1
|
Leung A, Patel R, Chirachon V, Stata M, Macfarlane TD, Ludwig M, Busch FA, Sage TL, Sage RF. Tribulus (Zygophyllaceae) as a case study for the evolution of C 2 and C 4 photosynthesis. PLANT, CELL & ENVIRONMENT 2024; 47:3541-3560. [PMID: 39132738 DOI: 10.1111/pce.15069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024]
Abstract
C2 photosynthesis is a photosynthetic pathway in which photorespiratory CO2 release and refixation are enhanced in leaf bundle sheath (BS) tissues. The evolution of C2 photosynthesis has been hypothesized to be a major step in the origin of C4 photosynthesis, highlighting the importance of studying C2 evolution. In this study, physiological, anatomical, ultrastructural, and immunohistochemical properties of leaf photosynthetic tissues were investigated in six non-C4 Tribulus species and four C4 Tribulus species. At 42°C, T. cristatus exhibited a photosynthetic CO2 compensation point in the absence of respiration (C*) of 21 µmol mol-1, below the C3 mean C* of 73 µmol mol-1. Tribulus astrocarpus had a C* value at 42°C of 55 µmol mol-1, intermediate between the C3 species and the C2 T. cristatus. Glycine decarboxylase (GDC) allocation to BS tissues was associated with lower C*. Tribulus cristatus and T. astrocarpus allocated 86% and 30% of their GDC to the BS tissues, respectively, well above the C3 mean of 11%. Tribulus astrocarpus thus exhibits a weaker C2 (termed sub-C2) phenotype. Increased allocation of mitochondria to the BS and decreased length-to-width ratios of BS cells, were present in non-C4 species, indicating a potential role in C2 and C4 evolution.
Collapse
Affiliation(s)
- Arthur Leung
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Ria Patel
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Varosak Chirachon
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Matt Stata
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Departments of Biochemistry and Molecular Biology, Plant Biology, and Plant, Soil, and Microbial Sciences, Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - Terry D Macfarlane
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Department of Biodiversity, Conservation and Attractions, Western Australian Herbarium, Perth, Western Australia, Australia
| | - Martha Ludwig
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Florian A Busch
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, UK
| | - Tammy L Sage
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rowan F Sage
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Aga ONL, Brun M, Dauda KA, Diaz-Uriarte R, Giannakis K, Johnston IG. HyperTraPS-CT: Inference and prediction for accumulation pathways with flexible data and model structures. PLoS Comput Biol 2024; 20:e1012393. [PMID: 39231165 PMCID: PMC11404842 DOI: 10.1371/journal.pcbi.1012393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/16/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024] Open
Abstract
Accumulation processes, where many potentially coupled features are acquired over time, occur throughout the sciences from evolutionary biology to disease progression, and particularly in the study of cancer progression. Existing methods for learning the dynamics of such systems typically assume limited (often pairwise) relationships between feature subsets, cross-sectional or untimed observations, small feature sets, or discrete orderings of events. Here we introduce HyperTraPS-CT (Hypercubic Transition Path Sampling in Continuous Time) to compute posterior distributions on continuous-time dynamics of many, arbitrarily coupled, traits in unrestricted state spaces, accounting for uncertainty in observations and their timings. We demonstrate the capacity of HyperTraPS-CT to deal with cross-sectional, longitudinal, and phylogenetic data, which may have no, uncertain, or precisely specified sampling times. HyperTraPS-CT allows positive and negative interactions between arbitrary subsets of features (not limited to pairwise interactions), supporting Bayesian and maximum-likelihood inference approaches to identify these interactions, consequent pathways, and predictions of future and unobserved features. We also introduce a range of visualisations for the inferred outputs of these processes and demonstrate model selection and regularisation for feature interactions. We apply this approach to case studies on the accumulation of mutations in cancer progression and the acquisition of anti-microbial resistance genes in tuberculosis, demonstrating its flexibility and capacity to produce predictions aligned with applied priorities.
