1
|
Romualdo GR, Leroy K, Costa CJS, Prata GB, Vanderborght B, da Silva TC, Barbisan LF, Andraus W, Devisscher L, Câmara NOS, Vinken M, Cogliati B. In Vivo and In Vitro Models of Hepatocellular Carcinoma: Current Strategies for Translational Modeling. Cancers (Basel) 2021; 13:5583. [PMID: 34771745 PMCID: PMC8582701 DOI: 10.3390/cancers13215583] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the third leading cause of cancer-related death globally. HCC is a complex multistep disease and usually emerges in the setting of chronic liver diseases. The molecular pathogenesis of HCC varies according to the etiology, mainly caused by chronic hepatitis B and C virus infections, chronic alcohol consumption, aflatoxin-contaminated food, and non-alcoholic fatty liver disease associated with metabolic syndrome or diabetes mellitus. The establishment of HCC models has become essential for both basic and translational research to improve our understanding of the pathophysiology and unravel new molecular drivers of this disease. The ideal model should recapitulate key events observed during hepatocarcinogenesis and HCC progression in view of establishing effective diagnostic and therapeutic strategies to be translated into clinical practice. Despite considerable efforts currently devoted to liver cancer research, only a few anti-HCC drugs are available, and patient prognosis and survival are still poor. The present paper provides a state-of-the-art overview of in vivo and in vitro models used for translational modeling of HCC with a specific focus on their key molecular hallmarks.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Kaat Leroy
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Cícero Júlio Silva Costa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Gabriel Bacil Prata
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Luís Fernando Barbisan
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
| | - Wellington Andraus
- Department of Gastroenterology, Clinics Hospital, School of Medicine, University of São Paulo (HC-FMUSP), São Paulo 05403-000, Brazil;
| | - Lindsey Devisscher
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| |
Collapse
|
2
|
Li M, Li H, Zhou C, Li X, Gong J, Chen C, Zhang Y. Comprehensive analysis of prognostic immune-related genes in the tumor microenvironment of hepatocellular carcinoma (HCC). Medicine (Baltimore) 2021; 100:e27332. [PMID: 34596136 PMCID: PMC8483847 DOI: 10.1097/md.0000000000027332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT Growing evidence supports that the tumor microenvironment plays a key role in the development and progression of tumors. But immune microenvironment of hepatocellular carcinoma (HCC) has not yet been fully explored. In the present investigation, the clinical value and prognostic significance of immune-related genes in HCC were investigated.The immune and stromal scores of HCC were calculated through the application of Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data Algorithm based on the Cancer Genome Atlas database. Differentially expressed genes were identified using the "edgeR" package of the R software. Functional annotation and pathway enrichment were performed using "ggplots2" and "clusterProfiler" packages in R software. Protein-protein interaction network was constructed using STRING, and the hub genes were identified through the Cytoscape. Survival analysis was performed using Kaplan-Meier methods. Tumor Immune Estimation Resource algorithm was used to view the immune landscape of the microenvironment in HCC.Firstly, the immune and stromal scores of HCC were calculated and we found that the immune and stromal scores of HCC were closely related to the patients' prognosis. Then the differentially expressed genes were identified respectively stratified by the median value of the immune and stromal scores, and the immune-related genes that related to the prognosis in HCC patients were further identified. Functional enrichment analysis and protein-protein interaction networks further showed that these genes mainly participated in immune-related biological process. In addition, dendritic cells were found to be the most abundant in the microenvironment of HCC through Tumor Immune Estimation Resource algorithm and were significantly associated with the patients' prognosis. To robust the results, the immune-related genes were validated in an independent dataset from the Gene Expression Omnibus database.We arrived at a more comprehensive understanding of the microenvironment of HCC and extracted 7 immune-related genes that were significantly associated with the recurrence survival of HCC.
Collapse
|
3
|
Huang F, Pan N, Wei Y, Zhao J, Aldarouish M, Wang X, Sun X, Wen Z, Chen Y, Wang L. Effects of Combinatorial Ubiquitinated Protein-Based Nanovaccine and STING Agonist in Mice With Drug-Resistant and Metastatic Breast Cancer. Front Immunol 2021; 12:707298. [PMID: 34589084 PMCID: PMC8475273 DOI: 10.3389/fimmu.2021.707298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022] Open
Abstract
We previously reported that enriched ubiquitinated proteins (UPs) from tumor cells have the potential to be used as immunotherapy vaccine against cancer. Here we enriched UPs from epirubicin (EPB)-induced multi-drug-resistant cancer stem-like breast cancer cell line (4T1/EPB) and tested the efficacy of α-Al2O3-UPs-4T1/EPB (short for UPs-4T1/EPB) as therapeutic vaccine alone and in combination with the stimulator of interferon genes (STING) agonist in mice with drug-resistant and metastatic breast cancer. Vaccination with UPs-4T1/EPB exerted profound anti-tumor effects through augmented specific CD8+ T cell responses and amplified T cell receptor diversity of tumor-infiltrating lymphocytes (TILs). Importantly, the combination with STING agonist further facilitated the migration of mature CD8α+ dendritic cells to the lymph nodes and the infiltration of TILs within tumors, resulting in primary tumor regression and pulmonary metastasis eradication in mice. Moreover, the cured mice were completely resistant against a subsequent rechallenge with the same tumor. Our study indicates that this novel combinatorial immunotherapy with UPs-4T1/EPB vaccine and STING agonist is effective in mice with drug-resistant and metastatic breast cancer.
