1
|
Zhu S, Jin G, He X, Li Y, Xu F, Guo H. Mechano-assisted strategies to improve cancer chemotherapy. Life Sci 2024; 359:123178. [PMID: 39471901 DOI: 10.1016/j.lfs.2024.123178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/25/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Chemotherapy remains a cornerstone in cancer treatment; however, its effectiveness is frequently undermined by the development of drug resistance. Recent studies underscores the pivotal role of the tumor mechanical microenvironment (TMME) and the emerging field of mechanical nanomedicine in tackling chemo-resistance. This review offers an in-depth analysis of mechano-assisted strategies aimed at mitigating chemo-resistance through the modification of the TMME and the refinement of mechanical nanomedicine delivery systems. We explore the potential of targeting abnormal tumor mechanical properties as a promising avenue for enhancing the efficacy of cancer chemotherapy, which offers novel directions for advancing future cancer therapies, especially from the mechanomedicine perspective.
Collapse
Affiliation(s)
- Shanshan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guorui Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiaocong He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuan Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Hui Guo
- Department of Medical Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China.
| |
Collapse
|
2
|
Manescu (Paltanea) V, Antoniac I, Paltanea G, Nemoianu IV, Mohan AG, Antoniac A, Rau JV, Laptoiu SA, Mihai P, Gavrila H, Al-Moushaly AR, Bodog AD. Magnetic Hyperthermia in Glioblastoma Multiforme Treatment. Int J Mol Sci 2024; 25:10065. [PMID: 39337552 PMCID: PMC11432100 DOI: 10.3390/ijms251810065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Glioblastoma multiforme (GBM) represents one of the most critical oncological diseases in neurological practice, being considered highly aggressive with a dismal prognosis. At a worldwide level, new therapeutic methods are continuously being researched. Magnetic hyperthermia (MHT) has been investigated for more than 30 years as a solution used as a single therapy or combined with others for glioma tumor assessment in preclinical and clinical studies. It is based on magnetic nanoparticles (MNPs) that are injected into the tumor, and, under the effect of an external alternating magnetic field, they produce heat with temperatures higher than 42 °C, which determines cancer cell death. It is well known that iron oxide nanoparticles have received FDA approval for anemia treatment and to be used as contrast substances in the medical imagining domain. Today, energetic, efficient MNPs are developed that are especially dedicated to MHT treatments. In this review, the subject's importance will be emphasized by specifying the number of patients with cancer worldwide, presenting the main features of GBM, and detailing the physical theory accompanying the MHT treatment. Then, synthesis routes for thermally efficient MNP manufacturing, strategies adopted in practice for increasing MHT heat performance, and significant in vitro and in vivo studies are presented. This review paper also includes combined cancer therapies, the main reasons for using these approaches with MHT, and important clinical studies on human subjects found in the literature. This review ends by describing the most critical challenges associated with MHT and future perspectives. It is concluded that MHT can be successfully and regularly applied as a treatment for GBM if specific improvements are made.
Collapse
Affiliation(s)
- Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, RO-050094 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
| | - Iosif Vasile Nemoianu
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
| | - Aurel George Mohan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
- Department of Neurosurgery, Clinical Emergency Hospital Oradea, 65 Gheorghe Doja Street, RO-410169 Oradea, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
- Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, I.M. Sechenov First Moscow State Medical University, Trubetskaya St. 8, Build.2, 119048 Moscow, Russia
| | - Stefan Alexandru Laptoiu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
| | - Petruta Mihai
- Faculty of Entrepreneurship, Business Engineering and Management, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
| | - Horia Gavrila
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
- Technical Sciences Academy of Romania, 26 Bulevardul Dacia, RO-030167 Bucharest, Romania
| | | | - Alin Danut Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
| |
Collapse
|
3
|
Patri S, Thanh NTK, Kamaly N. Magnetic iron oxide nanogels for combined hyperthermia and drug delivery for cancer treatment. NANOSCALE 2024; 16:15446-15464. [PMID: 39113663 DOI: 10.1039/d4nr02058h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Hyperthermia and chemotherapy represent potential modalities for cancer treatments. However, hyperthermia can be invasive, while chemotherapy drugs often have severe side effects. Recent clinical investigations have underscored the potential synergistic efficacy of combining hyperthermia with chemotherapy, leading to enhanced cancer cell killing. In this context, magnetic iron oxide nanogels have emerged as promising candidates as they can integrate superparamagnetic iron oxide nanoparticles (IONPs), providing the requisite magnetism for magnetic hyperthermia, with the nanogel scaffold facilitating smart drug delivery. This review provides an overview of the synthetic methodologies employed in fabricating magnetic nanogels. Key properties and designs of these nanogels are discussed and challenges for their translation to the clinic and the market are summarised.
Collapse
Affiliation(s)
- Sofia Patri
- Department of Materials, Molecular Sciences Research Hub, Imperial College London, 82 Wood Ln, London W12 0BZ, UK.
| | - Nguyen Thi Kim Thanh
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK.
- Biophysic Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Ln, London W12 0BZ, UK.
| |
Collapse
|
4
|
Bravo M, Fortuni B, Mulvaney P, Hofkens J, Uji-I H, Rocha S, Hutchison JA. Nanoparticle-mediated thermal Cancer therapies: Strategies to improve clinical translatability. J Control Release 2024; 372:751-777. [PMID: 38909701 DOI: 10.1016/j.jconrel.2024.06.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Despite significant advances, cancer remains a leading global cause of death. Current therapies often fail due to incomplete tumor removal and nonspecific targeting, spurring interest in alternative treatments. Hyperthermia, which uses elevated temperatures to kill cancer cells or boost their sensitivity to radio/chemotherapy, has emerged as a promising alternative. Recent advancements employ nanoparticles (NPs) as heat mediators for selective cancer cell destruction, minimizing damage to healthy tissues. This approach, known as NP hyperthermia, falls into two categories: photothermal therapies (PTT) and magnetothermal therapies (MTT). PTT utilizes NPs that convert light to heat, while MTT uses magnetic NPs activated by alternating magnetic fields (AMF), both achieving localized tumor damage. These methods offer advantages like precise targeting, minimal invasiveness, and reduced systemic toxicity. However, the efficacy of NP hyperthermia depends on many factors, in particular, the NP properties, the tumor microenvironment (TME), and TME-NP interactions. Optimizing this treatment requires accurate heat monitoring strategies, such as nanothermometry and biologically relevant screening models that can better mimic the physiological features of the tumor in the human body. This review explores the state-of-the-art in NP-mediated cancer hyperthermia, discussing available nanomaterials, their strengths and weaknesses, characterization methods, and future directions. Our particular focus lies in preclinical NP screening techniques, providing an updated perspective on their efficacy and relevance in the journey towards clinical trials.
Collapse
Affiliation(s)
- M Bravo
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia; Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - B Fortuni
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - P Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - J Hofkens
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Max Planck Institute for Polymer Research, Mainz D-55128, Germany
| | - H Uji-I
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita ward, Sapporo 001-0020, Hokkaido, Japan
| | - S Rocha
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | - J A Hutchison
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
5
|
Zhai L, Fu L, Wei W, Zheng D. Advances of Bacterial Biomaterials for Disease Therapy. ACS Synth Biol 2024; 13:1400-1411. [PMID: 38605650 DOI: 10.1021/acssynbio.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have immense potential as biological therapeutic agents that can be used to treat diseases, owing to their inherent immunomodulatory activity, targeting capabilities, and biosynthetic functions. The integration of synthetic biomaterials with natural bacteria has led to the construction of bacterial biomaterials with enhanced functionality and exceptional safety features. In this review, recent progress in the field of bacterial biomaterials, including bacterial drug delivery systems, bacterial drug-producing factories, bacterial biomaterials for metabolic engineering, bacterial biomaterials that can be remotely controlled, and living bacteria hydrogel formulations, is described and summarized. Furthermore, future trends in advancing next-generation bacterial biomaterials for enhanced clinical applications are proposed in the conclusion.
Collapse
Affiliation(s)
- Lin Zhai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Laiying Fu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Diwei Zheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
6
|
Liu J, Cabral H, Mi P. Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release. Adv Drug Deliv Rev 2024; 207:115239. [PMID: 38437916 DOI: 10.1016/j.addr.2024.115239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
The cellular barriers are major bottlenecks for bioactive compounds entering into cells to accomplish their biological functions, which limits their biomedical applications. Nanocarriers have demonstrated high potential and benefits for encapsulating bioactive compounds and efficiently delivering them into target cells by overcoming a cascade of intracellular barriers to achieve desirable therapeutic and diagnostic effects. In this review, we introduce the cellular barriers ahead of drug delivery and nanocarriers, as well as summarize recent advances and strategies of nanocarriers for increasing internalization with cells, promoting intracellular trafficking, overcoming drug resistance, targeting subcellular locations and controlled drug release. Lastly, the future perspectives of nanocarriers for intracellular drug delivery are discussed, which mainly focus on potential challenges and future directions. Our review presents an overview of intracellular drug delivery by nanocarriers, which may encourage the future development of nanocarriers for efficient and precision drug delivery into a wide range of cells and subcellular targets.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
7
|
Maruhashi T, Miki H, Sogabe K, Oda A, Sumitani R, Oura M, Takahashi M, Harada T, Fujii S, Nakamura S, Kurahashi K, Endo I, Abe M. Acute suppression of translation by hyperthermia enhances anti-myeloma activity of carfilzomib. Int J Hematol 2024; 119:291-302. [PMID: 38252236 DOI: 10.1007/s12185-023-03706-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Hyperthermia is a unique treatment option for cancers. Multiple myeloma (MM) remains incurable and innovative therapeutic options are needed. We investigated the efficacy of hyperthermia and carfilzomib in combination against MM cells. Although MM cell lines exhibited different susceptibilities to pulsatile carfilzomib treatment, mild hyperthermia at 43℃ induced MM cell death in all cell lines in a time-dependent manner. Hyperthermia and carfilzomib cooperatively induced MM cell death even under suboptimal conditions. The pro-survival mediators PIM2 and NRF2 accumulated in MM cells due to inhibition of their proteasomal degradation by carfilzomib; however, hyperthermia acutely suppressed translation in parallel with phosphorylation of eIF2α to reduce these proteins in MM cells. Recovery of β5 subunit enzymatic activity from its immediate inhibition by carfilzomib was observed at 24 h in carfilzomib-insusceptible KMS-11, OPM-2, and RPMI8226 cells, but not in carfilzomib-sensitive MM.1S cells. However, heat treatment suppressed the recovery of β5 subunit activity in these carfilzomib-insusceptible cells. Therefore, hyperthermia re-sensitized MM cells to carfilzomib. Our results support the treatment of MM with hyperthermia in combination with carfilzomib. Further research is warranted on hyperthermia for drug-resistant extramedullary plasmacytoma.
