. Furthermore, treatment with purified recombinant proteins of the entire ectodomain or Ig2 domain of Cdon displayed suppressive effects on Wnt signaling and VSMC calcification. Our results demonstrate a protective role of Cdon in VSMC calcification by suppressing Wnt signaling. The Ig2 domain of Cdon has the potential as a therapeutic tool to prevent vascular calcification.
Collapse
Affiliation(s)
- Byeong-Yun Ahn
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, School of Medicine, Suwon, South Korea
| | - Yideul Jeong
- Research Institute of Aging Related Disease, AniMusCure, Inc., Suwon, South Korea
| | - Sunghee Kim
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, School of Medicine, Suwon, South Korea
| | - Yan Zhang
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, School of Medicine, Suwon, South Korea
| | - Su Woo Kim
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, School of Medicine, Suwon, South Korea
| | - Young-Eun Leem
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, School of Medicine, Suwon, South Korea.
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, School of Medicine, Suwon, South Korea.
| |
Collapse
|
24
|
Zheng G, Zhao Y, Li Z, Hua Y, Zhang J, Miao Y, Guo Y, Li L, Shi J, Dong Z, Yang S, Fan G, Ma C. GLSP and GLSP-derived triterpenes attenuate atherosclerosis and aortic calcification by stimulating ABCA1/G1-mediated macrophage cholesterol efflux and inactivating RUNX2-mediated VSMC osteogenesis. Theranostics 2023; 13:1325-1341. [PMID: 36923537 PMCID: PMC10008734 DOI: 10.7150/thno.80250] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/14/2023] [Indexed: 03/13/2023] Open
Abstract
Background and Purpose: Atherosclerosis is the main pathophysiological foundation of cardiovascular disease, which was caused by inflammation and lipid metabolism disorder, along with vascular calcification. Aortic calcification leads to reduced plaque stability and eventually causes plaque rupture which leads to cardiovascular events. Presently, the drug to treat aortic calcification remains not to be available. Ganoderma lucidum spore powder (GLSP) is from Ganoderma lucidum which is a Traditional Chinese Medicine with the homology of medicine and food. It has multiple pharmacological effects, but no research on aortic calcification during atherosclerosis was performed. This study investigated the effects of GLSP on atherosclerosis and aortic calcification and revealed the underlying mechanism. Methods: In vivo, 8-week-aged male LDLR-/- mice were fed a high-fat diet to induce atherosclerosis along with aortic calcification. Simultaneously, the mice were treated with GLSP at the first week of HFD feeding to determine the protection against early and advanced atherosclerosis. Subsequently, the mice tissues were collected to evaluate the effects of GLSP on atherosclerosis, and aortic calcification, and to reveal the underlying mechanism. In vitro, we determined the major components of GLSP triterpenes by HPLC, and subsequently assessed the protective effects of these main active components on lipid metabolism, inflammation, and calcification in RAW264.7 and HASMC cells. Results: We observed GLSP attenuated plaque area and aortic calcification in the mice with early and advanced atherosclerosis. GLSP reduced the number of foam cells by improving ABCA1/G1-mediated cholesterol efflux in macrophages. In addition, GLSP protected against the aortic endothelium activation. Moreover, GLSP inhibited aortic calcification by inactivating RUNX2-mediated osteogenesis in HASMCs. Furthermore, we determined the major components of GLSP triterpenes, including Ganoderic acid A, Ganoderic acid B, Ganoderic acid C6, Ganoderic acid G, and Ganodermanontriol, and found that these triterpenes promoted ABCA1/G1-mediated cholesterol efflux and inhibited inflammation in macrophage, and inactivated RUNX2-mediated osteogenesis in VSMC. Conclusions: This study demonstrates that GLSP attenuates atherosclerosis and aortic calcification by improving ABCA1/G1-mediated cholesterol efflux and inactivating RUNX2-mediated osteogenesis in LDLR-/- mice. GLSP may be a potential drug candidate for the treatment of atherosclerosis and vascular calcification.
