1
|
Liu J, Zhang L, Liu L, Wu T, Wang L, Han Q. The potential capacities of FTY720: Novel therapeutic functions, targets, and mechanisms against diseases. Eur J Med Chem 2025; 290:117508. [PMID: 40120496 DOI: 10.1016/j.ejmech.2025.117508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Fingolimod (FTY720), an antagonist of sphingosine-1-phosphate (S1P), functions by binding to S1P receptors (S1PRs), excluding S1PR2. It received approval from the Food and Drug Administration (FDA) for the treatment of multiple sclerosis (MS) in 2010. As the first non-selective oral agonist for S1PRs, FTY720's diverse and systemic receptor expression often leads to alterations in various signaling pathways and multiple systems, making it a subject of intense research. Recent studies have identified a wide range of novel or potential functions for FTY720 beyond its application in MS. These include effects on the blood-brain barrier (BBB), vascular system, organelles, and cell death, as well as potential applications in organ transplantation, immune disorders, oncological conditions, neurological and psychiatric disorders, viral infections, and hypersensitivity diseases. This paper reviews the novel roles, targets, and mechanisms of FTY720 that hold promise for clinical utility. Additionally, it summarizes FTY720's derivation and development process, the characterization and mechanism of the structure of FTY720-P bound to S1PRs, the clinical safety profile, future challenges, and potential strategies to address them. These insights aim to guide future research and applications of FTY720, maximizing its therapeutic potential.
Collapse
Affiliation(s)
- Juan Liu
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China
| | - Lu Zhang
- Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, PR China
| | - Le Liu
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China
| | - Tianfeng Wu
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China
| | - Lin Wang
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China
| | - Qingzhen Han
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China.
| |
Collapse
|
2
|
Bi Z, Li H, Liang Y, Sun D, Liu S, Chen W, Leng L, Song C, Zhang S, Cong Z, Chen S. Emerging paradigms for target discovery of traditional medicines: A genome-wide pan-GPCR perspective. Innovation (N Y) 2025; 6:100774. [PMID: 40098666 PMCID: PMC11910885 DOI: 10.1016/j.xinn.2024.100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/22/2024] [Indexed: 03/19/2025] Open
Abstract
Traditional medicines serve not only as an integral part of medical treatments prescribed by healthcare providers but also as a fundamental reservoir for novel molecular scaffolds. However, gaps remain in our understanding of the mechanisms underlying their activity. A superfamily of membrane proteins, G protein-coupled receptors (GPCRs), have been demonstrated to be potential targets for several compounds isolated from traditional medicines. Given that GPCRs serve as targets for approximately one-third of all marketed drugs, they may be compelling targets for repurposing traditional medicines. Despite this potential, research investigating their activity or potential ligands across GPCRome, the library of human GPCRs, is scarce. Drawing on the functional and structural knowledge presently available, this review contemplates prospective trends in GPCR drug discovery, proposes innovative strategies for investigating traditional medicines, and highlights ligand screening approaches for identifying novel drug-like molecules. To discover bioactive molecules from traditional medicines that either directly bind to GPCRs or indirectly modify their function, a genome-wide pan-GPCR drug discovery platform was designed for the identification of bioactive components and targets, and the evaluation of their pharmacological profiles. This platform aims to aid the exploration of all-sided relations between traditional medicines and GPCRome using advanced high-throughput screening techniques. We present various approaches used by many, including ourselves, to illuminate the previously unexplored aspects of traditional medicines and GPCRs.
Collapse
Affiliation(s)
- Zenghao Bi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huan Li
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuting Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dan Sun
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Songxin Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sanyin Zhang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhaotong Cong
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
3
|
Wang L, Kong Q, Leng X, Leung H, Li Y. The sphingosine-1-phosphate signaling pathway (sphingosine-1-phosphate and its receptor, sphingosine kinase) and epilepsy. Epilepsia Open 2025; 10:55-73. [PMID: 39727628 PMCID: PMC11803289 DOI: 10.1002/epi4.13112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/08/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Epilepsy is one of the common chronic neurological diseases, affecting more than 70 million people worldwide. The brains of people with epilepsy exhibit a pathological and persistent propensity for recurrent seizures. Epilepsy often coexists with cardiovascular disease, cognitive dysfunction, depression, etc., which seriously affects the patient's quality of life. Although our understanding of epilepsy has advanced, the pathophysiological mechanisms leading to epileptogenesis, drug resistance, and associated comorbidities remain largely unknown. The use of newer antiepileptic drugs has increased, but this has not improved overall outcomes. We need to deeply study the pathogenesis of epilepsy and find drugs that can not only prevent the epileptogenesis and interfere with the process of epileptogenesis but also treat epilepsy comorbidities. Sphingosine-1-phosphate (S1P) is an important lipid molecule. It not only forms the basis of cell membranes but is also an important bioactive mediator. It can not only act as a second messenger in cells to activate downstream signaling pathways but can also exert biological effects by being secreted outside cells and binding to S1P receptors on the cell membrane. Fingolimod (FTY720) is the first S1P receptor modulator developed and approved for the treatment of multiple sclerosis. More and more studies have proven that the S1P signaling pathway is closely related to epilepsy, drug-resistant epilepsy, epilepsy comorbidities, or other epilepsy-causing diseases. However, there is much controversy over the role of certain natural molecules in the pathway and receptor modulators (such as FTY720) in epilepsy. Here, we summarize and analyze the role of the S1P signaling pathway in epilepsy, provide a basis for finding potential therapeutic targets and/or epileptogenic biomarkers, analyze the reasons for these controversies, and put forward our opinions. PLAIN LANGUAGE SUMMARY: This article combines the latest research literature at home and abroad to review the sphingosine 1-phosphate signaling pathway and epileptogenesis, drug-resistant epilepsy, epilepsy comorbidities, other diseases that can cause epilepsy, as well as the sphingosine-1-phosphate signaling pathway regulators and epilepsy, with the expectation of providing a certain theoretical basis for finding potential epilepsy treatment targets and/or epileptogenic biomarkers in the sphingosine-1-phosphate signaling pathway.
Collapse
Affiliation(s)
- Lin Wang
- Department of NeurologyAffiliated Hospital of Jining Medical UniversityJining CityChina
- Epilepsy CenterAffiliated Hospital of Jining Medical UniversityJining CityChina
- The Chinese University of Hong Kong, Department of Medicine and TherapeuticsThe Chinese University of Hong Kong, Central AveHong KongHong Kong
| | - Qingxia Kong
- Department of NeurologyAffiliated Hospital of Jining Medical UniversityJining CityChina
- Epilepsy CenterAffiliated Hospital of Jining Medical UniversityJining CityChina
| | - Xinyi Leng
- The Chinese University of Hong Kong, Department of Medicine and TherapeuticsThe Chinese University of Hong Kong, Central AveHong KongHong Kong
| | - Howan Leung
- Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital7/F Clinical Science Building, Prince of Wales HospitalHong KongHong Kong
| | - Yang Li
- Department of OncologyAffiliated Hospital of Jining Medical UniversityJining CityChina
| |
Collapse
|
4
|
Murai Y. Elucidation of physiological functions of sphingolipid-related molecules by chemical approaches. Biosci Biotechnol Biochem 2025; 89:205-214. [PMID: 39689917 DOI: 10.1093/bbb/zbae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/22/2024] [Indexed: 12/19/2024]
Abstract
Sphingolipids (SLs), found in all animals, plants, and fungi and in certain prokaryotic organisms, exhibit essential physiological functions that cannot be replicated by other lipids. Although SLs and their related biomolecules behave as lipid mediators, skin barrier systems, and epitopes, their detailed biological functions have not yet been revealed, unlike those of proteins and nucleic acids, because the biosynthesis of SLs is not governed by the central dogma. Recently, SLs have been widely studied in relation to diseases such as obesity, dementia, and neuron agenesis and have attracted attention as molecules related to unmet medical needs. This review presents the recent applications of the SL chemical biology in unmet medical needs.
Collapse
Affiliation(s)
- Yuta Murai
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
5
|
Poisson J, Daskalaki I, Potluri V, Morel JD, Rodriguez-Lopez S, De Masi A, Benegiamo G, Jain S, Lima T, Auwerx J. Safe and Orally Bioavailable Inhibitor of Serine Palmitoyltransferase Improves Age-Related Sarcopenia. ACS Pharmacol Transl Sci 2025; 8:203-215. [PMID: 39816804 PMCID: PMC11729425 DOI: 10.1021/acsptsci.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/18/2025]
Abstract
The accumulation of ceramides and related metabolites has emerged as a pivotal mechanism contributing to the onset of age-related diseases. However, small molecule inhibitors targeting the ceramide de novo synthesis pathway for clinical use are currently unavailable. We synthesized a safe and orally bioavailable inhibitor, termed ALT-007, targeting the rate-limiting enzyme of ceramide de novo synthesis, serine palmitoyltransferase (SPT). In a mouse model of age-related sarcopenia, ALT-007, administered through the diet, effectively restored muscle mass and function compromised by aging. Mechanistic studies revealed that ALT-007 enhances protein homeostasis in Caenorhabditis elegans and mouse models of aging and age-related diseases, such as sarcopenia and inclusion body myositis (IBM); this effect is mediated by a specific reduction in very-long chain 1-deoxy-sphingolipid species, which accumulate in both muscle and brain tissues of aged mice and in muscle cells from IBM patients. These findings unveil a promising therapeutic avenue for developing safe ceramide inhibitors to address age-related neuromuscular diseases.