Collapse
Affiliation(s)
- Fang Huang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Ning Pan
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Yiting Wei
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Jinjin Zhao
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Mohanad Aldarouish
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Xuru Wang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Xiaotong Sun
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Zhifa Wen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Yongqiang Chen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Lixin Wang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
4
|
Zhang TY, Ren HY, Pan N, Dong HX, Zhao SM, Wen ZF, Wang XR, Wang LX. Tumor cell-derived autophagosomes (DRibbles)-activated B cells induce specific naïve CD8 + T cell response and exhibit antitumor effect. Cancer Immunol Immunother 2021; 70:463-474. [PMID: 32809049 PMCID: PMC10991864 DOI: 10.1007/s00262-020-02695-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/08/2020] [Indexed: 01/28/2023]
Abstract
Dendritic cell (DC) vaccine has been proved to be an effective way in cancer immunotherapy in both preclinical and clinical studies. However, limitations in DC isolation and culture have hampered its practice and promoted the development of other antigen-presenting cells (APCs) sources to fulfill that role. Our previous studies have shown that B cells loaded by tumor cell-derived autophagosomes, which we named as DRibbles (defective ribosomal products-containing blebs), could reactivate DC-induced effector T cell response. In this study, the roles of DRibble-loaded B cells in priming naïve CD8+ T cell responses and controlling tumors were investigated. We found that high-mobility group box 1 protein (HMGB1) on DRibbles was involved in DRibble-induced B cell activation, and the DRibble-triggered B cell phagocytosis via the caveolae-mediated endocytosis pathway. By using OT-I mouse-derived T cells, we demonstrated that DRibble-loaded B cells could activate specific naïve CD8+ T cells in vitro and ex vivo. In a tumor-bearing mouse model, DRibble-loaded B cells elicited systemic antitumor immunity and significantly suppressed the tumor growth. Moreover, the antitumor efficacy of DRibble-loaded B cells was enhanced when they were combined with CpG and anti-CD40 stimulation. These results suggest that DRibble-loaded B cells represent a viable and practical therapeutic vaccination strategy that might have important clinical implications for tumor immunotherapy.
Collapse
Affiliation(s)
- Tian-Yu Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Hong-Yan Ren
- Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
- Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ning Pan
- Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Hui-Xia Dong
- Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Si-Min Zhao
- Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Zhi-Fa Wen
- Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Xu-Ru Wang
- Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Li-Xin Wang
- Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
5
|
Fu C, Tian G, Duan J, Liu K, Zhang C, Yan W, Wang Y. Therapeutic Antitumor Efficacy of Cancer Stem Cell-Derived DRibble Vaccine on Colorectal Carcinoma. Int J Med Sci 2021; 18:3249-3260. [PMID: 34400894 PMCID: PMC8364449 DOI: 10.7150/ijms.61510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Dendritic cell (DC)-based immunotherapy has been a promising strategy for colon cancer therapy, but the efficacy of dendritic cell vaccines is in part limited by immunogenicity of loaded antigens. In this study, we aimed to identify a putative tumor antigen that can generate or enhance anti-tumor immune responses against colon cancer. CD44+ colon cancer stem cells (CCSCs) were isolated from mouse colorectal carcinoma CT-26 cell cultures and induced to form defective ribosomal products-containing autophagosome-rich blebs (DRibbles) by treatment with rapamycin, bortezomib, and ammonium chloride. DRibbles were characterized by western blot and transmission electron microscopy. DCs generated from the mice bone marrow monocytes were cocultured with DRibbles, then surface markers of DCs were analyzed by flow cytometry. Meanwhile, the efficacy of DRibble-DCs was examined in vivo. Our results showed that CCSC-derived DRibbles upregulated CD80, CD86, major histocompatibility complex (MHC)-I, and MHC-II on DCs and induced proliferation of mouse splenic lymphocytes and CD8+ T cells. In a model of colorectal carcinoma using BALB/c mice with robust tumor growth and mortality, DC vaccine pulsed with CCSC-derived DRibbles suppressed tumor growth and extended survival. A lactate dehydrogenase test indicated a strong cytolytic activity of cytotoxic T-cells derived from mice vaccinated with CCSC-derived DRibbles against CT-26 cells. Furthermore, flow cytometry analyses showed that the percentages of IFN-γ-producing CD8+ T-cells were increased in SD-DC group compare with the other groups. These findings provide a rationale for novel immunotherapeutic anti-tumor approaches based on DRibbles derived from colon cancer stem cells.
Collapse
Affiliation(s)
- Changhao Fu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Geer Tian
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Jinyue Duan
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Kun Liu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Chen Zhang
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Weiqun Yan
- Medical Institute of Regeneration Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
6
|
Abstract
Over the last decade, there has been a considerable progress in the development of cell therapy products for the treatment of liver diseases. The quest to generate well-defined homogenous cell populations with defined mechanism(s) of action has enabled the progression from use of autologous bone marrow stem cells comprising of heterogeneous cell populations to allogeneic cell types such as monocyte-derived macrophages, regulatory T cells, mesenchymal stromal cells, macrophages, etc. There is growing evidence regarding the multiple molecular mechanisms pivotal to various therapeutic effects and hence, careful selection of cell therapy product for the desired putative effects is crucial. In this review, we have presented an overview of the cell therapies that have been developed thus far, with preclinical and clinical evidence for their use in liver disease. Limitations associated with these therapies have also been discussed. Despite the advances made, there remain multiple challenges to overcome before cell therapies can be considered as viable treatment options, and these include larger scale clinical trials, scalable production of cells according to good manufacturing practice standards, pathways for delivery of cell therapy within hospital environments, and costs associated with the production.