Collapse
Affiliation(s)
- Olav N L Aga
- Computational Biology Unit, University of Bergen, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Morten Brun
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Kazeem A Dauda
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Ramon Diaz-Uriarte
- Department of Biochemistry, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
| | - Konstantinos Giannakis
- Department of Mathematics, University of Bergen, Bergen, Norway
- Department of Disease Burden, Norwegian Institute of Public Health, Bergen, Norway
| | - Iain G Johnston
- Computational Biology Unit, University of Bergen, Bergen, Norway
- Department of Mathematics, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Lyu H, Yim WC, Yu Q. Genomic and Transcriptomic Insights into the Evolution of C4 Photosynthesis in Grasses. Genome Biol Evol 2024; 16:evae163. [PMID: 39066653 PMCID: PMC11319937 DOI: 10.1093/gbe/evae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
C4 photosynthesis has independently evolved over 62 times within 19 angiosperm families. The recurrent evolution of C4 photosynthesis appears to contradict the complex anatomical and biochemical modifications required for the transition from C3 to C4 photosynthesis. In this study, we conducted an integrated analysis of genomics and transcriptomics to elucidate the molecular underpinnings of convergent C4 evolution in the grass family. Our genome-wide exploration of C4-related gene families suggests that the expansion of these gene families may have played an important role in facilitating C4 evolution in the grass family. A phylogenomic synteny network analysis uncovered the emergence of C4 genes in various C4 grass lineages from a common ancestral gene pool. Moreover, through a comparison between non-C4 and C4 PEPCs, we pinpointed 14 amino acid sites exhibiting parallel adaptations. These adaptations, occurring post the BEP-PACMAD divergence, shed light on why all C4 origins in grasses are confined to the PACMAD clade. Furthermore, our study revealed that the ancestor of Chloridoideae grasses possessed a more favorable molecular preadaptation for C4 functions compared to the ancestor of Panicoideae grasses. This molecular preadaptation potentially explains why C4 photosynthesis evolved earlier in Chloridoideae than in Panicoideae and why the C3-to-C4 transition occurred once in Chloridoideae but multiple times in Panicoideae. Additionally, we found that C4 genes share similar cis-elements across independent C4 lineages. Notably, NAD-ME subtype grasses may have retained the ancestral regulatory machinery of the C4 NADP-ME gene, while NADP-ME subtype grasses might have undergone unique cis-element modifications.
Collapse
Affiliation(s)
- Haomin Lyu
- Tropical Plant Genetic Resources and Disease Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Hilo, HI 96720, USA
- Hawaii Agriculture Research Center, Kunia, HI 96759, USA
| | - Won Cheol Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Qingyi Yu
- Tropical Plant Genetic Resources and Disease Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Hilo, HI 96720, USA
| |
Collapse
|
4
|
Mabry ME, Abrahams RS, Al-Shehbaz IA, Baker WJ, Barak S, Barker MS, Barrett RL, Beric A, Bhattacharya S, Carey SB, Conant GC, Conran JG, Dassanayake M, Edger PP, Hall JC, Hao Y, Hendriks KP, Hibberd JM, King GJ, Kliebenstein DJ, Koch MA, Leitch IJ, Lens F, Lysak MA, McAlvay AC, McKibben MTW, Mercati F, Moore RC, Mummenhoff K, Murphy DJ, Nikolov LA, Pisias M, Roalson EH, Schranz ME, Thomas SK, Yu Q, Yocca A, Pires JC, Harkess AE. Complementing model species with model clades. THE PLANT CELL 2024; 36:1205-1226. [PMID: 37824826 PMCID: PMC11062466 DOI: 10.1093/plcell/koad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant tree of life continues to improve. The intersection of these 2 research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade." These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.
Collapse
Affiliation(s)
- Makenzie E Mabry
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - R Shawn Abrahams
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | | | | | - Simon Barak
- Ben-Gurion University of the Negev, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Midreshet Ben-Gurion, 8499000, Israel
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Botanic Garden, Locked Bag 6002, Mount Annan, NSW 2567, Australia
| | - Aleksandra Beric
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO 63108, USA
| | - Samik Bhattacharya
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Sarah B Carey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Gavin C Conant
- Department of Biological Sciences, Bioinformatics Research Center, Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | - John G Conran
- ACEBB and SGC, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48864, USA
| | - Jocelyn C Hall
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Yue Hao
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Kasper P Hendriks
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
- Functional Traits, Naturalis Biodiversity Center, PO Box 9517, Leiden 2300 RA, the Netherlands
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | | | - Marcus A Koch
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Frederic Lens
- Functional Traits, Naturalis Biodiversity Center, PO Box 9517, Leiden 2300 RA, the Netherlands
- Institute of Biology Leiden, Plant Sciences, Leiden University, 2333 BE Leiden, the Netherlands
| | - Martin A Lysak
- CEITEC, and NCBR, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Alex C McAlvay
- Institute of Economic Botany, New York Botanical Garden, The Bronx, NY 10458, USA
| | - Michael T W McKibben
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Francesco Mercati
- National Research Council (CNR), Institute of Biosciences and Bioresource (IBBR), Palermo 90129, Italy
| | | | - Klaus Mummenhoff
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Daniel J Murphy
- Royal Botanic Gardens Victoria, Melbourne, VIC 3004, Australia
| | | | - Michael Pisias