Collapse
Affiliation(s)
- Johanne Poisson
- Laboratory
of Integrative Systems Physiology, École
Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Ioanna Daskalaki
- Laboratory
of Integrative Systems Physiology, École
Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Vijay Potluri
- Intonation
Research Laboratories, Hyderabad 500076, India
| | - Jean-David Morel
- Laboratory
of Integrative Systems Physiology, École
Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Sandra Rodriguez-Lopez
- Laboratory
of Integrative Systems Physiology, École
Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Alessia De Masi
- Laboratory
of Integrative Systems Physiology, École
Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Giorgia Benegiamo
- Laboratory
of Integrative Systems Physiology, École
Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Suresh Jain
- Intonation
Research Laboratories, Hyderabad 500076, India
| | - Tanes Lima
- Laboratory
of Integrative Systems Physiology, École
Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Johan Auwerx
- Laboratory
of Integrative Systems Physiology, École
Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
6
|
Wu J, Santos-Garcia I, Eiriz I, Brüning T, Kvasnička A, Friedecký D, Nyman TA, Pahnke J. Sex-dependent efficacy of sphingosine-1-phosphate receptor agonist FTY720 in mitigating Huntington's disease. Pharmacol Res 2025; 211:107557. [PMID: 39725338 DOI: 10.1016/j.phrs.2024.107557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Huntington's disease (HD) is a debilitating neurodegenerative disorder characterized by severe motor deficits, cognitive decline and psychiatric disturbances. An early and significant morphological hallmark of HD is the activation of astrocytes triggered by mutant huntingtin, leading to the release of inflammatory mediators. Fingolimod (FTY), an FDA-approved sphingosine-1-phosphate (S1P) receptor agonist is used to treat multiple sclerosis (MS), a neuroinflammatory disease, and has shown therapeutic promise in other neurological conditions. Our study aimed to investigate the therapeutic potential of FTY for treating HD by utilizing a well-characterized mouse model of HD (zQ175dn) and wild-type littermates. The study design included a crossover, long-term oral treatment with 1 mg/kg to 2 mg/kg FTY from the age of 15-46 weeks (n = 128). Different motor behavior and physiological parameters were assessed throughout the study. The findings revealed that FTY rescued disease-related body weight loss in a sex-dependent manner, indicating its potential to regulate metabolic disturbances and to counteract neurodegenerative processes in HD. FTY intervention also rescued testicular atrophy, restored testis tissue structure in male mice suggesting a broader impact on peripheral tissues affected by huntingtin pathology. Histological analyses of the brain revealed delayed accumulation of activated astrocytes contributing to the preservation of the neural microenvironment by reducing neuroinflammation. The extent of FTY-related disease improvement was sex-dependent. Motor functions and body weight improved mostly in female mice with sustained estrogen levels, whereas males had to compensate for the ongoing, disease-related testis atrophy and the loss of androgen production. Our study underscores the beneficial therapeutic effects of FTY on HD involving endogenous steroid hormones and their important anabolic effects. It positions FTY as a promising candidate for therapeutic interventions targeting various aspects of HD pathology. Further studies are needed to fully evaluate its therapeutic potential in patients.
Collapse
Affiliation(s)
- Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo N-0372, Norway
| | - Irene Santos-Garcia
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo N-0372, Norway
| | - Ivan Eiriz
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo N-0372, Norway
| | - Thomas Brüning
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo N-0372, Norway
| | - Aleš Kvasnička
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, Zdravotníků 248/7, Olomouc CZ-77900, Czech Republic
| | - David Friedecký
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, Zdravotníků 248/7, Olomouc CZ-77900, Czech Republic
| | - Tuula A Nyman
- Proteomics Core Facility (PCF), Department of Immunology, Oslo University Hospital (OUS) and University of Oslo (UiO), Faculty of Medicine, Sognsvannsveien 20, Oslo NO-0372, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo N-0372, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, Lübeck D-23538, Germany; Department of Neuromedicine and Neuroscience, Faculty of Medicine and Life Sciences, University of Latvia (LU), Jelgavas iela 3, Rīga LV-1004, Latvia; Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Ramat Aviv IL-6997801, Israel.
| |
Collapse
|
7
|
Wang S, Jin Z, Wu B, Morris AJ, Deng P. Role of dietary and nutritional interventions in ceramide-associated diseases. J Lipid Res 2025; 66:100726. [PMID: 39667580 PMCID: PMC11754522 DOI: 10.1016/j.jlr.2024.100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
Ceramides are important intermediates in sphingolipid metabolism and serve as signaling molecules with independent biological significance. Elevated cellular and circulating ceramide levels are consistently associated with pathological conditions including cardiometabolic diseases, neurological diseases, autoimmune diseases, and cancers. Although pharmacological inhibition of ceramide formation often protects against these diseases in animal models, pharmacological modulation of ceramides in humans remains impractical. Dietary interventions including the Mediterranean diet, lacto-ovo-vegetarian diet, calorie-restricted diet, restriction of dairy product consumption, and dietary supplementation with polyunsaturated fatty acids, dietary fibers, and polyphenols, all have beneficial effects on modulating ceramide levels. Mechanistic insights into these interventions are discussed. This article reviews the relationships between ceramides and disease pathogenesis, with a focus on dietary intervention as a viable strategy for lowering the concentration of circulating ceramides.
Collapse
Affiliation(s)
- Shengnan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zihui Jin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Biyu Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Andrew J Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Affairs Healthcare System, Little Rock, Arkansas, USA
| | - Pan Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
8
|
Kawaguchi T, Ishibashi Y, Matsuzaki M, Yamagata S, Tani M. Involvement of lipid-translocating exporter family proteins in determination of myriocin sensitivity in budding yeast. Biochem Biophys Rep 2024; 39:101785. [PMID: 39104838 PMCID: PMC11299556 DOI: 10.1016/j.bbrep.2024.101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Myriocin is an inhibitor of serine palmitoyltransferase involved in the initial biosynthetic step for sphingolipids, and causes potent growth inhibition in eukaryotic cells. In budding yeast, Rsb1, Rta1, Pug1, and Ylr046c are known as the Lipid-Translocating Exporter (LTE) family and believed to contribute to export of various cytotoxic lipophilic compounds. It was reported that Rsb1 is a transporter responsible for export of intracellularly accumulated long-chain bases, which alleviate the cytotoxicity. In this study, it was found that LTE family genes are involved in determination of myriocin sensitivity in yeast. Analyses of effects of deletion and overexpression of LTE family genes suggested that all LTEs contribute to suppression of cytotoxicity of myriocin. It was confirmed that RSB1 overexpression suppressed reduction in complex sphingolipid levels caused by myriocin treatment, possibly exporting myriocin to outside of the cell. These results suggested that LTE family genes function as a defense mechanism against myriocin.
Collapse
Affiliation(s)
- Takahiro Kawaguchi
- Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yohei Ishibashi
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Momoko Matsuzaki
- Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Satomi Yamagata
- Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Motohiro Tani
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
9
|
Birgbauer E. Lysophospholipid receptors in neurodegeneration and neuroprotection. EXPLORATION OF NEUROPROTECTIVE THERAPY 2024; 4:349-365. [PMID: 39247084 PMCID: PMC11379401 DOI: 10.37349/ent.2024.00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024]
Abstract
The central nervous system (CNS) is one of the most complex physiological systems, and treatment of CNS disorders represents an area of major medical need. One critical aspect of the CNS is its lack of regeneration, such that damage is often permanent. The damage often leads to neurodegeneration, and so strategies for neuroprotection could lead to major medical advances. The G protein-coupled receptor (GPCR) family is one of the major receptor classes, and they have been successfully targeted clinically. One class of GPCRs is those activated by bioactive lysophospholipids as ligands, especially sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA). Research has been increasingly demonstrating the important roles that S1P and LPA, and their receptors, play in physiology and disease. In this review, I describe the role of S1P and LPA receptors in neurodegeneration and potential roles in neuroprotection. Much of our understanding of the role of S1P receptors has been through pharmacological tools. One such tool, fingolimod (also known as FTY720), which is a S1P receptor agonist but a functional antagonist in the immune system, is clinically efficacious in multiple sclerosis by producing a lymphopenia to reduce autoimmune attacks; however, there is evidence that fingolimod is also neuroprotective. Furthermore, fingolimod is neuroprotective in many other neuropathologies, including stroke, Parkinson's disease, Huntington's disease, Rett syndrome, Alzheimer's disease, and others that are discussed here. LPA receptors also appear to be involved, being upregulated in a variety of neuropathologies. Antagonists or mutations of LPA receptors, especially LPA1, are neuroprotective in a variety of conditions, including cortical development, traumatic brain injury, spinal cord injury, stroke and others discussed here. Finally, LPA receptors may interact with other receptors, including a functional interaction with plasticity related genes.
Collapse
Affiliation(s)
- Eric Birgbauer
- Department of Biology, Winthrop University, Rock Hill, SC 29733, USA
| |
Collapse
|
10
|
Mahmudi H, Shahpouri M, Adili-Aghdam MA, Akbari M, Salemi A, Alimohammadvand S, Barzegari A, Mazloomi M, Jaymand M, Jahanban-Esfahlan R. Self-activating chitosan-based nanoparticles for sphingosin-1 phosphate modulator delivery and selective tumor therapy. Int J Biol Macromol 2024; 272:132940. [PMID: 38848845 DOI: 10.1016/j.ijbiomac.2024.132940] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
This study reports on the design and synthesis of hypoxia responsive nanoparticles (HRNPs) composed of methoxy polyethylene glycol-4,4 dicarboxylic azolinker-chitosan (mPEG-Azo-chitosan) as ideal drug delivery platform for Fingolimod (FTY720, F) delivery to achieve selective and highly enhanced TNBC therapy in vivo. Herein, HRNPs with an average size of 49.86 nm and a zeta potential of +3.22 mV were synthetized, which after PEG shedding can shift into a more positively-charged NPs (+30.3 mV), possessing self-activation ability under hypoxia situation in vitro, 2D and 3D culture. Treatment with lower doses of HRNPs@F significantly reduced MDA-MB-231 microtumor size to 15 %, induced apoptosis by 88 % within 72 h and reduced highly-proliferative 4 T1 tumor weight by 87.66 % vs. ∼30 % for Fingolimod compared to the untreated controls. To the best of our knowledge, this is the first record for development of hypoxia-responsive chitosan-based NPs with desirable physicochemical properties, and selective self-activation potential to generate highly-charged nanosized tumor-penetrating chitosan NPs. This formulation is capable of localized delivery of Fingolimod to the tumor core, minimizing its side effects while boosting its anti-tumor potential for eradication of TNBC solid tumors.
Collapse
Affiliation(s)
- Hossein Mahmudi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Shahpouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Morteza Akbari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysan Salemi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Alimohammadvand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegari
- Innovation Center for Stem Cell Research and Regenerative Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - MirAhmad Mazloomi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Rana Jahanban-Esfahlan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Geng X, Zhang ZD, Li YX, Hao RC, Yang YJ, Liu XW, Li JY. Fingolimod synergizes and reverses K. pneumoniae resistance to colistin. Front Microbiol 2024; 15:1396663. [PMID: 38873155 PMCID: PMC11169662 DOI: 10.3389/fmicb.2024.1396663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) infection and the rapid spread of multi-drug resistant (MDR) bacteria pose a serious threat to global healthcare. Polymyxin E (colistin), a group of cationic antimicrobial polypeptides, is currently one of the last resort treatment options against carbapenem-resistant Gram-negative pathogens. The effectiveness of colistin has been compromised due to its intensive use. This study found that fingolimod (FLD), a natural product derivative, exhibited a significant synergistic bactericidal effect on K. pneumoniae when combined with colistin, both in vitro and in vivo. The checkerboard method was employed to assess the in vitro synergistic effect of FLD with colistin. FLD enhanced the susceptibility of bacteria to colistin and lowered effectively minimum inhibitory concentrations (MIC) when compared to colistin MIC, and the fractional inhibitory concentrations (FIC) value was less than 0.3. The time-kill curve demonstrated that the combination treatment of FLD and colistin had significant bactericidal efficacy. The in vitro concurrent administration of colistin and FLD resulted in heightening membrane permeability, compromising cell integrity, diminishing membrane fluidity, and perturbing membrane homeostasis. They also induced alterations in membrane potential, levels of reactive oxygen species, and adenosine triphosphate synthesis, ultimately culminating in bacterial death. Moreover, the combination of FLD with colistin significantly influenced fatty acid metabolism. In the mouse infection model, the survival rate of mice injected with K. pneumoniae was significantly improved to 67% and pathological damage was significantly relieved with combination treatment of FLD and colistin when compared with colistin treatment. This study highlights the potential of FLD in combining with colistin for treating infections caused by MDR isolates of K. pneumoniae.