Collapse
Affiliation(s)
- Sheeba Khan
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Reenam S Khan
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N Newsome
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
7
|
Huang F, Zhao J, Wei Y, Wen Z, Zhang Y, Wang X, Shen Y, Wang LX, Pan N. Anti-Tumor Efficacy of an Adjuvant Built-In Nanovaccine Based on Ubiquitinated Proteins from Tumor Cells. Int J Nanomedicine 2020; 15:1021-1035. [PMID: 32103954 PMCID: PMC7025662 DOI: 10.2147/ijn.s237578] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background and Aim We have previously identified ubiquitinated proteins (UPs) from tumor cell lysates as a promising vaccine for cancer immunotherapy in different mouse tumor models. In this study, we aimed at developing a highly efficient therapeutic adjuvant built-in nanovaccine (α-Al2O3-UPs) by a simple method, in which UPs from tumor cells could be efficiently and conveniently enriched by α-Al2O3 nanoparticles covalently coupled with Vx3 proteins (α-Al2O3-CONH-Vx3). Methods The α-Al2O3 nanoparticles were modified with 4-hydroxybenzoic acid followed by coupling with ubiquitin-binding protein Vx3. It was then used to enrich UPs from 4T1 cell lysate. The stability and the efficiency for the UPs enrichment of α-Al2O3-CONH-Vx3 were examined. The ability of α-Al2O3-UPs to activate DCs was examined in vitro subsequently. The splenocytes from the vaccinated mice were re-stimulated with inactivated tumor cells, and the IFN-γ secretion was detected by ELISA and flow cytometry. Moreover, the therapeutic efficacy of α-Al2O3-UPs, alone and in combination with chemotherapy, was examined in 4T1 tumor-bearing mice. Results Our results showed that α-Al2O3-UPs were successfully synthesized and abundant UPs from tumor cell lysate were enriched by the new method. In vitro study showed that compared to the physical mixture of α-Al2O3 nanoparticles and UPs (α-Al2O3+UPs), α-Al2O3-UPs stimulation resulted in higher upregulations of CD80, CD86, MHC class I, and MHC class II on DCs, indicating the higher ability of DC activation. Moreover, α-Al2O3-UPs elicited a more effective immune response in mice, demonstrated by higher IFN-γ secretion than α-Al2O3+UPs. Furthermore, α-Al2O3-UPs also exhibited a more potent effect on tumor growth inhibition and survival prolongation in 4T1 tumor-bearing mice. Notably, when in combination with low dose chemotherapy, the anti-tumor effect was further enhanced, rather than using α-Al2O3-UPs alone. Conclusion This study presents an adjuvant built-in nanovaccine generated by a new simple method that can be potentially applied to cancer immunotherapy and lays the experimental foundation for future clinical application.
Collapse
Affiliation(s)
- Fang Huang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| | - Jinjin Zhao
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| | - Yiting Wei
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| | - Zhifa Wen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| | - Yue Zhang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| | - Xuru Wang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| | - Yanfei Shen
- Department of Bioengineering, Medical School of Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| | - Li-Xin Wang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| | - Ning Pan
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| |
Collapse
|
8
|
Yang T, Zhang W, Wang L, Xiao C, Wang L, Gong Y, Huang D, Guo B, Li Q, Xiang Y, Nan Y. Co-culture of dendritic cells and cytokine-induced killer cells effectively suppresses liver cancer stem cell growth by inhibiting pathways in the immune system. BMC Cancer 2018; 18:984. [PMID: 30326865 PMCID: PMC6192155 DOI: 10.1186/s12885-018-4871-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Application of dendritic cells (DC) for cancer immunotherapy involves tumor-associated immunogenic antigens for effective therapeutic strategies. The present study investigated whether DC co-cultured with autologous cytokine-induced killer cells (CIK) could induce a more specific immune response against liver cancer stem cells (LCSC) generated from human hepatocellular carcinoma (HCC) cells in vitro and in vivo. METHODS Human DC and CIK were generated from peripheral blood mononuclear cells (PBMCs) taken from consenting liver cancer patients. Flow cytometry was used to determine the phenotypes of DC and CIK, and cell proliferation. The tumor growth and anti-tumor activity of these cells were further evaluated using a nude mouse tumor model. RESULTS We demonstrated that DC and CIK significantly enhanced the apoptosis ratio, depending on DC-CIK cell numbers, by increasing caspase-3 protein expression and reducing proliferating cell nuclear antigen (PCNA) protein expression against LCSC. The in vivo data indicated that DC-CIK exhibited significant LCSC cell-induced tumor growth inhibition in nude mice, which was most significant with LCSC antigen loaded DCs. CONCLUSIONS The results showed, that DC-CIK cells could inhibit HCC and LCSC growths in vitro and in vivo and the most successful DC triggering of cell cytotoxic activity could be achieved by their LCSC antigen loading.
Collapse
Affiliation(s)
- Tao Yang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No.181 Hanyu Road, Chongqing, 400030, People's Republic of China
| | - Wenjun Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No.181 Hanyu Road, Chongqing, 400030, People's Republic of China
| | - Li Wang
- Department of Oncology, Chongqing General Hospital, Chongqing, People's Republic of China
| | - Chunyan Xiao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No.181 Hanyu Road, Chongqing, 400030, People's Republic of China
| | - Li Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No.181 Hanyu Road, Chongqing, 400030, People's Republic of China
| | - Yi Gong
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No.181 Hanyu Road, Chongqing, 400030, People's Republic of China
| | - Dehong Huang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No.181 Hanyu Road, Chongqing, 400030, People's Republic of China
| | - Bingling Guo
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No.181 Hanyu Road, Chongqing, 400030, People's Republic of China
| | - Qiying Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No.181 Hanyu Road, Chongqing, 400030, People's Republic of China
| | - Ying Xiang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No.181 Hanyu Road, Chongqing, 400030, People's Republic of China
| | - Yingyu Nan
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No.181 Hanyu Road, Chongqing, 400030, People's Republic of China.
