1
|
Sun X, He J, Li Y, Chu Z, Zhu L, Zhang H, Wu X. Nucleostemin interacts with SMAD3 promoting tumor metastasis. Exp Cell Res 2024; 444:114362. [PMID: 39662660 DOI: 10.1016/j.yexcr.2024.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
SMAD3 plays a crucial role in TGF-β, regulating various normal developmental mechanisms and disease pathogenesis. Here, we report that SMAD3 directly interacts with Nucleostemin (NS), leading to nuclear translocation and affecting SMAD3 activity after TGF-β1 stimulation. Moreover, NS acts as a competitor, preventing PPM1A from recognizing and dephosphorylating SMAD3. Experimental investigations have demonstrated that NS significantly enhances cellular migration and invasion by promoting the EMT mechanism in vitro. NS knockdown notably suppresses tumor metastasis in the lungs and liver in vivo. Importantly, NS expression is significantly elevated in numerous human malignancies, correlating with a poorer prognosis. The collective evidence from these studies suggests that NS exhibits oncogenic characteristics, supporting further exploration of NS as a potential target for tumor treatment.
Collapse
Affiliation(s)
- Xuling Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, 832000, PR China.
| | - Jiageng He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, 832000, PR China
| | - Yujiang Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, 832000, PR China
| | - Zhiqiang Chu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, 832000, PR China
| | - Lei Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, 832000, PR China
| | - Hui Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, PR China
| | - Xiangwei Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, 832000, PR China
| |
Collapse
|
2
|
Li L, Sun B, Harris OA, Luo J. TGF-β Signaling in Microglia: A Key Regulator of Development, Homeostasis and Reactivity. Biomedicines 2024; 12:2468. [PMID: 39595034 PMCID: PMC11592028 DOI: 10.3390/biomedicines12112468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), are crucial for normal brain development and function. They become reactive in response to brain injury and disease, a process known as microglial reactivity. This reactivity, along with microglial homeostasis, is tightly regulated by the local microenvironment and interactions with surrounding cells. The TGF-β signaling pathway plays an essential role in this regulation. Recent genetic studies employing microglia-specific manipulation of the TGF-β signaling pathway have shed light on its significance in microglial development, homeostasis and reactivity. This review provides an updated overview of how TGF-β signaling modulates microglial function and reactivity, contributing to our understanding of microglial biology in health and disease.
Collapse
Affiliation(s)
- Lulin Li
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Bryan Sun
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Odette A. Harris
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Polytrauma System of Care, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jian Luo
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Polytrauma System of Care, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
3
|
Cao JP, Yan Y, Li XS, Zhu LX, Hu RK, Feng PF. Oroxylin A suppressed colorectal cancer metastasis by inhibiting the activation of the TGF-β/SMAD signal pathway. Sci Rep 2024; 14:24091. [PMID: 39406881 PMCID: PMC11480421 DOI: 10.1038/s41598-024-75457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Metastatic colorectal cancer continues to have a high fatality rate, with approximately only 14% of patients surviving more than 5 years. To improve the survival rate of these patients, the development of new therapeutic drugs is a priority. In this study, we investigated the effects of Oroxylin A on the metastasis of human colorectal cancer cells and its potential molecular mechanism. This study utilised CCK8 assay, transwell assay, flow cytometry, western blot analysis, molecular docking, HE staining, immunofluorescence staining, and xenograft models. The proliferation, migration, and invasion of colon cancer cells were effectively suppressed by Oroxylin A in a dose-dependent manner. Oroxylin A has the potential to inhibit the process of epithelial‒mesenchymal transition (EMT) by upregulating the expression of E-cadherin, a marker associated with epithelial cells, while downregulating the levels of N-cadherin, Snail, vimentin, and slug, which are markers associated with mesenchymal cells. In addition, 200 mg/kg of Oroxylin A inhibited the growth of colorectal tumours. Molecular docking technology revealed that Oroxylin A can bind to TGFβ and inhibit the activation of the TGFβ-smad signalling pathway. The overexpression of TGFβ weakened the inhibitory effect of Oroxylin A on the proliferation, migration, and invasion of human colorectal cancer cells, as well as the promoting effect on apoptosis. Oroxylin A inhibited the activation of the TGF-smad signalling pathway and the EMT process, thereby suppressing the migration and invasion of human colorectal cancer cells.
Collapse
Affiliation(s)
- Ji-Ping Cao
- Department of Pharmacy, Afliated Hospital 2 of Nantong University, No. 666, Shengli Road, Nantong, 226001, China
| | - Yang Yan
- The Ninth Geological Brigade of Jiangxi Geological Bureau, Nanchang, China
| | - Xin-Shuai Li
- Department of Pharmacy, Afliated Hospital 2 of Nantong University, No. 666, Shengli Road, Nantong, 226001, China
| | - Long-Xun Zhu
- Department of Pharmacy, Afliated Hospital 2 of Nantong University, No. 666, Shengli Road, Nantong, 226001, China
| | - Rui-Kun Hu
- Personnel Department, Affiliated Maternity and Child Health Care Hospital of Nantong University, No.399, Shiji Road, Nantong, 226001, China.
| | - Pan-Feng Feng
- Department of Pharmacy, Afliated Hospital 2 of Nantong University, No. 666, Shengli Road, Nantong, 226001, China.
| |
Collapse
|
4
|
Ma S, Wang L, Zhang J, Geng L, Yang J. The role of transcriptional and epigenetic modifications in astrogliogenesis. PeerJ 2024; 12:e18151. [PMID: 39314847 PMCID: PMC11418818 DOI: 10.7717/peerj.18151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Astrocytes are widely distributed and play a critical role in the central nervous system (CNS) of the human brain. During the development of CNS, astrocytes provide essential nutritional and supportive functions for neural cells and are involved in their metabolism and pathological processes. Despite the numerous studies that have reported on the regulation of astrogliogenesis at the transcriptional and epigenetic levels, there is a paucity of literature that provides a comprehensive summary of the key factors influencing this process. In this review, we analyzed the impact of transcription factors (e.g., NFI, JAK/STAT, BMP, and Ngn2), DNA methylation, histone acetylation, and noncoding RNA on astrocyte behavior and the regulation of astrogliogenesis, hope it enhances our comprehension of the mechanisms underlying astrogliogenesis and offers a theoretical foundation for the treatment of patients with neurological diseases.
Collapse
Affiliation(s)
- Shuangping Ma
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Lei Wang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Junhe Zhang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Lujing Geng
- College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Junzheng Yang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
- Guangdong Nephrotic Drug Engineering Technology Research Center, The R&D Center of Drug for Renal Diseases, Consun Pharmaceutical Group, Guangzhou, China
| |
Collapse
|
5
|
Wu J, Cao X, Huang L, Quan Y. Construction of a NETosis-related gene signature for predicting the prognostic status of sepsis patients. Heliyon 2024; 10:e36831. [PMID: 39281624 PMCID: PMC11400959 DOI: 10.1016/j.heliyon.2024.e36831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
Background Sepsis is a common traumatic complication of response disorder of the body to infection. Some studies have found that NETosis may be associated with the progression of sepsis. Methods Data of the sepsis samples were acquired from Gene Expression Omnibus (GEO) database. Gene set enrichment score was calculated using single-sample gene set enrichment analysis (ssGSEA). Weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) networks analysis, and stepwise multivariable regression analysis were performed to identify NETosis-associated genes for sepsis prognosis. To assess the infiltration of immune cells, the ESTIMATE and CIBERPSORT algorithms were used. Functional enrichment analysis was conducted in the clusterProfiler package. Results Different programmed death pathways were abnormally activated in sepsis patients as compared to normal samples. We screened five important NETosis associated genes, namely, CEACAM8, PGLYRP1, MAPK14, S100A12, and LCN2. These genes were significantly positively correlated with entotic cell death and ferroptosis and negatively correlated with autophagy. A clinical prognostic model based on riskscore was established using the five genes. The ROC curves of the model at 7 days, 14 days and 21 days all had high AUC values, indicating a strong stability of the model. Patients with high riskscore had lower survival rate than those with low riskscore. After the development of a nomogram, calibration curve and decision curve evaluation also showed a strong prediction performance and reliability of the model. As for clinicopathological features, older patients and female patients had a relatively high riskscore. The riskscore was significantly positively correlated with cell cycle-related pathways and significantly negatively correlated with inflammatory pathways. Conclusion We screened five NETosis-associated genes that affected sepsis prognosis, and then established a riskscore model that can accurately evaluate the prognosis and survival for sepsis patients. Our research may be helpful for the diagnosis and clinical treatment of sepsis.
Collapse
Affiliation(s)
- Jiahao Wu
- Department of Rehabilitation, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225002, China
| | - Xingxing Cao
- Department of Rehabilitation, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225002, China
| | - Linghui Huang
- Department of Rehabilitation, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225002, China
| | - Yifeng Quan
- Department of Rehabilitation, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225002, China
| |
Collapse
|
6
|
Chang L, Wei Y, Qu Y, Zhao M, Zhou X, Long Y, Hashimoto K. Role of oxidative phosphorylation in the antidepressant effects of arketamine via the vagus nerve-dependent spleen-brain axis. Neurobiol Dis 2024; 199:106573. [PMID: 38901783 DOI: 10.1016/j.nbd.2024.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024] Open
Abstract
Arketamine, the (R)-enantiomer of ketamine, exhibits antidepressant-like effects in mice, though the precise molecular mechanisms remain elusive. It has been shown to reduce splenomegaly and depression-like behaviors in the chronic social defeat stress (CSDS) model of depression. This study investigated whether the spleen contributes to the antidepressant-like effects of arketamine in the CSDS model. We found that splenectomy significantly inhibited arketamine's antidepressant-like effects in CSDS-susceptible mice. RNA-sequencing analysis identified the oxidative phosphorylation (OXPHOS) pathway in the prefrontal cortex (PFC) as a key mediator of splenectomy's impact on arketamine's effects. Furthermore, oligomycin A, an inhibitor of the OXPHOS pathway, reversed the suppressive effects of splenectomy on arketamine's antidepressant-like effects. Specific genes within the OXPHOS pathways, such as COX11, UQCR11 and ATP5e, may contribute to these inhibitory effects. Notably, transforming growth factor (TGF)-β1, along with COX11, appears to modulate the suppressive effects of splenectomy and contribute to arketamine's antidepressant-like effects. Additionally, SRI-01138, an agonist of the TGF-β1 receptor, alleviated the inhibitory effects of splenectomy on arketamine's antidepressant-like effects. Subdiaphragmatic vagotomy also counteracted the inhibitory effects of splenectomy on arketamine's antidepressant-like effects in CSDS-susceptible mice. These findings suggest that the OXPHOS pathway and TGF-β1 in the PFC play significant roles in the antidepressant-like effects of arketamine, mediated through the spleen-brain axis via the vagus nerve.