Collapse
Affiliation(s)
| | | | | | | | | | - Xi-Wang Liu
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
12
|
Ding Y, Xue X. Medicinal Chemistry Strategies for the Modification of Bioactive Natural Products. Molecules 2024; 29:689. [PMID: 38338433 PMCID: PMC10856770 DOI: 10.3390/molecules29030689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Natural bioactive compounds are valuable resources for drug discovery due to their diverse and unique structures. However, these compounds often lack optimal drug-like properties. Therefore, structural optimization is a crucial step in the drug development process. By employing medicinal chemistry principles, targeted molecular operations can be applied to natural products while considering their size and complexity. Various strategies, including structural fragmentation, elimination of redundant atoms or groups, and exploration of structure-activity relationships, are utilized. Furthermore, improvements in physicochemical properties, chemical and metabolic stability, biophysical properties, and pharmacokinetic properties are sought after. This article provides a concise analysis of the process of modifying a few marketed drugs as illustrative examples.
Collapse
Affiliation(s)
- Yuyang Ding
- Shenzhen Borui Pharmaceutical Technology Co., Ltd., Shenzhen 518055, China;
| | - Xiaoqian Xue
- Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
13
|
Dong M, Zhao C, Huang Y, Zheng K, Bao G, Hu F, Peng F, Chen M, Li Z, Lu R. Metabolites analysis and new bioactive compounds from the medicine food homology product of Cordyceps chanhua on artificial media. J Pharm Biomed Anal 2024; 237:115749. [PMID: 37801798 DOI: 10.1016/j.jpba.2023.115749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
Cordyceps chanhua on artificial media has been approved as a medicine food homology product. However, the metabolites have not been extensively studied. HPLC-HRMS analysis showed that there were 11 main metabolites in the EtOAc extract including 4 probable unknown compounds. Fumosoroseain A with anti-aging effects is the most abundant known compound and was identified from C. chanhua for the first time. The second abundant compound is N6-(2-Hydroxyethyl) adenosine, a typical metabolite of C. chanhua. All the known compounds have consistent health function with that of the fungus. HRMS, 1D and 2D NMR analyses revealed that compounds 2, 3, and 4 are new nucleosides named as chanhuanosides A, B, and C. Compound 1 is the known compound cordyrrole B isolated from C. chanhua for the first time whose structure is firstly confirmed by single crystal X-ray analysis. Bioactivity analysis revealed that 1-4 significantly inhibited pancreatic lipase activity, and strongly promoted the proliferation of RAW264.7 and 293T cells, suggesting that they might have ant-obesity, immunoregulation, and renal protection functions. Structure-bioactivity analysis revealed that the esterification on ribose can increase their bioactivity. Present metabolites study suggests that C. chanhua cultured on the artificial medium is a promising health food.
Collapse
Affiliation(s)
- Mei Dong
- Engineering Research Center of Fungal Biotechnology, Anhui Agricultural University, Hefei 230036, China
| | - Cheng Zhao
- Engineering Research Center of Fungal Biotechnology, Anhui Agricultural University, Hefei 230036, China
| | - Yongfang Huang
- Engineering Research Center of Fungal Biotechnology, Anhui Agricultural University, Hefei 230036, China
| | - Ke Zheng
- Engineering Research Center of Fungal Biotechnology, Anhui Agricultural University, Hefei 230036, China
| | - Guanhu Bao
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Fenglin Hu
- Engineering Research Center of Fungal Biotechnology, Anhui Agricultural University, Hefei 230036, China.
| | - Fan Peng
- Engineering Research Center of Fungal Biotechnology, Anhui Agricultural University, Hefei 230036, China
| | - Mingjun Chen
- Engineering Research Center of Fungal Biotechnology, Anhui Agricultural University, Hefei 230036, China
| | - Zengzhi Li
- Engineering Research Center of Fungal Biotechnology, Anhui Agricultural University, Hefei 230036, China; Zhejiang Pan-Asian Institute of Life Sciences, Pinghu, Zhejiang Province 314200, China
| | - Ruili Lu
- Engineering Research Center of Fungal Biotechnology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
14
|
Sharma H, Sharma N, An SSA. Unique Bioactives from Zombie Fungus ( Cordyceps) as Promising Multitargeted Neuroprotective Agents. Nutrients 2023; 16:102. [PMID: 38201932 PMCID: PMC10780653 DOI: 10.3390/nu16010102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Cordyceps, also known as "zombie fungus", is a non-poisonous mushroom that parasitizes insects for growth and development by manipulating the host system in a way that makes the victim behave like a "zombie". These species produce promising bioactive metabolites, like adenosine, β-glucans, cordycepin, and ergosterol. Cordyceps has been used in traditional medicine due to its immense health benefits, as it boosts stamina, appetite, immunity, longevity, libido, memory, and sleep. Neuronal loss is the typical feature of neurodegenerative diseases (NDs) (Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS)) and neurotrauma. Both these conditions share common pathophysiological features, like oxidative stress, neuroinflammation, and glutamatergic excitotoxicity. Cordyceps bioactives (adenosine, N6-(2-hydroxyethyl)-adenosine, ergosta-7, 9 (11), 22-trien-3β-ol, active peptides, and polysaccharides) exert potential antioxidant, anti-inflammatory, and anti-apoptotic activities and display beneficial effects in the management and/or treatment of neurodegenerative disorders in vitro and in vivo. Although a considerable list of compounds is available from Cordyceps, only a few have been evaluated for their neuroprotective potential and still lack information for clinical trials. In this review, the neuroprotective mechanisms and safety profile of Cordyceps extracts/bioactives have been discussed, which might be helpful in the identification of novel potential therapeutic entities in the future.
Collapse
Affiliation(s)
| | - Niti Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea;
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
15
|
Lima TI, Laurila PP, Wohlwend M, Morel JD, Goeminne LJE, Li H, Romani M, Li X, Oh CM, Park D, Rodríguez-López S, Ivanisevic J, Gallart-Ayala H, Crisol B, Delort F, Batonnet-Pichon S, Silveira LR, Sankabattula Pavani Veera Venkata L, Padala AK, Jain S, Auwerx J. Inhibiting de novo ceramide synthesis restores mitochondrial and protein homeostasis in muscle aging. Sci Transl Med 2023; 15:eade6509. [PMID: 37196064 DOI: 10.1126/scitranslmed.ade6509] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Disruption of mitochondrial function and protein homeostasis plays a central role in aging. However, how these processes interact and what governs their failure in aging remain poorly understood. Here, we showed that ceramide biosynthesis controls the decline in mitochondrial and protein homeostasis during muscle aging. Analysis of transcriptome datasets derived from muscle biopsies obtained from both aged individuals and patients with a diverse range of muscle disorders revealed that changes in ceramide biosynthesis, as well as disturbances in mitochondrial and protein homeostasis pathways, are prevalent features in these conditions. By performing targeted lipidomics analyses, we found that ceramides accumulated in skeletal muscle with increasing age across Caenorhabditis elegans, mice, and humans. Inhibition of serine palmitoyltransferase (SPT), the rate-limiting enzyme of the ceramide de novo synthesis, by gene silencing or by treatment with myriocin restored proteostasis and mitochondrial function in human myoblasts, in C. elegans, and in the skeletal muscles of mice during aging. Restoration of these age-related processes improved health and life span in the nematode and muscle health and fitness in mice. Collectively, our data implicate pharmacological and genetic suppression of ceramide biosynthesis as potential therapeutic approaches to delay muscle aging and to manage related proteinopathies via mitochondrial and proteostasis remodeling.
Collapse
Affiliation(s)
- Tanes I Lima
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Pirkka-Pekka Laurila
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Martin Wohlwend
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Jean David Morel
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Ludger J E Goeminne
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Hao Li
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Mario Romani
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Dohyun Park
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Sandra Rodríguez-López
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne 1005, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne 1005, Switzerland
| | - Barbara Crisol
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Florence Delort
- Laboratoire Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS and Université Paris Cité, Paris 8251, France
| | - Sabrina Batonnet-Pichon
- Laboratoire Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS and Université Paris Cité, Paris 8251, France
| | - Leonardo R Silveira
- Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | | | - Anil K Padala
- Intonation Research Laboratories, Hyderabad 500076, India
| | - Suresh Jain
- Intonation Research Laboratories, Hyderabad 500076, India
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
16
|
Zhao Y, Ding Y, Peng Y, Wang Y, Han S, Zhu L, Huang SH, Hong R. Total Synthesis of Immunosuppressive Mycestericin E and G Enabled by a Highly Stereoselective Nitroso-Ene Cyclization. Org Lett 2023; 25:3497-3501. [PMID: 37154579 DOI: 10.1021/acs.orglett.3c01082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This report describes a streamlined synthesis of immunosuppressive mycestericin E and G through a highly stereoselective nitroso-ene cyclization in 11-12 steps using readily available materials. The stereochemical outcome in the formation of a Nα-quaternary stereogenic center is rationalized by a trajectory based on the polar diradical intermediate and subsequent hydrogen transfer. Julia olefination offers a facile chain elongation method that presents a viable strategy for structural derivatization in future medicinal applications.
Collapse
Affiliation(s)
- Yao Zhao
- School of Environmental and Chemical Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Yuzhen Ding
- Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yalan Peng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yang Wang
- School of Environmental and Chemical Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Shiqing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Lili Zhu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Sha-Hua Huang
- School of Environmental and Chemical Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Ran Hong
- Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| |
Collapse
|
17
|
Kihara Y, Chun J. Molecular and neuroimmune pharmacology of S1P receptor modulators and other disease-modifying therapies for multiple sclerosis. Pharmacol Ther 2023; 246:108432. [PMID: 37149155 DOI: 10.1016/j.pharmthera.2023.108432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Multiple sclerosis (MS) is a neurological, immune-mediated demyelinating disease that affects people in the prime of life. Environmental, infectious, and genetic factors have been implicated in its etiology, although a definitive cause has yet to be determined. Nevertheless, multiple disease-modifying therapies (DMTs: including interferons, glatiramer acetate, fumarates, cladribine, teriflunomide, fingolimod, siponimod, ozanimod, ponesimod, and monoclonal antibodies targeting ITGA4, CD20, and CD52) have been developed and approved for the treatment of MS. All the DMTs approved to date target immunomodulation as their mechanism of action (MOA); however, the direct effects of some DMTs on the central nervous system (CNS), particularly sphingosine 1-phosphate (S1P) receptor (S1PR) modulators, implicate a parallel MOA that may also reduce neurodegenerative sequelae. This review summarizes the currently approved DMTs for the treatment of MS and provides details and recent advances in the molecular pharmacology, immunopharmacology, and neuropharmacology of S1PR modulators, with a special focus on the CNS-oriented, astrocyte-centric MOA of fingolimod.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, United States of America.