Collapse
Affiliation(s)
- Tomoko Maruhashi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hirokazu Miki
- Division of Transfusion Medicine and Cell Therapy, Tokushima University Hospital, 2-50-1 Kuramoto-Cho, Tokushima, 770-8503, Japan.
| | - Kimiko Sogabe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Asuka Oda
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Ryohei Sumitani
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiro Oura
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mamiko Takahashi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shiro Fujii
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shingen Nakamura
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kiyoe Kurahashi
- Department of Community Medicine for Respirology, Hematology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Itsuro Endo
- Department of Bioregulatory Sciences, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
- Department of Hematology, Kawashima Hospital, 6-1 Kitasakoichiban-Cho, Tokushima, 770-0011, Japan.
| |
Collapse
|
8
|
Joshi B, Shankar U, Vishwakarma S, Kumar A, Kumar A, Joshi D, Joshi A. Multifunctional Ultrasmall Theranostic Nanohybrids Developed by Ultrasonic Atomizer for Drug Delivery and Magnetic Resonance Imaging. ACS APPLIED BIO MATERIALS 2023; 6:1943-1952. [PMID: 37126316 DOI: 10.1021/acsabm.3c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Theranostic nanoparticulate systems (TNPs) have shown potential in addressing problems related to spatial localization and temporally controlled release of drugs with the capabilities of real-time imaging to evaluate the progress of therapy. The current study reports the ultrasonic atomization-led synthesis of in vitro and in vivo evaluations of ultrasmall chitosan-based theranostic nanohybrid formulations with encapsulated doxorubicin (DOX) and iron-oxide magnetic nanoparticles. The nanohybrid particles are characterized using transmission electron microscopy, powder X-ray diffraction, FTIR, DOX encapsulation efficiency, in vitro release, cellular uptake, and toxicity. These formulations were also tested for the capability of invivo tumor reduction and simultaneous magnetic resonance imaging using Swiss albino mice. Ultrasonic atomizer-led synthesis resulted in chitosan-magnetic nanohybrids (CMNPs) having sizes of 15 ± 3 nm which comprise MNP of 10 ± 3 nm. The encapsulation of DOX in CMNP was around 25%, resulting in an 80% sustained release over 10 days at pH 5 and 7. CMNP was also found to be an efficient DOX delivery vehicle tested on cancer cells (HeLa). The CMNPs were able to reduce the tumor volume by 60% in 15 days. The inherent magnetic property and nanoscale size of CMNPs also provided for enhanced contrast efficiency in magnetic resonance imaging of tumors. Thus, such multifunctional theranostic nanoparticles can be an efficient tool for targeted diagnostic and therapeutic success.
Collapse
Affiliation(s)
- Bhavana Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| | - Uma Shankar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| | - Supriya Vishwakarma
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal, Madhya Pradesh 462026, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal, Madhya Pradesh 462026, India
| | - Deepti Joshi
- Department of Pathology, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal, Madhya Pradesh 462026, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
9
|
Zidarič T, Skok K, Orthaber K, Pristovnik M, Gradišnik L, Maver T, Maver U. Multilayer Methacrylate-Based Wound Dressing as a Therapeutic Tool for Targeted Pain Relief. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2361. [PMID: 36984241 PMCID: PMC10053588 DOI: 10.3390/ma16062361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
This study presents an innovative wound dressing system that offers a highly effective therapeutic solution for treating painful wounds. By incorporating the widely used non-steroidal anti-inflammatory drug diclofenac, we have created an active wound dressing that can provide targeted pain relief with ease. The drug was embedded within a biocompatible matrix composed of polyhydroxyethyl methacrylate and polyhydroxypropyl methacrylate. The multilayer structure of the dressing, which allows for sustained drug release and an exact application, was achieved through the layer-by-layer coating technique and the inclusion of superparamagnetic iron platinum nanoparticles. The multilayered dressings' physicochemical, structural, and morphological properties were characterised using various methods. The synergistic effect of the incorporated drug molecules and superparamagnetic nanoparticles on the surface roughness and release kinetics resulted in controlled drug release. In addition, the proposed multilayer wound dressings were found to be biocompatible with human skin fibroblasts. Our findings suggest that the developed wound dressing system can contribute to tailored therapeutic strategies for local pain relief.
Collapse
Affiliation(s)
- Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Kristijan Skok
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Department of Pathology, Hospital Graz II, Location West, Göstinger Straße 22, 8020 Graz, Austria
| | - Kristjan Orthaber
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Matevž Pristovnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Lidija Gradišnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
10
|
Khabibullin VR, Chetyrkina MR, Obydennyy SI, Maksimov SV, Stepanov GV, Shtykov SN. Study on Doxorubicin Loading on Differently Functionalized Iron Oxide Nanoparticles: Implications for Controlled Drug-Delivery Application. Int J Mol Sci 2023; 24:4480. [PMID: 36901910 PMCID: PMC10002596 DOI: 10.3390/ijms24054480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Nanoplatforms applied for the loading of anticancer drugs is a cutting-edge approach for drug delivery to tumors and reduction of toxic effects on healthy cells. In this study, we describe the synthesis and compare the sorption properties of four types of potential doxorubicin-carriers, in which iron oxide nanoparticles (IONs) are functionalized with cationic (polyethylenimine, PEI), anionic (polystyrenesulfonate, PSS), and nonionic (dextran) polymers, as well as with porous carbon. The IONs are thoroughly characterized by X-ray diffraction, IR spectroscopy, high resolution TEM (HRTEM), SEM, magnetic susceptibility, and the zeta-potential measurements in the pH range of 3-10. The degree of doxorubicin loading at pH 7.4, as well as the degree of desorption at pH 5.0, distinctive to cancerous tumor environment, are measured. Particles modified with PEI were shown to exhibit the highest loading capacity, while the greatest release at pH 5 (up to 30%) occurs from the surface of magnetite decorated with PSS. Such a slow release of the drug would imply a prolonged tumor-inhibiting action on the affected tissue or organ. Assessment of the toxicity (using Neuro2A cell line) for PEI- and PSS-modified IONs showed no negative effect. In conclusion, the preliminary evaluation of the effects of IONs coated with PSS and PEI on the rate of blood clotting was carried out. The results obtained can be taken into account when developing new drug delivery platforms.
Collapse
Affiliation(s)
- Vladislav R. Khabibullin
- Chemistry Department, Lomonosov Moscow State University, Lenin Hills, 119991 Moscow, Russia
- State Scientific Center of the Russian Federation, Joint Stock Company “State Order of the Red Banner of Labor Research Institute of Chemistry and Technology of Organoelement Compounds”, 105118 Moscow, Russia
| | | | - Sergei I. Obydennyy
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, 119334 Moscow, Russia
| | - Sergey V. Maksimov
- Chemistry Department, Lomonosov Moscow State University, Lenin Hills, 119991 Moscow, Russia
| | - Gennady V. Stepanov
- State Scientific Center of the Russian Federation, Joint Stock Company “State Order of the Red Banner of Labor Research Institute of Chemistry and Technology of Organoelement Compounds”, 105118 Moscow, Russia
| | - Sergei N. Shtykov
- Department of Analytical Chemistry and Chemical Ecology, Institute of Chemistry, Saratov State University, 410012 Saratov, Russia
| |
Collapse
|
11
|
Muthwill MS, Kong P, Dinu IA, Necula D, John C, Palivan CG. Tailoring Polymer-Based Nanoassemblies for Stimuli-Responsive Theranostic Applications. Macromol Biosci 2022; 22:e2200270. [PMID: 36100461 DOI: 10.1002/mabi.202200270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/28/2022] [Indexed: 12/25/2022]
Abstract
Polymer assemblies on the nanoscale represent a powerful toolbox for the design of theranostic systems when combined with both therapeutic compounds and diagnostic reporting ones. Here, recent advances in the design of theranostic systems for various diseases, containing-in their architecture-either polymers or polymer assemblies as one of the building blocks are presented. This review encompasses the general principles of polymer self-assembly, from the production of adequate copolymers up to supramolecular assemblies with theranostic functionality. Such polymer nanoassemblies can be further tailored through the incorporation of inorganic nanoparticles to endow them with multifunctional therapeutic and/or diagnostic features. Systems that change their architecture or properties in the presence of stimuli are selected, as responsivity to changes in the environment is a key factor for enhancing efficiency. Such theranostic systems are based on the intrinsic properties of copolymers or one of the other components. In addition, systems with a more complex architecture, such as multicompartments, are presented. Selected systems indicate the advantages of such theranostic approaches and provide a basis for further developments in the field.
Collapse
Affiliation(s)
- Moritz S Muthwill
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland.,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, Basel, 4058, Switzerland
| | - Phally Kong
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Ionel Adrian Dinu
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Danut Necula
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Christoph John
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland.,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, Basel, 4058, Switzerland
| |
Collapse
|
12
|
Schemberg J, Abbassi AE, Lindenbauer A, Chen LY, Grodrian A, Nakos X, Apte G, Khan N, Kraupner A, Nguyen TH, Gastrock G. Synthesis of Biocompatible Superparamagnetic Iron Oxide Nanoparticles (SPION) under Different Microfluidic Regimes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48011-48028. [PMID: 36223272 PMCID: PMC9615998 DOI: 10.1021/acsami.2c13156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) have a great potential in both diagnostic and therapeutic applications as they provide contrast in magnetic resonance imaging techniques and allow magnetic hyperthermia and drug delivery. Though various types of SPION are commercially available, efforts to improve the quality of SPION are highly in demand. Here, we describe a strategy for optimization of SPION synthesis under microfluidics using the coprecipitation approach. Synthesis parameters such as temperature, pH, iron salt concentration, and coating materials were investigated in continuous and segmented flows. Continuous flow allowed synthesizing particles of a smaller size and higher stability than segmented flow, while both conditions improved the quality of particles compared to batch synthesis. The most stable particles were obtained at a synthesis condition of 6.5 M NH4OH base, iron salt (Fe2+/Fe3+) concentration ratio of 4.3/8.6, carboxymethyl dextran coating of 20 mg/mL, and temperature of 70 °C. The synthesized SPION exhibited a good efficiency in labeling of human platelets and did not impair cells. Our study under flow conditions provides an optimal protocol for the synthesis of better and biocompatible SPION that contributes to the development of nanoparticles for medical applications.