Collapse
Affiliation(s)
- Guobin Zheng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Yun Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhenhao Li
- Zhejiang ShouXianGu Botanical Drug Institute, Zhejiang Hangzhou 321200 China
| | - Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yang Guo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jia Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhengwei Dong
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shu Yang
- Department of Geriatrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
25
|
Guo B, Shan SK, Xu F, Lin X, Li FXZ, Wang Y, Xu QS, Zheng MH, Lei LM, Li CC, Zhou ZA, Ullah MHE, Wu F, Liao XB, Yuan LQ. Protective role of small extracellular vesicles derived from HUVECs treated with AGEs in diabetic vascular calcification. J Nanobiotechnology 2022; 20:334. [PMID: 35842695 PMCID: PMC9287893 DOI: 10.1186/s12951-022-01529-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
The pathogenesis of vascular calcification in diabetic patients remains elusive. As an effective information transmitter, small extracellular vesicles (sEVs) carry abundant microRNAs (miRNAs) that regulate the physiological and pathological states of recipient cells. In the present study, significant up-regulation of miR-126-5p was observed in sEVs isolated from human umbilical vein endothelial cells (HUVECs) stimulated with advanced glycation end-products (A-EC/sEVs). Intriguingly, these sEVs suppressed the osteogenic differentiation of vascular smooth muscle cells (VSMCs) by targeting BMPR1B, which encodes the receptor for BMP, thereby blocking the smad1/5/9 signalling pathway. In addition, knocking down miR-126-5p in HUVECs significantly diminished the anti-calcification effect of A-EC/sEVs in a mouse model of type 2 diabetes. Overall, miR-126-5p is highly enriched in sEVs derived from AGEs stimulated HUVECs and can target BMPR1B to negatively regulate the trans-differentiation of VSMCs both in vitro and in vivo.
Collapse
Affiliation(s)
- Bei Guo
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Zhi-Ang Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Muhammad Hasnain Ehsan Ullah
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiao-Bo Liao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China.
| |
Collapse
|
26
|
Rozhkov AN, Shchekochikhin DY, Ashikhmin YI, Mitina YO, Evgrafova VV, Zhelankin AV, Gognieva DG, Akselrod AS, Kopylov PY. The Profile of Circulating Blood microRNAs in Outpatients with Vulnerable and Stable Atherosclerotic Plaques: Associations with Cardiovascular Risks. Noncoding RNA 2022; 8:ncrna8040047. [PMID: 35893230 PMCID: PMC9326687 DOI: 10.3390/ncrna8040047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Non-coding RNAs reflect many biological processes in the human body, including athero-sclerosis. In a cardiology outpatient department cohort (N = 83), we aimed to compare the levels of circulating microRNAs in groups with vulnerable plaques (N = 22), stable plaques (N = 23) and plaque-free (N = 17) depending on coronary computed tomography angiography and to evaluate associations of microRNA levels with calculated cardiovascular risks (CVR), based on the SCORE2 (+OP), ACC/AHA, ATP-III and MESA scales. Coronary computed tomography was performed on a 640-slice computed tomography scanner. Relative plasma levels of microRNA were assessed via a real-time polymerase chain reaction. We found significant differences in miR-143-3p levels (p = 0.0046 in plaque-free vs. vulnerable plaque groups) and miR-181b-5p (p = 0.0179 in stable vs. vulnerable plaques groups). Analysis of microRNA associations with CVR did not show significant differences for SCORE2 (+OP) and ATPIII scales. MiR-126-5p and miR-150-5p levels were significantly higher (p < 0.05) in patients with ACC/AHA risk >10% and miR-145-5p had linear relationships with ACC/AHA score (adjusted p = 0.0164). The relative plasma level of miR-195 was higher (p < 0.05) in patients with MESA risk > 7.5% and higher (p < 0.05) in patients with zero coronary calcium index (p = 0.036). A linear relationship with coronary calcium was observed for miR-126-3p (adjusted p = 0.0484). A positive correlation with high coronary calcium levels (> 100 Agatson units) was found for miR-181-5p (p = 0.036). Analyzing the biological pathways of these microRNAs, we suggest that miR-143-3p and miR-181-5p can be potential markers of the atherosclerosis process. Other miRNAs (miR-126-3p, 126-5p, 145-5p, 150-5p, 195-5p) can be considered as potential cardiovascular risk modifiers, but it is necessary to validate our results in a large prospective trial.
Collapse
Affiliation(s)
- Andrey N. Rozhkov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.G.G.); (P.Y.K.)
- Correspondence: ; Tel.: +7-915-085-32-95
| | - Dmitry Yu. Shchekochikhin
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.Y.S.); (V.V.E.); (A.S.A.)
| | - Yaroslav I. Ashikhmin
- International Medical Cluster, 40 Bolshoy Boulevard Skolkovo Innovation Center, 121205 Moscow, Russia;
| | - Yulia O. Mitina
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia;
| | - Veronika V. Evgrafova
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.Y.S.); (V.V.E.); (A.S.A.)
| | - Andrey V. Zhelankin
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia;
| | - Daria G. Gognieva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.G.G.); (P.Y.K.)