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, United States of America
| |
Collapse
|
18
|
Zolghadri S, Beygi M, Mohammad TF, Alijanianzadeh M, Pillaiyar T, Garcia-Molina P, Garcia-Canovas F, Luis Munoz-Munoz J, Akbar Saboury A. Targeting Tyrosinase in Hyperpigmentation: Current Status, Limitations and Future Promises. Biochem Pharmacol 2023; 212:115574. [PMID: 37127249 DOI: 10.1016/j.bcp.2023.115574] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Hyperpigmentation is a common and distressing dermatologic condition. Since tyrosinase (TYR) plays an essential role in melanogenesis, its inhibition is considered a logical approach along with other therapeutic methods to prevent the accumulation of melanin in the skin. Thus, TYR inhibitors are a tempting target as the medicinal and cosmetic active agents of hyperpigmentation disorder. Among TYR inhibitors, hydroquinone is a traditional lightening agent that is commonly used in clinical practice. However, despite good efficacy, prolonged use of hydroquinone is associated with side effects. To overcome these shortcomings, new approaches in targeting TYR and treating hyperpigmentation are desperately requiredessentialneeded. In line with this purpose, several non-hydroquinone lightening agents have been developed and suggested as hydroquinone alternatives. In addition to traditional approaches, nanomedicine and nanotheranostic platforms have been recently proposed in the treatment of hyperpigmentation. In this review, we discuss the available strategies for the management of hyperpigmentation with a focus on TYR inhibition. In addition, alternative treatment options to hydroquinone are discussed. Finally, we present nano-based strategies to improve the therapeutic effect of drugs prescribed to patients with skin disorders.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran.
| | - Mohammad Beygi
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | - Mahdi Alijanianzadeh
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Pablo Garcia-Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Francisco Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Jose Luis Munoz-Munoz
- Microbial Enzymology Lab, Department of Applied Sciences, Ellison Building A, University of Northumbria, Newcastle Upon Tyne, UK
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
19
|
Wieczorek I, Strosznajder RP. Recent Insight into the Role of Sphingosine-1-Phosphate Lyase in Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076180. [PMID: 37047151 PMCID: PMC10093903 DOI: 10.3390/ijms24076180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
Sphingosine-1-phosphate lyase (SPL) is a pyridoxal 5'-phosphate-dependent enzyme involved in the irreversible degradation of sphingosine-1-phosphate (S1P)-a bioactive sphingolipid that modulates a broad range of biological processes (cell proliferation, migration, differentiation and survival; mitochondrial functioning; and gene expression). Although SPL activity leads to a decrease in the available pool of S1P in the cell, at the same time, hexadecenal and phosphoethanolamine, compounds with potential biological activity, are generated. The increased expression and/or activity of SPL, and hence the imbalance between S1P and the end products of its cleavage, were demonstrated in several pathological states. On the other hand, loss-of-function mutations in the SPL encoding gene are a cause of severe developmental impairments. Recently, special attention has been paid to neurodegenerative diseases as the most common pathologies of the nervous system. This review summarizes the current findings concerning the role of SPL in the nervous system with an emphasis on neurodegeneration. Moreover, it briefly discusses pharmacological compounds directed to inhibit its activity.
Collapse
Affiliation(s)
- Iga Wieczorek
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Robert Piotr Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
20
|
van Echten-Deckert G. The role of sphingosine 1-phosphate metabolism in brain health and disease. Pharmacol Ther 2023; 244:108381. [PMID: 36907249 DOI: 10.1016/j.pharmthera.2023.108381] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Lipids are essential structural and functional components of the central nervous system (CNS). Sphingolipids are ubiquitous membrane components which were discovered in the brain in the late 19th century. In mammals, the brain contains the highest concentration of sphingolipids in the body. Sphingosine 1-phosphate (S1P) derived from membrane sphingolipids evokes multiple cellular responses which, depending on its concentration and localization, make S1P a double-edged sword in the brain. In the present review we highlight the role of S1P in brain development and focus on the often contrasting findings regarding its contributions to the initiation, progression and potential recovery of different brain pathologies, including neurodegeneration, multiple sclerosis (MS), brain cancers, and psychiatric illnesses. A detailed understanding of the critical implications of S1P in brain health and disease may open the door for new therapeutic options. Thus, targeting S1P-metabolizing enzymes and/or signaling pathways might help overcome, or at least ameliorate, several brain illnesses.
Collapse
|
21
|
Compound combinations targeting longevity: Challenges and perspectives. Ageing Res Rev 2023; 85:101851. [PMID: 36642188 DOI: 10.1016/j.arr.2023.101851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/05/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Aging is one of the world's greatest concerns, requiring urgent, effective, large-scale interventions to decrease the number of late-life chronic diseases and improve human healthspan. Anti-aging drug therapy is one of the most promising strategies to combat the effects of aging. However, most geroprotective compounds are known to successfully affect only a few aging-related targets. Given this, there is a great biological rationale for the use of combinations of anti-aging interventions. In this review, we characterize the various types of compound combinations used to modulate lifespan, discuss the existing evidence on their role in life extension, and present some key points about current challenges and future prospects for the development of combination drug anti-aging therapy.
Collapse
|
22
|
Zhang J, Chen J, Xu J, Xue C, Mao Z. Plant-derived compounds for treating autosomal dominant polycystic kidney disease. FRONTIERS IN NEPHROLOGY 2023; 3:1071441. [PMID: 37675342 PMCID: PMC10479581 DOI: 10.3389/fneph.2023.1071441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/12/2023] [Indexed: 09/08/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), the most common monogenic hereditary kidney disease, is the fourth leading cause of end-stage kidney disease worldwide. In recent years, significant progress has been made in delaying ADPKD progression with different kinds of chemical drugs, such as tolvaptan, rapamycin, and somatostatin. Meanwhile, numerous plant-derived compounds have been investigated for their beneficial effects on slowing ADPKD progression. Among them, saikosaponin-d, Ganoderma triterpenes, curcumin, ginkgolide B, steviol, resveratrol, Sparganum stoloniferum Buch.-Ham, Cordyceps sinensis, triptolide, quercitrin, naringin, cardamonin, gambogic acid, and olive leaf extract have been found to retard renal cyst development by inhibiting cell proliferation or promoting cell apoptosis in renal cyst-lining epithelial cells. Metformin, a synthesized compound derived from French lilac or goat's rue (Galega officinalis), has been proven to retard the progression of ADPKD. This review focuses on the roles and mechanisms of plant-derived compounds in treating ADPKD, which may constitute promising new therapeutics in the future.
Collapse
Affiliation(s)
- Jieting Zhang
- School of Medicine, Shanghai University, Shanghai, China
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jiaxin Chen
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jing Xu
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Cheng Xue
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhiguo Mao
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
23
|
Hepowit NL, Blalock E, Lee S, Bretland KM, MacGurn JA, Dickson RC. Reduced sphingolipid biosynthesis modulates proteostasis networks to enhance longevity. Aging (Albany NY) 2023; 15:472-491. [PMID: 36640272 PMCID: PMC9925692 DOI: 10.18632/aging.204485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
As the elderly population increases, chronic, age-associated diseases are challenging healthcare systems around the world. Nutrient limitation is well known to slow the aging process and improve health. Regrettably, practicing nutrient restriction to improve health is unachievable for most people. Alternatively, pharmacological strategies are being pursued including myriocin which increases lifespan in budding yeast. Myriocin impairs sphingolipid synthesis, resulting in lowered amino acid pools which promote entry into a quiescent, long-lived state. Here we present transcriptomic data during the first 6 hours of drug treatment that improves our mechanistic understanding of the cellular response to myriocin and reveals a new role for ubiquitin in longevity. Previously we found that the methionine transporter Mup1 traffics to the plasma membrane normally in myriocin-treated cells but is not active and undergoes endocytic clearance. We now show that UBI4, a gene encoding stressed-induced ubiquitin, is vital for myriocin-enhanced lifespan. Furthermore, we show that Mup1 fused to a deubiquitinase domain impairs myriocin-enhanced longevity. Broader effects of myriocin treatment on ubiquitination are indicated by our finding of a significant increase in K63-linked ubiquitin polymers following myriocin treatment. Although proteostasis is broadly accepted as a pillar of aging, our finding that ubiquitination of an amino acid transporter promotes longevity in myriocin-treated cells is novel. Addressing the role of ubiquitination/deubiquitination in longevity has the potential to reveal new strategies and targets for promoting healthy aging.
Collapse
Affiliation(s)
- Nathaniel L. Hepowit
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Eric Blalock
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, KY 40536, USA
| | - Sangderk Lee
- College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Kimberly M. Bretland
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, KY 40536, USA
| | - Jason A. MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Robert C. Dickson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
24
|
Song L, Shrivastava N, Gai Y, Li D, Cai W, Shen Y, Lin FC, Liu J, Wang H. Role of the blue light receptor gene Icwc-1 in mycelium growth and fruiting body formation of Isaria cicadae. Front Microbiol 2023; 13:1038034. [PMID: 36704565 PMCID: PMC9871644 DOI: 10.3389/fmicb.2022.1038034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
The Isaria cicadae, is well known highly prized medicinal mushroom with great demand in food and pharmaceutical industry. Due to its economic value and therapeutic uses, natural sources of wild I. cicadae are over-exploited and reducing continuously. Therefore, commercial cultivation in controlled environment is an utmost requirement to fulfill the consumer's demand. Due to the lack of knowledge on fruiting body (synnemata) development and regulation, commercial cultivation is currently in a difficult situation. In the growth cycle of macrofungi, such as mushrooms, light is the main factor affecting growth and development, but so far, specific effects of light on the growth and development of I. cicadae is unknown. In this study, we identified a blue light receptor white-collar-1 (Icwc-1) gene homologue with well-defined functions in morphological development in I. cicadae based on gene knockout technology and transcriptomic analysis. It was found that the Icwc-1 gene significantly affected hyphal growth and fruiting body development. This study confirms that Icwc-1 acts as an upstream regulatory gene that regulates genes associated with fruiting body formation, pigment-forming genes, and related genes for enzyme synthesis. Transcriptome data analysis also found that Icwc-1 affects many important metabolic pathways of I. cicadae, i.e., amino acid metabolism and fatty acid metabolism. The above findings will not only provide a comprehensive understanding about the molecular mechanism of light regulation in I. cicadae, but also provide new insights for future breeding program and improving this functional food production.