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Eric H Roalson
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Shawn K Thomas
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Bioinformatics and Analytics Core, University of Missouri, Columbia, MO 65211, USA
| | - Qingyi Yu
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Hilo, HI 96720, USA
| | - Alan Yocca
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1170, USA
| | - Alex E Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
5
|
Warchoł M, Juzoń-Sikora K, Rančić D, Pećinar I, Warzecha T, Idziak-Helmcke D, Laskoś K, Czyczyło-Mysza I, Dziurka K, Skrzypek E. Comparative characteristics of oat doubled haploids and oat × maize addition lines: Anatomical features of the leaves, chlorophyll a fluorescence and yield parameters. PLoS One 2024; 19:e0298072. [PMID: 38593116 PMCID: PMC11003612 DOI: 10.1371/journal.pone.0298072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/18/2024] [Indexed: 04/11/2024] Open
Abstract
As a result of oat (Avena sativa L.) × maize (Zea mays L.) crossing, maize chromosomes may not be completely eliminated at the early stages of embryogenesis, leading to the oat × maize addition (OMA) lines development. Introgression of maize chromosomes into oat genome can cause morphological and physiological modifications. The aim of the research was to evaluate the leaves' anatomy, chlorophyll a fluorescence, and yield parameter of oat doubled haploid (DH) and OMA lines obtained by oat × maize crossing. The present study examined two DH and two disomic OMA lines and revealed that they differ significantly in the majority of studied traits, apart from: the number of cells of the outer bundle sheath; light energy absorption; excitation energy trapped in PSII reaction centers; and energy dissipated from PSII. The OMA II line was characterized by larger size of single cells in the outer bundle sheath and greater number of seeds per plant among tested lines.
Collapse
Affiliation(s)
- Marzena Warchoł
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Katarzyna Juzoń-Sikora
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Dragana Rančić
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Ilinka Pećinar
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Tomasz Warzecha
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Kraków, Kraków, Poland
| | - Dominika Idziak-Helmcke
- Institute of Biology, Biotechnology, and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Kamila Laskoś
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Ilona Czyczyło-Mysza
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Kinga Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Edyta Skrzypek
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| |
Collapse
|
6
|
Chustecki JM, Johnston IG. Collective mitochondrial dynamics resolve conflicting cellular tensions: From plants to general principles. Semin Cell Dev Biol 2024; 156:253-265. [PMID: 38043948 DOI: 10.1016/j.semcdb.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 12/05/2023]
Abstract
Mitochondria play diverse and essential roles in eukaryotic cells, and plants are no exception. Plant mitochondria have several differences from their metazoan and fungal cousins: they often exist in a fragmented state, move rapidly on actin rather than microtubules, have many plant-specific metabolic features and roles, and usually contain only a subset of the complete mtDNA genome, which itself undergoes frequent recombination. This arrangement means that exchange and complementation is essential for plant mitochondria, and recent work has begun to reveal how their collective dynamics and resultant "social networks" of encounters support this exchange, connecting plant mitochondria in time rather than in space. This review will argue that this social network perspective can be extended to a "societal network", where mitochondrial dynamics are an essential part of the interacting cellular society of organelles and biomolecules. Evidence is emerging that mitochondrial dynamics allow optimal resolutions to competing cellular priorities; we will survey this evidence and review potential future research directions, highlighting that plant mitochondria can help reveal and test principles that apply across other kingdoms of life. In parallel with this fundamental cell biology, we also highlight the translational "One Health" importance of plant mitochondrial behaviour - which is exploited in the production of a vast amount of crops consumed worldwide - and the potential for multi-objective optimisation to understand and rationally re-engineer the evolved resolutions to these tensions.
Collapse
Affiliation(s)
- Joanna M Chustecki
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway; Computational Biology Unit, University of Bergen, Bergen, Norway.
| |
Collapse
|
7
|
Varney RM, Speiser DI, Cannon JT, Aguilar MA, Eernisse DJ, Oakley TH. A morphological basis for path-dependent evolution of visual systems. Science 2024; 383:983-987. [PMID: 38422123 DOI: 10.1126/science.adg2689] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/11/2024] [Indexed: 03/02/2024]
Abstract
Path dependence influences macroevolutionary predictability by constraining potential outcomes after critical evolutionary junctions. Although it has been demonstrated in laboratory experiments, path dependence is difficult to demonstrate in natural systems because of a lack of independent replicates. Here, we show that two types of distributed visual systems recently evolved twice within chitons, demonstrating rapid and path-dependent evolution of a complex trait. The type of visual system that a chiton lineage can evolve is constrained by the number of openings for sensory nerves in its shell plates. Lineages with more openings evolve visual systems with thousands of eyespots, whereas those with fewer openings evolve visual systems with hundreds of shell eyes. These macroevolutionary outcomes shaped by path dependence are both deterministic and stochastic because possibilities are restricted yet not entirely predictable.