Collapse
Affiliation(s)
- Jörg Schemberg
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| | - Abdelouahad El Abbassi
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| | - Annerose Lindenbauer
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| | - Li-Yu Chen
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
- Department
of Infection Biology, Leibniz Institute
for Natural Product Research and Infection Biology, 07745Jena, Germany
| | - Andreas Grodrian
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| | - Xenia Nakos
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| | - Gurunath Apte
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
- Institute
of Nanotechnology (INT) and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76131Karlsruhe, Germany
| | - Nida Khan
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
- Institute
for Chemistry and Biotechnology, Faculty of Mathematics and Natural
Sciences, Technische Universität
Ilmenau, 98694Ilmenau, Germany
| | | | - Thi-Huong Nguyen
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
- Institute
for Chemistry and Biotechnology, Faculty of Mathematics and Natural
Sciences, Technische Universität
Ilmenau, 98694Ilmenau, Germany
| | - Gunter Gastrock
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| |
Collapse
|
13
|
Chen X, Lei S, Lin J, Huang P. Stimuli-responsive image-guided nanocarriers as smart drug delivery platforms. Expert Opin Drug Deliv 2022; 19:1487-1504. [PMID: 36214740 DOI: 10.1080/17425247.2022.2134853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION In recent years, to improve the precision of drug delivery and reduce toxicity associated from the uncontrolled drug release at off-target locations, extensive efforts have been paid to develop stimuli-responsive nanocarriers, which enable precise control over on-demand drug release due to internal stimuli like pH, redox, enzyme and external stimuli like light, magnetic field, and ultrasound. Moreover, some stimuli-responsive nanocarriers have been strategically incorporated with imaging probes for simultaneous monitoring of the drug delivery process and region of interest for treatment optimization. AREAS COVERED In this review, the state-of-art progress in developing stimuli-responsive image-guided nanocarriers are summarized, including their designed strategies, synergistic mechanism, and biomedical applications in cancer therapy, and the current challenges and new perspectives are discussed. EXPERT OPINION The stimuli-responsive nanocarriers provide assurance for precise release of drugs and imaging probes, and the molecular imaging techniques can monitor the pharmacokinetics, biodistribution and bioavailability of drugs in vivo, and feedback the drug delivery profile. Therefore, stimuli-responsive image-guided nanocarriers can integrate diagnosis and therapy in one nanoplatform and facilitate optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Xin Chen
- Shenzhen University, Shenzhen, China, 518071
| | - Shan Lei
- Shenzhen University, Shenzhen, China, 518060
| | - Jing Lin
- Shenzhen University, Shenzhen, China, 518060
| | | |
Collapse
|
14
|
de la Encarnación C, Jimenez de Aberasturi D, Liz-Marzán LM. Multifunctional plasmonic-magnetic nanoparticles for bioimaging and hyperthermia. Adv Drug Deliv Rev 2022; 189:114484. [PMID: 35944586 DOI: 10.1016/j.addr.2022.114484] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Multicompartment nanoparticles have raised great interest for different biomedical applications, thanks to the combined properties of different materials within a single entity. These hybrid systems have opened new avenues toward diagnosis and combination therapies, thus becoming preferred theranostic agents. When hybrid nanoparticles comprise magnetic and plasmonic components, both magnetic and optical properties can be achieved, which are potentially useful for multimodal bioimaging, hyperthermal therapies and magnetically driven selective delivery. Nanostructures comprising iron oxide and gold are usually selected for biomedical applications, as they display size-dependent properties, biocompatibility, and unique physical and chemical characteristics that can be tuned through highly precise synthetic protocols. We provide herein an overview of the most recent synthetic protocols to prepare magnetic-plasmonic nanostructures made of iron oxide and gold, to then highlight the progress made on multifunctional magnetic-plasmonic bioimaging and heating-based therapies. We discuss the advantages and limitations of the various systems in these directions.
Collapse
Affiliation(s)
- Cristina de la Encarnación
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
| | - Dorleta Jimenez de Aberasturi
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; CIBER-BBN, ISCIII, 20014 Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; CIBER-BBN, ISCIII, 20014 Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
15
|
Rasel MSI, Mohona FA, Akter W, Kabir S, Chowdhury AA, Chowdhury JA, Hassan MA, Al Mamun A, Ghose DK, Ahmad Z, Khan FS, Bari MF, Rahman MS, Amran MS. Exploration of Site-Specific Drug Targeting-A Review on EPR-, Stimuli-, Chemical-, and Receptor-Based Approaches as Potential Drug Targeting Methods in Cancer Treatment. JOURNAL OF ONCOLOGY 2022; 2022:9396760. [PMID: 36284633 PMCID: PMC9588330 DOI: 10.1155/2022/9396760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Cancer has been one of the most dominant causes of mortality globally over the last few decades. In cancer treatment, the selective targeting of tumor cells is indispensable, making it a better replacement for conventional chemotherapies by diminishing their adverse side effects. While designing a drug to be delivered selectively in the target organ, the drug development scientists should focus on various factors such as the type of cancer they are dealing with according to which drug, targeting moieties, and pharmaceutical carriers should be targeted. All published articles have been collected regarding cancer and drug-targeting approaches from well reputed databases including MEDLINE, Embase, Cochrane Library, CENTRAL and ClinicalTrials.gov, Science Direct, PubMed, Scopus, Wiley, and Springer. The articles published between January 2010 and December 2020 were considered. Due to the existence of various mechanisms, it is challenging to choose which one is appropriate for a specific case. Moreover, a combination of more than one approach is often utilized to achieve optimal drug effects. In this review, we have summarized and highlighted central mechanisms of how the targeted drug delivery system works in the specific diseased microenvironment, along with the strategies to make an approach more effective. We have also included some pictorial illustrations to have a precise idea about different types of drug targeting. The core contribution of this work includes providing a cancer drug development scientist with a broad preliminary idea to choose the appropriate approach among the various targeted drug delivery mechanisms. Also, the study will contribute to improving anticancer treatment approaches by providing a pathway for lesser side effects observed in conventional chemotherapeutic techniques.
Collapse
Affiliation(s)
- Md. Shamiul Islam Rasel
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Farhana Afrin Mohona
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Wahida Akter
- College of Pharmacy, University of Houston, Houston, USA
| | - Shaila Kabir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Abu Asad Chowdhury
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Jakir Ahmed Chowdhury
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Md. Abul Hassan
- Department of Science & Technology, Tokushima University Graduate School, Tokushima, Japan
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Dipayon Krisna Ghose
- Department of Biochemistry and Molecular Biology, Jagannath University, Dhaka 1100, Bangladesh
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, King Khalid University, Abha 61413, Saudi Arabia
- Department of Biology, College of Arts and Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Department of Biology, College of Arts and Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Md. Fazlul Bari
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
| | - Md. Sohanur Rahman
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| |
Collapse
|
16
|
Zhang J, Zhang T, Gao J. Biocompatible Iron Oxide Nanoparticles for Targeted Cancer Gene Therapy: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193323. [PMID: 36234452 PMCID: PMC9565336 DOI: 10.3390/nano12193323] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 05/14/2023]
Abstract
In recent years, gene therapy has made remarkable achievements in tumor treatment. In a successfully cancer gene therapy, a smart gene delivery system is necessary for both protecting the therapeutic genes in circulation and enabling high gene expression in tumor sites. Magnetic iron oxide nanoparticles (IONPs) have demonstrated their bright promise for highly efficient gene delivery target to tumor tissues, partly due to their good biocompatibility, magnetic responsiveness, and extensive functional surface modification. In this review, the latest progress in targeting cancer gene therapy is introduced, and the unique properties of IONPs contributing to the efficient delivery of therapeutic genes are summarized with detailed examples. Furthermore, the diagnosis potentials and synergistic tumor treatment capacity of IONPs are highlighted. In addition, aiming at potential risks during the gene delivery process, several strategies to improve the efficiency or reduce the potential risks of using IONPs for cancer gene therapy are introduced and addressed. The strategies and applications summarized in this review provide a general understanding for the potential applications of IONPs in cancer gene therapy.
Collapse
Affiliation(s)
- Jinsong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: (T.Z.); (J.G.)
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Correspondence: (T.Z.); (J.G.)
| |
Collapse
|
17
|
Li ZL, Wu H, Zhu JQ, Sun LY, Tong XM, Huang DS, Yang T. Novel Strategy for Optimized Nanocatalytic Tumor Therapy: From an Updated View. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Zhen-Li Li
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
- Department of Hepatobiliary Surgery Eastern Hepatobiliary Surgery Hospital Second Military Medical University (Naval Medical University) Shanghai 200438 China
- Eastern Hepatobiliary Clinical Research Institute Third Affiliated Hospital of Naval Medical University Shanghai 200438 China
| | - Han Wu
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
- Department of Hepatobiliary Surgery Eastern Hepatobiliary Surgery Hospital Second Military Medical University (Naval Medical University) Shanghai 200438 China
- Eastern Hepatobiliary Clinical Research Institute Third Affiliated Hospital of Naval Medical University Shanghai 200438 China
| | - Jia-Qi Zhu
- College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Li-Yang Sun
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Xiang-Min Tong
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Dong-Sheng Huang
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Tian Yang
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
- Department of Hepatobiliary Surgery Eastern Hepatobiliary Surgery Hospital Second Military Medical University (Naval Medical University) Shanghai 200438 China
- Eastern Hepatobiliary Clinical Research Institute Third Affiliated Hospital of Naval Medical University Shanghai 200438 China
| |
Collapse
|
18
|
Habra K, Morris RH, McArdle SEB, Cave GWV. Controlled release of carnosine from poly(lactic- co-glycolic acid) beads using nanomechanical magnetic trigger towards the treatment of glioblastoma. NANOSCALE ADVANCES 2022; 4:2242-2249. [PMID: 36133698 PMCID: PMC9418447 DOI: 10.1039/d2na00032f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/25/2022] [Indexed: 06/16/2023]
Abstract
Nanometer scale rods of superparamagnetic iron oxide have been encapsulated, along with the anti-cancer therapeutic carnosine, inside porous poly(lactic-co-glycolic acid) microbeads with a uniform morphology, synthesised using microfluidic arrays. The sustained and externally triggered controlled release from these vehicles was demonstrated using a rotating Halbach magnet array, quantified via liquid chromatography, and imaged in situ using magnetic resonance imaging (MRI) and scanning electron microscopy (SEM). In the absence of the external magnetic trigger, the carnosine was found to be released from the polymer in a linear profile; however, over 50% of the drug could be released within 30 minutes of exposure to the rotating magnetic field. In addition, the release of carnosine embedded on the surface of the nano-rods was delayed if it was mixed with the iron oxide nano rods before the encapsulation. These new drug delivery vesicles have the potential to pave the way towards the safe and triggered release of onsite drug delivery, as part of a theragnostic treatment for glioblastoma.