Collapse
Affiliation(s)
- Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, China
| | - Yan Wei
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Mingming Zhao
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xiangyu Zhou
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, China; Department of Thyroid and Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yang Long
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
7
|
Zheng Y, Mou Z, Tan S, Wang X, Yuan J, Li H. IL-17A enhances the inflammatory response of glaucoma through Act1/TRAF6/NF-κB pathway. Neurochem Int 2024; 178:105787. [PMID: 38830510 DOI: 10.1016/j.neuint.2024.105787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVES To investigate the possible roles of Interleukin 17A (IL-17A) and IL-17A neutralizing antibodies (IL-17Ab) in glaucoma and the potential mechanisms. METHODS The two glaucoma animal models, chronic ocular hypertension (COH) and N-methyl-D-aspartate (NMDA)-induced retinal ganglion cell (RGC) damage, were established and treated with intravitreal injection of IL-17A or IL-17Ab. Intraocular pressure (IOP) was measured by a rebound tonometer. The retina and RGC injury were evaluated by HE staining, TUNLE assay and Brn3a immunofluorescence staining. The frequency of IL-17A+CD4+T cells in peripheral blood was detected by flow cytometry. The expression of glial fibrillary acidic protein (GFAP) was detected by immunofluorescence staining, Western Blot and qPCR in retina. The RNA and protein expression of Act1/TRAF6/NF-κB were detected by Western Blot and qPCR in retina. RESULTS The expression of IL-17A increased in glaucoma models. After intravitreal injection of IL-17A, in the retina, the number of RGCs decreased, the apoptosis of RGCs increased, the Müller cell gliosis was more obvious. In addition, peripheral inflammation aggravated. Whereas the intravitreal injection of IL-17Ab alleviated the relevant manifestations and peripheral inflammation, reduced the gliosis of Müller cells. In the COH model, IOP increased after the injection of IL-17A, while the intravitreal injection of IL-17Ab led to a decrease in IOP. Furthermore, IL-17A promotes the apoptosis of RGCs by binding to IL-17A receptor, activating Act1/TRAF6/NF-κB pathways. CONCLUSION IL-17A plays a role in and aggravates RGC damage in glaucoma. IL-17Ab can neutralize the pro-inflammatory effect of IL-17A and have a protective function in glaucoma. These findings reveal the importance of IL-17A in the pathogenesis of glaucoma, which will shed light on a novel direction for the prevention and treatment of glaucoma, and also provide a reference for further research on other retinal diseases.
Collapse
Affiliation(s)
- Yunfan Zheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Zhenni Mou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Sisi Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xiaochen Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jingchang Yuan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Hong Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China.
| |
Collapse
|
8
|
Wang XL, Gao YX, Yuan QZ, Zhang M. NLRP3 and autophagy in retinal ganglion cell inflammation in age-related macular degeneration: potential therapeutic implications. Int J Ophthalmol 2024; 17:1531-1544. [PMID: 39156786 PMCID: PMC11286452 DOI: 10.18240/ijo.2024.08.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/22/2024] [Indexed: 08/20/2024] Open
Abstract
Retinal degenerative diseases were a large group of diseases characterized by the primary death of retinal ganglion cells (RGCs). Recent studies had shown an interaction between autophagy and nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasomes, which may affect RGCs in retinal degenerative diseases. The NLRP3 inflammasome was a protein complex that, upon activation, produces caspase-1, mediating the apoptosis of retinal cells and promoting the occurrence and development of retinal degenerative diseases. Upregulated autophagy could inhibit NLRP3 inflammasome activation, while inhibited autophagy can promote NLRP3 inflammasome activation, which leaded to the accelerated emergence of drusen and lipofuscin deposition under the neurosensory retina. The activated NLRP3 inflammasome could further inhibit autophagy, thus forming a vicious cycle that accelerated the damage and death of RGCs. This review discussed the relationship between NLRP3 inflammasome and autophagy and its effects on RGCs in age-related macular degeneration, providing a new perspective and direction for the treatment of retinal diseases.
Collapse
Affiliation(s)
- Xiao-Li Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yun-Xia Gao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qiong-Zhen Yuan
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
9
|
Hou J, Wang X, Zhang J, Shen Z, Li X, Yang Y. Chuanxiong Renshen Decoction Inhibits Alzheimer's Disease Neuroinflammation by Regulating PPARγ/NF-κB Pathway. Drug Des Devel Ther 2024; 18:3209-3232. [PMID: 39071817 PMCID: PMC11283787 DOI: 10.2147/dddt.s462266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
Background and Aim Previous studies of our research group have shown that Chuanxiong Renshen Decoction (CRD) has the effect of treating AD, but the exact mechanism of its effect is still not clarified. The aim of this study was to investigate the effect and mechanism of CRD on AD neuroinflammation. Materials and Methods Morris Water Maze (MWM) tests were employed to assess the memory and learning capacity of AD mice. HE and Nissl staining were used to observe the neural cells of mice. The expression of Iba-1 and CD86 were detected by immunohistochemical staining. Utilize UHPLC-MS/MS metabolomics techniques and the KEGG to analyze the metabolic pathways of CRD against AD. Lipopolysaccharide (LPS) induced BV2 microglia cells to construct a neuroinflammatory model. The expression of Iba-1 and CD86 were detected by immunofluorescence and flow cytometry. The contents of TNF-α and IL-1β were detected by ELISA. Western blot assay was used to detect the expression of PPARγ, p-NF-κB p65, NF-κB p65 proteins and inflammatory cytokines iNOS and COX-2 in PPARγ/NF-κB pathway with and without PPARγ inhibitor GW9662. Results CRD ameliorated the learning and memory ability of 3×Tg-AD mice, repaired the damaged nerve cells in the hippocampus, reduced the area of Iba-1 and CD86 positive areas in both the hippocampus and cortex regions, as well as attenuated serum levels of IL-1β and TNF-α in mice. CRD-containing serum significantly decreased the expression level of Iba-1, significantly reduced the levels of TNF-α and IL-1β, significantly increased the protein expression of PPARγ, and significantly decreased the proteins expression of iNOS, COX-2 and p-NF-κB p65 in BV2 microglia cells. After addition of PPARγ inhibitor GW9662, the inhibitory effect of CRD-containing serum on NF-κB activation was significantly weakened. Conclusion CRD can activate PPARγ, regulating PPARγ/NF-κB signaling pathway, inhibiting microglia over-activation and reducing AD neuroinflammation.
Collapse
Affiliation(s)
- Jinling Hou
- School of Pharmacy, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Xiaoyan Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Jian Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Zhuojun Shen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Xiang Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Yuanxiao Yang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, People’s Republic of China
| |
Collapse
|
10
|
Shen Y, Li C, Zhang X, Wang Y, Zhang H, Yu Z, Gui B, Hu R, Li Q, Gao A, Liang H. Gut microbiota linked to hydrocephalus through inflammatory factors: a Mendelian randomization study. Front Immunol 2024; 15:1372051. [PMID: 39076985 PMCID: PMC11284128 DOI: 10.3389/fimmu.2024.1372051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
Background The gut microbiota (GM) has been implicated in neurological disorders, but the relationship with hydrocephalus, especially the underlying mechanistic pathways, is unclear. Using Mendelian randomization (MR), we aim to discover the mediating role of inflammatory factors in the relationship between GM and hydrocephalus. Methods After removing confounders, univariable and multivariable MR analyses were performed using summary statistics to assess the causal relationships between GM, inflammatory factors (IL-17A and IL-27), and types of hydrocephalus. Meta-analyses were used to reconcile the differences in MR results between different hydrocephalus sources. Finally, mediator MR analyses were applied to determine the mediating effect of inflammatory factors. Various sensitivity analysis methods were employed to ensure the reliability and stability of the results. Results After correction for P-values, Firmicutes (phylum) (OR, 0.34; 95%CI, 0.17-0.69; P = 2.71E-03, P FDR = 2.44E-02) significantly reduced the risk of obstructive hydrocephalus. The remaining 18 different taxa of GM had potential causal relationships for different types of hydrocephalus. In addition, Firmicutes (phylum) decreased the risk of obstructive hydrocephalus by increasing levels of IL-17A (mediating effect = 21.01%), while Eubacterium ruminantium group (genus) increased the risk of normal-pressure hydrocephalus by decreasing levels of IL-27 (mediating effect = 7.48%). Conclusion We reveal the connection between GM, inflammatory factors (IL-17A and IL-27), and hydrocephalus, which lays the foundation for unraveling the mechanism between GM and hydrocephalus.
Collapse
Affiliation(s)
- Yingjie Shen
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Changyu Li
- Department of Neurosurgery, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Xi Zhang
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yaolou Wang
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haopeng Zhang
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhao Yu
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Binbin Gui
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Renjie Hu
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qi Li
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Aili Gao
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hongsheng Liang
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
11
|
Li D, Liu C, Wang H, Li Y, Wang Y, An S, Sun S. The Role of Neuromodulation and Potential Mechanism in Regulating Heterotopic Ossification. Neurochem Res 2024; 49:1628-1642. [PMID: 38416374 DOI: 10.1007/s11064-024-04118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Heterotopic ossification (HO) is a pathological process characterized by the aberrant formation of bone in muscles and soft tissues. It is commonly triggered by traumatic brain injury, spinal cord injury, and burns. Despite a wide range of evidence underscoring the significance of neurogenic signals in proper bone remodeling, a clear understanding of HO induced by nerve injury remains rudimentary. Recent studies suggest that injury to the nervous system can activate various signaling pathways, such as TGF-β, leading to neurogenic HO through the release of neurotrophins. These pathophysiological changes lay a robust groundwork for the prevention and treatment of HO. In this review, we collected evidence to elucidate the mechanisms underlying the pathogenesis of HO related to nerve injury, aiming to enhance our understanding of how neurological repair processes can culminate in HO.
Collapse
Affiliation(s)
- Dengju Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Changxing Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Haojue Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yunfeng Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yaqi Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Senbo An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
| | - Shui Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
12
|
Xin S, Liu X, He C, Gao H, Wang B, Hua R, Gao L, Shang H, Sun F, Xu J. Inflammation accelerating intestinal fibrosis: from mechanism to clinic. Eur J Med Res 2024; 29:335. [PMID: 38890719 PMCID: PMC11184829 DOI: 10.1186/s40001-024-01932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
Intestinal fibrosis is a prevalent complication of IBD that that can frequently be triggered by prolonged inflammation. Fibrosis in the gut can cause a number of issues, which continue as an ongoing challenge to healthcare systems worldwide. The primary causes of intestinal fibrosis are soluble molecules, G protein-coupled receptors, epithelial-to-mesenchymal or endothelial-to-mesenchymal transition, and the gut microbiota. Fresh perspectives coming from in vivo and in vitro experimental models demonstrate that fibrogenic pathways might be different, at least to some extent, independent of the ones that influence inflammation. Understanding the distinctive procedures of intestinal fibrogenesis should provide a realistic foundation for targeting and blocking specific fibrogenic pathways, estimating the risk of fibrotic consequences, detecting early fibrotic alterations, and eventually allowing therapy development. Here, we first summarize the inflammatory and non-inflammatory components of fibrosis, and then we elaborate on the underlying mechanism associated with multiple cytokines in fibrosis, providing the framework for future clinical practice. Following that, we discuss the relationship between modernization and disease, as well as the shortcomings of current studies. We outline fibrosis diagnosis and therapy, as well as our recommendations for the future treatment of intestinal fibrosis. We anticipate that the global review will provides a wealth of fresh knowledge and suggestions for future fibrosis clinical practice.
Collapse
Affiliation(s)
- Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Department of Clinical Laboratory, Aerospace Clinical Medical College, Aerospace Central Hospital, Beijing, 100039, China
| | - Boya Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lei Gao
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, 100069, China
| | - Fangling Sun
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
13
|
Ma F, Bian H, Jiao W, Zhang N. Single-cell RNA-seq reveals the role of YAP1 in prefrontal cortex microglia in depression. BMC Neurol 2024; 24:191. [PMID: 38849737 PMCID: PMC11157917 DOI: 10.1186/s12883-024-03685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Depression is a complex mood disorder whose pathogenesis involves multiple cell types and molecular pathways. The prefrontal cortex, as a key brain region for emotional regulation, plays a crucial role in depression. Microglia, as immune cells of the central nervous system, have been closely linked to the development and progression of depression through their dysfunctional states. This study aims to utilize single-cell RNA-seq technology to reveal the pathogenic mechanism of YAP1 in prefrontal cortex microglia in depression. METHODS Firstly, we performed cell type identification and differential analysis on normal and depressed prefrontal cortex tissues by mining single-cell RNA-seq datasets from public databases. Focusing on microglia, we conducted sub-clustering, differential gene KEGG enrichment analysis, intercellular interaction analysis, and pseudotime analysis. Additionally, a cross-species analysis was performed to explore the similarities and differences between human and rhesus monkey prefrontal cortex microglia. To validate our findings, we combined bulk RNA-Seq and WGCNA analysis to reveal key genes associated with depression and verified the relationship between YAP1 and depression using clinical samples. RESULTS Our study found significant changes in the proportion and transcriptional profiles of microglia in depressed prefrontal cortex tissues. Further analysis revealed multiple subpopulations of microglia and their associated differential genes and signaling pathways related to depression. YAP1 was identified as a key molecule contributing to the development of depression and was significantly elevated in depression patients. Moreover, the expression level of YAP1 was positively correlated with HAMD scores, suggesting its potential as a biomarker for predicting the onset of depression. CONCLUSION This study utilized single-cell RNA-seq technology to reveal the pathogenic mechanism of YAP1 in prefrontal cortex microglia in depression, providing a new perspective for a deeper understanding of the pathophysiology of depression and identifying potential targets for developing novel treatment strategies.