Collapse
Affiliation(s)
- Linhao Song
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China,Shanxi Key Laboratory of Edible Fungi for Loess Plateau, College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Neeraj Shrivastava
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China,Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
| | - Yunpeng Gai
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Dong Li
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Weiming Cai
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingyue Shen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jingyu Liu
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China,*Correspondence: Jingyu Liu, ; Hongkai Wang,
| | - Hongkai Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China,*Correspondence: Jingyu Liu, ; Hongkai Wang,
| |
Collapse
|
25
|
Kato H. [The First 5-year Integrated Doctoral Program Exploring the Frontiers of Pharmaceutical Sciences]. YAKUGAKU ZASSHI 2023; 143:827-834. [PMID: 37779012 DOI: 10.1248/yakushi.23-00083-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
To empower the next generation of students to become leaders that play active roles in various fields in society, research universities must offer attractive and meaningful doctor of philosophy (PhD) programs in their graduate schools. The Graduate School of Pharmaceutical Sciences, at Kyoto University has trained a large number of researchers who are leading drug discovery science and clinical pharmacy in academia as well as in the pharmaceutical industry, in medical organization and in government. However, due to changes in the trends of students and the evolving skill requirements of future PhD holders to handle the challenges of a changing society, it is necessary to revise the curriculum of our graduate school. Thus, we will reform the graduate and undergraduate school programs by implementing a so-called late specialization program and a double mentoring system and aim to nurture emergent researchers who will explore uncharted areas in pharmaceutical sciences. Toward this goal, we established the Division of Medical Frontier Sciences in April 2022 to replace the former Division of Bioinformatics and Chemical Genomics. This program is Japan's first five-year integrated doctoral course in the field of pharmaceutical sciences. In this review, I will introduce the background leading to its development construction and provide an overview of the characteristics of this five-year integrated doctoral program.
Collapse
Affiliation(s)
- Hiroaki Kato
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
26
|
Mapook A, Hyde KD, Hassan K, Kemkuignou BM, Čmoková A, Surup F, Kuhnert E, Paomephan P, Cheng T, de Hoog S, Song Y, Jayawardena RS, Al-Hatmi AMS, Mahmoudi T, Ponts N, Studt-Reinhold L, Richard-Forget F, Chethana KWT, Harishchandra DL, Mortimer PE, Li H, Lumyong S, Aiduang W, Kumla J, Suwannarach N, Bhunjun CS, Yu FM, Zhao Q, Schaefer D, Stadler M. Ten decadal advances in fungal biology leading towards human well-being. FUNGAL DIVERS 2022; 116:547-614. [PMID: 36123995 PMCID: PMC9476466 DOI: 10.1007/s13225-022-00510-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
Abstract
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
Collapse
Affiliation(s)
- Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 China
| | - Khadija Hassan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Blondelle Matio Kemkuignou
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Adéla Čmoková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| | - Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Pathompong Paomephan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Tian Cheng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
- Microbiology, Parasitology and Pathology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), 33882 Villenave d’Ornon, France
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | | | - K. W. Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dulanjalee L. Harishchandra
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Huili Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Saisamorm Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300 Thailand
| | - Worawoot Aiduang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Feng-Ming Yu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Qi Zhao
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Doug Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| |
Collapse
|
27
|
Cheawchanlertfa P, Chitcharoen S, Raethong N, Liu Q, Chumnanpuen P, Soommat P, Song Y, Koffas M, Laoteng K, Vongsangnak W. Enhancing Genome-Scale Model by Integrative Exometabolome and Transcriptome: Unveiling Carbon Assimilation towards Sphingolipid Biosynthetic Capability of Cordyceps militaris. J Fungi (Basel) 2022; 8:887. [PMID: 36012875 PMCID: PMC9409897 DOI: 10.3390/jof8080887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Cordyceps militaris is an industrially important fungus, which is often used in Asia as traditional medicine. There has been a published genome-scale metabolic model (GSMM) of C. militaris useful for predicting its growth behaviors; however, lipid metabolism, which plays a vital role in cellular functions, remains incomplete in the GSMM of C. militaris. A comprehensive study on C. militaris was thus performed by enhancing GSMM through integrative analysis of metabolic footprint and transcriptome data. Through the enhanced GSMM of C. militaris (called iPC1469), it contained 1469 genes, 1904 metabolic reactions and 1229 metabolites. After model evaluation, in silico growth simulation results agreed well with the experimental data of the fungal growths on different carbon sources. Beyond the model-driven integrative data analysis, interestingly, we found key metabolic responses in alteration of lipid metabolism in C. militaris upon different carbon sources. The sphingoid bases (e.g., sphinganine, sphingosine, and phytosphingosine) and ceramide were statistically significant accumulated in the xylose culture when compared with other cultures; this study suggests that the sphingolipid biosynthetic capability in C. militaris was dependent on the carbon source assimilated for cell growth; this finding provides a comprehensive basis for the sphingolipid biosynthesis in C. militaris that can help to further redesign its metabolic control for medicinal and functional food applications.
Collapse
Affiliation(s)
| | - Suwalak Chitcharoen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nachon Raethong
- Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo 255000, China
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Panyawarin Soommat
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand
| | - Yuanda Song
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo 255000, China
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kobkul Laoteng
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology BIOTEC, National Science and Technology Development Agency NSTDA, Pathum Thani 12120, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
28
|
Kim SB, Kim KJ, Shrestha J, Oh YS, Lee JY, Lee S, Park EY, Baek DJ. Synthesis and Cytotoxic Activity of Fingolimod (FTY720) Analogs with Various Amide Head Groups. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Galleria mellonella as a Novel In Vivo Model to Screen Natural Product-Derived Modulators of Innate Immunity. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136587] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunomodulators are drugs that either stimulate or suppress the immune system in response to an immunopathological disease or cancer. The majority of clinically approved immunomodulators are either chemically synthesised (e.g., dexamethasone) or protein-based (e.g., monoclonal antibodies), whose uses are limited due to toxicity issues, poor bioavailability, or prohibitive cost. Nature is an excellent source of novel compounds, as it is estimated that almost half of all licenced medicines are derived from nature or inspired by natural product (NP) structures. The clinical success of the fungal-derived immunosuppressant cyclosporin A demonstrates the potential of natural products as immunomodulators. Conventionally, the screening of NP molecules for immunomodulation is performed in small animal models; however, there is a growing impetus to replace animal models with more ethical alternatives. One novel approach is the use of Galleria melonella larvae as an in vivo model of immunity. Despite lacking adaptive antigen-specific immunity, this insect possesses an innate immune system comparable to mammals. In this review, we will describe studies that have used this alternative in vivo model to assess the immunomodulating activity of synthetic and NP-derived compounds, outline the array of bioassays employed, and suggest strategies to enhance the use of this model in future research.
Collapse
|
30
|
Wu R, Jia Q, Li X, Ma Y, Zhang J, Li Y, Zhang S. Preparation of the sphingolipid fraction from mycelia of Cordyceps sinensis and its immunosuppressive activity. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115126. [PMID: 35189280 DOI: 10.1016/j.jep.2022.115126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/24/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cordyceps sinensis (CS) is an herbal tonic in traditional Chinese medicine and is used to treat a wide range of disorders, including immune, kidney, respiratory, lung and cardiovascular diseases, in China. Most studies are focused mainly on nucleotides and polysaccharides from CS and consider them to be the main active ingredients, while other ingredients are often disregarded. Hundreds of sphingolipids have been identified from CS and showed inhibitory effects on mouse splenic lymphocytes. AIM OF THE STUDY This study aimed to establish a method for preparing a fraction of sphingolipids from the mycelial powder of CS and evaluate its immunosuppressive activity. MATERIALS AND METHODS Fraction of sphingolipids (Fr-SPLs) were prepared by silica gel chromatography and reversed-phase chromatography. Its components were identified and quantified by Quadrupole-Orbitrap UHPLC-MS/MS. PBMCs were prepared from human blood, and splenic lymphocytes, B cells, and T cells were prepared from mouse spleens. The inhibitory effect of Fr-SPLs on cell viability was evaluated by CCK-8 assay. PBMC apoptosis and the ratio of CD4+ T cells and CD8+ T cells were quantified by flow cytometry analysis. The expression of IL-2, IL-10, and TNF-α in PBMCs was detected by ELISA kits. RESULTS A fraction containing 84.83% of sphingolipids (SPLs) was prepared from the mycelia of CS and named Fr-SPLs. 15 SPLs were identified from the Fr-SPLs. Fr-SPLs significantly inhibited the viability of human peripheral blood mononuclear cells (PBMCs) with an IC50 value of 9.82 μg/mL and promoted PBMC apoptosis in a dose-dependent manner. Moreover, Fr-SPLs inhibited the viability of mouse splenocytes, as well as that of B cells and T cells derived from splenocytes. Furthermore, Fr-SPLs reduced the production of IL-2, IL-10, and TNF-α in PBMCs. CONCLUSIONS Fr-SPLs show immunosuppressive activity, and this study will be useful for preparing immunosuppressive components from CS and its mycelia for hyperimmune disease.
Collapse
Affiliation(s)
- Rumeng Wu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China; Medical College of Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China.
| | - Qiangqiang Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China.
| | - Xiuzhang Li
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, 1# Weier Road, Xining, 810016, Qinghai, China.
| | - Yufeng Ma
- Medical College of Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China.
| | - Jie Zhang
- Medical College of Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China.
| | - Yuling Li
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, 1# Weier Road, Xining, 810016, Qinghai, China.
| | - Shoude Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China; Medical College of Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China.
| |
Collapse
|
31
|
Nakano S, Mikami N, Miyawaki M, Yamasaki S, Miyamoto S, Yamada M, Temma T, Nishi Y, Nagaike A, Sakae S, Furusawa T, Kawakami R, Tsuji T, Kohno T, Yoshida Y. Therapeutic strategy for rheumatoid arthritis by induction of myeloid-derived suppressor cells with high suppressive potential. Biol Pharm Bull 2022; 45:1053-1060. [PMID: 35613869 DOI: 10.1248/bpb.b21-01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Combination treatment using fingolimod (FTY720), an immunomodulator, and a pathogenic antigen prevents the progression of glucose-6-phosphate isomerase (GPI)325-339-induced arthritis. In this study, we focused on myeloid-derived suppressor cells (MDSCs; CD11b+Gr-1+ cells) and investigated the effects of the combination treatment on these cells. DBA/1J mice with GPI325-339-induced arthritis were treated using FTY720 and/or GPI325-339 for five days. The expanded CD11b+Gr-1+ cell population and its inhibitory potential were examined. The percentage of CD369+CD11b+Gr-1+ cells effectively increased in the combination-treated mice. The inhibitory potential of CD369+CD11b+Gr-1+ cells was higher than that of cells not expressing CD369. Among bone marrow cells, the expression of CD369 in CD11b+Gr-1+ cells increased following stimulation with granulocyte-macrophage colony-stimulating factor, and the expression of CD11c increased accordingly. The increased CD11c expression indicated a decrease in the potential to suppress T cell proliferation based on the results of the suppression assay. The percentage of CD11c-CD369+ cells in CD11b+Gr-1+ cells that were induced by the combination treatment also increased, and these cells tended to have a higher capacity to inhibit T cell proliferation. In conclusion, the combination treatment using FTY720 and the pathogenic antigen effectively induces MDSC, which demonstrates a high potential for suppressing T cell proliferation in the lymph nodes, thereby establishing an immune-tolerant state.