Collapse
Affiliation(s)
- Kinana Habra
- School of Science and Technology, Nottingham Trent University Nottingham NG11 8NS UK +44(0)-115-848-3242
| | - Robert H Morris
- School of Science and Technology, Nottingham Trent University Nottingham NG11 8NS UK +44(0)-115-848-3242
| | - Stéphanie E B McArdle
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University Nottingham NG11 8NS UK
| | - Gareth W V Cave
- School of Science and Technology, Nottingham Trent University Nottingham NG11 8NS UK +44(0)-115-848-3242
| |
Collapse
|
19
|
Singh R, Sharma A, Saji J, Umapathi A, Kumar S, Daima HK. Smart nanomaterials for cancer diagnosis and treatment. NANO CONVERGENCE 2022; 9:21. [PMID: 35569081 PMCID: PMC9108129 DOI: 10.1186/s40580-022-00313-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/26/2022] [Indexed: 05/14/2023]
Abstract
Innovations in nanomedicine has guided the improved outcomes for cancer diagnosis and therapy. However, frequent use of nanomaterials remains challenging due to specific limitations like non-targeted distribution causing low signal-to-noise ratio for diagnostics, complex fabrication, reduced-biocompatibility, decreased photostability, and systemic toxicity of nanomaterials within the body. Thus, better nanomaterial-systems with controlled physicochemical and biological properties, form the need of the hour. In this context, smart nanomaterials serve as promising solution, as they can be activated under specific exogenous or endogenous stimuli such as pH, temperature, enzymes, or a particular biological molecule. The properties of smart nanomaterials make them ideal candidates for various applications like biosensors, controlled drug release, and treatment of various diseases. Recently, smart nanomaterial-based cancer theranostic approaches have been developed, and they are displaying better selectivity and sensitivity with reduced side-effects in comparison to conventional methods. In cancer therapy, the smart nanomaterials-system only activates in response to tumor microenvironment (TME) and remains in deactivated state in normal cells, which further reduces the side-effects and systemic toxicities. Thus, the present review aims to describe the stimulus-based classification of smart nanomaterials, tumor microenvironment-responsive behaviour, and their up-to-date applications in cancer theranostics. Besides, present review addresses the development of various smart nanomaterials and their advantages for diagnosing and treating cancer. Here, we also discuss about the drug targeting and sustained drug release from nanocarriers, and different types of nanomaterials which have been engineered for this intent. Additionally, the present challenges and prospects of nanomaterials in effective cancer diagnosis and therapeutics have been discussed.
Collapse
Affiliation(s)
- Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Ayush Sharma
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Joel Saji
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Akhela Umapathi
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Hemant Kumar Daima
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India.
| |
Collapse
|
20
|
Skok K, Zidarič T, Orthaber K, Pristovnik M, Kostevšek N, Rožman KŽ, Šturm S, Gradišnik L, Maver U, Maver T. Novel Methacrylate-Based Multilayer Nanofilms with Incorporated FePt-Based Nanoparticles and the Anticancer Drug 5-Fluorouracil for Skin Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14040689. [PMID: 35456523 PMCID: PMC9024491 DOI: 10.3390/pharmaceutics14040689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022] Open
Abstract
Despite medical advances, skin-associated disorders continue to pose a unique challenge to physicians worldwide. Skin cancer is one of the most common forms of cancer, with more than one million new cases reported each year. Currently, surgical excision is its primary treatment; however, this can be impractical or even contradictory in certain situations. An interesting potential alternative could lie in topical treatment solutions. The goal of our study was to develop novel multilayer nanofilms consisting of a combination of polyhydroxyethyl methacrylate (PHEMA), polyhydroxypropyl methacrylate (PHPMA), sodium deoxycholate (NaDOC) with incorporated superparamagnetic iron–platinum nanoparticles (FePt NPs), and the potent anticancer drug (5-fluorouracil), for theranostic skin cancer treatment. All multilayer systems were prepared by spin-coating and characterised by atomic force microscopy, infrared spectroscopy, and contact angle measurement. The magnetic properties of the incorporated FePt NPs were evaluated using magnetisation measurement, while their size was determined using transmission electron microscopy (TEM). Drug release performance was tested in vitro, and formulation safety was evaluated on human-skin-derived fibroblasts. Finally, the efficacy for skin cancer treatment was tested on our own basal-cell carcinoma cell line.
Collapse
Affiliation(s)
- Kristijan Skok
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (K.S.); (T.Z.); (K.O.); (M.P.); (L.G.)
- Department of Pathology, Hospital Graz II, Location West, Göstinger Straße 22, 8020 Graz, Austria
| | - Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (K.S.); (T.Z.); (K.O.); (M.P.); (L.G.)
| | - Kristjan Orthaber
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (K.S.); (T.Z.); (K.O.); (M.P.); (L.G.)
| | - Matevž Pristovnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (K.S.); (T.Z.); (K.O.); (M.P.); (L.G.)
| | - Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (N.K.); (K.Ž.R.); (S.Š.)
| | - Kristina Žužek Rožman
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (N.K.); (K.Ž.R.); (S.Š.)
| | - Sašo Šturm
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (N.K.); (K.Ž.R.); (S.Š.)
| | - Lidija Gradišnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (K.S.); (T.Z.); (K.O.); (M.P.); (L.G.)
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (K.S.); (T.Z.); (K.O.); (M.P.); (L.G.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Correspondence: (U.M.); (T.M.)
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (K.S.); (T.Z.); (K.O.); (M.P.); (L.G.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Correspondence: (U.M.); (T.M.)
| |
Collapse
|
21
|
Review on design strategies and considerations of polysaccharide-based smart drug delivery systems for cancer therapy. Carbohydr Polym 2022; 279:119013. [PMID: 34980356 DOI: 10.1016/j.carbpol.2021.119013] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 02/06/2023]
Abstract
The unique natural advantages of polysaccharide materials have attracted attention in biomedical applications. The abundant modifiable functional groups on the polysaccharide materials surface can facilitate the synthesis of various multifunctional drug delivery carriers. Especially in tumor therapy, the designs of polysaccharide-based drug delivery carriers are diverse. Therefore, this review summarized several latest types of polysaccharide-based drug carriers designs, and focused on the latest design strategies and considerations of drug carriers with polysaccharides as the main structure. It is expected to provide some design ideas and inspiration for subsequent polysaccharide-based drug delivery systems.
Collapse
|
22
|
Wang L, Liu G, Hu Y, Gou S, He T, Feng Q, Cai K. Doxorubicin-loaded polypyrrole nanovesicles for suppressing tumor metastasis through combining photothermotherapy and lymphatic system-targeted chemotherapy. NANOSCALE 2022; 14:3097-3111. [PMID: 35141740 DOI: 10.1039/d2nr00186a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The lymphatic system provides a main route for the dissemination of most malignancies, which was related to high mortality in cancer patients. Traditional intravenous chemotherapy is of limited effectiveness on lymphatic metastasis due to the difficulty in accessing the lymphatic system. Herein, a novel lymphatic-targeting nanoplatform is prepared by loading doxorubicin (DOX) into sub-50 nm polypyrrole nanovesicles (PPy NVs). The PPy NVs possessed hollow spherical morphologies and a negative surface charge, leading to high drug loading capacity. These vesicles can also convert near-infrared (NIR) light into heat and thus can be used for tumor thermal ablation. DOX loaded PPy NVs (PPy@DOX NVs) along with NIR illumination are highly effective against 4T1 breast cancer cells in vitro. More importantly, following subcutaneous (SC) injection, a direct lymphatic migration of PPy@DOX NVs is confirmed through fluorescence observation of the isolated draining nodes. The acidic conditions in metastatic nodes might subsequently trigger the release of the encapsulated DOX NVs based on their pH-sensitive release profile. In a mouse model bearing 4T1 breast cancer, lymphatic metastases, as well as lung metastases, are significantly inhibited by nanocarrier-mediated trans-lymphatic drug delivery in combination with photothermal ablation. In conclusion, this platform holds great potential in impeding tumor growth and metastasis.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Genhua Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Yunping Hu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou, Fujian 350007, China
| | - Shuangquan Gou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Tingting He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
23
|
Pourmadadi M, Ahmadi MJ, Dinani HS, Ajalli N, Dorkoosh F. Theranostic applications of stimulus-responsive systems based on Fe2O3. Pharm Nanotechnol 2022; 10:90-112. [PMID: 35142274 DOI: 10.2174/2211738510666220210105113] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022]
Abstract
According to the interaction of nanoparticles with biological systems, enthusiasm for nanotechnology in biomedical applications has been developed in the past decades. Fe2O3 nanoparticles, as the most stable iron oxide, have special merits that make them useful widely for detecting diseases, therapy, drug delivery, and monitoring the therapeutic process. This review presents the fabrication methods of Fe2O3-based materials and their photocatalytic and magnetic properties. Then, we highlight the application of Fe2O3-based nanoparticles in diagnosis and imaging, different therapy methods, and finally, stimulus-responsive systems, such as pH-responsive, magnetic-responsive, redox-responsive, and enzyme-responsive, with an emphasis on cancer treatment. In addition, the potential of Fe2O3 to combine diagnosis and therapy within a single particle called theranostic agent will be discussed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Javad Ahmadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Narges Ajalli
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Farid Dorkoosh
- Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
- Medical Biomaterial Research Center (MBR), Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
24
|
Smart Magnetic Nanocarriers for Multi-Stimuli On-Demand Drug Delivery. NANOMATERIALS 2022; 12:nano12030303. [PMID: 35159647 PMCID: PMC8840331 DOI: 10.3390/nano12030303] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/10/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
In this study, we report the realization of drug-loaded smart magnetic nanocarriers constituted by superparamagnetic iron oxide nanoparticles encapsulated in a dual pH- and temperature-responsive poly (N-vinylcaprolactam-co-acrylic acid) copolymer to achieve highly controlled drug release and localized magnetic hyperthermia. The magnetic core was constituted by flower-like magnetite nanoparticles with a size of 16.4 nm prepared by the polyol approach, with good saturation magnetization and a high specific absorption rate. The core was encapsulated in poly (N-vinylcaprolactam-co-acrylic acid) obtaining magnetic nanocarriers that revealed reversible hydration/dehydration transition at the acidic condition and/or at temperatures above physiological body temperature, which can be triggered by magnetic hyperthermia. The efficacy of the system was proved by loading doxorubicin with very high encapsulation efficiency (>96.0%) at neutral pH. The double pH- and temperature-responsive nature of the magnetic nanocarriers facilitated a burst, almost complete release of the drug at acidic pH under hyperthermia conditions, while a negligible amount of doxorubicin was released at physiological body temperature at neutral pH, confirming that in addition to pH variation, drug release can be improved by hyperthermia treatment. These results suggest this multi-stimuli-sensitive nanoplatform is a promising candidate for remote-controlled drug release in combination with magnetic hyperthermia for cancer treatment.
Collapse
|
25
|
Tran HV, Ngo NM, Medhi R, Srinoi P, Liu T, Rittikulsittichai S, Lee TR. Multifunctional Iron Oxide Magnetic Nanoparticles for Biomedical Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:503. [PMID: 35057223 PMCID: PMC8779542 DOI: 10.3390/ma15020503] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 01/02/2023]
Abstract
Due to their good magnetic properties, excellent biocompatibility, and low price, magnetic iron oxide nanoparticles (IONPs) are the most commonly used magnetic nanomaterials and have been extensively explored in biomedical applications. Although magnetic IONPs can be used for a variety of applications in biomedicine, most practical applications require IONP-based platforms that can perform several tasks in parallel. Thus, appropriate engineering and integration of magnetic IONPs with different classes of organic and inorganic materials can produce multifunctional nanoplatforms that can perform several functions simultaneously, allowing their application in a broad spectrum of biomedical fields. This review article summarizes the fabrication of current composite nanoplatforms based on integration of magnetic IONPs with organic dyes, biomolecules (e.g., lipids, DNAs, aptamers, and antibodies), quantum dots, noble metal NPs, and stimuli-responsive polymers. We also highlight the recent technological advances achieved from such integrated multifunctional platforms and their potential use in biomedical applications, including dual-mode imaging for biomolecule detection, targeted drug delivery, photodynamic therapy, chemotherapy, and magnetic hyperthermia therapy.