Collapse
Affiliation(s)
- Fenghui Ma
- Department of Health Management, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Hongjun Bian
- Department of Pediatrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710000, China
| | - Wenyan Jiao
- Department of Psychiatry, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Ni Zhang
- Department of Mental Health, Xi'an ZhongShengKaiXin Technology Development Co., Ltd., Xi'an, Shaanxi, 710000, China.
| |
Collapse
|
14
|
Li X, Wang Y, Chen Y, Lu Z, Sun Y, Zhong C, Lv Z, Pan H, Chen J, Yao D, Huang X, Yu C. Icariside II alleviates lipopolysaccharide-induced acute lung injury by inhibiting lung epithelial inflammatory and immune responses mediated by neutrophil extracellular traps. Life Sci 2024; 346:122648. [PMID: 38631668 DOI: 10.1016/j.lfs.2024.122648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
AIMS Acute lung injury (ALI) is a life-threatening lung disease characterized by inflammatory cell infiltration and lung epithelial injury. Icariside II (ICS II), one of the main active ingredients of Herba Epimedii, exhibits anti-inflammatory and immunomodulatory effects. However, the effect and mechanism of ICS II in ALI remain unclear. The purpose of the current study was to investigate the pharmacological effect and underlying mechanism of ICS II in ALI. MAIN METHODS Models of neutrophil-like cells, human peripheral blood neutrophils, and lipopolysaccharide (LPS)-induced ALI mouse model were utilized. RT-qPCR and Western blotting determined the gene and protein expression levels. Protein distribution and quantification were analyzed by immunofluorescence. KEY FINDINGS ICS II significantly reduced lung histopathological damage, edema, and inflammatory cell infiltration, and it reduced pro-inflammatory cytokines in ALI. There is an excessive activation of neutrophils leading to a significant production of NETs in ALI mice, a process mitigated by the administration of ICS II. In vivo and in vitro studies found that ICS II could decrease NET formation by targeting neutrophil C-X-C chemokine receptor type 4 (CXCR4). Further data showed that ICS II reduces the overproduction of dsDNA, a NETs-related component, thereby suppressing cGAS/STING/NF-κB signalling pathway activation and inflammatory mediators release in lung epithelial cells. SIGNIFICANCE This study suggested that ICS II may alleviate LPS-induced ALI by modulating the inflammatory response, indicating its potential as a therapeutic agent for ALI treatment.
Collapse
Affiliation(s)
- Xiuchun Li
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Yangyue Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Yuxin Chen
- Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ziyi Lu
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Yihan Sun
- Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chuyue Zhong
- Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhanghang Lv
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Haofeng Pan
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Jun Chen
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Dan Yao
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China.
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China.
| | - Chang Yu
- Intervention Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
15
|
Zhao Y, Sun B, Fu X, Zuo Z, Qin H, Yao K. YAP in development and disease: Navigating the regulatory landscape from retina to brain. Biomed Pharmacother 2024; 175:116703. [PMID: 38713948 DOI: 10.1016/j.biopha.2024.116703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
The distinctive role of Yes-associated protein (YAP) in the nervous system has attracted widespread attention. This comprehensive review strategically uses the retina as a vantage point, embarking on an extensive exploration of YAP's multifaceted impact from the retina to the brain in development and pathology. Initially, we explore the crucial roles of YAP in embryonic and cerebral development. Our focus then shifts to retinal development, examining in detail YAP's regulatory influence on the development of retinal pigment epithelium (RPE) and retinal progenitor cells (RPCs), and its significant effects on the hierarchical structure and functionality of the retina. We also investigate the essential contributions of YAP in maintaining retinal homeostasis, highlighting its precise regulation of retinal cell proliferation and survival. In terms of retinal-related diseases, we explore the epigenetic connections and pathophysiological regulation of YAP in diabetic retinopathy (DR), glaucoma, and proliferative vitreoretinopathy (PVR). Lastly, we broaden our exploration from the retina to the brain, emphasizing the research paradigm of "retina: a window to the brain." Special focus is given to the emerging studies on YAP in brain disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), underlining its potential therapeutic value in neurodegenerative disorders and neuroinflammation.
Collapse
Affiliation(s)
- Yaqin Zhao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Sun
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhuan Zuo
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
16
|
Wei W, Xie P, Wang X. Interval training suppresses nod-like receptor protein 3 inflammasome activation to improve cardiac function in myocardial infarction rats by hindering the activation of the transforming growth factor-β1 pathway. J Cardiothorac Surg 2024; 19:283. [PMID: 38730417 PMCID: PMC11088074 DOI: 10.1186/s13019-024-02756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE Myocardial infarction (MI) -induced cardiac dysfunction can be attenuated by aerobic exercises. This study explored the mechanism of interval training (IT) regulating cardiac function in MI rats, providing some theoretical basis for clarifying MI pathogenesis and new ideas for clinically treating MI. METHODS Rats were subjected to MI modeling, IT intervention, and treatments of the Transforming growth factor-β1 (TGF-β1) pathway or the nod-like receptor protein 3 (NLRP3) activators. Cardiac function and hemodynamic indicator alterations were observed. Myocardial pathological damage and fibrosis, reactive oxygen species (ROS) level, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities, MDA content, inflammasome-associated protein levels, and inflammatory factor levels were assessed. The binding between TGF-β1 and receptor was detected. RESULTS MI rats exhibited decreased left ventricle ejection fraction (LVEF), left ventricle fractional shortening (LVFS), left ventricular systolic pressure (LVSP), positive and negative derivates max/min (dP/dt max/min) and increased left ventricular end-systolic pressure (LVEDP), a large number of scar areas in myocardium, disordered cell arrangement and extensive fibrotic lesions, increased TGF-β1 and receptor binding, elevated ROS level and MDA content and weakened SOD, CAT and GSH-Px activities, and up-regulated NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC) and cleaved-caspase-1 levels, while IT intervention caused ameliorated cardiac function. IT inactivated the TGF-β1 pathway to decrease oxidative stress in myocardial tissues of MI rats and inhibit NLRP3 inflammasome activation. Activating NLRP3 partially reversed IT-mediated improvement on cardiac function in MI rats. CONCLUSION IT diminished oxidative stress in myocardial tissues and suppressed NLRP3 inflammasome activation via inactivating the TGF-β1 pathway, thus improving the cardiac function of MI rats.
Collapse
Affiliation(s)
- Wei Wei
- Cardiovascular medicine, Zhangye Second People's Hospital, North Section of West 3rd Ring Road, Binhe New District, Ganzhou District, Zhangye, 734000, China
| | - Ping Xie
- Cardiovascular medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Xuemei Wang
- Cardiovascular medicine, Zhangye Second People's Hospital, North Section of West 3rd Ring Road, Binhe New District, Ganzhou District, Zhangye, 734000, China.
| |
Collapse
|
17
|
Liang H, Fan X, Cheng H, Ma X, Sun Y, Nan F, Zhou J, Shu P, Zhang W, Zuo F, Nakatsukasa H, Zhang D. CPT-11 mitigates autoimmune diseases by suppressing effector T cells without affecting long-term anti-tumor immunity. Cell Death Discov 2024; 10:218. [PMID: 38704362 PMCID: PMC11069576 DOI: 10.1038/s41420-024-01983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
The incidence of autoimmune diseases has significantly increased over the past 20 years. Excessive host immunoreactions and disordered immunoregulation are at the core of the pathogenesis of autoimmune diseases. The traditional anti-tumor chemotherapy drug CPT-11 is associated with leukopenia. Considering that CPT-11 induces leukopenia, we believe that it is a promising drug for the control of autoimmune diseases. Here, we show that CPT-11 suppresses T cell proliferation and pro-inflammatory cytokine production in healthy C57BL/6 mice and in complete Freund's adjuvant-challenged mice. We found that CPT-11 effectively inhibited T cell proliferation and Th1 and Th17 cell differentiation by inhibiting glycolysis in T cells. We also assessed CPT-11 efficacy in treating autoimmune diseases in models of experimental autoimmune encephalomyelitis and psoriasis. Finally, we proved that treatment of autoimmune diseases with CPT-11 did not suppress long-term immune surveillance for cancer. Taken together, these results show that CPT-11 is a promising immunosuppressive drug for autoimmune disease treatment.
Collapse
Affiliation(s)
- Hantian Liang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xinzou Fan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hao Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiao Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yutong Sun
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fang Nan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jingyang Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Panyin Shu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wei Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fengqiong Zuo
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hiroko Nakatsukasa
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
18
|
Du Y. The Hippo signalling pathway and its impact on eye diseases. J Cell Mol Med 2024; 28:e18300. [PMID: 38613348 PMCID: PMC11015399 DOI: 10.1111/jcmm.18300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The Hippo signalling pathway, an evolutionarily conserved kinase cascade, has been shown to be crucial for cell fate determination, homeostasis and tissue regeneration. Recent experimental and clinical studies have demonstrated that the Hippo signalling pathway is involved in the pathophysiology of ocular diseases. This article provides the first systematic review of studies on the regulatory and functional roles of mammalian Hippo signalling systems in eye diseases. More comprehensive studies on this pathway are required for a better understanding of the pathophysiology of eye diseases and the development of effective therapies.
Collapse
Affiliation(s)
- Yuxiang Du
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongPeople's Republic of China
| |
Collapse
|
19
|
Jin Q, Liu T, Ma F, Fu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Roles of Sirt1 and its modulators in diabetic microangiopathy: A review. Int J Biol Macromol 2024; 264:130761. [PMID: 38467213 DOI: 10.1016/j.ijbiomac.2024.130761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Diabetic vascular complications include diabetic macroangiopathy and diabetic microangiopathy. Diabetic microangiopathy is characterised by impaired microvascular endothelial function, basement membrane thickening, and microthrombosis, which may promote renal, ocular, cardiac, and peripheral system damage in diabetic patients. Therefore, new preventive and therapeutic strategies are urgently required. Sirt1, a member of the nicotinamide adenine dinucleotide-dependent histone deacetylase class III family, regulates different organ growth and development, oxidative stress, mitochondrial function, metabolism, inflammation, and aging. Sirt1 is downregulated in vascular injury and microangiopathy. Moreover, its expression and distribution in different organs correlate with age and play critical regulatory roles in oxidative stress and inflammation. This review introduces the background of diabetic microangiopathy and the main functions of Sirt1. Then, the relationship between Sirt1 and different diabetic microangiopathies and the regulatory roles mediated by different cells are described. Finally, we summarize the modulators that target Sirt1 to ameliorate diabetic microangiopathy as an essential preventive and therapeutic measure for diabetic microangiopathy. In conclusion, targeting Sirt1 may be a new therapeutic strategy for diabetic microangiopathy.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongfei Fu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
20
|
Lan Y, Han X, Huang F, Shi H, Wu H, Yang L, Hu Z, Wu X. Early Growth Response Gene-1 Deficiency Interrupts TGFβ1 Signaling Activation and Aggravates Neurodegeneration in Experimental Autoimmune Encephalomyelitis Mice. Neurosci Bull 2024; 40:283-292. [PMID: 37725245 PMCID: PMC10912064 DOI: 10.1007/s12264-023-01111-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/29/2023] [Indexed: 09/21/2023] Open
Abstract
Early growth response protein 1 (Egr-1) triggers the transcription of many genes involved in cell growth, differentiation, synaptic plasticity, and neurogenesis. However, its mechanism in neuronal survival and degeneration is still poorly understood. This study demonstrated that Egr-1 was down-regulated at mRNA and protein levels in the central nervous system (CNS) of experimental autoimmune encephalomyelitis (EAE) mice. Egr-1 knockout exacerbated EAE progression in mice, as shown by increased disease severity and incidence; it also aggravated neuronal apoptosis, which was associated with weakened activation of the BDNF/TGFβ 1/MAPK/Akt signaling pathways in the CNS of EAE mice. Consistently, Egr-1 siRNA promoted apoptosis but mitigated the activation of BDNF/TGFβ 1/MAPK/Akt signaling in SH-SY5Y cells. Our results revealed that Egr-1 is a crucial regulator of neuronal survival in EAE by regulating TGFβ 1-mediated signaling activation, implicating the important role of Egr-1 in the pathogenesis of multiple sclerosis as a potential novel therapy target.