Collapse
Affiliation(s)
- Shohei Nakano
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Norihisa Mikami
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University.,Department of Experimental Pathology, Institute for Frontier Life and Medical Sciences, Kyoto University
| | - Mai Miyawaki
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Saho Yamasaki
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Shoko Miyamoto
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Mayu Yamada
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Tomoya Temma
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Yousuke Nishi
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Arata Nagaike
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Seijun Sakae
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Takuya Furusawa
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Ryoji Kawakami
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University.,Department of Experimental Pathology, Institute for Frontier Life and Medical Sciences, Kyoto University
| | - Takumi Tsuji
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Takeyuki Kohno
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Yuya Yoshida
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| |
Collapse
|
32
|
Saurin S, Meineck M, Erkel G, Opatz T, Weinmann-Menke J, Pautz A. Drug Candidates for Autoimmune Diseases. Pharmaceuticals (Basel) 2022; 15:503. [PMID: 35631330 PMCID: PMC9143092 DOI: 10.3390/ph15050503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
Most of the immunosuppressive drugs used in the clinic to prevent organ rejection or to treat autoimmune disorders were originally isolated from fungi or bacteria. Therefore, in addition to plants, these are valuable sources for identification of new potent drugs. Many side effects of established drugs limit their usage and make the identification of new immunosuppressants necessary. In this review, we present a comprehensive overview of natural products with potent anti-inflammatory activities that have been tested successfully in different models of chronic inflammatory autoimmune diseases. Some of these candidates already have passed first clinical trials. The anti-inflammatory potency of these natural products was often comparable to those of established drugs, and they could be used at least in addition to standard therapy to reduce their dose to minimize unwanted side effects. A frequent mode of action is the inhibition of classical inflammatory signaling pathways, such as NF-κB, in combination with downregulation of oxidative stress. A drawback for the therapeutic use of those natural products is their moderate bioavailability, which can be optimized by chemical modifications and, in addition, further safety studies are necessary. Altogether, very interesting candidate compounds exist which have the potential to serve as starting points for the development of new immunosuppressive drugs.
Collapse
Affiliation(s)
- Sabrina Saurin
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Myriam Meineck
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Gerhard Erkel
- Department of Molecular Biotechnology and Systems Biology, Technical University, 67663 Kaiserslautern, Germany;
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, 55099 Mainz, Germany;
| | - Julia Weinmann-Menke
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
33
|
Worgall TS. Sphingolipids and Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:145-155. [DOI: 10.1007/978-981-19-0394-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Chatzikonstantinou S, Poulidou V, Arnaoutoglou M, Kazis D, Heliopoulos I, Grigoriadis N, Boziki M. Signaling through the S1P-S1PR Axis in the Gut, the Immune and the Central Nervous System in Multiple Sclerosis: Implication for Pathogenesis and Treatment. Cells 2021; 10:cells10113217. [PMID: 34831439 PMCID: PMC8626013 DOI: 10.3390/cells10113217] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 01/14/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a signaling molecule with complex biological functions that are exerted through the activation of sphingosine 1-phosphate receptors 1–5 (S1PR1–5). S1PR expression is necessary for cell proliferation, angiogenesis, neurogenesis and, importantly, for the egress of lymphocytes from secondary lymphoid organs. Since the inflammatory process is a key element of immune-mediated diseases, including multiple sclerosis (MS), S1PR modulators are currently used to ameliorate systemic immune responses. The ubiquitous expression of S1PRs by immune, intestinal and neural cells has significant implications for the regulation of the gut–brain axis. The dysfunction of this bidirectional communication system may be a significant factor contributing to MS pathogenesis, since an impaired intestinal barrier could lead to interaction between immune cells and microbiota with a potential to initiate abnormal local and systemic immune responses towards the central nervous system (CNS). It appears that the secondary mechanisms of S1PR modulators affecting the gut immune system, the intestinal barrier and directly the CNS, are coordinated to promote therapeutic effects. The scope of this review is to focus on S1P−S1PR functions in the cells of the CNS, the gut and the immune system with particular emphasis on the immunologic effects of S1PR modulation and its implication in MS.
Collapse
Affiliation(s)
- Simela Chatzikonstantinou
- 3rd Department of Neurology, Aristotle University of Thessaloniki, “G.Papanikolaou” Hospital, Leoforos Papanikolaou, Exohi, 57010 Thessaloniki, Greece; (S.C.); (D.K.)
| | - Vasiliki Poulidou
- 1st Department of Neurology, Aristotle University of Thessaloniki, AHEPA Hospital, 1, Stilp Kyriakidi st., 54636 Thessaloniki, Greece; (V.P.); (M.A.)
| | - Marianthi Arnaoutoglou
- 1st Department of Neurology, Aristotle University of Thessaloniki, AHEPA Hospital, 1, Stilp Kyriakidi st., 54636 Thessaloniki, Greece; (V.P.); (M.A.)
| | - Dimitrios Kazis
- 3rd Department of Neurology, Aristotle University of Thessaloniki, “G.Papanikolaou” Hospital, Leoforos Papanikolaou, Exohi, 57010 Thessaloniki, Greece; (S.C.); (D.K.)
| | - Ioannis Heliopoulos
- Department of Neurology, University General Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupoli, Greece;
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center, Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, Aristotle University of Thessaloniki, AHEPA Hospital, 1, Stilp Kyriakidi st., 54636 Thessaloniki, Greece;
| | - Marina Boziki
- Multiple Sclerosis Center, Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, Aristotle University of Thessaloniki, AHEPA Hospital, 1, Stilp Kyriakidi st., 54636 Thessaloniki, Greece;
- Correspondence:
| |
Collapse
|
35
|
Differential Expression of the Sphingolipid Pathway Is Associated with Sensitivity to the PP2A Activator FTY720 in Colorectal Cancer Cell Lines. J Clin Med 2021; 10:jcm10214999. [PMID: 34768523 PMCID: PMC8584763 DOI: 10.3390/jcm10214999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitously expressed intracellular serine/threonine phosphatase. Deregulation of PP2A is a common event associated with adenocarcinomas of the colon and rectum. We have previously shown that breast cancer cell lines are sensitive to the PP2A activator FTY720, and that sensitivity is predicted by high Aurora kinase A (AURKA) mRNA expression. In this study, we hypothesized that high relative AURKA expression could predict sensitivity to FTY720-induced apoptosis in colorectal cancer (CRC). The CRC cell lines NCI H716, COLO320DM, DLD-1, SW480, and HT-29 show a high relative AURKA expression as compared to LS411N, T84, HCT116, SW48, and LOVO. Following viability assays, LS411N, T84, HCT116, and SW480 were shown to be sensitive to FTY720, whereas DLD-1 and HT-29 were non-sensitive. Hence, AURKA mRNA expression does not predict sensitivity to FTY720 in CRC cell lines. Differentially expressed genes (DEGs) were obtained by comparing the sensitive CRC cell lines (LS411N and HCT116) against the non-sensitive (HT-29 and DLD-1). We found that 253 genes were significantly altered in expression, and upregulation of CERS4, PPP2R2C, GNAZ, PRKCG, BCL2, MAPK12, and MAPK11 suggests the involvement of the sphingolipid signaling pathway, known to be activated by phosphorylated-FTY720. In conclusion, although AURKA expression did not predict sensitivity to FTY720, it is evident that specific CRC cell lines are sensitive to 5 µM FTY720, potentially because of the differential expression of genes involved in the sphingolipid pathway.
Collapse
|
36
|
Monasterio BG, Jiménez-Rojo N, García-Arribas AB, Riezman H, Goñi FM, Alonso A. CHO/LY-B cell growth under limiting sphingolipid supply: Correlation between lipid composition and biophysical properties of sphingolipid-restricted cell membranes. FASEB J 2021; 35:e21657. [PMID: 34010474 DOI: 10.1096/fj.202001879rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 11/11/2022]
Abstract
Sphingolipids (SL) are ubiquitous in mammalian cell membranes, yet there is little data on the behavior of cells under SL-restriction conditions. LY-B cells derive from a CHO linein whichserine palmitoyl transferase (SPT), thus de novo SL synthesis, is suppressed, while maintaining the capacity of taking up and metabolizing exogenous sphingoid bases from the culture medium. In this study, LY-B cells were adapted to grow in a fetal bovine serum (FBS)-deficient medium to avoid external uptake of lipids. The lowest FBS concentration that allowed LY-B cell growth, though at a slow rate, under our conditions was 0.04%, that is, 250-fold less than the standard (10%) concentration. Cells grown under limiting SL concentrations remained viable for at least 72 hours. Enriching with sphingomyelin the SL-deficient medium allowed the recovery of growth rates analogous to those of control LY-B cells. Studies including whole cells, plasma membrane preparations, and derived lipid vesicles were carried out. Laurdan fluorescence was recorded to measure membrane molecular order, showing a significant decrease in the rigidity of LY-B cells, not only in plasma membrane but also in whole cell lipid extract, as a result of SL limitation in the growth medium. Plasma membrane preparations and whole cell lipid extracts were also studied using atomic force microscopy in the force spectroscopy mode. Force measurements demonstrated that lower breakthrough forces were required to penetrate samples obtained from SL-poor LY-B cells than those obtained from control cells. Mass-spectroscopic analysis was also a helpful tool to understand the rearrangement undergone by the LY-B cell lipid metabolism. The most abundant SL in LY-B cells, sphingomyelin, decreased by about 85% as a result of SL limitation in the medium, the bioactive lipid ceramide and the ganglioside precursor hexosylceramide decreased similarly, together with cholesterol. Quantitative SL analysis showed that a 250-fold reduction in sphingolipid supply to LY-B cells led only to a sixfold decrease in membrane sphingolipids, underlining the resistance to changes in composition of these cells. Plasma membrane compositions exhibited similar changes, at least qualitatively, as the whole cells with SL restriction. A linear correlation was observed between the sphingomyelin concentration in the membranes, the degree of lipid order as measured by laurdan fluorescence, and membrane breakthrough forces assessed by atomic force microscopy. Smaller, though significant, changes were also detected in glycerophospholipids under SL-restriction conditions.