| |
Collapse
|
9
|
Dong H, Wen ZF, Chen L, Zhou N, Liu H, Dong S, Hu HM, Mou Y. Polyethyleneimine modification of aluminum hydroxide nanoparticle enhances antigen transportation and cross-presentation of dendritic cells. Int J Nanomedicine 2018; 13:3353-3365. [PMID: 29922056 PMCID: PMC5995426 DOI: 10.2147/ijn.s164097] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background The aim of this study was to explore the feasibility of delivering tumor antigens and enhancing the antigen cross-presentation of dendritic cells (DCs) by aluminum hydroxide nanoparticle with polyethyleneimine (PEI) modification (LV@HPA/PEI). Materials and methods The LV@HPA nanoparticles were modified by PEI first, then the influence of LV@HPA/PEI on DCs was examined. The distinct expression of ovalbumin (OVA) protein transported into DCs by LV@HPA/PEI was observed by flow cytometry and Western blot. The biocompatibility of LV@HPA/PEI, maturity and antigen cross-presentation of DCs was observed in vitro. Tumor derived autophagosomes (DRibbles) combined with LV@HPA/PEI were loaded into DCs, and DC vaccines were used to immunize mice. The percentage of CD3+CD8+IFN-γ+ T cells in immunized mice was determined by flow cytometry. Additionally, the functional properties of the LV@HPA/PEI-DRibble-DCs vaccine were examined in vivo in PancO2 tumor-bearing mice. Results In our study, we described how LV@HPA/PEI can be a functionalized antigen delivery system with notable antigen transport effect and negligible cytotoxicity. It was found that LV@HPA/PEI could be easily internalized into DCs to assist antigen release into the cytoplasm. In addition, DCs matured gradually after loading with LV@HPA/PEI-OVA, which increased significantly the cytokine IL-12 secretion and expression of surface molecules CD80 and CD86. Interestingly, DCs loaded with LV@HPA/PEI-DRibbles could promote the activation of tumor-specific T cells both in murine and in human T cells. In the following in vivo experiments, the vaccine of LV@HPA/PEI-DRibble-DCs significantly inhibited tumor growth and improved the survival rate of the PancO2 tumor-bearing mice. Conclusion We established a high-performance anti-tumor vaccine of DCs loaded with LV@ HPA/PEI nanoparticles and tumor-associated antigens in autophagosomes (DRibbles), which could serve as a therapeutic strategy in cancer immunotherapy.
Collapse
Affiliation(s)
- Heng Dong
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Laboratory of Cancer Immunobiology, Robert W Franz Cancer Research Center, Earle A Chiles Research Institute, Providence Cancer Center, Portland, OR, USA
| | - Zhi-Fa Wen
- Laboratory of Cancer Immunobiology, Robert W Franz Cancer Research Center, Earle A Chiles Research Institute, Providence Cancer Center, Portland, OR, USA.,Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Lin Chen
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Na Zhou
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hui Liu
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shiling Dong
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hong-Ming Hu
- Laboratory of Cancer Immunobiology, Robert W Franz Cancer Research Center, Earle A Chiles Research Institute, Providence Cancer Center, Portland, OR, USA
| | - Yongbin Mou
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Dong H, Su H, Chen L, Liu K, Hu HM, Yang W, Mou Y. Immunocompetence and mechanism of the DRibble-DCs vaccine for oral squamous cell carcinoma. Cancer Manag Res 2018; 10:493-501. [PMID: 29588618 PMCID: PMC5858817 DOI: 10.2147/cmar.s155914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Due to the high-quality immunogenicity of tumor-derived autophagosomes (DRibbles), we aimed to explore the antitumor ability and mechanism of DRibble-loaded dendritic cells (DRibble-DCs). Materials and methods DRibbles extracted from the oral squamous cell carcinoma cell line SCC7 express specific LC3-II and ubiquitination marker. Immunization of mice with the DRibble-DCs vaccine led to the proliferation and differentiation of CD3+CD4+IFN-γ+ and CD3+CD8+IFN-γ+ T cells. The expression of proteins in endoplasmic reticulum stress (ERS) pathways was determined by Western blotting. Additionally, the functional properties of the DRibble-DCs were examined in mice, and regulatory T cells were measured by flow cytometry. Results Excellent biocompatibility was observed in vitro when DCs were loaded with DRibbles. T cells of lymph nodes and spleens from mice immunized with DRibble-DCs had cytotoxic effects on SCC7 cells. DCs homeostasis and ERS-related proteins were affected by DRibbles. Moreover, the DRibble-DCs vaccine achieved significantly better antitumor efficacy than DRibbles and tumor cell lysate-loaded DCs. Conclusion The results validated the antitumor immune responses to the DRibble-DCs vaccine in vivo and in vitro. The ERS pathway can be affected by DRibbles.