Collapse
Affiliation(s)
- Yunyi Lan
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinyan Han
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liu Yang
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, China.
| | - Zhibi Hu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
21
|
Zhang X, Su D, Wei D, Chen X, Hu Y, Li S, Zhang Y, Ma X, Hu S, Sun Z. Role of MST2/YAP1 signaling pathway in retinal cells apoptosis and diabetic retinopathy. Toxicol Appl Pharmacol 2024; 484:116885. [PMID: 38447873 DOI: 10.1016/j.taap.2024.116885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Diabetic retinopathy (DR) is a main factor affecting vision of patients, and its pathogenesis is not completely clear. The purpose of our study was to investigate correlations between MST2 and DR progression, and to study the possible mechanism of MST2 and its down pathway in high glucose (HG)-mediated RGC-5 apoptosis. The diabetic rat model was established by intraperitoneal injection of streptozotocin (STZ) 60 mg/kg. HE and TUNEL staining were used to evaluate the pathological changes and apoptosis of retinal cells in rats. Western blot, qRT-PCR and immunohistochemistry showed that levels of MST2 were increased in diabetic group (DM) than control. In addition, the differential expression of MST2 is related to HG-induced apoptosis of RGC-5 cells. CCK-8 and Hoechst 33,342 apoptosis experiments showed that MST2 was required in HG-induced apoptosis of RGC-5 cells. Further research revealed that MST2 regulated the protein expression of YAP1 at the level of phosphorylation in HG-induced apoptosis. Simultaneously, we found that Xmu-mp-1 acts as a MST2 inhibitor to alleviate HG-induced apoptosis. In summary, our study indicates that the MST2/YAP1 signaling pathway plays an important role in DR pathogenesis and RGC-5 apoptosis. This discovery provides new opportunities for future drug development targeting this pathway to prevent DR.
Collapse
Affiliation(s)
- Xiao Zhang
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Dongmei Su
- Department of Genetics, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Health Department, Beijing 100081, China; Graduate School, Peking Union Medical College, Beijing 100081, China
| | - Dong Wei
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Xiaoya Chen
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Yuzhu Hu
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Sijia Li
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Yue Zhang
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Xu Ma
- Department of Genetics, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Health Department, Beijing 100081, China; Graduate School, Peking Union Medical College, Beijing 100081, China.
| | - Shanshan Hu
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China.
| | - Zhaoyi Sun
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China.
| |
Collapse
|
22
|
Zhou B, Zhou N, Liu Y, Dong E, Peng L, Wang Y, Yang L, Suo H, Tao J. Identification and validation of CCR5 linking keloid with atopic dermatitis through comprehensive bioinformatics analysis and machine learning. Front Immunol 2024; 15:1309992. [PMID: 38476235 PMCID: PMC10927814 DOI: 10.3389/fimmu.2024.1309992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024] Open
Abstract
There is sufficient evidence indicating that keloid is strongly associated with atopic dermatitis (AD) across ethnic groups. However, the molecular mechanism underlying the association is not fully understood. The aim of this study is to discover the underlying mechanism of the association between keloid and AD by integrating comprehensive bioinformatics techniques and machine learning methods. The gene expression profiles of keloid and AD were downloaded from the Gene Expression Omnibus (GEO) database. A total of 449 differentially expressed genes (DEGs) were found to be shared in keloid and AD using the training datasets of GEO (GSE158395 and GSE121212). The hub genes were identified using the protein-protein interaction network and Cytoscape software. 20 of the most significant hub genes were selected, which were mainly involved in the regulation of the inflammatory and immune response. Through two machine learning algorithms of LASSO and SVM-RFE, CCR5 was identified as the most important key gene. Subsequently, upregulated CCR5 gene expression was confirmed in validation GEO datasets (GSE188952 and GSE32924) and clinical samples of keloid and AD. Immune infiltration analysis showed that T helper (Th) 1, 2 and 17 cells were significantly enriched in the microenvironment of both keloid and AD. Positive correlations were found between CCR5 and Th1, Th2 and Th17 cells. Finally, two TFs of CCR5, NR3C2 and YY1, were identified, both of which were downregulated in keloid and AD tissues. Our study firstly reveals that keloid and AD shared common inflammatory and immune pathways. Moreover, CCR5 plays a key role in the pathogenesis association between keloid and AD. The common pathways and key genes may shed light on further mechanism research and targeted therapy, and may provide therapeutic interventions of keloid with AD.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan, Hubei, China
| | - Nuoya Zhou
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan, Hubei, China
| | - Yan Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan, Hubei, China
| | - Enzhu Dong
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan, Hubei, China
| | - Lianqi Peng
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan, Hubei, China
| | - Yifei Wang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan, Hubei, China
| | - Liu Yang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan, Hubei, China
| | - Huinan Suo
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan, Hubei, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan, Hubei, China
| |
Collapse
|
23
|
Liu J, Miao X, Yao J, Wan Z, Yang X, Tian W. Investigating the clinical role and prognostic value of genes related to insulin-like growth factor signaling pathway in thyroid cancer. Aging (Albany NY) 2024; 16:2934-2952. [PMID: 38329437 PMCID: PMC10911384 DOI: 10.18632/aging.205524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024]
Abstract
BACKGROUND Thyroid cancer (THCA) is the most common endocrine malignancy having a female predominance. The insulin-like growth factor (IGF) pathway contributed to the unregulated cell proliferation in multiple malignancies. We aimed to explore the IGF-related signature for THCA prognosis. METHOD The TCGA-THCA dataset was collected from the Cancer Genome Atlas (TCGA) for screening of key prognostic genes. The limma R package was applied for differentially expressed genes (DEGs) and the clusterProfiler R package was used for the Gene Ontology (GO) and KEGG analysis of DEGs. Then, the un/multivariate and least absolute shrinkage and selection operator (Lasso) Cox regression analysis was used for the establishment of RiskScore model. Receiver Operating Characteristic (ROC) analysis was used to verify the model's predictive performance. CIBERSORT and MCP-counter algorithms were applied for immune infiltration analysis. Finally, we analyzed the mutation features and the correlation between the RiskScore and cancer hallmark pathway by using the GSEA. RESULT We obtained 5 key RiskScore model genes for patient's risk stratification from the 721 DEGs. ROC analysis indicated that our model is an ideal classifier, the high-risk patients are associated with the poor prognosis, immune infiltration, high tumor mutation burden (TMB), stronger cancer stemness and stronger correlation with the typical cancer-activation pathways. A nomogram combined with multiple clinical features was developed and exhibited excellent performance upon long-term survival quantitative prediction. CONCLUSIONS We constructed an excellent prognostic model RiskScore based on IGF-related signature and concluded that the IGF signal pathway may become a reliable prognostic phenotype in THCA intervention.
Collapse
Affiliation(s)
- Junyan Liu
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Xin Miao
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Jing Yao
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Zheng Wan
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Xiaodong Yang
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Wen Tian
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| |
Collapse
|
24
|
Li M, Jin S, Zhu X, Xu J, Cao Y, Piao H. The role of ferroptosis in central nervous system damage diseases. PeerJ 2024; 12:e16741. [PMID: 38313006 PMCID: PMC10836208 DOI: 10.7717/peerj.16741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 12/11/2023] [Indexed: 02/06/2024] Open
Abstract
Ferroptosis is a form of cell death, i.e., programmed cell death characterized by lipid peroxidation and iron dependence, which has unique morphological and biochemical properties. This unique mode of cell death is driven by iron-dependent phospholipid peroxidation and regulated by multiple cell metabolic pathways, including redox homeostasis, iron metabolism, mitochondrial activity, and the metabolism of amino acids, lipids, and sugars. Many organ injuries and degenerative pathologies are caused by ferroptosis. Ferroptosis is closely related to central nervous system injury diseases and is currently an important topic of research globally. This research examined the relationships between ferroptosis and the occurrence and treatment of central nervous system injury diseases. Additionally, ferroptosis was assessed from the aspect of theory proposal, mechanism of action, and related signaling pathways per recent research. This review provides a relevant theoretical basis for further research on this theory, the prospect of its development, and the prevention and treatment of such diseases.
Collapse
Affiliation(s)
- Mingzhu Li
- Department of Integrated Traditional Chinese and Western Medicine Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Shengbo Jin
- College of Acupuncture and Massage of Liaoning Chinese Traditional Medicine, Shenyang, Liaoning Province, China
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Jian Xu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Yang Cao
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| |
Collapse
|
25
|
An Y, Tan S, Zhang P, Yang J, Wang K, Zheng R, Qiao L, Wang Y, Dong Y. Inactivation of MST1/2 Controls Macrophage Polarization to Affect Macrophage-Related Disease via YAP and Non-YAP Mechanisms. Int J Biol Sci 2024; 20:1004-1023. [PMID: 38250155 PMCID: PMC10797691 DOI: 10.7150/ijbs.87057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Macrophage polarization is a critical process that regulates in inflammation, pathogen defense, and tissue repair. Here we demonstrate that MST1/2, a core kinase of Hippo pathway and a recently identified regulator of inflammation, plays a significant role in promoting M2 polarization. We provide evidence that inhibition of MST1/2, achieved through either gene-knockout or pharmacological treatment, leads to increased M1 polarization in a YAP-dependent manner, resulting in the development of M1-associated inflammatory disorders. Moreover, MST1/2 inhibition also leads to a substantial reduction in M2 polarization, but this occurs through the STAT6 and MEK/ERK signaling. The STAT6 is independent of YAP, but MEK/ERK is dependent of YAP. Consistent with these observations, both MST1/2-conditional knockout mice and wild-type mice treated with XMU-MP-1, a chemical inhibitor of MST1/2, exhibited reduced M2-related renal fibrosis, while simultaneously displaying enhanced LPS-mediated inflammation and improved clearance of MCR3-modified gram-negative bacteria. These findings uncover a novel role of MST1/2 in regulating macrophage polarization and establish it as a potential therapeutic target for the treatment of macrophage-related fibrotic diseases.