Collapse
Affiliation(s)
| | | | | | | | | | - Todd H Oakley
- University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
8
|
Liu J, Wang Y, Chen X, Tang L, Yang Y, Yang Z, Sun R, Mladenov P, Wang X, Liu X, Jin S, Li H, Zhao L, Wang Y, Wang W, Deng X. Specific metabolic and cellular mechanisms of the vegetative desiccation tolerance in resurrection plants for adaptation to extreme dryness. PLANTA 2024; 259:47. [PMID: 38285274 DOI: 10.1007/s00425-023-04323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/24/2023] [Indexed: 01/30/2024]
Abstract
MAIN CONCLUSION Substantial advancements have been made in our comprehension of vegetative desiccation tolerance in resurrection plants, and further research is still warranted to elucidate the mechanisms governing distinct cellular adaptations. Resurrection plants are commonly referred to as a small group of extremophile vascular plants that exhibit vegetative desiccation tolerance (VDT), meaning that their vegetative tissues can survive extreme drought stress (> 90% water loss) and subsequently recover rapidly upon rehydration. In contrast to most vascular plants, which typically employ water-saving strategies to resist partial water loss and optimize water absorption and utilization to a limited extent under moderate drought stress, ultimately succumbing to cell death when confronted with severe and extreme drought conditions, resurrection plants have evolved unique mechanisms of VDT, enabling them to maintain viability even in the absence of water for extended periods, permitting them to rejuvenate without harm upon water contact. Understanding the mechanisms associated with VDT in resurrection plants holds the promise of expanding our understanding of how plants adapt to exceedingly arid environments, a phenomenon increasingly prevalent due to global warming. This review offers an updated and comprehensive overview of recent advances in VDT within resurrection plants, with particular emphasis on elucidating the metabolic and cellular adaptations during desiccation, including the intricate processes of cell wall folding and the prevention of cell death. Furthermore, this review highlights existing unanswered questions in the field, suggests potential avenues for further research to gain deeper insights into the remarkable VDT adaptations observed in resurrection plants, and highlights the potential application of VDT-derived techniques in crop breeding to enhance tolerance to extreme drought stress.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Yuanyuan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuxiu Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Tang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaolin Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Runze Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Petko Mladenov
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Agrobioinstitute, Agricultural Academy Bulgaria, Sofia, 1164, Bulgaria
| | - Xiaohua Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xiaoqiang Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Songsong Jin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yafeng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Beijing University of Agriculture, Beijing, 102206, China
| | - Wenhe Wang
- Beijing University of Agriculture, Beijing, 102206, China
| | - Xin Deng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
9
|
Sage RF, Gilman IS, Smith JAC, Silvera K, Edwards EJ. Atmospheric CO2 decline and the timing of CAM plant evolution. ANNALS OF BOTANY 2023; 132:753-770. [PMID: 37642245 PMCID: PMC10799994 DOI: 10.1093/aob/mcad122] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND AND AIMS CAM photosynthesis is hypothesized to have evolved in atmospheres of low CO2 concentration in recent geological time because of its ability to concentrate CO2 around Rubisco and boost water use efficiency relative to C3 photosynthesis. We assess this hypothesis by compiling estimates of when CAM clades arose using phylogenetic chronograms for 73 CAM clades. We further consider evidence of how atmospheric CO2 affects CAM relative to C3 photosynthesis. RESULTS Where CAM origins can be inferred, strong CAM is estimated to have appeared in the past 30 million years in 46 of 48 examined clades, after atmospheric CO2 had declined from high (near 800 ppm) to lower (<450 ppm) values. In turn, 21 of 25 clades containing CAM species (but where CAM origins are less certain) also arose in the past 30 million years. In these clades, CAM is probably younger than the clade origin. We found evidence for repeated weak CAM evolution during the higher CO2 conditions before 30 million years ago, and possible strong CAM origins in the Crassulaceae during the Cretaceous period prior to atmospheric CO2 decline. Most CAM-specific clades arose in the past 15 million years, in a similar pattern observed for origins of C4 clades. CONCLUSIONS The evidence indicates strong CAM repeatedly evolved in reduced CO2 conditions of the past 30 million years. Weaker CAM can pre-date low CO2 and, in the Crassulaceae, strong CAM may also have arisen in water-limited microsites under relatively high CO2. Experimental evidence from extant CAM species demonstrates that elevated CO2 reduces the importance of nocturnal CO2 fixation by increasing the contribution of C3 photosynthesis to daily carbon gain. Thus, the advantage of strong CAM would be reduced in high CO2, such that its evolution appears less likely and restricted to more extreme environments than possible in low CO2.