Collapse
Affiliation(s)
- Hung-Vu Tran
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Nhat M. Ngo
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Riddhiman Medhi
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Pannaree Srinoi
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Tingting Liu
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Supparesk Rittikulsittichai
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - T. Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| |
Collapse
|
26
|
Tada Y, Hojo M, Yuzawa K, Nagasawa A, Suzuki J, Inomata A, Moriyasu T, Nakae D. Iron oxide nanoparticles exert inhibitory effects on N-Bis(2-hydroxypropyl)nitrosamine (DHPN)-induced lung tumorigenesis in rats. Regul Toxicol Pharmacol 2021; 128:105072. [PMID: 34742869 DOI: 10.1016/j.yrtph.2021.105072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
Iron oxide nanoparticles (magnetite) have been widely used in industry and medicine. However, the safety assessment of magnetite has not been fully completed. The present study was conducted to assess effects of magnetite on carcinogenic activity, using a medium-term bioassay protocol. A total of 100 male Fischer 344 rats, 6 weeks old, were randomly divided into 5 groups of 20 animals each, and given a basal diet and drinking water containing 0 or 0.1% of N-bis(2-hydroxypropyl)nitrosamine (DHPN) for 2 weeks. Two weeks later, the rats were intratracheally instilled magnetite 7 times at an interval of 4 weeks, at the doses of 0, 1.0 or 5.0 mg/kg body weight, and sacrificed at the end of the experimental period of 30 weeks. The multiplicities of macroscopic lung nodules and histopathologically diagnosed bronchiolo-alveolar hyperplasia, induced by DHPN, were both significantly decreased by the high dose of magnetite. The expression of minichromosome maintenance (MCM) protein 7 in non-tumoral alveolar epithelial cells, and the number of CD163-positive macrophages in tumor nodules were both significantly reduced by magnetite. It is suggested that magnetite exerts inhibitory effects against DHPN-induced lung tumorigenesis, by the reduction of alveolar epithelial proliferation and the M2 polarization of tumor-associated macrophages.
Collapse
Affiliation(s)
- Yukie Tada
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shin'juku, Tokyo, 169-0073, Japan.
| | - Motoki Hojo
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shin'juku, Tokyo, 169-0073, Japan
| | - Katsuhiro Yuzawa
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shin'juku, Tokyo, 169-0073, Japan
| | - Akemichi Nagasawa
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shin'juku, Tokyo, 169-0073, Japan
| | - Jin Suzuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shin'juku, Tokyo, 169-0073, Japan
| | - Akiko Inomata
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shin'juku, Tokyo, 169-0073, Japan
| | - Takako Moriyasu
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shin'juku, Tokyo, 169-0073, Japan
| | - Dai Nakae
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan.
| |
Collapse
|
27
|
Ovejero JG, Spizzo F, Morales MP, Del Bianco L. Nanoparticles for Magnetic Heating: When Two (or More) Is Better Than One. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6416. [PMID: 34771940 PMCID: PMC8585339 DOI: 10.3390/ma14216416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/16/2023]
Abstract
The increasing use of magnetic nanoparticles as heating agents in biomedicine is driven by their proven utility in hyperthermia therapeutic treatments and heat-triggered drug delivery methods. The growing demand of efficient and versatile nanoheaters has prompted the creation of novel types of magnetic nanoparticle systems exploiting the magnetic interaction (exchange or dipolar in nature) between two or more constituent magnetic elements (magnetic phases, primary nanoparticles) to enhance and tune the heating power. This process occurred in parallel with the progress in the methods for the chemical synthesis of nanostructures and in the comprehension of magnetic phenomena at the nanoscale. Therefore, complex magnetic architectures have been realized that we classify as: (a) core/shell nanoparticles; (b) multicore nanoparticles; (c) linear aggregates; (d) hybrid systems; (e) mixed nanoparticle systems. After a general introduction to the magnetic heating phenomenology, we illustrate the different classes of nanoparticle systems and the strategic novelty they represent. We review some of the research works that have significantly contributed to clarify the relationship between the compositional and structural properties, as determined by the synthetic process, the magnetic properties and the heating mechanism.
Collapse
Affiliation(s)
- Jesus G. Ovejero
- Departamento de Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain; (J.G.O.); (M.P.M.)
- Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón, E-28007 Madrid, Spain
| | - Federico Spizzo
- Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, I-44122 Ferrara, Italy;
| | - M. Puerto Morales
- Departamento de Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain; (J.G.O.); (M.P.M.)
| | - Lucia Del Bianco
- Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, I-44122 Ferrara, Italy;
| |
Collapse
|
28
|
Gavilán H, Avugadda SK, Fernández-Cabada T, Soni N, Cassani M, Mai BT, Chantrell R, Pellegrino T. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem Soc Rev 2021; 50:11614-11667. [PMID: 34661212 DOI: 10.1039/d1cs00427a] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnetic hyperthermia (MHT) is a therapeutic modality for the treatment of solid tumors that has now accumulated more than 30 years of experience. In the ongoing MHT clinical trials for the treatment of brain and prostate tumors, iron oxide nanoparticles are employed as intra-tumoral MHT agents under a patient-safe 100 kHz alternating magnetic field (AMF) applicator. Although iron oxide nanoparticles are currently approved by FDA for imaging purposes and for the treatment of anemia, magnetic nanoparticles (MNPs) designed for the efficient treatment of MHT must respond to specific physical-chemical properties in terms of magneto-energy conversion, heat dose production, surface chemistry and aggregation state. Accordingly, in the past few decades, these requirements have boosted the development of a new generation of MNPs specifically aimed for MHT. In this review, we present an overview on MNPs and their assemblies produced via different synthetic routes, focusing on which MNP features have allowed unprecedented heating efficiency levels to be achieved in MHT and highlighting nanoplatforms that prevent magnetic heat loss in the intracellular environment. Moreover, we review the advances on MNP-based nanoplatforms that embrace the concept of multimodal therapy, which aims to combine MHT with chemotherapy, radiotherapy, immunotherapy, photodynamic or phototherapy. Next, for a better control of the therapeutic temperature at the tumor, we focus on the studies that have optimized MNPs to maintain gold-standard MHT performance and are also tackling MNP imaging with the aim to quantitatively assess the amount of nanoparticles accumulated at the tumor site and regulate the MHT field conditions. To conclude, future perspectives with guidance on how to advance MHT therapy will be provided.
Collapse
Affiliation(s)
- Helena Gavilán
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | | | | | - Nisarg Soni
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Marco Cassani
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Binh T Mai
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Roy Chantrell
- Department of Physics, University of York, York YO10 5DD, UK
| | | |
Collapse
|
29
|
Lemine OM, Madkhali N, Alshammari M, Algessair S, Gismelseed A, Mir LE, Hjiri M, Yousif AA, El-Boubbou K. Maghemite (γ-Fe 2O 3) and γ-Fe 2O 3-TiO 2 Nanoparticles for Magnetic Hyperthermia Applications: Synthesis, Characterization and Heating Efficiency. MATERIALS 2021; 14:ma14195691. [PMID: 34640088 PMCID: PMC8510075 DOI: 10.3390/ma14195691] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 01/02/2023]
Abstract
In this report, the heating efficiencies of γ-Fe2O3 and hybrid γ-Fe2O3-TiO2 nanoparticles NPs under an alternating magnetic field (AMF) have been investigated to evaluate their feasible use in magnetic hyperthermia. The NPs were synthesized by a modified sol-gel method and characterized by different techniques. X-ray diffraction (XRD), Mössbauer spectroscopy and electron microscopy analyses confirmed the maghemite (γ-Fe2O3) phase, crystallinity, good uniformity and 10 nm core sizes of the as-synthesized composites. SQUID hysteresis loops showed a non-negligible coercive field and remanence suggesting the ferromagnetic behavior of the particles. Heating efficiency measurements showed that both samples display high heating potentials and reached magnetic hyperthermia (42 °C) in relatively short times with shorter time (~3 min) observed for γ-Fe2O3 compared to γ-Fe2O3-TiO2. The specific absorption rate (SAR) values calculated for γ-Fe2O3 (up to 90 W/g) are higher than that for γ-Fe2O3-TiO2 (~40 W/g), confirming better heating efficiency for γ-Fe2O3 NPs. The intrinsic loss power (ILP) values of 1.57 nHm2/kg and 0.64 nHm2/kg obtained for both nanocomposites are in the range reported for commercial ferrofluids (0.2–3.1 nHm2/kg). Finally, the heating mechanism responsible for NP heat dissipation is explained concluding that both Neel and Brownian relaxations are contributing to heat production. Overall, the obtained high heating efficiencies suggest that the fabricated nanocomposites hold a great potential to be utilized in a wide spectrum of applications, particularly in magnetic photothermal hyperthermia treatments.
Collapse
Affiliation(s)
- O. M. Lemine
- Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMISU), Riyadh 11623, Saudi Arabia; (N.M.); (S.A.)
- Correspondence: ; Tel.: +966-112586775
| | - Nawal Madkhali
- Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMISU), Riyadh 11623, Saudi Arabia; (N.M.); (S.A.)
| | - Marzook Alshammari
- The National Center for Laser and Optoelectronics, KACST, 6086, Riyadh 11442, Saudi Arabia;
| | - Saja Algessair
- Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMISU), Riyadh 11623, Saudi Arabia; (N.M.); (S.A.)
| | - Abbasher Gismelseed
- Department of Physics, College of Science, Sultan Qaboos University, Code 123, Al Khoud P.O. Box 36, Oman; (A.G.); (A.A.Y.)
| | - Lassad El Mir
- Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhysMNE), Faculty of Sciences of Gabes, University of Gabes, Gabes 6072, Tunisia; (L.E.M.); (M.H.)
| | - Moktar Hjiri
- Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhysMNE), Faculty of Sciences of Gabes, University of Gabes, Gabes 6072, Tunisia; (L.E.M.); (M.H.)