Collapse
Affiliation(s)
- Yina An
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University; Beijing, 100193, China
| | - Shuyu Tan
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University; Beijing, 100193, China
| | - Pu Zhang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University; Beijing, 100193, China
| | - Jingjing Yang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University; Beijing, 100193, China
| | - Kezhi Wang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University; Beijing, 100193, China
| | - Ruicheng Zheng
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University; Beijing, 100193, China
| | - Lu Qiao
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University; Beijing, 100193, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University; Beijing, 100193, China
| | - Yanjun Dong
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University; Beijing, 100193, China
| |
Collapse
|
26
|
Liu Z, Zhang J, Li X, Hu Q, Chen X, Luo L, Ai L, Ye J. Astrocytic expression of Yes-associated protein (YAP) regulates retinal neovascularization in a mouse model of oxygen-induced retinopathy. Microvasc Res 2024; 151:104611. [PMID: 37774941 DOI: 10.1016/j.mvr.2023.104611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Pathological neovascularization is the hallmark of many vascular oculopathies. There is still a great deal of uncertainty surrounding retinal neovascularization research. A working hypothesis that astrocytic Yes-associated protein (YAP) act as a key factor in retinal neovascularization was proposed. And our study was conducted to verified this hypothesis. In vivo, we successfully generated mice deficient in YAP in astrocytes (YAPf/f GFAP-Cre mice) and set up oxygen-induced retinopathy (OIR) model. Pathological neovascularization was evaluated by immunofluorescence staining and western blotting. In vitro, cultured retinal astrocytes were transfected with YAP siRNA. Enzyme-linked immunosorbent assay (ELISA) and western blot were used to determine the proteins in the supernatants and cells. The results showed that YAP was upregulated and activated in the OIR mice retinas. Conditional ablation of YAP aggravated pathological neovascularization, along with the upregulation of vascular endothelial growth factor A (VEGF-A) and monocyte chemoattractant protein-1 (MCP-1). Studies in vitro confirmed that the knockdown of YAP in astrocytes lead to increases in VEGF-A and MCP-1 levels, thus enhancing pro-angiogenic capability of YAP-deficit astrocytes. In conclusion, astrocytic YAP alleviates retinal pathological angiogenesis by inhibiting the over-activation of astrocytes, which suppresses excessive VEGF-A production and neuroinflammation.
Collapse
Affiliation(s)
- Zhifei Liu
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Jieqiong Zhang
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Xue Li
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Qiumei Hu
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Xi Chen
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Linlin Luo
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Liqianyu Ai
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China.
| | - Jian Ye
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China.
| |
Collapse
|
27
|
Del Negro I, Pauletto G, Verriello L, Spadea L, Salati C, Ius T, Zeppieri M. Uncovering the Genetics and Physiology behind Optic Neuritis. Genes (Basel) 2023; 14:2192. [PMID: 38137014 PMCID: PMC10742654 DOI: 10.3390/genes14122192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Optic neuritis (ON) is an inflammatory condition affecting the optic nerve, leading to vision impairment and potential vision loss. This manuscript aims to provide a comprehensive review of the current understanding of ON, including its definition, epidemiology, physiology, genetics, molecular pathways, therapy, ongoing clinical studies, and future perspectives. ON is characterized by inflammation of the optic nerve, often resulting from an autoimmune response. Epidemiological studies have shown a higher incidence in females and an association with certain genetic factors. The physiology of ON involves an immune-mediated attack on the myelin sheath surrounding the optic nerve, leading to demyelination and subsequent impairment of nerve signal transmission. This inflammatory process involves various molecular pathways, including the activation of immune cells and the release of pro-inflammatory cytokines. Genetic factors play a significant role in the susceptibility to ON. Several genes involved in immune regulation and myelin maintenance have been implicated in the disease pathogenesis. Understanding the genetic basis can provide insights into disease mechanisms and potential therapeutic targets. Therapy for ON focuses on reducing inflammation and promoting nerve regeneration. Future perspectives involve personalized medicine approaches based on genetic profiling, regenerative therapies to repair damaged myelin, and the development of neuroprotective strategies. Advancements in understanding molecular pathways, genetics, and diagnostic tools offer new opportunities for targeted therapies and improved patient outcomes in the future.
Collapse
Affiliation(s)
- Ilaria Del Negro
- Clinical Neurology Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy;
| | - Giada Pauletto
- Neurology Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy; (G.P.)
| | - Lorenzo Verriello
- Neurology Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy; (G.P.)
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy
| |
Collapse
|
28
|
Fu R, Guo X, Pan Z, Wang Y, Xu J, Zhang L, Li J. Molecular mechanisms of AMPK/YAP/NLRP3 signaling pathway affecting the occurrence and development of ankylosing spondylitis. J Orthop Surg Res 2023; 18:831. [PMID: 37925428 PMCID: PMC10625209 DOI: 10.1186/s13018-023-04200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/13/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Investigate the AMPK (protein kinase AMP-activated catalytic subunit alpha 1)/YAP (Yes1 associated transcriptional regulator)/NLRP3 (NLR family pyrin domain containing 3) signaling pathway's role in ankylosing spondylitis (AS) development using public database analysis, in vitro and in vivo experiments. METHODS Retrieve AS dataset, analyze differential gene expression in R, conduct functional enrichment analysis, collect 30 AS patient and 30 normal control samples, and construct a mouse model. ELISA, IP, and knockdown experiments were performed to detect expression changes. RESULTS NLRP3 was identified as a significant AS-related gene. Caspase-1, IL-1β, IL-17A, IL-18, IL-23, YAP, and NLRP3 were upregulated in AS patients. Overexpressing AMPK inhibited YAP's blockade on NLRP3 ubiquitination, reducing ossification in fibroblasts. Inhibiting AMPK exacerbated AS symptoms in AS mice. CONCLUSION AMPK may suppress YAP expression, leading to NLRP3 inflammasome inhibition and AS alleviation.
Collapse
Affiliation(s)
- Ruiyang Fu
- Department of Acupuncture and Tuina, Huzhou Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, People's Republic of China
| | - Xiaoqing Guo
- Department of Acupuncture and Tuina, Huzhou Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, People's Republic of China
| | - Zhongqiang Pan
- Department of Acupuncture and Tuina, Huzhou Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, People's Republic of China
| | - Yaling Wang
- Department of Acupuncture and Tuina, Huzhou Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, People's Republic of China
| | - Jing Xu
- Department of Acupuncture and Tuina, Huzhou Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, People's Republic of China
| | - Lei Zhang
- Department of Acupuncture and Tuina, Huzhou Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, People's Republic of China
| | - Jinxia Li
- Department of Acupuncture and Tuina, Huzhou Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
29
|
Cha Z, Yin Z, A L, Ge L, Yang J, Huang X, Gao H, Chen X, Feng Z, Mo L, He J, Zhu S, Zhao M, Tao Z, Gu Z, Xu H. Fullerol rescues the light-induced retinal damage by modulating Müller glia cell fate. Redox Biol 2023; 67:102911. [PMID: 37816275 PMCID: PMC10570010 DOI: 10.1016/j.redox.2023.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023] Open
Abstract
Excessive light exposure can damage photoreceptors and lead to blindness. Oxidative stress serves a key role in photo-induced retinal damage. Free radical scavengers have been proven to protect against photo-damaged retinal degeneration. Fullerol, a potent antioxidant, has the potential to protect against ultraviolet-B (UVB)-induced cornea injury by activating the endogenous stem cells. However, its effects on cell fate determination of Müller glia (MG) between gliosis and de-differentiation remain unclear. Therefore, we established a MG lineage-tracing mouse model of light-induced retinal damage to examine the therapeutic effects of fullerol. Fullerol exhibited superior protection against light-induced retinal injury compared to glutathione (GSH) and reduced oxidative stress levels, inhibited gliosis by suppressing the TGF-β pathway, and enhanced the de-differentiation of MG cells. RNA sequencing revealed that transcription candidate pathways, including Nrf2 and Wnt10a pathways, were involved in fullerol-induced neuroprotection. Fullerol-mediated transcriptional changes were validated by qPCR, Western blotting, and immunostaining using mouse retinas and human-derived Müller cell lines MIO-M1 cells, confirming that fullerol possibly modulated the Nrf2, Wnt10a, and TGF-β pathways in MG, which suppressed gliosis and promoted the de-differentiation of MG in light-induced retinal degeneration, indicating its potential in treating retinal diseases.
Collapse
Affiliation(s)
- Zhe Cha
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Zhiyuan Yin
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Luodan A
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Lingling Ge
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Junling Yang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Xiaona Huang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Hui Gao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Xia Chen
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Zhou Feng
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Lingyue Mo
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Juncai He
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China; Joint Logistics Support Force of Chinese PLA, No. 927 Hospital, Puer 665000, Yunnan, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maoru Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zui Tao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China.
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China.
| |
Collapse
|
30
|
Zuo Y, Pan X, Wang X, You Y. FKN secreted by kidney epithelial cells regulates macrophage activation in lupus nephritis via the Hippo signaling pathway. Lupus 2023; 32:1381-1393. [PMID: 37751892 DOI: 10.1177/09612033231204068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
BACKGROUND Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE), and its pathogenesis is not fully understood. Previously, we showed that fractalkine (FKN) expression was positively correlated with the severity of LN. Here, we aimed to study the role of the Hippo signaling pathway (HSP) and its interaction with FKN in LN in an attempt to provide novel strategies for LN treatment. METHODS In this study, lipopolysaccharide (LPS)/interferon-γ (IFN-γ)-stimulated THP-1 cells were co-cultured with FKN up-regulated or down-regulated kidney epithelial cells Hkb20. FKN-knockout (KO-FKN) mice were used to construct LN model. Flow cytometric analysis, quantitative real-time polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), pathological staining, Western blot, and immunofluorescence (IF) staining were employed to investigate the role of FKN and its interaction with the Hippo signaling pathway (HSP) in LN. RESULTS Up-regulation of FKN in kidney epithelial cells was associated with increased macrophage activation. FKN overexpression in kidney epithelial cells suppressed apoptosis, inflammation levels, and M1 polarization of THP-1 cells and inhibited the HSP. Oppositely, FKN knockdown in kidney epithelial cells increased apoptosis, inflammation, and M1 polarization and activated the HSP. HSP inhibitor reversed the effect of FKN knockdown on THP-1 cells. In LN mice, FKN knockout and YAP inhibitor decreased the levels of renal function markers, alleviated kidney injury induced by LN, and inhibited macrophage activation in LN mice. CONCLUSIONS FKN down-regulation reduced the activation of macrophages in renal tissue and alleviated kidney damage by activating HSP. The regulatory effect of FKN on HSP should be confirmed in patients with LN, and the mechanism of FKN in LN should be further explored.
Collapse
Affiliation(s)
- Yao Zuo
- First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Hematology & Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiuhong Pan
- Department of Hematology & Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiaochao Wang
- Department of Hematology & Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yanwu You
- Department of Nephrology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
31
|
Pyka-Fościak G, Fościak M, Pabijan J, Lis GJ, Litwin JA, Lekka M. Changes in stiffness of the optic nerve and involvement of neurofilament light chains in the course of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Biochim Biophys Acta Mol Basis Dis 2023:166796. [PMID: 37400000 DOI: 10.1016/j.bbadis.2023.166796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023]
Abstract
Multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), are often accompanied by optic neuritis associated with neurofilament disruption. In this study, the stiffness of the optic nerve was investigated by atomic force microscopy (AFM) in mice with induced EAE in the successive phases of the disease: onset, peak, and chronic. AFM results were compared with the intensity of the main pathological processes in the optic nerve: inflammation, demyelination, and axonal loss, as well as with the density of astrocytes, assessed by quantitative histology and immunohistochemistry. Optic nerve tissue and serum levels of neurofilament light chain protein (NEFL) were also examined by immunostaining and ELISA, respectively. The stiffness of the optic nerve in EAE mice was lower than that in control and naïve animals. It increased in the onset and peak phases and sharply decreased in the chronic phase. Serum NEFL level showed similar dynamics, while tissue NEFL level decreased in the onset and peak phases, indicating a leak of NEFL from the optic nerve to body fluids. Inflammation and demyelination gradually increased to reach the maximum in the peak phase of EAE, and inflammation slightly declined in the chronic phase, while demyelination did not. The axonal loss also gradually increased and had the highest level in the chronic phase. Among these processes, demyelination and especially axonal loss most effectively decrease the stiffness of the optic nerve. NEFL level in serum can be regarded as an early indicator of EAE, as it rapidly grows in the onset phase of the disease.