Collapse
Affiliation(s)
- Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Ian S Gilman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - J Andrew C Smith
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Katia Silvera
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
10
|
Edwards EJ. Reconciling continuous and discrete models of C4 and CAM evolution. ANNALS OF BOTANY 2023; 132:717-725. [PMID: 37675944 PMCID: PMC10799980 DOI: 10.1093/aob/mcad125] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/11/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND A current argument in the CAM biology literature has focused on the nature of the CAM evolutionary trajectory: whether there is a smooth continuum of phenotypes between plants with C3 and CAM photosynthesis or whether there are discrete steps of phenotypic evolutionary change such as has been modelled for the evolution of C4 photosynthesis. A further implication is that a smooth continuum would increase the evolvability of CAM, whereas discrete changes would make the evolutionary transition from C3 to CAM more difficult. SCOPE In this essay, I attempt to reconcile these two viewpoints, because I think in many ways this is a false dichotomy that is constraining progress in understanding how both CAM and C4 evolved. In reality, the phenotypic space connecting C3 species and strong CAM/C4 species is both a continuum of variably expressed quantitative traits and yet also contains certain combinations of traits that we are able to identify as discrete, recognizable phenotypes. In this sense, the evolutionary mechanics of CAM origination are no different from those of C4 photosynthesis, nor from the evolution of any other complex trait assemblage. CONCLUSIONS To make progress, we must embrace the concept of discrete phenotypic phases of CAM evolution, because their delineation will force us to articulate what aspects of phenotypic variation we think are significant. There are some current phenotypic gaps that are limiting our ability to build a complete CAM evolutionary model: the first is how a rudimentary CAM biochemical cycle becomes established, and the second is how the 'accessory' CAM cycle in C3+CAM plants is recruited into a primary metabolism. The connections to the C3 phenotype we are looking for are potentially found in the behaviour of C3 plants when undergoing physiological stress - behaviour that, strangely enough, remains essentially unexplored in this context.
Collapse
Affiliation(s)
- Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06520, USA
| |
Collapse
|
11
|
Schlüter U, Bouvier JW, Guerreiro R, Malisic M, Kontny C, Westhoff P, Stich B, Weber APM. Brassicaceae display variation in efficiency of photorespiratory carbon-recapturing mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6631-6649. [PMID: 37392176 PMCID: PMC10662225 DOI: 10.1093/jxb/erad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/30/2023] [Indexed: 07/03/2023]
Abstract
Carbon-concentrating mechanisms enhance the carboxylase efficiency of Rubisco by providing supra-atmospheric concentrations of CO2 in its surroundings. Beside the C4 photosynthesis pathway, carbon concentration can also be achieved by the photorespiratory glycine shuttle which requires fewer and less complex modifications. Plants displaying CO2 compensation points between 10 ppm and 40 ppm are often considered to utilize such a photorespiratory shuttle and are termed 'C3-C4 intermediates'. In the present study, we perform a physiological, biochemical, and anatomical survey of a large number of Brassicaceae species to better understand the C3-C4 intermediate phenotype, including its basic components and its plasticity. Our phylogenetic analysis suggested that C3-C4 metabolism evolved up to five times independently in the Brassicaceae. The efficiency of the pathway showed considerable variation. Centripetal accumulation of organelles in the bundle sheath was consistently observed in all C3-C4-classified taxa, indicating a crucial role for anatomical features in CO2-concentrating pathways. Leaf metabolite patterns were strongly influenced by the individual species, but accumulation of photorespiratory shuttle metabolites glycine and serine was generally observed. Analysis of phosphoenolpyruvate carboxylase activities suggested that C4-like shuttles have not evolved in the investigated Brassicaceae. Convergent evolution of the photorespiratory shuttle indicates that it represents a distinct photosynthesis type that is beneficial in some environments.