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.Y.S.); (V.V.E.); (A.S.A.)
| | - Anna S. Akselrod
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.Y.S.); (V.V.E.); (A.S.A.)
| | - Philippe Yu. Kopylov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.G.G.); (P.Y.K.)
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.Y.S.); (V.V.E.); (A.S.A.)
| |
Collapse
|
27
|
Krga I, Corral-Jara KF, Barber-Chamoux N, Dubray C, Morand C, Milenkovic D. Grapefruit Juice Flavanones Modulate the Expression of Genes Regulating Inflammation, Cell Interactions and Vascular Function in Peripheral Blood Mononuclear Cells of Postmenopausal Women. Front Nutr 2022; 9:907595. [PMID: 35694160 PMCID: PMC9178201 DOI: 10.3389/fnut.2022.907595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Grapefruit is a rich source of flavanones, phytochemicals suggested excreting vasculoprotective effects. We previously showed that flavanones in grapefruit juice (GFJ) reduced postmenopausal women’s pulse-wave velocity (PWV), a measure of arterial stiffness. However, mechanisms of flavanone action in humans are largely unknown. This study aimed to decipher molecular mechanisms of flavanones by multi-omics analysis in PBMCs of volunteers consuming GFJ and flavanone-free control drink for 6 months. Modulated genes and microRNAs (miRNAs) were identified using microarrays. Bioinformatics analyses assessed their functions, interactions and correlations with previously observed changes in PWV. GFJ modified gene and miRNA expressions. Integrated analysis of modulated genes and miRNA-target genes suggests regulation of inflammation, immune response, cell interaction and mobility. Bioinformatics identified putative mediators of the observed nutrigenomic effect (STAT3, NF-κB) and molecular docking demonstrated potential binding of flavanone metabolites to transcription factors and cell-signaling proteins. We also observed 34 significant correlations between changes in gene expression and PWV. Moreover, global gene expression was negatively correlated with gene expression profiles in arterial stiffness and hypertension. This study revealed molecular mechanisms underlying vasculoprotective effects of flavanones, including interactions with transcription factors and gene and miRNA expression changes that inversely correlate with gene expression profiles associated with cardiovascular risk factors.
Collapse
Affiliation(s)
- Irena Krga
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | | | - Claude Dubray
- Institut National de la Santé et de la Recherche Médicale (INSERM), CIC 501, UMR 766, Clermont-Ferrand, France
| | - Christine Morand
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
- Department of Nutrition, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
- *Correspondence: Dragan Milenkovic,
| |
Collapse
|
28
|
Shi Y, Zheng Z, Luo J, Li Y, He S, Shen X, Liu J. Possible effects of fibroblast growth factor 21 on vascular calcification via suppressing activating transcription factor 4 mediated apoptosis and osteogenic transformation in rats. Cell Biochem Funct 2022; 40:349-358. [PMID: 35531910 DOI: 10.1002/cbf.3698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/07/2022]
Abstract
Vascular calcification (VC), a significant risk factor of many cardio-cerebral vascular diseases, is a perplexing issue with no effective treatment in clinical work up to now. Endoplasmic reticulum stress (ERS) mediated apoptosis has been proved to be a significant mechanism for initiating VC process. Activating transcription factor 4 (ATF4), a key transcription factor of ERS, is most closely associated with VC. Fibroblast growth factor 21 (FGF21), an atypical member of the FGFs family, has a protective biological function in various metabolic diseases by ERS pathways. However, the possible effects of FGF21 on VC by regulating ERS, especially through the ATF4 pathway, is still unclear. Our research provides the first evidence that exogenous FGF21 treatment can alleviate the vitamin D3 plus nicotine-induced VC at least in part via suppressing ATF4 mediated apoptosis and osteogenic transformation in rats.