Collapse
Affiliation(s)
- Heng Dong
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Laboratory of Cancer Immunobiology, Robert W Franz Cancer Research Center, Earle A Chiles Research Institute, Providence Cancer Center, Portland, OR, USA
| | - Hang Su
- Department of Implantology, The Affiliated Stomatology Hospital of Tongji University, Shanghai, People's Republic of China
| | - Lin Chen
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Kai Liu
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Hong-Ming Hu
- Laboratory of Cancer Immunobiology, Robert W Franz Cancer Research Center, Earle A Chiles Research Institute, Providence Cancer Center, Portland, OR, USA
| | - Weidong Yang
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Yongbin Mou
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Laboratory of Cancer Immunobiology, Robert W Franz Cancer Research Center, Earle A Chiles Research Institute, Providence Cancer Center, Portland, OR, USA
| |
Collapse
|
11
|
Zhao J, Pan N, Huang F, Aldarouish M, Wen Z, Gao R, Zhang Y, Hu HM, Shen Y, Wang LX. Vx3-Functionalized Alumina Nanoparticles Assisted Enrichment of Ubiquitinated Proteins from Cancer Cells for Enhanced Cancer Immunotherapy. Bioconjug Chem 2018; 29:786-794. [PMID: 29382195 DOI: 10.1021/acs.bioconjchem.7b00578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A simple and effective strategy was developed to enrich ubiquitinated proteins (UPs) from cancer cell lysate using the α-Al2O3 nanoparticles covalently linked with ubiquitin binding protein (Vx3) (denoted as α-Al2O3-Vx3) via a chemical linker. The functionalized α-Al2O3-Vx3 showed long-term stability and high efficiency for the enrichment of UPs from cancer cell lysates. Flow cytometry analysis results indicated dendritic cells (DCs) could more effectively phagocytize the covalently linked α-Al2O3-Vx3-UPs than the physical mixture of α-Al2O3 and Vx3-UPs (α-Al2O3/Vx3-UPs). Laser confocal microscopy images revealed that α-Al2O3-Vx3-UPs localized within the autophagosome of DCs, which then cross-presented α-Al2O3-Vx3-UPs to CD8+ T cells in an autophagosome-related cross-presentation pathway. Furthermore, α-Al2O3-Vx3-UPs enhanced more potent antitumor immune response and antitumor efficacy than α-Al2O3/cell lysate or α-Al2O3/Vx3-UPs. This work highlights the potential of using the Vx3 covalently linked α-Al2O3 as a simple and effective platform to enrich UPs from cancer cells for the development of highly efficient therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Jinjin Zhao
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Ning Pan
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Fang Huang
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Mohanad Aldarouish
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Zhifa Wen
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Rong Gao
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Yuye Zhang
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Hong-Ming Hu
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China.,Laboratory of Cancer Immunobiology, Earle A. Chiles Research Institute , Providence Portland Medical Center , Portland , Oregon 97213 United States
| | - Yanfei Shen
- Department of Bioengineering , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Li-Xin Wang
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| |
Collapse
|
12
|
Hochnadel I, Kossatz-Boehlert U, Jedicke N, Lenzen H, Manns MP, Yevsa T. Cancer vaccines and immunotherapeutic approaches in hepatobiliary and pancreatic cancers. Hum Vaccin Immunother 2017; 13:2931-2952. [PMID: 29112462 PMCID: PMC5718787 DOI: 10.1080/21645515.2017.1359362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatobiliary and pancreatic cancers along with other gastrointestinal malignancies remain the leading cause of cancer-related deaths worldwide. Strategies developed in the recent years on immunotherapy and cancer vaccines in the setting of primary liver cancer as well as in pancreatic cancer are the scope of this review. Significance of orthotopic and autochthonous animal models which mimic and/or closely reflect human malignancies allowing for a prompt and trustworthy analysis of new therapeutics is underlined. Combinational approaches that on one hand, specifically target a defined cancer-driving pathway, and on the other hand, restore the functions of immune cells, which effector functions are often suppressed by a tumor milieu, are shown to have the strongest perspectives and future directions. Among combinational immunotherapeutic approaches a personalized- and individual cancer case-based therapy is of special importance.
Collapse
Affiliation(s)
- Inga Hochnadel
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Uta Kossatz-Boehlert
- b Institute for Neuroanatomy, Eberhard-Karls University Tuebingen , Tuebingen , Germany
| | - Nils Jedicke
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Henrike Lenzen
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Michael P Manns
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Tetyana Yevsa
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| |
Collapse
|
13
|
Yu S, Wang Y, Jing L, Claret FX, Li Q, Tian T, Liang X, Ruan Z, Jiang L, Yao Y, Nan K, Lv Y, Guo H. Autophagy in the "inflammation-carcinogenesis" pathway of liver and HCC immunotherapy. Cancer Lett 2017; 411:82-89. [PMID: 28987386 DOI: 10.1016/j.canlet.2017.09.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
Abstract
Autophagy plays a dual role in many types of cancer, such as hepatocellular carcinoma (HCC). Autophagy seems to be inhibited and functions as a tumor-suppression mechanism in the "inflammation-carcinogenesis" pathway of the liver, including hepatitis B virus and hepatitis C virus, alcoholic steatohepatitis and non-alcoholic steatohepatitis related HCC. However, in established tumors, autophagy plays a tumor-promoting role. Because of the varied function of autophagy in HCC, we hypothesized p62 as a marker to evaluate the autophagic level. Moreover, autophagy is critical in antigen presentation and homeostasis of immune cells and tumor microenvironment. Understanding the intricate relationships of autophagy, inflammation, and immunity provides us with new insights into HCC immunotherapy.
Collapse
Affiliation(s)
- Sizhe Yu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Yu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Li Jing
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - F X Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Qing Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Tao Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Xuan Liang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Zhiping Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Lili Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Kejun Nan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
14
|
Cellular and molecular targets for the immunotherapy of hepatocellular carcinoma. Mol Cell Biochem 2017; 437:13-36. [DOI: 10.1007/s11010-017-3092-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
|
15
|
Nakamoto Y. Promising new strategies for hepatocellular carcinoma. Hepatol Res 2017; 47:251-265. [PMID: 27558453 DOI: 10.1111/hepr.12795] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer death worldwide. It usually arises based on a background of chronic liver diseases, defined as the hypercarcinogenic state. The current treatment options for HCC ranging from locoregional treatments to chemotherapies, including sorafenib, effectively regulate the limited sizes and numbers of the nodules. However, these treatments remain unsatisfactory because they have insufficient antitumor effects on the large and numerous nodules associated with HCC and because of a high recurrence rate in the surrounding inflamed liver. To develop novel and promising therapies with higher antitumor effects, recent progress in identifying molecular targets and developing immunological procedures for HCC are reviewed. The molecular targets discussed include the intracellular signaling pathways of protein kinase B/mammalian target of rapamycin and RAS/RAF/mitogen-activated protein kinase, Wnt/β-catenin and glutamine synthetase, insulin-like growth factor, signal transducer and activator of transcription 3, nuclear factor-κB and telomerase reverse transcriptase, and c-MET. Immunological studies have focused mainly on target identification, T cells, natural killer cells, dendritic cells, natural killer T cells, and vaccine development.