Collapse
Affiliation(s)
- Urte Schlüter
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Jacques W Bouvier
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Ricardo Guerreiro
- Institute for Quantitative Genetics and Genomics of Plants, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Milena Malisic
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Carina Kontny
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Philipp Westhoff
- Metabolomics and Metabolism Laboratory, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Benjamin Stich
- Institute for Quantitative Genetics and Genomics of Plants, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Alenazi AS, Bianconi ME, Middlemiss E, Milenkovic V, Curran EV, Sotelo G, Lundgren MR, Nyirenda F, Pereira L, Christin PA, Dunning LT, Osborne CP. Leaf anatomy explains the strength of C 4 activity within the grass species Alloteropsis semialata. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37184423 DOI: 10.1111/pce.14607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/23/2023] [Accepted: 05/01/2023] [Indexed: 05/16/2023]
Abstract
C4 photosynthesis results from anatomical and biochemical characteristics that together concentrate CO2 around ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), increasing productivity in warm conditions. This complex trait evolved through the gradual accumulation of components, and particular species possess only some of these, resulting in weak C4 activity. The consequences of adding C4 components have been modelled and investigated through comparative approaches, but the intraspecific dynamics responsible for strengthening the C4 pathway remain largely unexplored. Here, we evaluate the link between anatomical variation and C4 activity, focusing on populations of the photosynthetically diverse grass Alloteropsis semialata that fix various proportions of carbon via the C4 cycle. The carbon isotope ratios in these populations range from values typical of C3 to those typical of C4 plants. This variation is statistically explained by a combination of leaf anatomical traits linked to the preponderance of bundle sheath tissue. We hypothesize that increased investment in bundle sheath boosts the strength of the intercellular C4 pump and shifts the balance of carbon acquisition towards the C4 cycle. Carbon isotope ratios indicating a stronger C4 pathway are associated with warmer, drier environments, suggesting that incremental anatomical alterations can lead to the emergence of C4 physiology during local adaptation within metapopulations.
Collapse
Affiliation(s)
- Ahmed S Alenazi
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
- Department of Biological Sciences, Northern Border University, Arar, Saudi Arabia
| | - Matheus E Bianconi
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Ella Middlemiss
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Vanja Milenkovic
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Emma V Curran
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Graciela Sotelo
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Marjorie R Lundgren
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Florence Nyirenda
- Department of Biological Sciences, University of Zambia, Lusaka, Zambia
| | - Lara Pereira
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Colin P Osborne
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
13
|
Zhou H, Akçay E, Helliker B. Optimal coordination and reorganization of photosynthetic properties in C 4 grasses. PLANT, CELL & ENVIRONMENT 2023; 46:796-811. [PMID: 36478594 DOI: 10.1111/pce.14506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Each of >20 independent evolutions of C4 photosynthesis in grasses required reorganization of the Calvin-Benson-cycle (CB-cycle) within the leaf, along with coordination of C4 -cycle enzymes with the CB-cycle to maximize CO2 assimilation. Considering the vast amount of time over which C4 evolved, we hypothesized (i) trait divergences exist within and across lineages with both C4 and closely related C3 grasses, (ii) trends in traits after C4 evolution yield the optimization of C4 through time, and (iii) the presence/absence of trends in coordination between the CB-cycle and C4 -cycle provides information on the strength of selection. To address these hypotheses, we used a combination of optimality modelling, physiological measurements and phylogenetic-comparative-analysis. Photosynthesis was optimized after the evolution of C4 causing diversification in maximal assimilation, electron transport, Rubisco carboxylation, phosphoenolpyruvate carboxylase and chlorophyll within C4 lineages. Both theory and measurements indicated a higher light-reaction to CB-cycle ratio (Jatpmax /Vcmax ) in C4 than C3 . There were no evolutionary trends with photosynthetic coordination between the CB-cycle, light reactions and the C4 -cycle, suggesting strong initial selection for coordination. The coordination of CB-C4 -cycles (Vpmax /Vcmax ) was optimal for CO2 of 200 ppm, not to current conditions. Our model indicated that a higher than optimal Vpmax /Vcmax affects assimilation minimally, thus lessening recent selection to decrease Vpmax /Vcmax .
Collapse
Affiliation(s)
- Haoran Zhou
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Erol Akçay
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brent Helliker
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Moen MT, Johnston IG. HyperHMM: efficient inference of evolutionary and progressive dynamics on hypercubic transition graphs. Bioinformatics 2022; 39:6895098. [PMID: 36511587 PMCID: PMC9848056 DOI: 10.1093/bioinformatics/btac803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