Collapse
Affiliation(s)
- Yuchen Shi
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Ze Zheng
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jesse Luo
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yingkai Li
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Songyuan He
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Xueqian Shen
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jinghua Liu
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
29
|
Yan Y, Zhu M, Ma J, He X, Yang X, Xu H, Jiang M, Zhang S, Duan Y, Han J, Chen Y. MEK1/2 inhibitor inhibits neointima formation by activating miR-126-3p/ C-X-C motif chemokine ligand 12 (CXCL12)/C-X-C motif chemokine receptor 4 (CXCR4) axis. Bioengineered 2022; 13:11214-11227. [PMID: 35485167 PMCID: PMC9208476 DOI: 10.1080/21655979.2022.2063496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Endothelial dysfunction is an initial and essential step in vascular-remodeling diseases, including atherosclerosis and neointima formation. During vascular remodeling, activated endothelial cells can release pro-inflammatory factors that promote phenotypic switching of vascular smooth muscle cells (VSMCs) to the proliferative phenotype. We previously reported that MEK1/2 inhibitor, U0126, has a protective effect on the development of atherosclerosis and vascular calcification. However, the effect of MEK1/2 inhibitors on neointimal formation and the underlying mechanism is not fully understood. We determined that MEK1/2 inhibitor reduced carotid artery ligation-induced neointimal formation, while increased collagen and elastin levels and vascular integrality. Mechanistically, MEK1/2 inhibitor or ERK1/2 siRNA increased miR-126-3p level in endothelial cells, thereby inhibiting expression of regular of G-protein signaling 16 (RGS16), a miR-126-3p target gene, to activate the C-X-C motif chemokine ligand 12 (CXCL12)/C-X-C motif chemokine receptor 4 (CXCR4) signaling pathway. Accordingly, miR-126-3p was also increased by U0126 in serum and carotid artery. RGS16 was inhibited while CXCR4 and CXCL12 was increased by U0126 in neointimal areas, especially in the endothelium. Moreover, similar results were observed in atherosclerotic plaques of high-fat diet-fed apolipoprotein E deficiency (apoE−/−) mice. In addition, vascular cell adhesion molecule 1 (VCAM-1), another miR-126-3p target gene, was reduced by U0126 in the neointimal areas, resulting reduced monocytes/macrophages accumulation. Taken together, our results indicate that MEK1/2 inhibitor can reduce neointima formation by activating endothelial miR-126-3p production to facilitate endothelium repair while reduce monocyte adhesion/infiltration.
Collapse
Affiliation(s)
- Yali Yan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Mengmeng Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jialing Ma
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Xiaoyu He
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Hongmei Xu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, the National Engineering Research Center for Bioengineering Drugs and the Technologies, Nanchang University, Nanchang, Jiangxi, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China.,College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, Hebei, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
30
|
Su R, Jin X, Zhao W, Wu X, Zhai F, Li Z. Rutin ameliorates the promotion effect of fine particulate matter on vascular calcification in calcifying vascular cells and ApoE -/- mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113410. [PMID: 35279519 DOI: 10.1016/j.ecoenv.2022.113410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Atmospheric PM2.5 exposure greatly contributes to the incidence of and mortality from cardiovascular disease (CVD). Owing to the crucial role of vascular calcification in the progression of CVD, it is imperative to elucidate the effects of PM2.5 on vascular calcification to understand the toxic mechanisms of haze-induced CVD. However, the effects of PM2.5 exposure on vascular calcification and the underlying molecular mechanisms are still unclear. In this work, the in vitro and in vivo models were used to illuminate the effects of PM2.5 on vascular calcification. We found that PM2.5 promoted the deposition of hydroxyapatite in calcifying vascular cells. Moreover, hydroxyapatite deposition was significantly enhanced by 3.5 times compared with those in the control group in aortas of ApoE-/- mice after exposure winter PM2.5 (1.5 mg/kg b.w.), accompanied by activation of the OPG/RANKL pathway and inflammatory cytokines' expressions. Moreover, PM2.5-induced reactive oxygen species (ROS) generation was observed. NAC, an ROS inhibitor, observably alleviated the promotion effects of PM2.5 on vascular calcification. Furthermore, rutin effectively prevented vascular calcification by regulating the OPG/RANKL pathway. Our results suggest that PM2.5 play an important role in the occurrence and development of vascular calcification, and that rutin has an antagonistic effect on it.