Collapse
Affiliation(s)
- Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
16
|
Yi Y, Han J, Fang Y, Liu D, Wu Z, Wang L, Zhao L, Wei Q. Sorafenib and a novel immune therapy in lung metastasis from hepatocellular carcinoma following hepatectomy: A case report. Mol Clin Oncol 2016; 5:337-341. [PMID: 27446575 DOI: 10.3892/mco.2016.925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/08/2016] [Indexed: 11/05/2022] Open
Abstract
Sorafenib is the standard therapeutic strategy for recurrent hepatocellular carcinoma (HCC) following hepatectomy. However, only few patients truly benefit from this therapy. Thus, new strategies combined with sorafenib are urgently required. We herein present the case of a patient with hepatic and extrahepatic HCC recurrence following hepatectomy, who was treated by combined sorafenib, focused ultrasound knife and DRibbles-pulsed dendritic cell (DC) vaccine. Enzyme-Linked ImmunoSpot assay (ELISPOT) and intracellular staining (ICS) analysis were used to detect the secretion of interferon (IFN)-γ by T cells at different timepoints of the vaccine in order to evaluate the patient's specific T-cell response to SMMC-7721-derived DRibbles vaccine. The α-fetoprotein level decreased from 103,295 to 5 ng/ml and the patient displayed improved liver function, an Eastern Cooperative Oncology Group performance status score of 0, remission of liver metastases and disappearance of the lung metastases 8 months post-combination therapy. The computed tomography scan revealed the disappearance of liver metastases 2 years post-combination therapy. The ELISPOT data revealed a low antigen-specific T-cell response 4 weeks after the first vaccine cycle and the response decreased to nearly zero prior to the second cycle. However, high antigen-specific T-cell response was observed 2 weeks after the second vaccine cycle and did not decrease, even after 10 months, which was consistent with the result of the ICS analysis, which demonstrated that most of the secreted IFN-γ was produced by CD4+ T cells, whereas a low CD8+ T-cell response was observed (0.429 vs. 0.0665%, respectively). Our results demonstrated that antigen-specific T-cell response aimed to treat recurrent HCC may be induced through stimulation by the DC-DRibbles vaccine. The success of the treatment supports the combination of sorafenib, focused ultrasound knife and DC-DRibbles vaccine as a therapeutic strategy for patients with HCC recurrence following hepatectomy.
Collapse
Affiliation(s)
- Yongxiang Yi
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu 210003, P.R. China
| | - Jianbo Han
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu 210003, P.R. China
| | - Yuan Fang
- Department of Pathology, The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu 210003, P.R. China
| | - Dongxiao Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu 210003, P.R. China
| | - Zuoyou Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu 210003, P.R. China
| | - Lili Wang
- Biological Treatment Center, The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu 210003, P.R. China
| | - Liang Zhao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu 210003, P.R. China
| | - Qiang Wei
- Department of Ultrasonography, The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu 210003, P.R. China
| |
Collapse
|
17
|
Huang X, Guan D, Shu YQ, Liu LK, Ni F. Effect of Cisplatin on the Frequency and Immuno-inhibitory Function of Myeloid-derived Suppressor Cells in A375 Melanoma Model. Asian Pac J Cancer Prev 2015; 16:4329-33. [DOI: 10.7314/apjcp.2015.16.10.4329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Therapeutic antitumor efficacy of B cells loaded with tumor-derived autophagasomes vaccine (DRibbles). J Immunother 2015; 37:383-93. [PMID: 25198526 PMCID: PMC4166015 DOI: 10.1097/cji.0000000000000051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Supplemental Digital Content is available in the text. Tumor-derived autophagosomes (DRibble) selectively capture tumor-specific antigens and induce a dramatic T-cell activation and expansion when injected into lymph nodes of naive mice. Both dendritic and B cells can efficiently cross-prime antigen-specific T cells. In this report, we demonstrated that a booster vaccination with naive B cells loaded with DRibbles eradicated E.G7-OVA tumors in mice that were previously treated with adoptive transfer naive OT-I T cells and intranodal immunization with DRibbles derived from E.G7 tumors. The antitumor efficacy was accompanied by a heighten number of tumor-specific interferon-γ-producing T cells and antibodies. However, the same treatment in the absence of adoptive T-cell transfer exhibited a limited efficacy. In contrast, when DRibble-loaded B cells were activated with CpG and anti-CD40 antibody before use as booster vaccines, established E.G7 tumors were completely eradicated in the absence of T-cell transfer. Therefore, our results document that B cells could efficiently cross-present tumor-specific antigens captured by DRibbles and suggest that naive B cells can be deployed as an effective and readily accessible source of antigen-presenting cells for cancer immunotherapy clinical trials.