MOTIVATION The evolution of bacterial drug resistance and other features in biology, the progression of cancer and other diseases and a wide range of broader questions can often be viewed as the sequential stochastic acquisition of binary traits (e.g. genetic changes, symptoms or characters). Using potentially noisy or incomplete data to learn the sequences by which such traits are acquired is a problem of general interest. The problem is complicated for large numbers of traits, which may, individually or synergistically, influence the probability of further acquisitions both positively and negatively. Hypercubic inference approaches, based on hidden Markov models on a hypercubic transition network, address these complications, but previous Bayesian instances can consume substantial time for converged results, limiting their practical use. RESULTS Here, we introduce HyperHMM, an adapted Baum-Welch (expectation-maximization) algorithm for hypercubic inference with resampling to quantify uncertainty, and show that it allows orders-of-magnitude faster inference while making few practical sacrifices compared to previous hypercubic inference approaches. We show that HyperHMM allows any combination of traits to exert arbitrary positive or negative influence on the acquisition of other traits, relaxing a common limitation of only independent trait influences. We apply this approach to synthetic and biological datasets and discuss its more general application in learning evolutionary and progressive pathways. AVAILABILITY AND IMPLEMENTATION Code for inference and visualization, and data for example cases, is freely available at https://github.com/StochasticBiology/hypercube-hmm. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Marcus T Moen
- Department of Mathematics, University of Bergen, Bergen, Vestland, Norway
| | | |
Collapse
|
15
|
Munekage YN, Taniguchi YY. A scheme for C 4 evolution derived from a comparative analysis of the closely related C 3, C 3-C 4 intermediate, C 4-like, and C 4 species in the genus Flaveria. PLANT MOLECULAR BIOLOGY 2022; 110:445-454. [PMID: 35119574 DOI: 10.1007/s11103-022-01246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
A comparative analysis of the genus Flaveria showed a C4 evolutionary process in which the anatomical and metabolic features of C4 photosynthesis were gradually acquired through C3-C4 intermediate stages. C4 photosynthesis has been acquired in multiple lineages of angiosperms during evolution to suppress photorespiration. Crops that perform C4 photosynthesis exhibit high rates of CO2 assimilation and high grain production even under high-temperature in semiarid environments; therefore, engineering C4 photosynthesis in C3 plants is of great importance in the application field. The genus Flaveria contains a large number of C3, C3-C4 intermediate, C4-like, and C4 species, making it a good model genus to study the evolution of C4 photosynthesis, and these studies indicate the direction for C4 engineering. C4 photosynthesis was acquired gradually through the C3-C4 intermediate stage. First, a two-celled C2 cycle called C2 photosynthesis was acquired by localizing glycine decarboxylase activity in the mitochondria of bundle sheath cells. With the development of two-cell metabolism, anatomical features also changed. Next, the replacement of the two-celled C2 cycle by the two-celled C4 cycle was induced by the acquisition of cell-selective expression in addition to the upregulation of enzymes in the C4 cycle during the C3-C4 intermediate stage. This was supported by an increase in cyclic electron transport activity in response to an increase in the ATP/NADPH demand for metabolism. Suppression of the C3 cycle in mesophyll cells was induced after the functional establishment of the C4 cycle, and optimization of electron transport by suppressing the activity of photosystem II also occurred during the final phase of C4 evolution.
Collapse
Affiliation(s)
- Yuri N Munekage
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan.
| | - Yukimi Y Taniguchi
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
16
|
Zhao YY, Lyu MA, Miao F, Chen G, Zhu XG. The evolution of stomatal traits along the trajectory toward C4 photosynthesis. PLANT PHYSIOLOGY 2022; 190:441-458. [PMID: 35652758 PMCID: PMC9434244 DOI: 10.1093/plphys/kiac252] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/21/2022] [Indexed: 05/03/2023]
Abstract
C4 photosynthesis optimizes plant carbon and water relations, allowing high photosynthetic rates with low stomatal conductance. Stomata have long been considered a part of the C4 syndrome. However, it remains unclear how stomatal traits evolved along the path from C3 to C4. Here, we examined stomata in the Flaveria genus, a model used for C4 evolutionary study. Comparative, transgenic, and semi-in vitro experiments were performed to study the molecular basis that underlies the changes of stomatal traits in C4 evolution. The evolution from C3 to C4 species is accompanied by a gradual rather than an abrupt change in stomatal traits. The initial change appears near the Type I intermediate stage. Co-evolution of the photosynthetic pathway and stomatal traits is supported. On the road to C4, stomata tend to be fewer in number but larger in size and stomatal density dominates changes in anatomical maximum stomatal conductance (gsmax). Reduction of FSTOMAGEN expression underlies decreased gsmax in Flaveria and likely occurs in other C4 lineages. Decreased gsmax contributes to the increase in intrinsic water-use efficiency in C4 evolution. This work highlights the stomatal traits in the current C4 evolutionary model. Our study provides insights into the pattern, mechanism, and role of stomatal evolution along the road toward C4.