Collapse
Affiliation(s)
- Ruijun Su
- Department of Biology, Taiyuan Normal University, Taiyuan 030619, China
| | - Xiaoting Jin
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wenjing Zhao
- Department of Biology, Taiyuan Normal University, Taiyuan 030619, China
| | - Xiaoying Wu
- Department of Biology, Taiyuan Normal University, Taiyuan 030619, China
| | - Feihong Zhai
- Department of Biology, Taiyuan Normal University, Taiyuan 030619, China
| | - Zhuoyu Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
31
|
Nguyen NT, Nguyen TT, Park KS. Oxidative Stress Related to Plasmalemmal and Mitochondrial Phosphate Transporters in Vascular Calcification. Antioxidants (Basel) 2022; 11:antiox11030494. [PMID: 35326144 PMCID: PMC8944874 DOI: 10.3390/antiox11030494] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
Inorganic phosphate (Pi) is essential for maintaining cellular function but excess of Pi leads to serious complications, including vascular calcification. Accumulating evidence suggests that oxidative stress contributes to the pathogenic progression of calcific changes. However, the molecular mechanism underlying Pi-induced reactive oxygen species (ROS) generation and its detrimental consequences remain unclear. Type III Na+-dependent Pi cotransporter, PiT-1/-2, play a significant role in Pi uptake of vascular smooth muscle cells. Pi influx via PiT-1/-2 increases the abundance of PiT-1/-2 and depolarization-activated Ca2+ entry due to its electrogenic properties, which may lead to Ca2+ and Pi overload and oxidative stress. At least four mitochondrial Pi transporters are suggested, among which the phosphate carrier (PiC) is known to be mainly involved in mitochondrial Pi uptake. Pi transport via PiC may induce hyperpolarization and superoxide generation, which may lead to mitochondrial dysfunction and endoplasmic reticulum stress, together with generation of cytosolic ROS. Increase in net influx of Ca2+ and Pi and their accumulation in the cytosol and mitochondrial matrix synergistically increases oxidative stress and osteogenic differentiation, which could be prevented by suppressing either Ca2+ or Pi overload. Therapeutic strategies targeting plasmalemmal and mitochondrial Pi transports can protect against Pi-induced oxidative stress and vascular calcification.
Collapse
Affiliation(s)
- Nhung Thi Nguyen
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
- Medical Doctor Program, College of Health Sciences, VinUniversity, Hanoi 12406, Vietnam
| | - Tuyet Thi Nguyen
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
- Internal Medicine Residency Program, College of Health Sciences, VinUniversity, Hanoi 12406, Vietnam
- Correspondence: (T.T.N.); (K.-S.P.); Tel.: +84-247-108-9779 (T.T.N.); +82-33-741-0294 (K.-S.P.)
| | - Kyu-Sang Park
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
- Correspondence: (T.T.N.); (K.-S.P.); Tel.: +84-247-108-9779 (T.T.N.); +82-33-741-0294 (K.-S.P.)
| |
Collapse
|
32
|
Song D, Li M, Yu X, Wang Y, Fan J, Yang W, Yang L, Li H. The Molecular Pathways of Pyroptosis in Atherosclerosis. Front Cell Dev Biol 2022; 10:824165. [PMID: 35237603 PMCID: PMC8884404 DOI: 10.3389/fcell.2022.824165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease seriously endangering human health, whose occurrence and development is related to many factors. Pyroptosis is a recently identified novel programmed cell death associated with an inflammatory response and involved in the formation and progression of AS by activating different signaling pathways. Protein modifications of the sirtuin family and microRNAs (miRNAs) can directly or indirectly affect pyroptosis-related molecules. It is important to link atherosclerosis, thermogenesis and molecular modifications. This article will systematically review the molecular pathways of pyroptosis in AS, which can provide a new perspective for AS prevention and treatment.
Collapse
Affiliation(s)
- Dan Song
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Manman Li
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xue Yu
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yuqin Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Jiaying Fan
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Wei Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, China
- *Correspondence: Hong Li, ; Liming Yang,
| | - Hong Li
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- *Correspondence: Hong Li, ; Liming Yang,
| |
Collapse
|
33
|
Coppola A, Vigorito C, Lombari P, Martínez YG, Borriello M, Trepiccione F, Ingrosso D, Perna AF. Uremic Toxin Lanthionine Induces Endothelial Cell Mineralization In Vitro. Biomedicines 2022; 10:biomedicines10020444. [PMID: 35203651 PMCID: PMC8962276 DOI: 10.3390/biomedicines10020444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
Vascular calcification (VC) is a pathological event caused by the unusual deposition of minerals in the vascular system, representing the leading cause of cardiovascular mortality in chronic kidney disease (CKD). In CKD, the deregulation of calcium and phosphate metabolism, along with the effect of several uremic toxins, act as key processes conveying altered mineralization. In this work, we tested the ability of lanthionine, a novel uremic toxin, to promote calcification in human endothelial cell cultures (Ea.hy926). We evaluated the effects of lanthionine, at a concentration similar to that actually detected in CKD patients, alone and under pro-calcifying culture conditions using calcium and phosphate. In pro-calcific culture conditions, lanthionine increased both the intracellular and extracellular calcium content and induced the expression of Bone Morphogenetic Protein 2 (BMP2) and RUNX Family Transcription Factor 2 (RUNX2). Lanthionine treatment, in pro-calcifying conditions, raised levels of tissue-nonspecific alkaline phosphatase (ALPL), whose expression also overlapped with Dickkopf WNT Signaling Pathway Inhibitor 1 (DKK1) gene expression, suggesting a possible role of the latter gene in the activation of ALPL. In addition, treatment with lanthionine alone or in combination with calcium and phosphate reduced Inorganic Pyrophosphate Transport Regulator (ANKH) gene expression, a protective factor toward the mineralizing process. Moreover, lanthionine in a pro-calcifying condition induced the activation of ERK1/2, which is not associated with an increase in DKK1 protein levels. Our data underscored a link between mineral disease and the alterations of sulfur amino acid metabolisms at a cell and molecular level. These results set the basis for the understanding of the link between uremic toxins and mineral-bone disorder during CKD progression.