- Department of Physics, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ali A. Yousif
- Department of Physics, College of Science, Sultan Qaboos University, Code 123, Al Khoud P.O. Box 36, Oman; (A.G.); (A.A.Y.)
| | - Kheireddine El-Boubbou
- Department of Basic Sciences, College of Science & Health Professions, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh 11481, Saudi Arabia;
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Hospital, Riyadh 11426, Saudi Arabia
| |
Collapse
|
30
|
Golovin YI, Golovin DY, Vlasova KY, Veselov MM, Usvaliev AD, Kabanov AV, Klyachko NL. Non-Heating Alternating Magnetic Field Nanomechanical Stimulation of Biomolecule Structures via Magnetic Nanoparticles as the Basis for Future Low-Toxic Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2255. [PMID: 34578570 PMCID: PMC8470408 DOI: 10.3390/nano11092255] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
The review discusses the theoretical, experimental and toxicological aspects of the prospective biomedical application of functionalized magnetic nanoparticles (MNPs) activated by a low frequency non-heating alternating magnetic field (AMF). In this approach, known as nano-magnetomechanical activation (NMMA), the MNPs are used as mediators that localize and apply force to such target biomolecular structures as enzyme molecules, transport vesicles, cell organelles, etc., without significant heating. It is shown that NMMA can become a biophysical platform for a family of therapy methods including the addressed delivery and controlled release of therapeutic agents from transport nanomodules, as well as selective molecular nanoscale localized drugless nanomechanical impacts. It is characterized by low system biochemical and electromagnetic toxicity. A technique of 3D scanning of the NMMA region with the size of several mm to several cm over object internals has been described.
Collapse
Affiliation(s)
- Yuri I. Golovin
- Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia; (Y.I.G.); (D.Y.G.)
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
| | - Dmitry Yu. Golovin
- Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia; (Y.I.G.); (D.Y.G.)
| | - Ksenia Yu. Vlasova
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
| | - Maxim M. Veselov
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
| | - Azizbek D. Usvaliev
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
| | - Alexander V. Kabanov
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalia L. Klyachko
- Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia; (Y.I.G.); (D.Y.G.)
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
31
|
Mamani JB, Souza TKF, Nucci MP, Oliveira FA, Nucci LP, Alves AH, Rego GNA, Marti L, Gamarra LF. In Vitro Evaluation of Hyperthermia Magnetic Technique Indicating the Best Strategy for Internalization of Magnetic Nanoparticles Applied in Glioblastoma Tumor Cells. Pharmaceutics 2021; 13:1219. [PMID: 34452180 PMCID: PMC8399657 DOI: 10.3390/pharmaceutics13081219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
This in vitro study aims to evaluate the magnetic hyperthermia (MHT) technique and the best strategy for internalization of magnetic nanoparticles coated with aminosilane (SPIONAmine) in glioblastoma tumor cells. SPIONAmine of 50 and 100 nm were used for specific absorption rate (SAR) analysis, performing the MHT with intensities of 50, 150, and 300 Gauss and frequencies varying between 305 and 557 kHz. The internalization strategy was performed using 100, 200, and 300 µgFe/mL of SPIONAmine, with or without Poly-L-Lysine (PLL) and filter, and with or without static or dynamic magnet field. The cell viability was evaluated after determination of MHT best condition of SPIONAmine internalization. The maximum SAR values of SPIONAmine (50 nm) and SPIONAmine (100 nm) identified were 184.41 W/g and 337.83 W/g, respectively, using a frequency of 557 kHz and intensity of 300 Gauss (≈23.93 kA/m). The best internalization strategy was 100 µgFe/mL of SPIONAmine (100 nm) using PLL with filter and dynamic magnet field, submitted to MHT for 40 min at 44 °C. This condition displayed 70.0% decreased in cell viability by flow cytometry and 68.1% by BLI. We can conclude that our study is promising as an antitumor treatment, based on intra- and extracellular MHT effects. The optimization of the nanoparticles internalization process associated with their magnetic characteristics potentiates the extracellular acute and late intracellular effect of MHT achieving greater efficiency in the therapeutic process.
Collapse
Affiliation(s)
- Javier B. Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (J.B.M.); (T.K.F.S.); (M.P.N.); (F.A.O.); (A.H.A.); (G.N.A.R.); (L.M.)
| | - Taylla K. F. Souza
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (J.B.M.); (T.K.F.S.); (M.P.N.); (F.A.O.); (A.H.A.); (G.N.A.R.); (L.M.)
| | - Mariana P. Nucci
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (J.B.M.); (T.K.F.S.); (M.P.N.); (F.A.O.); (A.H.A.); (G.N.A.R.); (L.M.)
- LIM44-Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - Fernando A. Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (J.B.M.); (T.K.F.S.); (M.P.N.); (F.A.O.); (A.H.A.); (G.N.A.R.); (L.M.)
| | - Leopoldo P. Nucci
- Centro Universitário do Planalto Central, Brasília 72445-020, DF, Brazil;
| | - Arielly H. Alves
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (J.B.M.); (T.K.F.S.); (M.P.N.); (F.A.O.); (A.H.A.); (G.N.A.R.); (L.M.)
| | - Gabriel N. A. Rego
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (J.B.M.); (T.K.F.S.); (M.P.N.); (F.A.O.); (A.H.A.); (G.N.A.R.); (L.M.)
| | - Luciana Marti
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (J.B.M.); (T.K.F.S.); (M.P.N.); (F.A.O.); (A.H.A.); (G.N.A.R.); (L.M.)
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (J.B.M.); (T.K.F.S.); (M.P.N.); (F.A.O.); (A.H.A.); (G.N.A.R.); (L.M.)
| |
Collapse
|
32
|
Zeng Y, Zhou H, Ding J, Zhou W. Cell membrane inspired nano-shell enabling long-acting Glucose Oxidase for Melanoma starvation therapy via microneedles-based percutaneous delivery. Theranostics 2021; 11:8270-8282. [PMID: 34373741 PMCID: PMC8344000 DOI: 10.7150/thno.60758] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/05/2021] [Indexed: 12/27/2022] Open
Abstract
Rationale: Glucose oxidase (GOx) has gained tremendous research interest recently as a glucose-consuming enzyme for tumor starvation therapy, while its in vivo applications are strictly limited by rapid deactivation, as well as side effects of non-specific catalysis. Methods: To address these issues, here we report a protective nano-shell to encapsule GOx for localized melanoma therapy delivered by dissolving microneedles (MNs). Inspired by cell membrane that separates and protects cell organelles and components from outside environment while selectively ingesting nutrition sources, we designed polydopamine (PDA)-structured nano-shell to allow free transportation of glucose for catalytic reaction, while impede the penetration of GOx, proteinase, and other GOx-deactivating macromolecules across the shell membrane. Results: GOx was well protected in core layer with persistent catalytic activity for at least 6 d under various biological matrixes (e.g., PBS, serum, and cell lysate) and surviving different harsh conditions (e.g., acid/base treatments, and proteinase-induced degradation). Such long-acting nano-catalyst can be easily integrated into MNs as topical delivery carrier for effective glucose consumption in melanoma tissue, achieving significant tumor growth inhibition via starvation therapy with minimized side effects as compared to systemic administration. Conclusion: This work provides an elegant platform for in vivo delivery of GOx, and our cell-mimicking nano-system can also be applied for other enzyme-based therapeutics.
Collapse
|
33
|
Beola L, Grazú V, Fernández-Afonso Y, Fratila RM, de las Heras M, de la Fuente JM, Gutiérrez L, Asín L. Critical Parameters to Improve Pancreatic Cancer Treatment Using Magnetic Hyperthermia: Field Conditions, Immune Response, and Particle Biodistribution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12982-12996. [PMID: 33709682 PMCID: PMC8892434 DOI: 10.1021/acsami.1c02338] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/03/2021] [Indexed: 05/06/2023]
Abstract
Magnetic hyperthermia (MH) was used to treat a murine model of pancreatic cancer. This type of cancer is generally characterized by the presence of dense stroma that acts as a barrier for chemotherapeutic treatments. Several alternating magnetic field (AMF) conditions were evaluated using three-dimensional (3D) cell culture models loaded with magnetic nanoparticles (MNPs) to determine which conditions were producing a strong effect on the cell viability. Once the optimal AMF conditions were selected, in vivo experiments were carried out using similar frequency and field amplitude parameters. A marker of the immune response activation, calreticulin (CALR), was evaluated in cells from a xenograft tumor model after the MH treatment. Moreover, the distribution of nanoparticles within the tumor tissue was assessed by histological analysis of tumor sections, observing that the exposure to the alternating magnetic field resulted in the migration of particles toward the inner parts of the tumor. Finally, a relationship between an inadequate body biodistribution of the particles after their intratumoral injection and a significant decrease in the effectiveness of the MH treatment was found. Animals in which most of the particles remained in the tumor area after injection showed higher reductions in the tumor volume growth in comparison with those animals in which part of the particles were found also in the liver and spleen. Therefore, our results point out several factors that should be considered to improve the treatment effectiveness of pancreatic cancer by magnetic hyperthermia.
Collapse
Affiliation(s)
- Lilianne Beola
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC—Universidad de Zaragoza, 50018 Zaragoza, Spain
- Department
of Analytical Chemistry, Universidad de
Zaragoza, 50018 Zaragoza, Spain
| | - Valeria Grazú
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC—Universidad de Zaragoza, 50018 Zaragoza, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
| | - Yilian Fernández-Afonso
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC—Universidad de Zaragoza, 50018 Zaragoza, Spain
- Department
of Analytical Chemistry, Universidad de
Zaragoza, 50018 Zaragoza, Spain
| | - Raluca M. Fratila
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC—Universidad de Zaragoza, 50018 Zaragoza, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
| | | | - Jesús M. de la Fuente
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC—Universidad de Zaragoza, 50018 Zaragoza, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
| | - Lucía Gutiérrez
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC—Universidad de Zaragoza, 50018 Zaragoza, Spain
- Department
of Analytical Chemistry, Universidad de
Zaragoza, 50018 Zaragoza, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
| | - Laura Asín
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC—Universidad de Zaragoza, 50018 Zaragoza, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
| |
Collapse
|
34
|
Franco MS, Gomes ER, Roque MC, Oliveira MC. Triggered Drug Release From Liposomes: Exploiting the Outer and Inner Tumor Environment. Front Oncol 2021; 11:623760. [PMID: 33796461 PMCID: PMC8008067 DOI: 10.3389/fonc.2021.623760] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Since more than 40 years liposomes have being extensively studied for their potential as carriers of anticancer drugs. The basic principle behind their use for cancer treatment consists on the idea that they can take advantage of the leaky vasculature and poor lymphatic drainage present at the tumor tissue, passively accumulating in this region. Aiming to further improve their efficacy, different strategies have been employed such as PEGlation, which enables longer circulation times, or the attachment of ligands to liposomal surface for active targeting of cancer cells. A great challenge for drug delivery to cancer treatment now, is the possibility to trigger release from nanosystems at the tumor site, providing efficacious levels of drug in the tumor. Different strategies have been proposed to exploit the outer and inner tumor environment for triggering drug release from liposomes and are the focus of this review.