Collapse
|
19
|
WANG YULIANG, WANG YINLONG, MU HONG, LIU TAO, CHEN XIAOBO, SHEN ZHONGYANG. Enhanced specific antitumor immunity of dendritic cells transduced with the glypican 3 gene and co-cultured with cytokine-induced killer cells against hepatocellular carcinoma cells. Mol Med Rep 2015; 11:3361-7. [PMID: 25625609 PMCID: PMC4368068 DOI: 10.3892/mmr.2015.3239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 11/25/2014] [Indexed: 12/14/2022] Open
Abstract
Dendritic cell (DC)‑based cancer immunotherapy requires an immunogenic tumor‑associated antigen and an effective therapeutic strategy. Glypican 3 (GPC3) is a valuable diagnostic marker and a potential therapeutic target in hepatocellular carcinoma (HCC). The present study investigated whether DCs transduced with the GPC3 gene (DCs‑GPC3) and co‑cultured with autologous cytokine‑induced killer cells (CIKs) may induce a marked specific immune response against GPC3‑expressing HCC cells in vitro and in vivo. Human DCs were transfected with a green fluorescent protein plasmid with GPC3 by nucleofection and then co‑cultured with autologous CIKs. Flow cytometry was used to measure the phenotypes of DCs and CIKs. The co‑cultured cells were harvested and incubated with HCC cells and the cytotoxicity of the CIKs was assessed by nonradioactive cytotoxicity assay. The anti-tumor activity of these effector cells was further evaluated using a nude mouse tumor model. The results demonstrated that DCs‑GPC3 significantly promoted the autologous CIKs differentiation, as well as anti‑tumor cytokine interferon‑γ secretion. In addition, DCs‑GPC3‑CIKs significantly enhanced the cytotoxic activity against GPC3‑expressing HepG2 cells, indicating a GPC3‑specific marked immune response against HCC cells. The in vivo data indicated that DCs‑GPC3‑CIKs exhibited significant HepG2 cell‑induced tumor growth inhibition in nude mice. The results of the present study provided a new insight into the design of personalizing adoptive immunotherapy for GPC3‑expressing HCC cells.
Collapse
Affiliation(s)
- YULIANG WANG
- Department of Clinical Laboratory Medicine, Tianjin First Central Hospital, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin 300192, P.R. China
- Department of Transplantation Surgery, Tianjin First Central Hospital, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin 300192, P.R. China
| | - YINLONG WANG
- Department of Hernia and Abdominal Wall Surgery, Union Medicine Center, Tianjin 300121, P.R. China
| | - HONG MU
- Department of Clinical Laboratory Medicine, Tianjin First Central Hospital, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin 300192, P.R. China
| | - TAO LIU
- Department of Clinical Laboratory Medicine, Tianjin First Central Hospital, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin 300192, P.R. China
- Department of Transplantation Surgery, Tianjin First Central Hospital, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin 300192, P.R. China
| | - XIAOBO CHEN
- Union Stem and Gene Engineering Co., Tianjin 300384, P.R. China
| | - ZHONGYANG SHEN
- Department of Clinical Laboratory Medicine, Tianjin First Central Hospital, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin 300192, P.R. China
- Department of Transplantation Surgery, Tianjin First Central Hospital, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin 300192, P.R. China
| |
Collapse
|
20
|
Ubiquitinated proteins enriched from tumor cells by a ubiquitin binding protein Vx3(A7) as a potent cancer vaccine. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:34. [PMID: 25886865 PMCID: PMC4405905 DOI: 10.1186/s13046-015-0156-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/07/2015] [Indexed: 11/29/2022]
Abstract
Background Our previous studies have demonstrated that autophagosome-enriched vaccine (named DRibbles: DRiPs-containing blebs) induce a potent anti-tumor efficacy in different murine tumor models, in which DRibble-containing ubiquitinated proteins are efficient tumor-specific antigen source for the cross-presentation after being loaded onto dendritic cells. In this study, we sought to detect whether ubiquitinated proteins enriched from tumor cells could be used directly as a novel cancer vaccine. Methods The ubiquitin binding protein Vx3(A7) was used to isolate ubiquitinated proteins from EL4 and B16-F10 tumor cells after blocking their proteasomal degradation pathway. C57BL/6 mice were vaccinated with different doses of Ub-enriched proteins via inguinal lymph nodes or subcutaneous injection and with DRibbles, Ub-depleted proteins and whole cell lysate as comparison groups, respectively. The lymphocytes from the vaccinated mice were re-stimulated with inactivated tumor cells and the levels of IFN-γ in the supernatant were detected by ELISA. Anti-tumor efficacy of Ub-enriched proteins vaccine was evaluated by monitoring tumor growth in established tumor mice models. Graphpad Prism 5.0 was used for all statistical analysis. Results We found that after stimulation with inactivated tumor cells, the lymphocytes from the Ub-enriched proteins-vaccinated mice secreted high level of IFN-γ in dose dependent manner, in which the priming vaccination via inguinal lymph nodes injection induced higher IFN-γ level than that via subcutaneous injection. Moreover, the level of secreted IFN-γ in the Ub-enriched proteins group was markedly higher than that in the whole cell lysate and Ub-depleted proteins. Interestingly, the lymphocytes from mice vaccinated with Ub-enriched proteins, but not Ub-depleted proteins and whole cell lysates, isolated from EL4 or B16-F10 tumor cells also produced an obvious level of IFN-γ when stimulated alternately with inactivated B16-F10 or EL4 tumor cells. Furthermore, Ub-enriched proteins vaccine showed a significant inhibitory effect on in vivo growth of homologous tumor, as well as allogeneic tumor, compared with Ub-depleted proteins and tumor cell lysate. Tumor growth was regressed after three times of vaccination with Ub-enriched proteins in contrast to other groups. Conclusion These results indicated that Ub-enriched proteins isolated from tumor cells may have a potential as a potent vaccine for immunotherapy against cancer.
Collapse
|
21
|
Zhou C, Jiang SS, Wang CY, Li R, Che HL. Different immunology mechanisms of Phellinus igniarius in inhibiting growth of liver cancer and melanoma cells. Asian Pac J Cancer Prev 2015; 15:3659-65. [PMID: 24870774 DOI: 10.7314/apjcp.2014.15.8.3659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
To assess inhibition mechanisms of a Phellinus igniarius (PI) extract on cancer, C57BL/6 mice were orally treated with PI extractive after or before implanting H22 (hepatocellular carcinoma ) or B16 (melanoma) cells. Mice were orally gavaged with different doses of PI for 36 days 24h after introduction of H22 or B16 cells. Mice in another group were orally treated as above daily for 42 days and implanted with H22 cells on day 7. Then the T lymphocyte, antibody, cytokine, LAK, NK cell activity in spleen, tumor cell apoptosis status and tumor inhibition in related organs, as well as the expression of iNOS and PCNA in tumor tissue were examined. The PI extract could improve animal immunity as well as inhibit cancer cell growth and metastasis with a dose-response relationship. Notably, PI's regulation with the two kinds of tumor appeared to occur in different ways, since the antibody profile and tumor metastasis demonstrated variation between animals implanted with hepatocellular carcinoma and melanoma cells.