Collapse
Affiliation(s)
- Annapaola Coppola
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (P.L.); (M.B.)
| | - Carmela Vigorito
- Department of Translational Medical Science University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy; (C.V.); (Y.G.M.); (F.T.)
| | - Patrizia Lombari
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (P.L.); (M.B.)
- Department of Translational Medical Science University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy; (C.V.); (Y.G.M.); (F.T.)
| | - Yuselys García Martínez
- Department of Translational Medical Science University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy; (C.V.); (Y.G.M.); (F.T.)
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (P.L.); (M.B.)
| | - Francesco Trepiccione
- Department of Translational Medical Science University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy; (C.V.); (Y.G.M.); (F.T.)
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (P.L.); (M.B.)
- Correspondence: (D.I.); (A.F.P.)
| | - Alessandra F. Perna
- Department of Translational Medical Science University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy; (C.V.); (Y.G.M.); (F.T.)
- Correspondence: (D.I.); (A.F.P.)
| |
Collapse
|
34
|
Hsiao YT, Shimizu I, Yoshida Y, Minamino T. Role of circulating molecules in age-related cardiovascular and metabolic disorders. Inflamm Regen 2022; 42:2. [PMID: 35012677 PMCID: PMC8744343 DOI: 10.1186/s41232-021-00187-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Studies analyzing heterochronic parabiosis mice models showed that molecules in the blood of young mice rejuvenate aged mice. Therefore, blood-based therapies have become one of the therapeutic approaches to be considered for age-related diseases. Blood includes numerous biologically active molecules such as proteins, metabolites, hormones, miRNAs, etc. and accumulating evidence indicates some of these change their concentration with chronological aging or age-related disorders. The level of some circulating molecules showed a negative or positive correlation with all-cause mortality, cardiovascular events, or metabolic disorders. Through analyses of clinical/translation/basic research, some molecules were focused on as therapeutic targets. One approach is the supplementation of circulating anti-aging molecules. Favorable results in preclinical studies let some molecules to be tested in humans. These showed beneficial or neutral results, and some were inconsistent. Studies with rodents and humans indicate circulating molecules can be recognized as biomarkers or therapeutic targets mediating their pro-aging or anti-aging effects. Characterization of these molecules with aging, testing their biological effects, and finding mimetics of young systemic milieu continue to be an interesting and important research topic to be explored.
Collapse
Affiliation(s)
- Yung Ting Hsiao
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
- Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
- Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
35
|
Mu R, Chen B, Bi B, Yu H, Liu J, Li J, He M, Rong L, Liu B, Liu K, Zhu L, Shi X, Shuai Y, Jin L. LIM Mineralization Protein-1 Enhances the Committed Differentiation of Dental Pulp Stem Cells through the ERK1/2 and p38 MAPK Pathways and BMP Signaling. Int J Med Sci 2022; 19:1307-1319. [PMID: 35928717 PMCID: PMC9346378 DOI: 10.7150/ijms.70411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Tissue regeneration is the preferred treatment for dentin and bone tissue defects. Dental pulp stem cells (DPSCs) have been extensively studied for their use in tissue regeneration, including the regeneration of dentin and bone tissue. LIM mineralization protein-1 (LMP-1) is an intracellular non-secretory protein that plays a positive regulatory role in the mineralization process. In this study, an LMP-1-induced DPSCs model was used to explore the effect of LMP-1 on the proliferation and odonto/osteogenic differentiation of DPSCs, as well as the underlying mechanisms. As indicated by the cell counting kit-8 assay, the results showed that LMP-1 did not affect the proliferation of DPSCs. Overexpression of LMP-1 significantly promoted the committed differentiation of DPSCs and vice versa, as shown by alkaline phosphatase activity assay, alizarin red staining, western blot assay, quantitative real-time polymerase chain reaction assay, and in vivo mineralized tissue formation assay. Furthermore, inhibiting the activation of the extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) pathways using specific pathway inhibitors showed that the ERK1/2 and p38 MAPK pathways attenuated the differentiation of DPSCs. Besides, the expression of BMP signaling pathway components were also determined, which suggested that LMP-1 could activate BMP-2/Smad1/5 signaling pathway. Our results not only indicated the underlying mechanism of LMP-1 treated DPSCs but also provided valuable insight into therapeutic strategies in regenerative medicine.