Collapse
Affiliation(s)
- Marina Santiago Franco
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eliza Rocha Gomes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marjorie Coimbra Roque
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mônica Cristina Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
35
|
Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:746. [PMID: 33809633 PMCID: PMC8000772 DOI: 10.3390/nano11030746] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
To achieve the promise of stimuli-responsive drug delivery systems for the treatment of cancer, they should (1) avoid premature clearance; (2) accumulate in tumors and undergo endocytosis by cancer cells; and (3) exhibit appropriate stimuli-responsive release of the payload. It is challenging to address all of these requirements simultaneously. However, the numerous proof-of-concept studies addressing one or more of these requirements reported every year have dramatically expanded the toolbox available for the design of drug delivery systems. This review highlights recent advances in the targeting and stimuli-responsiveness of drug delivery systems. It begins with a discussion of nanocarrier types and an overview of the factors influencing nanocarrier biodistribution. On-demand release strategies and their application to each type of nanocarrier are reviewed, including both endogenous and exogenous stimuli. Recent developments in stimuli-responsive targeting strategies are also discussed. The remaining challenges and prospective solutions in the field are discussed throughout the review, which is intended to assist researchers in overcoming interdisciplinary knowledge barriers and increase the speed of development. This review presents a nanocarrier-based drug delivery systems toolbox that enables the application of techniques across platforms and inspires researchers with interdisciplinary information to boost the development of multifunctional therapeutic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
| | - Edward Davis
- Materials Engineering Program, Mechanical Engineering Department, Auburn University, 101 Wilmore Drive, Auburn, AL 36830, USA;
| |
Collapse
|
36
|
Monahan DS, Almas T, Wyile R, Cheema FH, Duffy GP, Hameed A. Towards the use of localised delivery strategies to counteract cancer therapy-induced cardiotoxicities. Drug Deliv Transl Res 2021; 11:1924-1942. [PMID: 33449342 DOI: 10.1007/s13346-020-00885-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Cancer therapies have significantly improved cancer survival; however, these therapies can often result in undesired side effects to off target organs. Cardiac disease ranging from mild hypertension to heart failure can occur as a result of cancer therapies. This can warrant the discontinuation of cancer treatment in patients which can be detrimental, especially when the treatment is effective. There is an urgent need to mitigate cardiac disease that occurs as a result of cancer therapy. Delivery strategies such as the use of nanoparticles, hydrogels, and medical devices can be used to localise the treatment to the tumour and prevent off target side effects. This review summarises the advancements in localised delivery of anti-cancer therapies to tumours. It also examines the localised delivery of cardioprotectants to the heart for patients with systemic disease such as leukaemia where localised tumour delivery might not be an option.
Collapse
Affiliation(s)
- David S Monahan
- Anatomy & Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Science, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland.,Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Talal Almas
- School of Medicine, RCSI University of Medicine and Health Sciences, 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Robert Wyile
- Anatomy & Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Science, National University of Ireland Galway, Galway, Ireland
| | - Faisal H Cheema
- HCA Healthcare, Gulf Coast Division, Houston, TX, USA.,College of Medicine, University of Houston, Houston, TX, USA
| | - Garry P Duffy
- Anatomy & Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Science, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland.,Tissue Engineering Research Group (TERG), Department of Anatomy, RCSI University of Medicine and Health Sciences, 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland.,Advanced Materials for Biomedical Engineering and Regenerative Medicine (AMBER), National University of Ireland, Trinity College Dublin &, Galway, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Aamir Hameed
- Tissue Engineering Research Group (TERG), Department of Anatomy, RCSI University of Medicine and Health Sciences, 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland. .,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland.
| |
Collapse
|
37
|
Liang Y, Xie J, Yu J, Zheng Z, Liu F, Yang A. Recent advances of high performance magnetic iron oxide nanoparticles: Controlled synthesis, properties tuning and cancer theranostics. NANO SELECT 2020. [DOI: 10.1002/nano.202000169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yi‐Jun Liang
- School of Medical Engineering Foshan University Foshan 528000 P.R. China
| | - Jun Xie
- School of Life Science Jiangsu Normal University Xuzhou 221116 P.R. China
| | - Jing Yu
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 P.R. China
| | - Zhaoguang Zheng
- School of Medical Engineering Foshan University Foshan 528000 P.R. China
| | - Fang Liu
- School of Medical Engineering Foshan University Foshan 528000 P.R. China
| | - Anping Yang
- School of Medical Engineering Foshan University Foshan 528000 P.R. China
| |
Collapse
|
38
|
Shams SF, Ghazanfari MR, Pettinger S, Tavabi AH, Siemensmeyer K, Smekhova A, Dunin-Borkowski RE, Westmeyer GG, Schmitz-Antoniak C. Structural perspective on revealing heat dissipation behavior of CoFe 2O 4-Pd nanohybrids: great promise for magnetic fluid hyperthermia. Phys Chem Chem Phys 2020; 22:26728-26741. [PMID: 33078790 DOI: 10.1039/d0cp02076a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Loss mechanisms in fluid heating of cobalt ferrite (CFO) nanoparticles and CFO-Pd heterodimer colloidal suspensions are investigated as a function of particle size, fluid concentration and magnetic field amplitude. The specific absorption rate (SAR) is found to vary with increasing particle size due to a change in dominant heating mechanism from susceptibility to hysteresis and frictional loss. The maximum SAR is obtained for particle diameters of 11-15 nm as a result of synergistic contributions of susceptibility loss, including Néel and Brownian relaxation and especially hysteresis loss, thereby validating the applicability of linear response theory to superparamagnetic CFO nanoparticles. Our results show that the ferrofluid concentration and magnetic field amplitude alter interparticle interactions and associated heating efficiency. The SAR of the CFO nanoparticles could be maximized by adjusting the synthesis parameters. Despite the paramagnetic properties of individual palladium nanoparticles, CFO-Pd heterodimer suspensions were observed to have surprisingly improved magnetization as well as SAR values, when compared with CFO ferrofluids. This difference is attributed to interfacial interactions between the magnetic moments of paramagnetic Pd and superparamagnetic/ferrimagnetic CFO. SAR values measured from CFO-Pd heterodimer suspensions were found to be 47-52 W gFerrite-1, which is up to a factor of two higher than the SAR values of commercially available ferrofluids, demonstrating their potential as efficient heat mediators. Our results provide insight into the utilization of CFO-Pd heterodimer suspensions as potential nanoplatforms for diagnostic and therapeutic biomedical applications, e.g., in cancer hyperthermia, cryopreserved tissue warming, thermoablative therapy, drug delivery and bioimaging.
Collapse
Affiliation(s)
- S Fatemeh Shams
- Peter-Grünberg-Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040068] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanotechnology has gained much attention for its potential application in medical science. Iron oxide nanoparticles have demonstrated a promising effect in various biomedical applications. In particular, magnetite (Fe3O4) nanoparticles are widely applied due to their biocompatibility, high magnetic susceptibility, chemical stability, innocuousness, high saturation magnetisation, and inexpensiveness. Magnetite (Fe3O4) exhibits superparamagnetism as its size shrinks in the single-domain region to around 20 nm, which is an essential property for use in biomedical applications. In this review, the application of magnetite nanoparticles (MNPs) in the biomedical field based on different synthesis approaches and various surface functionalisation materials was discussed. Firstly, a brief introduction on the MNP properties, such as physical, thermal, magnetic, and optical properties, is provided. Considering that the surface chemistry of MNPs plays an important role in the practical implementation of in vitro and in vivo applications, this review then focuses on several predominant synthesis methods and variations in the synthesis parameters of MNPs. The encapsulation of MNPs with organic and inorganic materials is also discussed. Finally, the most common in vivo and in vitro applications in the biomedical world are elucidated. This review aims to deliver concise information to new researchers in this field, guide them in selecting appropriate synthesis techniques for MNPs, and to enhance the surface chemistry of MNPs for their interests.
Collapse
|
40
|
Treatment of Breast Cancer-Bearing BALB/c Mice with Magnetic Hyperthermia using Dendrimer Functionalized Iron-Oxide Nanoparticles. NANOMATERIALS 2020; 10:nano10112310. [PMID: 33266461 PMCID: PMC7700443 DOI: 10.3390/nano10112310] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022]
Abstract
The development of novel nanoparticles for diagnostic and therapeutic applications has been one of the most crucial challenges in cancer theranostics for the last decades. Herein, we functionalized iron oxide nanoparticles (IONPs) with the fourth generation (G4) of poly amidoamine (PAMAM) dendrimers (G4@IONPs) for magnetic hyperthermia treatment of breast cancer in Bagg albino strain C (BALB/c)mice. The survival of breast cancer cells significantly decreased after incubation with G4@IONPs and exposure to an alternating magnetic field (AMF) due to apoptosis and elevation of Bax (Bcl-2 associated X)/Bcl-2(B-cell lymphoma 2) ratio. After intratumoral injection of G4@IONPs, tumor-bearing BALB/c mice were exposed to AMF for 20 min; this procedure was repeated three times every other day. After the last treatment, tumor size was measured every three days. Histopathological and Immunohistochemical studies were performed on the liver, lung, and tumor tissues in treated and control mice. The results did not show any metastatic cells in the liver and lung tissues in the treatment group, while the control mice tissues contained metastatic breast cancer cells. Furthermore, the findings of the present study showed that magnetic hyperthermia treatment inhibited tumor growth by increasing cancer cell apoptosis, as well as reducing the tumor angiogenesis.
Collapse
|
41
|
Rajan A, Sahu NK. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy. JOURNAL OF NANOPARTICLE RESEARCH 2020; 22:319. [PMID: 0 DOI: 10.1007/s11051-020-05045-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/09/2020] [Indexed: 05/27/2023]
|
42
|
Genetically engineered magnetic nanocages for cancer magneto-catalytic theranostics. Nat Commun 2020; 11:5421. [PMID: 33110072 PMCID: PMC7591490 DOI: 10.1038/s41467-020-19061-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
The clinical applications of magnetic hyperthermia therapy (MHT) have been largely hindered by the poor magnetic-to-thermal conversion efficiency of MHT agents. Herein, we develop a facile and efficient strategy for engineering encapsulin-produced magnetic iron oxide nanocomposites (eMIONs) via a green biomineralization procedure. We demonstrate that eMIONs have excellent magnetic saturation and remnant magnetization properties, featuring superior magnetic-to-thermal conversion efficiency with an ultrahigh specific absorption rate of 2390 W/g to overcome the critical issues of MHT. We also show that eMIONs act as a nanozyme and have enhanced catalase-like activity in the presence of an alternative magnetic field, leading to tumor angiogenesis inhibition with a corresponding sharp decrease in the expression of HIF-1α. The inherent excellent magnetic-heat capability, coupled with catalysis-triggered tumor suppression, allows eMIONs to provide an MRI-guided magneto-catalytic combination therapy, which may open up a new avenue for bench-to-bed translational research of MHT. The clinical application of magnetic hyperthermia therapy (MHT) is limited by the poor magnetic-to-thermal conversion efficiency of MHT agents. Here, the authors develop encapsulin-produced magnetic iron oxide nanocomposites (eMIONs) with excellent magnetic-heat capability and catalysis-triggered tumor suppression ability to overcome the critical issues of MHT.