Collapse
Affiliation(s)
- Cui Zhou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China E-mail :
| | | | | | | | | |
Collapse
|
22
|
Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Sautès-Fridman C, Cremer I, Henrik ter Meulen J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Toll-like receptor agonists in oncological indications. Oncoimmunology 2014; 3:e29179. [PMID: 25083332 PMCID: PMC4091055 DOI: 10.4161/onci.29179] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptors (TLRs) are an evolutionarily conserved group of enzymatically inactive, single membrane-spanning proteins that recognize a wide panel of exogenous and endogenous danger signals. Besides constituting a crucial component of the innate immune response to bacterial and viral pathogens, TLRs appear to play a major role in anticancer immunosurveillance. In line with this notion, several natural and synthetic TLR ligands have been intensively investigated for their ability to boost tumor-targeting immune responses elicited by a variety of immunotherapeutic and chemotherapeutic interventions. Three of these agents are currently approved by the US Food and Drug Administration (FDA) or equivalent regulatory agencies for use in cancer patients: the so-called bacillus Calmette-Guérin, monophosphoryl lipid A, and imiquimod. However, the number of clinical trials testing the therapeutic potential of both FDA-approved and experimental TLR agonists in cancer patients is stably decreasing, suggesting that drug developers and oncologists are refocusing their interest on alternative immunostimulatory agents. Here, we summarize recent findings on the use of TLR agonists in cancer patients and discuss how the clinical evaluation of FDA-approved and experimental TLR ligands has evolved since the publication of our first Trial Watch dealing with this topic.
Collapse
Affiliation(s)
- Fernando Aranda
- Gustave Roussy; Villejuif, France
- INSERM, UMRS1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Université Paris-Sud/Paris XI; Paris, France
| | - Erika Vacchelli
- Gustave Roussy; Villejuif, France
- INSERM, UMRS1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Université Paris-Sud/Paris XI; Paris, France
| | - Florine Obrist
- Gustave Roussy; Villejuif, France
- INSERM, UMRS1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Université Paris-Sud/Paris XI; Paris, France
| | | | - Jérôme Galon
- INSERM, UMRS1138; Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers; Paris, France
| | - Catherine Sautès-Fridman
- INSERM, UMRS1138; Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Isabelle Cremer
- INSERM, UMRS1138; Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | | | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France
- INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, UMRS1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Villejuif, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
| |
Collapse
|
23
|
Vacchelli E, Aranda F, Obrist F, Eggermont A, Galon J, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Immunostimulatory cytokines in cancer therapy. Oncoimmunology 2014; 3:e29030. [PMID: 25083328 PMCID: PMC4091551 DOI: 10.4161/onci.29030] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 04/26/2014] [Indexed: 12/11/2022] Open
Abstract
Tumor-targeting immune responses provide a significant contribution to (when they do not entirely account for) the clinical activity of diverse antineoplastic regimens, encompassing not only a large panel of immunotherapeutic strategies but also conventional cytotoxic molecules, targeted anticancer agents and irradiation. In line with this notion, several approaches have been devised to elicit novel or boost existing anticancer immune responses, including the administration of immunomodulatory cytokines. Such a relatively unspecific intervention suffices to mediate clinical effects in (at least a subset of) patients bearing particularly immunogenic tumors, like melanoma and renal cell carcinoma. More often, however, immunostimulatory cytokines are administered to boost the immunogenic potential of other agents, including (but not limited to) immune checkpoint-blocking antibodies, anticancer vaccines, oncolytic viruses and immunogenic chemotherapeutics. Here, we summarize the latest advances in the clinical development of recombinant cytokines as an immunomodulatory intervention for cancer therapy.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy; Villejuif, France ; INSERM, UMRS1138; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
| | - Fernando Aranda
- Gustave Roussy; Villejuif, France ; INSERM, UMRS1138; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
| | - Florine Obrist
- Gustave Roussy; Villejuif, France ; INSERM, UMRS1138; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
| | | | - Jérôme Galon
- INSERM, UMRS1138; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers; Paris, France
| | - Isabelle Cremer
- INSERM, UMRS1138; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015, CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, UMRS1138; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France ; Metabolomics and Cell Biology Platforms, Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
| |
Collapse
|
24
|
Wang Z, Han W, Sui X, Fang Y, Pan H. Autophagy: A novel therapeutic target for hepatocarcinoma (Review). Oncol Lett 2014; 7:1345-1351. [PMID: 24765136 PMCID: PMC3997714 DOI: 10.3892/ol.2014.1916] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/27/2014] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a highly conserved intracellular degradation process and plays an important role in hepatocarcinogenesis. Available data show that autophagy is involved in anti-hepatocarcinoma (HCC) therapies. Autophagy regulation involves a novel target for overcoming therapeutic resistance and sensitizing HCC to currently therapeutic methods. This is a systematic review on the interface of autophagy and the development of HCC and outlining the role of autophagy in current anti-HCC approaches. Understanding the significance of autophagy in anti-HCC therapy may offer a novel therapeutic target for improving anti-cancer efficacy and prolong survival for HCC patients.
Collapse
Affiliation(s)
- Zhanggui Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xinbing Sui
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|