Collapse
Affiliation(s)
- Rui Mu
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China.,Stomatology Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, Shenzhen 518036, China
| | - Bo Chen
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Bo Bi
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Hongchuan Yu
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Juan Liu
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Junxia Li
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Maodian He
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Liang Rong
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Bingyao Liu
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Ke Liu
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Lei Zhu
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Xiaolei Shi
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Yi Shuai
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Lei Jin
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| |
Collapse
|
36
|
Tao Y, Geng Y, Dang W, Xu X, Zhao H, Zou L, Li Y. Mechanism of Endoplasmic Reticulum Stress Pathway in the Osteogenic Phenotypic Transformation of Aortic Valve Interstitial Cells. Front Endocrinol (Lausanne) 2022; 13:856331. [PMID: 35355558 PMCID: PMC8959129 DOI: 10.3389/fendo.2022.856331] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Calcific Aortic Valve Disease (CAVD) is a crucial component of degenerative valvular disease in old age and with the increasing prevalence of the aging population. we hope that by modeling valvular osteogenesis and intervening with endoplasmic reticulum stress inhibitor TUDCA to observe the effect of endoplasmic reticulum stress on valve osteogenesis. METHODS In this study, rabbit heart valvular interstitial cells (VICs) were isolated and cultured. They treated with ox-LDL (Oxidized Low Density Lipoprotein) stimulation to establish a model of valvular osteogenic transformation. BMP2 (Bone Morphogenetic Protein 2), PERK (Protein kinase R-like endoplasmic reticulum kinase), CHOP (CCAAT/enhancer-binding protein homologous protein) and transcriptional regulatory factor ATF4 (Activating Transcription Factor 4 )were recorded after intervention with ER stress inhibitor TUDCA. The effects of er stress on valvular osteogenic transformation were analyzed. RESULT After stimulation of VICs with ox-LDL, the expression levels of BMP2, PERK, CHOP, and ATF4 increased. However, TUDCA treatment can alleviate the increased expression levels of BMP2, PERK ATF4, and CHOP under ox-LDL stimulation to a certain extent. CONCLUSION The endoplasmic reticulum stress signaling pathway is involved in ox-LDL-induced calcification of rabbit valve interstitial cells. Inhibition of endoplasmic reticulum stress using TUDCA can improve the progression of rabbit aortic valve calcification.
Collapse
Affiliation(s)
- Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Emergency Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Geng
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Emergency Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenpei Dang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Emergency Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Xu
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Emergency Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Zhao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Emergency Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijuan Zou
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Emergency Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongsheng Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Emergency Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yongsheng Li,
| |
Collapse
|
37
|
Papukashvili D, Rcheulishvili N, Liu C, Xie F, Tyagi D, He Y, Wang PG. Perspectives on miRNAs Targeting DKK1 for Developing Hair Regeneration Therapy. Cells 2021; 10:2957. [PMID: 34831180 PMCID: PMC8616136 DOI: 10.3390/cells10112957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023] Open
Abstract
Androgenetic alopecia (AGA) remains an unsolved problem for the well-being of humankind, although multiple important involvements in hair growth have been discovered. Up until now, there is no ideal therapy in clinical practice in terms of efficacy and safety. Ultimately, there is a strong need for developing a feasible remedy for preventing and treating AGA. The Wnt/β-catenin signaling pathway is critical in hair restoration. Thus, AGA treatment via modulating this pathway is rational, although challenging. Dickkopf-related protein 1 (DKK1) is distinctly identified as an inhibitor of canonical Wnt/β-catenin signaling. Thus, in order to stimulate the Wnt/β-catenin signaling pathway, inhibition of DKK1 is greatly demanding. Studying DKK1-targeting microRNAs (miRNAs) involved in the Wnt/β-catenin signaling pathway may lay the groundwork for the promotion of hair growth. Bearing in mind that DKK1 inhibition in the balding scalp of AGA certainly makes sense, this review sheds light on the perspectives of miRNA-mediated hair growth for treating AGA via regulating DKK1 and, eventually, modulating Wnt/β-catenin signaling. Consequently, certain miRNAs regulating the Wnt/β-catenin signaling pathway via DKK1 inhibition might represent attractive candidates for further studies focusing on promoting hair growth and AGA therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunjiao He
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (D.P.); (N.R.); (C.L.); (F.X.); (D.T.)