Collapse
Affiliation(s)
- G Pyka-Fościak
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland.
| | - M Fościak
- Medical Department, Novartis Poland Sp. z o.o., Marynarska 15, 02-674 Warszawa, Poland
| | - J Pabijan
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - G J Lis
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland
| | - J A Litwin
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland
| | - M Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
32
|
Chen L, Jin X, Ma J, Xiang B, Li X. YAP at the progression of inflammation. Front Cell Dev Biol 2023; 11:1204033. [PMID: 37397250 PMCID: PMC10311505 DOI: 10.3389/fcell.2023.1204033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Yes-associated protein (YAP) is a transcriptional regulator that affects cell proliferation, organ size and tissue development and regeneration, and has therefore, been an important object of study. In recent years, there has been an increasing research focus on YAP in inflammation and immunology, and the role of YAP in the development of inflammation and in immune escape by tumors has been progressively elucidated. Because YAP signaling involves a variety of different signal transduction cascades, the full range of functions in diverse cells and microenvironments remains incompletely understood. In this article, we discuss the complex involvement of YAP in inflammation, the molecular mechanisms through which it exercises pro- and anti-inflammatory effects under different conditions, and the progress achieved in elucidating the functions of YAP in inflammatory diseases. A thorough understanding of YAP signaling in inflammation will provide a foundation for its use as a therapeutic target in inflammatory diseases.
Collapse
Affiliation(s)
- Libin Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xintong Jin
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jian Ma
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital of Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Bo Xiang
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital of Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xiayu Li
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
33
|
Pu PM, Li ZY, Dai YX, Sun YL, Wang YJ, Cui XJ, Yao M. Analysis of gene expression profiles and experimental validations of a rat chronic cervical cord compression model. Neurochem Int 2023:105564. [PMID: 37286109 DOI: 10.1016/j.neuint.2023.105564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/09/2023]
Abstract
Cervical spondylotic myelopathy (CSM) is a severe non-traumatic spinal cord injury (SCI) wherein the spinal canal and cervical cord are compressed due to the degeneration of cervical tissues. To explore the mechanism of CSM, the ideal model of chronic cervical cord compression in rats was constructed by embedding a polyvinyl alcohol polyacrylamide hydrogel in lamina space. Then, the RNA sequencing technology was used to screen the differentially expressed genes (DEGs) and enriched pathways among intact and compressed spinal cords. A total of 444 DEGs were filtered out based on the value of log2(Compression/Sham); these were associated with IL-17, PI3K-AKT, TGF-β, and Hippo signaling pathways according to the GSEA, KEGG, and GO analyses. Transmission electron microscopy indicated the changes in mitochondrial morphology. Western blot and immunofluorescent staining revealed neuronal apoptosis, astrogliosis and microglial neuroinflammation in the lesion area. Specifically, the expression of apoptotic indicators, such as Bax and cleaved caspase-3, and inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, were upregulated. The activation of IL-17 signaling pathways was observed in microglia instead of neurons or astrocytes, the activation of TGF-β and inhibition of Hippo signaling pathways were detected in astrocytes instead of neurons or microglia, and the inhibition of PI3K-AKT signaling pathway was discovered in neurons rather than microglia of astrocytes in the lesion area. In conclusion, this study indicated that neuronal apoptosis was accompanied by inhibiting of the PI3K-AKT pathway. Then, the activation of microglia IL-17 pathway and NLRP3 inflammasome effectuated the neuroinflammation, and astrogliosis was ascribed to the activation of TGF-β and the inhibition of the Hippo pathway in the chronic cervical cord of compression. Therefore, therapeutic methods targeting these pathways in nerve cells could be promising CSM treatments.
Collapse
Affiliation(s)
- Pei-Min Pu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Zhuo-Yao Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yu-Xiang Dai
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yue-Li Sun
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
34
|
Zhang J, Jin L, Hua X, Wang M, Wang J, Xu X, Liu H, Qiu H, Sun H, Dong T, Yang D, Zhang X, Wang Y, Huang Z. SARM1 promotes the neuroinflammation and demyelination through IGFBP2/NF-κB pathway in experimental autoimmune encephalomyelitis mice. Acta Physiol (Oxf) 2023; 238:e13974. [PMID: 37186158 DOI: 10.1111/apha.13974] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
AIM Multiple sclerosis (MS) is an autoimmune disease, and its typical characteristics are neuroinflammation and the demyelination of neurons in the central nervous system (CNS). Sterile alpha and TIR motif containing 1 (SARM1) is an essential factor mediating axonal degeneration and SARM1 deletion reduces the neuroinflammation in spinal cord injury. This study aimed to explore the roles of SARM1 and its underlying mechanisms in MS. METHODS Experimental autoimmune encephalomyelitis (EAE, a model of MS) model was established. Immunostaining, western blot, electron microscope, and HE staining were used to examine the pathological manifestations such as inflammation, demyelination, and neuronal death in SARM1f/f EAE mice and SARM1Nestin -CKO EAE mice. In addition, RNA-seq, real-time PCR and double-immunostaining were used to examine the underlying mechanism of SARM1 in EAE mice. RESULTS SARM1 was upregulated in neurons of the spinal cords of EAE mice. SARM1 knockout in CNS ameliorated EAE with less neuroinflammation, demyelination, and dead neurons. Mechanically, SARM1 knockout resulted in the reduction of insulin-like growth factor (IGF)-binding protein 2 (IGFBP2) in neurons of EAE mice, which might inhibit the neuroinflammation through inhibiting NF-κB signaling. Finally, activation of NF-κB partially aggravated the neuroinflammation and demyelination deficits of SARM1Nestin -CKO EAE mice. CONCLUSIONS These results identified the unknown role of SARM1 in the promotion of neuroinflammation and demyelination and revealed a novel drug target pathway of SARM1/IGFBP2/NF-κB for MS.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Pharmacy, Hangzhou Normal University, Zhejiang, China
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Lingting Jin
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Xin Hua
- College of Pharmacy, Hangzhou Normal University, Zhejiang, China
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Mianxian Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Jiaojiao Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Xingxing Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Huitao Liu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Haoyu Qiu
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Huankun Sun
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Tianyingying Dong
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Danlu Yang
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Xu Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ying Wang
- Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Zhihui Huang
- College of Pharmacy, Hangzhou Normal University, Zhejiang, China
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
35
|
Wang J, Chen H, Hou W, Han Q, Wang Z. Hippo Pathway in Schwann Cells and Regeneration of Peripheral Nervous System. Dev Neurosci 2023; 45:276-289. [PMID: 37080186 DOI: 10.1159/000530621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Hippo pathway is an evolutionarily conserved signaling pathway comprising a series of MST/LATS kinase complexes. Its key transcriptional coactivators YAP and TAZ regulate transcription factors such as TEAD family to direct gene expression. The regulation of Hippo pathway, especially the nuclear level change of YAP and TAZ, significantly influences the cell fate switching from proliferation to differentiation, regeneration, and postinjury repair. This review outlines the main findings of Hippo pathway in peripheral nerve development, regeneration, and tumorigenesis, especially the studies in Schwann cells. We also summarize other roles of Hippo pathway in damage repair of the peripheral nerve system and discuss the potential future research which probably contributes to novel therapeutic strategies.
Collapse
Affiliation(s)
- Jingyuan Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haofeng Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wulei Hou
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingjian Han
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Huashan Hospital, Fudan University, Shanghai, China
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Yang H, Zhang Y, Du Z, Wu T, Yang C. Hair follicle mesenchymal stem cell exosomal lncRNA H19 inhibited NLRP3 pyroptosis to promote diabetic mouse skin wound healing. Aging (Albany NY) 2023; 15:791-809. [PMID: 36787444 PMCID: PMC9970314 DOI: 10.18632/aging.204513] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Skin wounds caused by diabetes are a major medical problem. Mesenchymal stem cell-derived exosomes hold promise to quicken wound healing due to their ability to transfer certain molecules to target cells, including mRNAs, microRNAs, lncRNAs, and proteins. Nonetheless, the specific mechanisms underlying this impact are not elucidated. Therefore, this research aimed to investigate the effect of MSC-derived exosomes comprising long non-coding RNA (lncRNA) H19 on diabetic skin wound healing. Hair follicle mesenchymal stem cells (HF-MSCs) were effectively isolated and detected, and exosomes (Exo) were also isolated smoothly. Pretreatment with 30 mM glucose for 24 h (HG) could efficiently induce pyroptosis in HaCaT cells. Exosomal H19 enhanced HaCaT proliferation and migration and inhibited pyroptosis by reversing the stimulation of the NLRP3 inflammasome. Injection of exosomes overexpressing lncRNA H19 to diabetic skin wound promoted sustained skin wound healing, whereas sh-H19 exosomes did not have this effect. In conclusion, Exosomes overexpressing H19 promoted HaCaT proliferation, migration and suppressed pyroptosis both in vitro and in vivo. Therefore, HFMSC-derived exosomes that overexpress H19 may be included in strategies for healing diabetic skin wounds.
Collapse
Affiliation(s)
- Hongliang Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130031, China
| | - Yan Zhang
- School of Public Health, Beihua University, Jilin 132033, China
| | - Zhenwu Du
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130031, China
| | - Tengfei Wu
- Department of Laboratory Animal Science, China Medical University, Shenyang 110122, China
| | - Chun Yang
- College of Basic Medicine, Beihua University, Jilin 132033, China
| |
Collapse
|
37
|
Chen C, Chen J, Wang Y, Fang L, Guo C, Sang T, Peng H, Zhao Q, Chen S, Lin X, Wang X. Ganoderma lucidum polysaccharide inhibits HSC activation and liver fibrosis via targeting inflammation, apoptosis, cell cycle, and ECM-receptor interaction mediated by TGF-β/Smad signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154626. [PMID: 36603342 DOI: 10.1016/j.phymed.2022.154626] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/09/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ganoderma lucidum polysaccharide (GLP) has many biological properties, however, the anti-fibrosis effect of GLP is unknown at present. PURPOSE This study aimed to examine the anti-fibrogenic effect of GLP and its underlying molecular mechanisms in vivo and in vitro. STUDY DESIGN Both CCl4-induced mouse and TGF-β1-induced HSC-T6 cellular models of fibrosis were established to examine the anti-fibrogenic effect of a water-soluble GLP (25 kDa) extracted from the sporoderm-removed spores of G. lucidum.. METHOD Serum markers of liver injury, histology and fibrosis of liver tissues, and collagen formation were examined using an automatic biochemical analyzer, H&E staining, Sirius red staining, immunohistochemistry, immunofluorescence, ELISA, Western blotting, and qRT-PCR. RNA-sequencing, enrichment pathway analysis, Western blotting, qRT-PCR, and flow cytometry were employed to identify the potential molecular targets and signaling pathways that are responsible for the anti-fibrotic effect of GLP. RESULTS We showed that GLP (150 and 300 mg/kg) significantly inhibited hepatic fibrogenesis and inflammation in CCl4-treated mice as mediated by the TLR4/NF-κB/MyD88 signaling pathway. We further demonstrated that GLP significantly inhibited hepatic stellate cell (HSCs) activation in mice and in TGF-β1-induced HSC-T6 cells as manifested by reduced collagen I and a-SMA expressions. RNA-sequencing uncovered inflammation, apoptosis, cell cycle, ECM-receptor interaction, TLR4/NF-κB, and TGF-β/Smad signalings as major pathways suppressed by GLP administration. Further studies demonstrated that GLP elicits anti-fibrotic actions that are associated with a novel dual effect on apoptosis in vivo (inhibit) or in vitro (promote), suppression of cell cycle in vivo, induction of S phase arrest in vitro, and attenuation of ECM-receptor interaction-associated molecule expressions including integrins ITGA6 and ITGA8. Furthermore, GLP significantly inhibited the TGF-β/Smad signaling in mice, and reduced TGF-β1 or its agonist SRI-011381-induced Smad2 and Smad3 phosphorylations, but increased Samd7 expression in HSC-T6 cells. CONCLUSION This study provides the first evidence that GLP could be a promising dietary strategy for treating liver fibrosis, which protects against liver fibrosis and HSC activation through targeting inflammation, apoptosis, cell cycle, and ECM-receptor interactions that are mediated by TGF-β/Smad signaling.