Collapse
|
43
|
Wei S, Quan G, Lu C, Pan X, Wu C. Dissolving microneedles integrated with pH-responsive micelles containing AIEgen with ultra-photostability for enhancing melanoma photothermal therapy. Biomater Sci 2020; 8:5739-5750. [PMID: 32945301 DOI: 10.1039/d0bm00914h] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photothermal therapy (PTT) based on aggregation-induced emission luminogen (AIEgen) is very promising for superficial tumor therapy due to the superior photostability and photothermal conversion efficiency of AIEgens. However, the systemic administration of AIEgen remains challenging, mainly because of solubility dissatisfaction and biodistribution. Here, a dissolving microneedle (MN) system loaded with AIEgen (NIR950) was developed for topical administration to treat malignant skin tumor melanoma. Firstly, NIR950-loaded polymeric micelles (NIR950@PMs) were prepared via a nanoprecipitation method to increase the drug solubility. Then, micelles were concentrated on needle tips of MN (NIR950@PMs@MN) by a two-step molding method. NIR950@PMs showed no distinct decline in emission intensity under continuous laser irradiation for an hour. Moreover, the pH-responsive micelles can be protonated in an acidic tumor microenvironment to facilitate the intracellular uptake. By virtue of dissolving MN, NIR950@PMs could rapidly accumulate at the tumor site and reach a suitable temperature for killing cancer cells under laser irradiation. With only single administration and one-time laser irradiation, the NIR950@PMs@MN could notably eliminate melanoma tumors with a low dose of NIR950. Overall, this dissolving MN system loaded with NIR950 showed remarkable photostability and also achieved a valid photothermal effect, which indicate great potential for clinical superficial tumor therapy.
Collapse
Affiliation(s)
- Sihui Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | | | | | | | | |
Collapse
|
44
|
The microneedles carrying cisplatin and IR820 to perform synergistic chemo-photodynamic therapy against breast cancer. J Nanobiotechnology 2020; 18:146. [PMID: 33076924 PMCID: PMC7574214 DOI: 10.1186/s12951-020-00697-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUNDS Surgical resection and adjunct chemotherapy or radio-therapy has been applied for the therapy of superficial malignant tumor in clinics. Whereas, there are still some problems limit its clinical use, such as severe pains and side effect. Thus, it is urgent need to develop effective, minimally invasive and low toxicity therapy stagey for superficial malignant tumor. Topical drug administration such as microneedle patches shows the advantages of reduced systemic toxicity and nimble application and, as a result, a great potential to treat superficial tumors. METHODS In this study, microneedle (MN) patches were fabricated to deliver photosensitizer IR820 and chemotherapy agent cisplatin (CDDP) for synergistic chemo-photodynamic therapy against breast cancer. RESULTS The MN could be completely inserted into the skin and the compounds carrying tips could be embedded within the target issue for locoregional cancer treatment. The photodynamic therapeutic effects can be precisely controlled and switched on and off on demand simply by adjusting laser. The used base material vinylpyrrolidone-vinyl acetate copolymer (PVPVA) is soluble in both ethanol and water, facilitating the load of both water-soluble and water-insoluble drugs. CONCLUSIONS Thus, the developed MN patch offers an effective, user-friendly, controllable and low-toxicity option for patients requiring long-term and repeated cancer treatments.
Collapse
|
45
|
Etemadi H, Plieger PG. Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000061] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hossein Etemadi
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| | - Paul G. Plieger
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| |
Collapse
|
46
|
Zhong W, Zhang X, Zhao M, Wu J, Lin D. Advancements in nanotechnology for the diagnosis and treatment of multiple myeloma. Biomater Sci 2020; 8:4692-4711. [PMID: 32779645 DOI: 10.1039/d0bm00772b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multiple myeloma (MM), known as a tumor of plasma cells, is not only refractory but also has a high relapse rate, and is the second-most common hematologic tumor after lymphoma. It is often accompanied by multiple osteolytic damage, hypercalcemia, anemia, and renal insufficiency. In terms of diagnosis, conventional detection methods have many limitations, such as it is invasive and time-consuming and has low accuracy. Measures to change these limitations are urgently needed. At the therapeutic level, although the survival of MM continues to prolong with the advent of new drugs, MM remains incurable and has a high recurrence rate. With the development of nanotechnology, nanomedicine has become a powerful way to improve the current diagnosis and treatment of MM. In this review, the research progress and breakthroughs of nanomedicine in MM will be presented. Meanwhile, both superiorities and challenges of nanomedicine were discussed. As a new idea for the diagnosis and treatments of MM, nanomedicine will play a very important role in the research field of MM.
Collapse
Affiliation(s)
- Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China.
| | | | | | | | | |
Collapse
|
47
|
Zhang S, Li G, Man J, Zhang S, Li J, Li J, Li D. Fabrication of Microspheres from High-Viscosity Bioink Using a Novel Microfluidic-Based 3D Bioprinting Nozzle. MICROMACHINES 2020; 11:E681. [PMID: 32674334 PMCID: PMC7408603 DOI: 10.3390/mi11070681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022]
Abstract
Three-dimensional (3D) bioprinting is a novel technology utilizing biocompatible materials, cells, drugs, etc. as basic microcomponents to form 3D artificial structures and is believed as a promising method for regenerative medicine. Droplet-based bioprinting can precisely generate microspheres and manipulate them into organized structures with high fidelity. Biocompatible hydrogels are usually used as bioinks in 3D bioprinting, however, the viscosity of the bioink could be increased due to the additives such as cells, drugs, nutrient factors and other functional polymers in some particular applications, making it difficult to form monodispersed microspheres from high-viscosity bioink at the orifice of the nozzle. In this work, we reported a novel microfluidic-based printing nozzle to prepare monodispersed microspheres from high-viscosity bioink using the phase-inversion method. Different flowing conditions can be achieved by changing the flow rates of the fluids to form monodispersed solid and hollow microspheres using the same nozzle. The diameter of the microspheres can be tuned by changing the flow rate ratio and the size distribution of the microspheres is narrow. The prepared calcium alginate microspheres could also act as micro-carriers in drug delivery.
Collapse
Affiliation(s)
- Shanguo Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (S.Z.); (S.Z.); (J.L.); (J.L.)
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Guiling Li
- School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (S.Z.); (S.Z.); (J.L.); (J.L.)
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Song Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (S.Z.); (S.Z.); (J.L.); (J.L.)
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (S.Z.); (S.Z.); (J.L.); (J.L.)
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (S.Z.); (S.Z.); (J.L.); (J.L.)
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Donghai Li
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| |
Collapse
|
48
|
Luo X, Zhang J, Wu YP, Yang X, Kuang XP, Li WX, Li YF, He RR, Liu M. Multifunctional HNT@Fe 3O 4@PPy@DOX Nanoplatform for Effective Chemo-Photothermal Combination Therapy of Breast Cancer with MR Imaging. ACS Biomater Sci Eng 2020; 6:3361-3374. [PMID: 33463181 DOI: 10.1021/acsbiomaterials.9b01709] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multifunctional nanoparticles for imaging and treatment in cancer are getting more and more attention recently. Herein, halloysite nanotubes (HNTs), natural clay nanotubes, are designed as multifunctional nanoplatform for targeted delivering photothermal therapy agents and chemotherapeutic drugs. Fe3O4 was anchored on the outer surfaces of HNTs and then doxorubicin (DOX) was loaded on the nanotubes. Afterward, a layer of polypyrrole (PPy), as photothermal agent, was wrapped on the tubes. The nanoplatform of HNT@Fe3O4@PPy@DOX can be guided to tumor tissue by an external magnetic field, and then performs chemo-photothermal combined therapy by 808 nm laser irradiation. HNT@Fe3O4@PPy@DOX shows the ability of T2-weighted magnetic resonance imaging, which could be considered as a promising application in magnetic targeting tumor therapy. In vitro and in vivo experiments demonstrate that HNTs nanoplatform has good biocompatibility and produces a strong antitumor effect trigged by near-infrared laser irradiation. The novel chemo-photothermal therapy nanoplatform based on HNTs may be developed as a multifunctional nanoparticle for imaging and therapy in breast cancer.
Collapse
Affiliation(s)
- Xiang Luo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jun Zhang
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yan-Ping Wu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaohan Yang
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xiu-Ping Kuang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.,Yunnan University of Traditional Chinese Medicine, Kunming 650550, China
| | - Wei-Xi Li
- Yunnan University of Traditional Chinese Medicine, Kunming 650550, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Mingxian Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
49
|
Singh A, Jain S, Sahoo SK. Magnetic nanoparticles for amalgamation of magnetic hyperthermia and chemotherapy: An approach towards enhanced attenuation of tumor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110695. [DOI: 10.1016/j.msec.2020.110695] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/27/2019] [Accepted: 01/25/2020] [Indexed: 01/27/2023]
|
50
|
Wang X, Law J, Luo M, Gong Z, Yu J, Tang W, Zhang Z, Mei X, Huang Z, You L, Sun Y. Magnetic Measurement and Stimulation of Cellular and Intracellular Structures. ACS NANO 2020; 14:3805-3821. [PMID: 32223274 DOI: 10.1021/acsnano.0c00959] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
From single-pole magnetic tweezers to robotic magnetic-field generation systems, the development of magnetic micromanipulation systems, using electromagnets or permanent magnets, has enabled a multitude of applications for cellular and intracellular measurement and stimulation. Controlled by different configurations of magnetic-field generation systems, magnetic particles have been actuated by an external magnetic field to exert forces/torques and perform mechanical measurements on the cell membrane, cytoplasm, cytoskeleton, nucleus, intracellular motors, etc. The particles have also been controlled to generate aggregations to trigger cell signaling pathways and produce heat to cause cancer cell apoptosis for hyperthermia treatment. Magnetic micromanipulation has become an important tool in the repertoire of toolsets for cell measurement and stimulation and will continue to be used widely for further explorations of cellular/intracellular structures and their functions. Existing review papers in the literature focus on fabrication and position control of magnetic particles/structures (often termed micronanorobots) and the synthesis and functionalization of magnetic particles. Differently, this paper reviews the principles and systems of magnetic micromanipulation specifically for cellular and intracellular measurement and stimulation. Discoveries enabled by magnetic measurement and stimulation of cellular and intracellular structures are also summarized. This paper ends with discussions on future opportunities and challenges of magnetic micromanipulation in the exploration of cellular biophysics, mechanotransduction, and disease therapeutics.
Collapse
Affiliation(s)
- Xian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Junhui Law
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Mengxi Luo
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Zheyuan Gong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Jiangfan Yu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Wentian Tang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Zhuoran Zhang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Xueting Mei
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Zongjie Huang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Lidan You
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|