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (D.P.); (N.R.); (C.L.); (F.X.); (D.T.)
| |
Collapse
|
38
|
Dong Q, Liang Q, Chen Y, Li J, Lu L, Huang X, Zhou Q. Bibliometric and Visual Analysis of Vascular Calcification Research. Front Pharmacol 2021; 12:690392. [PMID: 34335257 PMCID: PMC8319769 DOI: 10.3389/fphar.2021.690392] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/05/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Extensive studies related to vascular calcification (VC) were conducted in recent years. However, no bibliometric analysis has systematically investigated this topic. Our study aimed to determine the hotspots and frontiers of VC research in the past decade and provide a reference for future scientific research directions and decision-making in the VC field. Methods: VC studies were acquired from the Web of Science Core Collection. Bibliometric and visual analyses were performed using CiteSpace, VOSviewer, and Microsoft Excel software. Results: A total of 8,238 English articles on VC research published in 2011–2020 were obtained. In the past decade, annual publications and citations showed a significant growth trend, especially in 2018–2020. The most productive country, institution, journal and author are the United States, the University of California System, PLOS ONE, and Budoff MJ, respectively. The most frequently cited country, journal, and author are the United States, Journal of the American College of Cardiology, and Floege J, respectively. “Vascular calcification,” “atherosclerosis,” “chronic kidney disease,” and “cardiovascular disease” are the primary keywords. The burst keywords “revascularization,” “calciprotein particle,” “microRNA,” and “microcalcification” are speculated to be the research frontiers. Conclusion: The main research hotspots in the VC field are the molecular mechanisms and prognosis of VC in patients with chronic kidney disease or cardiovascular disease. In addition, endovascular therapy and the development of new drugs targeting signal pathways for VC will become the focus of future research. Moreover, non-coding RNAs related to the diagnosis and treatment of VC are great research prospects.
Collapse
Affiliation(s)
- Qian Dong
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ying Chen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinhe Li
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Lihe Lu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiongqing Huang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qin Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Procyanidin B2 Reduces Vascular Calcification through Inactivation of ERK1/2-RUNX2 Pathway. Antioxidants (Basel) 2021; 10:antiox10060916. [PMID: 34198832 PMCID: PMC8228429 DOI: 10.3390/antiox10060916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 01/11/2023] Open
Abstract
Vascular calcification is strongly associated with atherosclerotic plaque burden and plaque instability. The activation of extracellular signal-regulated kinase 1/2 (ERK1/2) increases runt related transcription factor 2 (RUNX2) expression to promote vascular calcification. Procyanidin B2 (PB2), a potent antioxidant, can inhibit ERK1/2 activation in human aortic smooth muscle cells (HASMCs). However, the effects and involved mechanisms of PB2 on atherosclerotic calcification remain unknown. In current study, we fed apoE-deficient (apoE−/−) mice a high-fat diet (HFD) while treating the animals with PB2 for 18 weeks. At the end of the study, we collected blood and aorta samples to determine atherosclerosis and vascular calcification. We found PB2 treatment decreased lesions in en face aorta, thoracic, and abdominal aortas by 21.4, 24.6, and 33.5%, respectively, and reduced sinus lesions in the aortic root by 17.1%. PB2 also increased α-smooth muscle actin expression and collagen content in lesion areas. In the aortic root, PB2 reduced atherosclerotic calcification areas by 75.8%. In vitro, PB2 inhibited inorganic phosphate-induced osteogenesis in HASMCs and aortic rings. Mechanistically, the expression of bone morphogenetic protein 2 and RUNX2 were markedly downregulated by PB2 treatment. Additionally, PB2 inhibited ERK1/2 phosphorylation in the aortic root plaques of apoE−/− mice and calcified HASMCs. Reciprocally, the activation of ERK1/2 phosphorylation by C2-MEK1-mut or epidermal growth factor can partially restore the PB2-inhibited RUNX2 expression or HASMC calcification. In conclusion, our study demonstrates that PB2 inhibits vascular calcification through the inactivation of the ERK1/2-RUNX2 pathway. Our study also suggests that PB2 can be a potential option for vascular calcification treatment.
Collapse
|