Collapse
Affiliation(s)
- Bingen G Monasterio
- Instituto Biofisika (CSIC, UPV/EHU), Universidad del País Vasco, Leioa, Spain.,Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain
| | - Noemi Jiménez-Rojo
- NCCR Chemical Biology, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Aritz B García-Arribas
- Instituto Biofisika (CSIC, UPV/EHU), Universidad del País Vasco, Leioa, Spain.,Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain
| | - Howard Riezman
- NCCR Chemical Biology, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Félix M Goñi
- Instituto Biofisika (CSIC, UPV/EHU), Universidad del País Vasco, Leioa, Spain.,Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU), Universidad del País Vasco, Leioa, Spain.,Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain
| |
Collapse
|
37
|
Inuki S, Ohno H. Total Syntheses of Myriocin, Mycestericins and Sphingofungin E: Sphingosine Analogues Containing a β, β′-Dihydroxy α-Amino Acid Framework. CHEM LETT 2021. [DOI: 10.1246/cl.210133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
38
|
Kobayashi K, Sasase T, Ishii Y, Katsuda Y, Miyajima K, Yamada T, Ohta T. The sphingosine-1-phosphate receptor modulator, FTY720, prevents the incidence of diabetes in Spontaneously Diabetic Torii rats. Clin Exp Pharmacol Physiol 2021; 48:869-876. [PMID: 32920892 DOI: 10.1111/1440-1681.13405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/14/2020] [Accepted: 08/29/2020] [Indexed: 01/09/2023]
Abstract
The sphingosine-1-phosphate (S1P) receptor modulator regulates lymphocyte trafficking, resulting in its depletion from circulation, which ultimately causes immunosuppression. In this study, we investigated the preventive effect of fingolimod (FTY720) in the non-obese type 2 diabetic model, Spontaneously Diabetic Torii (SDT) rats. The S1P receptor modulator, FTY720 (0.3 mg/kg p.o.), was administered for 12 weeks to SDT rats from 5 to 17 weeks of age. Based on our findings, FTY720 could suppress the incidence of diabetes in SDT rats. Further, glucose intolerance was improved in FTY720-treated SDT rats at 14 weeks of age. Based on the haematological and histological analyses performed at 17 to 18 weeks of age, a decrease in lymphocytes and monocytes in the peripheral blood and a decrease in lymphocyte and atrophy in spleen occurred in the FTY720-treated SDT rats. Furthermore, the pancreatic changes, such as inflammation, atrophy, and fibrosis in islets observed in SDT rats were improved by FTY720 treatment. These findings suggest that the immunomodulatory effects of FTY720 reduced the pancreatic lesion in SDT rats, thereby demonstrating its preventive effect against diabetes. The development of diabetes in SDT rats is related to disorders of the immune system. However, the S1P receptor modulator may be useful for treating type 2 diabetes.
Collapse
Affiliation(s)
- Kazuma Kobayashi
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco Inc, Osaka, Japan
- Laboratory of Animal Genetics, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Tomohiko Sasase
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco Inc, Osaka, Japan
| | - Yukihito Ishii
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco Inc, Osaka, Japan
| | - Yoshiaki Katsuda
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco Inc, Osaka, Japan
| | - Katsuhiro Miyajima
- Department of Nutritional Science and Food Safety Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Takahisa Yamada
- Laboratory of Animal Genetics, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Takeshi Ohta
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
39
|
Liu Y, Yang CL, Yang B, Du T, Li XL, Zhang P, Ge MR, Lian Y, Li H, Liu YD, Duan RS. Prophylactic administration of fingolimod (FTY720) ameliorated experimental autoimmune myasthenia gravis by reducing the number of dendritic cells, follicular T helper cells and antibody-secreting cells. Int Immunopharmacol 2021; 96:107511. [PMID: 33915521 DOI: 10.1016/j.intimp.2021.107511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 11/28/2022]
Abstract
Fingolimod (FTY720), a sphingosine 1-phosphate (S1P) receptor antagonist, possesses potent immunomodulatory activity via lymphocyte homing. The effects of FTY720 have been widely studied in various T-cell-mediated autoimmune diseases, while the immunomodulatory effects on experimental autoimmune myasthenia gravis (EAMG), a typical disease model for antibody-mediated autoimmunity, remain elusive. In the present study, FTY720 was administered to EAMG rats as prophylaxis. The clinical scores were recorded every other day, and serum antibodies at different time points were measured by enzyme-linked immunosorbent assay (ELISA). The immune cell subsets in the spleen, bone marrow, circulation, and thymus were determined by flow cytometry. The prophylactic administration alleviated EAMG symptoms by reducing the level of serum antibodies IgG and its isotype IgG2b on days 30 and 46 post immunization, as well as IgG and Ig kappa antibody-secreting cells in the spleen and bone marrow. The mitigated humoral immune response can be attributed to the decreased dendritic cells, follicular T help cells (Tfh) and Tfh subsets (Tfh1, Tfh2, and Tfh17), and T helper cell subsets (Th1, Th2, and Th17) in the spleen. The promotion of lymphocyte homing and inhibition of thymocyte egress contribute to the effects of FTY720 on these effector T cell subsets. Overall, the prophylactic administration of FTY720 ameliorated EAMG partially by regulating humoral immune response,suggesting that FTY720 could be part of a pharmacological strategy for managing myasthenia gravis.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China; Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, China.
| | - Chun-Lin Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Bing Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Tong Du
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Xiao-Li Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Meng-Ru Ge
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, China.
| | - Ying Lian
- Department of Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Heng Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Yu-Dong Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Rui-Sheng Duan
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China; Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, China; Shandong Institute of Neuroimmunology, China.
| |
Collapse
|
40
|
Targeting S1PRs as a Therapeutic Strategy for Inflammatory Bone Loss Diseases-Beyond Regulating S1P Signaling. Int J Mol Sci 2021; 22:ijms22094411. [PMID: 33922596 PMCID: PMC8122917 DOI: 10.3390/ijms22094411] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023] Open
Abstract
As G protein coupled receptors, sphingosine-1-phosphate receptors (S1PRs) have recently gained attention for their role in modulating inflammatory bone loss diseases. Notably, in murine studies inhibiting S1PR2 by its specific inhibitor, JTE013, alleviated osteoporosis induced by RANKL and attenuated periodontal alveolar bone loss induced by oral bacterial inflammation. Treatment with a multiple S1PRs modulator, FTY720, also suppressed ovariectomy-induced osteoporosis, collagen or adjuvant-induced arthritis, and apical periodontitis in mice. However, most previous studies and reviews have focused mainly on how S1PRs manipulate S1P signaling pathways, subsequently affecting various diseases. In this review, we summarize the underlying mechanisms associated with JTE013 and FTY720 in modulating inflammatory cytokine release, cell chemotaxis, and osteoclastogenesis, subsequently influencing inflammatory bone loss diseases. Studies from our group and from other labs indicate that S1PRs not only control S1P signaling, they also regulate signaling pathways induced by other stimuli, including bacteria, lipopolysaccharide (LPS), bile acid, receptor activator of nuclear factor κB ligand (RANKL), IL-6, and vitamin D. JTE013 and FTY720 alleviate inflammatory bone loss by decreasing the production of inflammatory cytokines and chemokines, reducing chemotaxis of inflammatory cells from blood circulation to bone and soft tissues, and suppressing RANKL-induced osteoclast formation.
Collapse
|
41
|
Hepowit NL, Macedo JKA, Young LEA, Liu K, Sun RC, MacGurn JA, Dickson RC. Enhancing lifespan of budding yeast by pharmacological lowering of amino acid pools. Aging (Albany NY) 2021; 13:7846-7871. [PMID: 33744865 PMCID: PMC8034917 DOI: 10.18632/aging.202849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/21/2021] [Indexed: 04/20/2023]
Abstract
The increasing prevalence of age-related diseases and resulting healthcare insecurity and emotional burden require novel treatment approaches. Several promising strategies seek to limit nutrients and promote healthy aging. Unfortunately, the human desire to consume food means this strategy is not practical for most people but pharmacological approaches might be a viable alternative. We previously showed that myriocin, which impairs sphingolipid synthesis, increases lifespan in Saccharomyces cerevisiae by modulating signaling pathways including the target of rapamycin complex 1 (TORC1). Since TORC1 senses cellular amino acids, we analyzed amino acid pools and identified 17 that are lowered by myriocin treatment. Studying the methionine transporter, Mup1, we found that newly synthesized Mup1 traffics to the plasma membrane and is stable for several hours but is inactive in drug-treated cells. Activity can be restored by adding phytosphingosine to culture medium thereby bypassing drug inhibition, thus confirming a sphingolipid requirement for Mup1 activity. Importantly, genetic analysis of myriocin-induced longevity revealed a requirement for the Gtr1/2 (mammalian Rags) and Vps34-Pib2 amino acid sensing pathways upstream of TORC1, consistent with a mechanism of action involving decreased amino acid availability. These studies demonstrate the feasibility of pharmacologically inducing a state resembling amino acid restriction to promote healthy aging.
Collapse
Affiliation(s)
- Nathaniel L. Hepowit
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Jessica K. A. Macedo
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Lyndsay E. A. Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Ke Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan University, Chengdu 610000, Sichuan, P. R. China
| | - Ramon C. Sun
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Jason A. MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Robert C. Dickson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
42
|
Chen J, Li Z, Cheng Y, Gao C, Guo L, Wang T, Xu J. Sphinganine-Analog Mycotoxins (SAMs): Chemical Structures, Bioactivities, and Genetic Controls. J Fungi (Basel) 2020; 6:E312. [PMID: 33255427 PMCID: PMC7711896 DOI: 10.3390/jof6040312] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022] Open
Abstract
Sphinganine-analog mycotoxins (SAMs) including fumonisins and A. alternata f. sp. Lycopersici (AAL) toxins are a group of related mycotoxins produced by plant pathogenic fungi in the Fusarium genus and in Alternaria alternata f. sp. Lycopersici, respectively. SAMs have shown diverse cytotoxicity and phytotoxicity, causing adverse impacts on plants, animals, and humans, and are a destructive force to crop production worldwide. This review summarizes the structural diversity of SAMs and encapsulates the relationships between their structures and biological activities. The toxicity of SAMs on plants and animals is mainly attributed to their inhibitory activity against the ceramide biosynthesis enzyme, influencing the sphingolipid metabolism and causing programmed cell death. We also reviewed the detoxification methods against SAMs and how plants develop resistance to SAMs. Genetic and evolutionary analyses revealed that the FUM (fumonisins biosynthetic) gene cluster was responsible for fumonisin biosynthesis in Fusarium spp. Sequence comparisons among species within the genus Fusarium suggested that mutations and multiple horizontal gene transfers involving the FUM gene cluster were responsible for the interspecific difference in fumonisin synthesis. We finish by describing methods for monitoring and quantifying SAMs in food and agricultural products.