Collapse
Affiliation(s)
- Chaojie Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Jiajun Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Ying Wang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Liu Fang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Cuiling Guo
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Tingting Sang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - He Peng
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Qian Zhao
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Shengjia Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Xiaojian Lin
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China
| | - Xingya Wang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, PR China.
| |
Collapse
|
38
|
Liu H, Zhao Z, Yan M, Zhang Q, Jiang T, Xue J. Calycosin decreases cerebral ischemia/reperfusion injury by suppressing ACSL4-dependent ferroptosis. Arch Biochem Biophys 2023; 734:109488. [PMID: 36516890 DOI: 10.1016/j.abb.2022.109488] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Ischemic stroke is the second leading cause of death globally. Calycosin is a typical phytoestrogen that protects against cerebral ischemia/reperfusion (I/R) injury. However, the role of ferroptosis in this effect remains unknown. In the present study, we investigated the ferroptosis mechanism of calycosin against cerebral I/R injury using transient middle cerebral artery occlusion/reperfusion (tMCAO/R)-exposed rats and oxygen-glucose deprivation/reperfusion (OGD/R)-stimulated PC12 cells. We found that calycosin treatment significantly improved neurological deficits, brain edema, blood-brain barrier (BBB) breakdown, infarction volume, and neuronal injuries in rats that underwent tMCAO/R; similar to ferrostatin-1 (a ferroptosis inhibitor), calycosin prevented cell viability loss in PC12 cells exposed to OGD/R stimulation. In addition, calycosin intervention decreased ferroptosis, as assessed by iron accumulation, malondialdehyde (MDA), superoxide dismutase (SOD), ceramide, and reactive oxygen species (ROS) levels, as well as ferroptosis-related protein expression (ACSL4, TfR1, FTH1, and GPX4). Furthermore, overexpression of ACSL4 reversed calycosin-induced beneficial efficacy in OGD/R-stimulated PC12 cells. The molecular docking analysis demonstrated that calycosin binds to ACSL4 by forming stable hydrogen bonds at G465, K690, and D573. Collectively, these findings indicate that calycosin ameliorates cerebral I/R injury by depressing ACSL4-dependent ferroptosis.
Collapse
Affiliation(s)
- Hui Liu
- Department of Neurology and Institute of Neurology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, 215500, China
| | - Zongbo Zhao
- Department of Neurology and Institute of Neurology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, 215500, China
| | - Manyun Yan
- Department of Neurology and Institute of Neurology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, 215500, China
| | - Qiu Zhang
- Department of Neurology and Institute of Neurology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, 215500, China
| | - Tingwang Jiang
- Department of Key Laboratory, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, 215500, China.
| | - Jianzhong Xue
- Department of Neurology and Institute of Neurology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, 215500, China.
| |
Collapse
|
39
|
The Carthamus tinctorius L. and Lepidium apetalum Willd. Drug Pair Inhibits EndMT through the TGF β1/Snail Signaling Pathway in the Treatment of Myocardial Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:6018375. [PMID: 36686974 PMCID: PMC9851799 DOI: 10.1155/2023/6018375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Abstract
Background Myocardial fibrosis (MF) is an essential pathological factor for heart failure. Previous studies have shown that the combination of Carthamus tinctorius L. and Lepidium apetalum Willd. (C-L), two types of Chinese herbal medicine, can ameliorate MF after myocardial infarction (MI) in rats and inhibit the activation of myocardial fibroblasts. However, the mechanism of C-L in the treatment of MF remains unclear. Methods A rat model of MF with left anterior descending coronary ligation-induced MI was first established. Then, the effects of C-L on cardiac function, MF, and endothelial-to-mesenchymal transition (EndMT) were evaluated by the left ventricular ejection fraction (LVEF), serum N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, Masson's trichrome staining, and immunohistochemical and immunofluorescence staining. Next, a hypoxia-induced cardiac microvascular endothelial cell (CMEC) model was established to observe the effects of C-L on EndMT. The supernatant of CMECs was collected and used to culture cardiac fibroblasts (CFs) and observe the effects of CMEC paracrine factors on CFs. Results Animal experiments indicated that C-L improves the cardiac function of rats after MI, inhibits the progression of EndMT and MF, and downregulates TGFβ1, Snail, and CTGF expression. Cell experiments showed that drug-loaded serum containing C-L inhibits the EndMT of CMECs under hypoxic conditions. The culture supernatant of CMECs grown under hypoxic conditions significantly activated CFs. After treatment with C-L, the activating factor for CFs in hypoxic CMEC culture supernatant was substantially downregulated, and the effect of the culture supernatant on CF activation was also reduced. However, TGFβ1 agonists inhibited the effects of C-L on CMECs and CFs. Conclusion Our data demonstrated that by regulating the TGFβ1/Snail pathway, C-L inhibits EndMT of CMECs and reduces the release of CF-activating factors in cells undergoing EndMT.
Collapse
|
40
|
Song W, Yao Y, Zhang H, Hao X, Zhou L, Song Z, Wei T, Chi T, Liu P, Ji X, Zou L. Sigma-1 Receptor Activation Improves Oligodendrogenesis and Promotes White-Matter Integrity after Stroke in Mice with Diabetic Mellitus. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010390. [PMID: 36615583 PMCID: PMC9823930 DOI: 10.3390/molecules28010390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Diabetes mellitus (DM) is a major risk factor for stroke and exacerbates white-matter damage in focal cerebral ischemia. Our previous study showed that the sigma-1 receptor agonist PRE084 ameliorates bilateral common-carotid-artery occlusion-induced brain damage in mice. However, whether this protective effect can extend to white matter remains unclear. In this study, C57BL/6 mice were treated with high-fat diets (HFDs) combined with streptozotocin (STZ) injection to mimic type 2 diabetes mellitus (T2DM). Focal cerebral ischemia in T2DM mice was established via injection of the vasoconstrictor peptide endothelin-1 (ET-1) into the hippocampus. Three different treatment plans were used in this study. In one plan, 1 mg/kg of PRE084 (intraperitoneally) was administered for 7 d before ET-1 injection; the mice were sacrificed 24 h after ET-1 injection. In another plan, PRE084 treatment was initiated 24 h after ET-1 injection and lasted for 7 d. In the third plan, PRE084 treatment was initiated 24 h after ET-1 injection and lasted for 21 d. The Y-maze, novel object recognition, and passive avoidance tests were used to assess neurobehavioral outcomes. We found no cognitive dysfunction or white-matter damage 24 h after ET-1 injection. However, 7 and 21 d after ET-1 injection, the mice showed significant cognitive impairment and white-matter damage. Only PRE084 treatment for 21 d could improve this white-matter injury; increase axon and myelin density; decrease demyelination; and increase the expressions of myelin regulator 2'-3'-cyclic nucleotide 3'-phosphodiesterase (CNpase) and myelin oligodendrocyte protein (MOG) (which was expressed by mature oligodendrocytes), the number of nerve/glial-antigen 2 (NG2)-positive cells, and the expression of platelet-derived growth factor receptor-alpha (PDGFRα), all of which were expressed by oligodendrocyte progenitor cells in mice with diabetes and focal cerebral ischemia. These results indicate that maybe there was more severe white-matter damage in the focal cerebral ischemia of the diabetic mice than in the mice with normal blood glucose levels. Long-term sigma-1 receptor activation may promote oligodendrogenesis and white-matter functional recovery in patients with stroke and with diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Peng Liu
- Correspondence: (P.L.); (X.J.); (L.Z.); Tel.: +86-24-23986260 (P.L.)
| | - Xuefei Ji
- Correspondence: (P.L.); (X.J.); (L.Z.); Tel.: +86-24-23986260 (P.L.)
| | - Libo Zou
- Correspondence: (P.L.); (X.J.); (L.Z.); Tel.: +86-24-23986260 (P.L.)
| |
Collapse
|
41
|
McNamara NB, Munro DAD, Bestard-Cuche N, Uyeda A, Bogie JFJ, Hoffmann A, Holloway RK, Molina-Gonzalez I, Askew KE, Mitchell S, Mungall W, Dodds M, Dittmayer C, Moss J, Rose J, Szymkowiak S, Amann L, McColl BW, Prinz M, Spires-Jones TL, Stenzel W, Horsburgh K, Hendriks JJA, Pridans C, Muramatsu R, Williams A, Priller J, Miron VE. Microglia regulate central nervous system myelin growth and integrity. Nature 2023; 613:120-129. [PMID: 36517604 PMCID: PMC9812791 DOI: 10.1038/s41586-022-05534-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 154.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/05/2022] [Indexed: 12/15/2022]
Abstract
Myelin is required for the function of neuronal axons in the central nervous system, but the mechanisms that support myelin health are unclear. Although macrophages in the central nervous system have been implicated in myelin health1, it is unknown which macrophage populations are involved and which aspects they influence. Here we show that resident microglia are crucial for the maintenance of myelin health in adulthood in both mice and humans. We demonstrate that microglia are dispensable for developmental myelin ensheathment. However, they are required for subsequent regulation of myelin growth and associated cognitive function, and for preservation of myelin integrity by preventing its degeneration. We show that loss of myelin health due to the absence of microglia is associated with the appearance of a myelinating oligodendrocyte state with altered lipid metabolism. Moreover, this mechanism is regulated through disruption of the TGFβ1-TGFβR1 axis. Our findings highlight microglia as promising therapeutic targets for conditions in which myelin growth and integrity are dysregulated, such as in ageing and neurodegenerative disease2,3.
Collapse
Affiliation(s)
- Niamh B McNamara
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - David A D Munro
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Nadine Bestard-Cuche
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Akiko Uyeda
- Departments of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Alana Hoffmann
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Rebecca K Holloway
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Barlo Multiple Sclerosis Centre, St Michael's Hospital, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Immunology, The University of Toronto, Toronto, Ontario, Canada
| | - Irene Molina-Gonzalez
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Katharine E Askew
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Stephen Mitchell
- Wellcome Trust Centre for Cell Biology, King's Buildings, The University of Edinburgh, Edinburgh, UK
| | - William Mungall
- Biological and Veterinary Services, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Michael Dodds
- Biological and Veterinary Services, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Carsten Dittmayer
- Department of Neuropathology and Neurocure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jonathan Moss
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Jamie Rose
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Stefan Szymkowiak
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Lukas Amann
- Institute of Neuropathology, Centre for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Barry W McColl
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Marco Prinz
- Institute of Neuropathology, Centre for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Tara L Spires-Jones
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Werner Stenzel
- Department of Neuropathology and Neurocure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karen Horsburgh
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Clare Pridans
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
| | - Rieko Muramatsu
- Departments of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Anna Williams
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Josef Priller
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitätsmedizin Berlin and DZNE, Berlin, Germany
| | - Veronique E Miron
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK.
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK.
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
- Barlo Multiple Sclerosis Centre, St Michael's Hospital, Toronto, Ontario, Canada.
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada.