Collapse
Affiliation(s)
- Jia Chen
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Zhimin Li
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Yi Cheng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Chunsheng Gao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Litao Guo
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Tuhong Wang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Jianping Xu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
43
|
Gilbert-Girard S, Savijoki K, Yli-Kauhaluoma J, Fallarero A. Screening of FDA-Approved Drugs Using a 384-Well Plate-Based Biofilm Platform: The Case of Fingolimod. Microorganisms 2020; 8:microorganisms8111834. [PMID: 33233348 PMCID: PMC7700524 DOI: 10.3390/microorganisms8111834] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022] Open
Abstract
In an effort to find new repurposed antibacterial compounds, we performed the screening of an FDA-approved compounds library against Staphylococcus aureus American Type Culture Collection (ATCC) 25923. Compounds were evaluated for their capacity to prevent both planktonic growth and biofilm formation as well as to disrupt pre-formed biofilms. One of the identified initial hits was fingolimod (FTY720), an immunomodulator approved for the treatment of multiple sclerosis, which was then selected for follow-up studies. Fingolimod displayed a potent activity against S. aureus and S. epidermidis with a minimum inhibitory concentration (MIC) within the range of 12–15 µM at which concentration killing of all the bacteria was confirmed. A time–kill kinetic study revealed that fingolimod started to drastically reduce the viable bacterial count within two hours and we showed that no resistance developed against this compound for up to 20 days. Fingolimod also displayed a high activity against Acinetobacter baumannii (MIC 25 µM) as well as a modest activity against Escherichia coli and Pseudomonas aeruginosa. In addition, fingolimod inhibited quorum sensing in Chromobacterium violaceum and might therefore target this signaling pathway in certain Gram-negative bacteria. In conclusion, we present the identification of fingolimod from a compound library and its evaluation as a potential repurposed antibacterial compound.
Collapse
Affiliation(s)
- Shella Gilbert-Girard
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; (K.S.); (A.F.)
- Correspondence:
| | - Kirsi Savijoki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; (K.S.); (A.F.)
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland;
| | - Adyary Fallarero
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; (K.S.); (A.F.)
| |
Collapse
|
44
|
Vincent F, Loria PM, Weston AD, Steppan CM, Doyonnas R, Wang YM, Rockwell KL, Peakman MC. Hit Triage and Validation in Phenotypic Screening: Considerations and Strategies. Cell Chem Biol 2020; 27:1332-1346. [DOI: 10.1016/j.chembiol.2020.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/31/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
|
45
|
Woolley VC, Teakle GR, Prince G, de Moor CH, Chandler D. Cordycepin, a metabolite of Cordyceps militaris, reduces immune-related gene expression in insects. J Invertebr Pathol 2020; 177:107480. [PMID: 33022282 PMCID: PMC7768946 DOI: 10.1016/j.jip.2020.107480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 01/09/2023]
Abstract
High doses of cordycepin are lethal to G. mellonella. Cordycepin interacts with EPF to increase the rate of G. mellonella mortality. Cordycepin reduces immune-related gene expression in G. mellonella and S2r+ cells.
Hypocrealean entomopathogenic fungi (EPF) (Sordariomycetes, Ascomycota) are natural regulators of insect populations in terrestrial environments. Their obligately-killing life-cycle means that there is likely to be strong selection pressure for traits that allow them to evade the effects of the host immune system. In this study, we quantified the effects of cordycepin (3′-deoxyadenosine), a secondary metabolite produced by Cordyceps militaris (Hypocreales, Cordycipitaceae), on insect susceptibility to EPF infection and on insect immune gene expression. Application of the immune stimulant curdlan (20 µg ml−1, linear beta-1,3-glucan, a constituent of fungal cell walls) to Drosophila melanogaster S2r+ cells resulted in a significant increase in the expression of the immune effector gene metchnikowin compared to a DMSO-only control, but there was no significant increase when curdlan was co-applied with 25 µg ml−1 cordycepin dissolved in DMSO. Injection of cordycepin into larvae of Galleria mellonella (Lepidoptera: Pyralidae) resulted in dose-dependent mortality (LC50 of cordycepin = 2.1 mg per insect 6 days after treatment). Incubating conidia of C. militaris and Beauveria bassiana (Hypocreales, Cordycipitaceae; an EPF that does not synthesize cordycepin) with 3.0 mg ml−1 cordycepin had no effect on the numbers of conidia germinating in vitro. Co-injection of G. mellonella with a low concentration of cordycepin (3.0 mg ml−1) plus 10 or 100 conidia per insect of C. militaris or B. bassiana caused a significant decrease in insect median survival time compared to injection with the EPF on their own. Analysis of predicted vs. observed mortalities indicated a synergistic interaction between cordycepin and the EPF. The injection of C. militaris and B. bassiana into G. mellonella resulted in increased expression of the insect immune effector genes lysozyme, IMPI and gallerimycin at 72 h post injection, but this did not occur when the EPF were co-injected with 3.0 mg ml−1 cordycepin. In addition, we observed increased expression of IMPI and lysozyme at 48 h after injection with C. militaris, B. bassiana and sham injection (indicating a wounding response), but this was also prevented by application of cordycepin. These results suggest that cordycepin has potential to act as a suppressor of the immune response during fungal infection of insect hosts.
Collapse
Affiliation(s)
- Victoria C Woolley
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK.
| | - Graham R Teakle
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | - Gillian Prince
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | - Cornelia H de Moor
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - David Chandler
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| |
Collapse
|
46
|
Actions of FTY720 (Fingolimod), a Sphingosine-1-Phosphate Receptor Modulator, on Delayed-Rectifier K + Current and Intermediate-Conductance Ca 2+-Activated K + Channel in Jurkat T-Lymphocytes. Molecules 2020; 25:molecules25194525. [PMID: 33023219 PMCID: PMC7582672 DOI: 10.3390/molecules25194525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 01/01/2023] Open
Abstract
FTY720 (fingolimod), a modulator of sphingosine-1-phosphate receptors, is known to produce the immunomodulatory actions and to be beneficial for treating the relapsing multiple sclerosis. However, whether it exerts any effects on membrane ion currents in immune cells remains largely unknown. Herein, the effects of FTY720 on ionic currents in Jurkat T-lymphocytes were investigated. Cell exposure to FTY720 suppressed the amplitude of delayed-rectifier K+ current (IK(DR)) in a time- and concentration-dependent manner with an IC50 value of 1.51 μM. Increasing the FTY720 concentration not only decreased the IK(DR) amplitude but also accelerated the inactivation time course of the current. By using the minimal reaction scheme, the effect of FTY720 on IK(DR) inactivation was estimated with a dissociation constant of 3.14 μM. FTY720 also shifted the inactivation curve of IK(DR) to a hyperpolarized potential with no change in the slope factor, and recovery from IK(DR) became slow during the exposure to this compound. Cumulative inactivation for IK(DR) in response to repetitive depolarizations was enhanced in the presence of FTY720. In SEW2871-treated cells, FTY720-induced inhibition of IK(DR) was attenuated. This compound also exerted a stimulatory action on the activity of intermediate-conductance Ca2+-activated K+ channels in Jurkat T-lymphocytes. However, in NSC-34 neuronal cells, FTY720 did not modify the inactivation kinetics of KV3.1-encoded IK(DR), although it suppressed IK(DR) amplitude in these cells. Collectively, the perturbations by FTY720 on different types of K+ channels may contribute to the functional activities of immune cells, if similar findings appear in vivo.
Collapse
|
47
|
Affiliation(s)
- Georges Massiot
- Université de Reims Champagne-Ardenne Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Case postale 44, UFR des Sciences Exactes et Naturelles, BP 1039 51687 Reims Cedex 2 France
| |
Collapse
|
48
|
Positron Emission Tomography in the Inflamed Cerebellum: Addressing Novel Targets among G Protein-Coupled Receptors and Immune Receptors. Pharmaceutics 2020; 12:pharmaceutics12100925. [PMID: 32998351 PMCID: PMC7601272 DOI: 10.3390/pharmaceutics12100925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 01/12/2023] Open
Abstract
Inflammatory processes preceding clinical manifestation of brain diseases are moving increasingly into the focus of positron emission tomographic (PET) investigations. A key role in inflammation and as a target of PET imaging efforts is attributed to microglia. Cerebellar microglia, with a predominant ameboid and activated subtype, is of special interest also regarding improved and changing knowledge on functional involvement of the cerebellum in mental activities in addition to its regulatory role in motor function. The present contribution considers small molecule ligands as potential PET tools for the visualization of several receptors recognized to be overexpressed in microglia and which can potentially serve as indicators of inflammatory processes in the cerebellum. The sphingosine 1 phosphate receptor 1 (S1P1), neuropeptide Y receptor 2 (NPY2) and purinoceptor Y12 (P2Y12) cannabinoid receptors and the chemokine receptor CX3CR1 as G-protein-coupled receptors and the ionotropic purinoceptor P2X7 provide structures with rather classical binding behavior, while the immune receptor for advanced glycation end products (RAGE) and the triggering receptor expressed on myeloid cells 2 (TREM2) might depend for instance on further accessory proteins. Improvement in differentiation between microglial functional subtypes in comparison to the presently used 18 kDa translocator protein ligands as well as of the knowledge on the role of polymorphisms are special challenges in such developments.
Collapse
|
49
|
McEvoy K, Normile TG, Poeta MD. Antifungal Drug Development: Targeting the Fungal Sphingolipid Pathway. J Fungi (Basel) 2020; 6:jof6030142. [PMID: 32825250 PMCID: PMC7559796 DOI: 10.3390/jof6030142] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Fungal infections are becoming more prevalent and problematic due to the continual rise of immune deficient patients as well as the progressive development of drug resistance towards currently available antifungal drugs. There has been a significant increase in the development of antifungal compounds with a similar mechanism of action of current drugs. In contrast, there has been very little progress in developing compounds inhibiting totally new fungal targets or/and fungal pathways. This review focuses on novel compounds recently discovered to target the fungal sphingolipids and their metabolizing enzymes.
Collapse
Affiliation(s)
- Kyle McEvoy
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (K.M.); (T.G.N.)
| | - Tyler G. Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (K.M.); (T.G.N.)
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (K.M.); (T.G.N.)
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Veterans Administration Medical Center, Northport, NY 11768, USA
- Correspondence: ; Tel.: +1-631-632-4024
| |
Collapse
|
50
|
Inhibitors of Ceramide- and Sphingosine-Metabolizing Enzymes as Sensitizers in Radiotherapy and Chemotherapy for Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12082062. [PMID: 32722626 PMCID: PMC7463798 DOI: 10.3390/cancers12082062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
In the treatment of advanced head and neck squamous cell carcinoma (HNSCC), including oral SCC, radiotherapy is a commonly performed therapeutic modality. The combined use of radiotherapy with chemotherapy improves therapeutic effects, but it also increases adverse events. Ceramide, a central molecule in sphingolipid metabolism and signaling pathways, mediates antiproliferative responses, and its level increases in response to radiotherapy and chemotherapy. However, when ceramide is metabolized, prosurvival factors, such as sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glucosylceramide, are produced, reducing the antitumor effects of ceramide. The activities of ceramide- and sphingosine-metabolizing enzymes are also associated with radio- and chemo-resistance. Ceramide analogs and low molecular-weight compounds targeting these enzymes exert anticancer effects. Synthetic ceramides and a therapeutic approach using ultrasound have also been developed. Inhibitors of ceramide- and sphingosine-metabolizing enzymes and synthetic ceramides can function as sensitizers of radiotherapy and chemotherapy for HNSCC.
Collapse
|