- Department of Immunology, The University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
42
|
Xu J, Yu Z, Li W. Kaempferol inhibits airway inflammation induced by allergic asthma through NOX4-Mediated autophagy. Hum Exp Toxicol 2023; 42:9603271231154227. [PMID: 36803065 DOI: 10.1177/09603271231154227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND Kaempferol has important medicinal value in the treatment of asthma. However, its mechanism of action has not been fully understood and needs to be explored and studied. METHODS A binding activity of kaempferol with nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) was analyzed by molecular docking. Human bronchial epithelial cells (BEAS-2B) were treated with different concentrations (0, 1, 5, 10, 20, 40 μg/mL) of kaempferol to select its suitable concentration. In the transforming growth factor (TGF)-β1-induced BEAS-2B, cells were treated with 20 μg/mL kaempferol or 20 μM GLX35132 (a NOX4 inhibitor) to analyze its effects on NOX4-mediated autophagy. In the ovalbumin (OVA)-induced mice, 20 mg/kg kaempferol or 3.8 mg/kg GLX351322 administration was performed to analyze the therapeutic effects of kaempferol on NOX4-mediated autophagy. An autophagy activator, rapamycin, was used to confirm the mechanism of kaempferol in treatment of allergic asthma. RESULTS A good binding of kaempferol to NOX4 (score = -9.2 kcal/mol) was found. In the TGF-β1-induced BEAS-2B, the NOX4 expression was decreased with kaempferol dose increase. The secretions of IL-25 and IL-33, and the NOX4-mediated autophagy were significantly decreased by kaempferol treatment in the TGF-β1-induced BEAS-2B. In the OVA-challenged mice, kaempferol treatment improved airway inflammation and remodeling through suppressing NOX4-mediated autophagy. The rapamycin treatment clearly hampered the therapeutic effects of kaempferol in the TGF-β1-induced cells and OVA-induced mice. CONCLUSIONS This study identifies kaempferol binds NOX4 to perform its functions in the treatment of allergic asthma, providing an effective therapeutic strategy in the further treatment of asthma.
Collapse
Affiliation(s)
- Jianfeng Xu
- Department of Pulmonary and Critical Care Medicine, 117747Yantai Yuhuangding Hospital, Yantai, China
| | - Zhenyu Yu
- Department of Anesthesiology, 117747Yantai Yuhuangding Hospital, Yantai, China
| | - Wei Li
- Department of Pulmonary and Critical Care Medicine, 117747Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
43
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
44
|
Voskuhl RR, MacKenzie-Graham A. Chronic experimental autoimmune encephalomyelitis is an excellent model to study neuroaxonal degeneration in multiple sclerosis. Front Mol Neurosci 2022; 15:1024058. [PMID: 36340686 PMCID: PMC9629273 DOI: 10.3389/fnmol.2022.1024058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/30/2022] [Indexed: 08/19/2023] Open
Abstract
Animal models of multiple sclerosis (MS), specifically experimental autoimmune encephalomyelitis (EAE), have been used extensively to develop anti-inflammatory treatments. However, the similarity between MS and one particular EAE model does not end at inflammation. MS and chronic EAE induced in C57BL/6 mice using myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 share many neuropathologies. Beyond both having white matter lesions in spinal cord, both also have widespread neuropathology in the cerebral cortex, hippocampus, thalamus, striatum, cerebellum, and retina/optic nerve. In this review, we compare neuropathologies in each of these structures in MS with chronic EAE in C57BL/6 mice, and find evidence that this EAE model is well suited to study neuroaxonal degeneration in MS.
Collapse
Affiliation(s)
- Rhonda R. Voskuhl
- UCLA MS Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | |
Collapse
|
45
|
Zhang Q, Qian D, Tang DD, Liu J, Wang LY, Chen W, Wu CJ, Peng W. Glabridin from Glycyrrhiza glabra Possesses a Therapeutic Role against Keloid via Attenuating PI3K/Akt and Transforming Growth Factor-β1/SMAD Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10782-10793. [PMID: 36005946 DOI: 10.1021/acs.jafc.2c02045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glabridin (Gla) is a typical flavonoid isolated from the Glycyrrhiza glabra with various bioactivities and is a common additive in many cosmetics. In our study, we evaluated the antiscarring effect of Gla from G. glabra in a rabbit ear hyperplastic scar model. Hematoxylin and eosin staining and Masson staining were applied to determine the pathological changes and collagen fibers of scar tissue in rabbits. The results suggested that Gla could reduce rabbit ear scar hyperplasia, inhibit inflammation, and decrease collagen production. Furthermore, the in vitro cell experiments were applied to determine the effects of Gla on human keloid fibroblasts (HKFs), and we observed that Gla suppressed the HKF cells' proliferation via inducing apoptosis. Subsequently, we found that Gla reduced collagen production in HKF cells. The further molecular mechanisms investigations suggested that Gla played a therapeutic role against keloid by attenuating PI3K/Akt and TGFβ1/SMAD pathways. Our study would be beneficial for extending the applications of the known sweet plant of G. glabra.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, P. R. China
| | - Die Qian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, P. R. China
| | - Dan-Dan Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, P. R. China
| | - Jia Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, P. R. China
| | - Lin-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, P. R. China
| | - Wenwen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, P. R. China
- Department of Pharmacy, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610091, P. R. China
| | - Chun-Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, P. R. China
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, P. R. China
| |
Collapse
|
46
|
miR-216b-5p Inhibited the Progression of Experimental Optic Neuritis via Downregulating FAS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2772566. [PMID: 35990825 PMCID: PMC9388232 DOI: 10.1155/2022/2772566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
Abstract
Objective Present study mainly explored the effect of miR-216b-5p on experimental optic neuritis and mechanism. Methods Female C57BL/6 mice were utilized to establish the EAE model. miR-216b-5p expression was measured by RT-qPCR. Protein expression was evaluated via western blot. Inflammatory infiltration score was analyzed by HE staining. Visual function was assessed by measuring the OKR. Flow cytometry assay was conducted to measure the percentage of IL-17 cells. ELISA was utilized to evaluate the immune factor. Results The EAE mouse model was successfully established. The EAE score of mice began to increase in EAE group after 11 days of MOG35-55 and CFA immunization. The degree of inflammatory cell infiltration in EAE mice was higher than that in normal mice. Compared with normal mice, the number of microglia and astrocytes was raised in EAE mice. miR-216b-5p expression was obviously declined and FAS expression was obviously raised in EAE. Compared with NC group, demyelination scores and axonal loss were markedly declined in miR-216b-5p mimic group. IL-17A concentration and the percentage of IL-17 cells were obviously declined in miR-216b-5p mimic group. FAS was predicted to be regulated by miR-216b-5p by TargetScan, and luciferase reporter assay confirmed this prediction. In addition, overexpression of FAS exacerbated experimental optic neuritis by promoting the inflammatory response and Th17 cell differentiation, and miR-216b-5p reversed this effect. Conclusions miR-216b-5p downregulated FAS and inhibited the progression of experimental optic neuritis via promoting the inflammatory response and Th17 cell differentiation.
Collapse
|
47
|
Gorter RP, Baron W. Recent insights into astrocytes as therapeutic targets for demyelinating diseases. Curr Opin Pharmacol 2022; 65:102261. [PMID: 35809402 DOI: 10.1016/j.coph.2022.102261] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Astrocytes are a group of glial cells that exhibit great morphological, transcriptional and functional diversity both in the resting brain and in response to injury. In recent years, astrocytes have attracted increasing interest as therapeutic targets for demyelinating diseases. Following a demyelinating insult, astrocytes can adopt a wide spectrum of reactive states, which can exacerbate damage, but may also facilitate oligodendrocyte progenitor cell differentiation and myelin regeneration. In this review, we provide an overview of recent literature on astrocyte-oligodendrocyte interactions in the context of demyelinating diseases. We highlight novel key roles for astrocytes both during demyelination and remyelination with a focus on potential therapeutic strategies to favor a pro-regenerative astrocyte response in (progressive) multiple sclerosis.
Collapse
Affiliation(s)
- Rianne Petra Gorter
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
48
|
Mia MM, Singh MK. Emerging roles of the Hippo signaling pathway in modulating immune response and inflammation-driven tissue repair and remodeling. FEBS J 2022; 289:4061-4081. [PMID: 35363945 DOI: 10.1111/febs.16449] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/17/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
Inflammation is an evolutionarily conserved process and part of the body's defense mechanism. Inflammation leads to the activation of immune and non-immune cells that protect the host tissue/organs from injury or intruding pathogens. The Hippo pathway is an evolutionarily conserved kinase cascade with an established role in regulating cell proliferation, survival, and differentiation. It is involved in diverse biological processes, including organ size control and tissue homeostasis. Recent clinical and pre-clinical studies have shown that the Hippo signaling pathway is also associated with injury- and pathogen-induced tissue inflammation and associated immunopathology. In this review, we have summarized the recent findings related to the involvement of the Hippo signaling pathway in modulating the immune response in different acute and chronic inflammatory diseases and its impact on tissue repair and remodeling.
Collapse
Affiliation(s)
- Masum M Mia
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Manvendra K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| |
Collapse
|
49
|
Zhang J, Xu X, Liu H, Jin L, Shen X, Xie C, Xiang W, Yang D, Feng W, Wang J, Wang M, Dong T, Qiu H, Wu L, Wang Y, Zhang X, Huang Z. Astrocytic YAP prevents the demyelination through promoting expression of cholesterol synthesis genes in experimental autoimmune encephalomyelitis. Cell Death Dis 2021; 12:907. [PMID: 34611127 PMCID: PMC8492624 DOI: 10.1038/s41419-021-04203-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 01/20/2023]
Abstract
Cholesterols are the main components of myelin, and are mainly synthesized in astrocytes and transported to oligodendrocytes and neurons in the adult brain. It has been reported that Hippo/yes-associated protein (YAP) pathways are involved in cholesterol synthesis in the liver, however, it remains unknown whether YAP signaling can prevent the demyelination through promoting cholesterol synthesis in experimental autoimmune encephalomyelitis (EAE), a commonly used animal model of multiple sclerosis characterized by neuroinflammation and demyelination. Here, we found that YAP was upregulated and activated in astrocytes of spinal cords of EAE mice through suppression of the Hippo pathway. YAP deletion in astrocytes aggravated EAE with earlier onset, severer inflammatory infiltration, demyelination, and more loss of neurons. Furthermore, we found that the neuroinflammation was aggravated and the proliferation of astrocytes was decreased in YAPGFAP-CKO EAE mice. Mechanically, RNA-seq revealed that the expression of cholesterol-synthesis pathway genes such as HMGCS1 were decreased in YAP-/- astrocytes. qPCR, western blot, and immunostaining further confirmed the more significant reduction of HMGCS1 in spinal cord astrocytes of YAPGFAP-CKO EAE mice. Interestingly, upregulation of cholesterol-synthesis pathways by diarylpropionitrile (DPN) (an ERβ-ligand, to upregulate the expression of HMGCS1) treatment partially rescued the demyelination deficits in YAPGFAP-CKO EAE mice. Finally, activation of YAP by XMU-MP-1 treatment promoted the expression of HMGCS1 in astrocytes and partially rescued the demyelination and inflammatory infiltration deficits in EAE mice. These findings identify unrecognized functions of astrocytic YAP in the prevention of demyelination through promoting cholesterol synthesis in EAE, and reveal a novel pathway of YAP/HMGCS1 for cholesterol synthesis in EAE pathology.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- Astrocytes/pathology
- Body Weight
- Cell Proliferation
- Cholesterol/biosynthesis
- Demyelinating Diseases/genetics
- Down-Regulation/genetics
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Gene Expression Regulation
- Hippo Signaling Pathway
- Inflammation/pathology
- Mice, Knockout
- Models, Biological
- Neurons/metabolism
- Neurons/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recovery of Function
- Spinal Cord/pathology
- Spinal Cord/ultrastructure
- Up-Regulation/genetics
- YAP-Signaling Proteins/deficiency
- YAP-Signaling Proteins/metabolism
- Mice
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Pharmacy, and Department of Neurosurgery of the Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingxing Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Liu
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingting Jin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiya Shen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Changnan Xie
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiwei Xiang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Danlu Yang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenjin Feng
- Zhejiang Sinogen Medical Equipment Co., Ltd., Wenzhou, Zhejiang, China
| | - Jiaojiao Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mianxian Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianyingying Dong
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoyu Qiu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lihao Wu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Wang
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Xu Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zhihui Huang
- School of Pharmacy, and Department of Neurosurgery of the Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|