Collapse
Affiliation(s)
- Yong-Yao Zhao
- State Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingju Amy Lyu
- State Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - FenFen Miao
- State Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Genyun Chen
- State Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
17
|
Gilman IS, Moreno-Villena JJ, Lewis ZR, Goolsby EW, Edwards EJ. Gene co-expression reveals the modularity and integration of C4 and CAM in Portulaca. PLANT PHYSIOLOGY 2022; 189:735-753. [PMID: 35285495 PMCID: PMC9157154 DOI: 10.1093/plphys/kiac116] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/17/2022] [Indexed: 05/17/2023]
Abstract
C4 photosynthesis and Crassulacean acid metabolism (CAM) have been considered as largely independent adaptations despite sharing key biochemical modules. Portulaca is a geographically widespread clade of over 100 annual and perennial angiosperm species that primarily use C4 but facultatively exhibit CAM when drought stressed, a photosynthetic system known as C4 + CAM. It has been hypothesized that C4 + CAM is rare because of pleiotropic constraints, but these have not been deeply explored. We generated a chromosome-level genome assembly of Portulaca amilis and sampled mRNA from P. amilis and Portulaca oleracea during CAM induction. Gene co-expression network analyses identified C4 and CAM gene modules shared and unique to both Portulaca species. A conserved CAM module linked phosphoenolpyruvate carboxylase to starch turnover during the day-night transition and was enriched in circadian clock regulatory motifs in the P. amilis genome. Preservation of this co-expression module regardless of water status suggests that Portulaca constitutively operate a weak CAM cycle that is transcriptionally and posttranscriptionally upregulated during drought. C4 and CAM mostly used mutually exclusive genes for primary carbon fixation, and it is likely that nocturnal CAM malate stores are shuttled into diurnal C4 decarboxylation pathways, but we found evidence that metabolite cycling may occur at low levels. C4 likely evolved in Portulaca through co-option of redundant genes and integration of the diurnal portion of CAM. Thus, the ancestral CAM system did not strongly constrain C4 evolution because photosynthetic gene networks are not co-regulated for both daytime and nighttime functions.
Collapse
Affiliation(s)
- Ian S Gilman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Author for correspondence:
| | - Jose J Moreno-Villena
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Zachary R Lewis
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Eric W Goolsby
- Department of Biology, University of Central Florida, Orlando, Florida, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
18
|
Simpson CJC, Reeves G, Tripathi A, Singh P, Hibberd JM. Using breeding and quantitative genetics to understand the C4 pathway. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3072-3084. [PMID: 34747993 PMCID: PMC9126733 DOI: 10.1093/jxb/erab486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/03/2021] [Indexed: 05/09/2023]
Abstract
Reducing photorespiration in C3 crops could significantly increase rates of photosynthesis and yield. One method to achieve this would be to integrate C4 photosynthesis into C3 species. This objective is challenging as it involves engineering incompletely understood traits into C3 leaves, including complex changes to their biochemistry, cell biology, and anatomy. Quantitative genetics and selective breeding offer underexplored routes to identify regulators of these processes. We first review examples of natural intraspecific variation in C4 photosynthesis as well as the potential for hybridization between C3 and C4 species. We then discuss how quantitative genetic approaches including artificial selection and genome-wide association could be used to better understand the C4 syndrome and in so doing guide the engineering of the C4 pathway into C3 crops.
Collapse
Affiliation(s)
- Conor J C Simpson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Gregory Reeves
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Anoop Tripathi
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Pallavi Singh
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Correspondence:
| |
Collapse
|
19
|
Mercado MA, Studer AJ. Meeting in the Middle: Lessons and Opportunities from Studying C 3-C 4 Intermediates. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:43-65. [PMID: 35231181 DOI: 10.1146/annurev-arplant-102720-114201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The discovery of C3-C4 intermediate species nearly 50 years ago opened up a new avenue for studying the evolution of photosynthetic pathways. Intermediate species exhibit anatomical, biochemical, and physiological traits that range from C3 to C4. A key feature of C3-C4 intermediates that utilize C2 photosynthesis is the improvement in photosynthetic efficiency compared with C3 species. Although the recruitment of some core enzymes is shared across lineages, there is significant variability in gene expression patterns, consistent with models that suggest numerous evolutionary paths from C3 to C4 photosynthesis. Despite the many evolutionary trajectories, the recruitment of glycine decarboxylase for C2 photosynthesis is likely required. As technologies enable high-throughput genotyping and phenotyping, the discovery of new C3-C4 intermediates species will enrich comparisons between evolutionary lineages. The investigation of C3-C4 intermediate species will enhance our understanding of photosynthetic mechanisms and evolutionary processes and will potentially aid in crop improvement.
Collapse
Affiliation(s)
| | - Anthony J Studer
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA; ,
| |
Collapse
|
20
|
Borghi GL, Arrivault S, Günther M, Barbosa Medeiros D, Dell’Aversana E, Fusco GM, Carillo P, Ludwig M, Fernie AR, Lunn JE, Stitt M. Metabolic profiles in C3, C3-C4 intermediate, C4-like, and C4 species in the genus Flaveria. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1581-1601. [PMID: 34910813 PMCID: PMC8890617 DOI: 10.1093/jxb/erab540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/14/2021] [Indexed: 05/22/2023]
Abstract
C4 photosynthesis concentrates CO2 around Rubisco in the bundle sheath, favouring carboxylation over oxygenation and decreasing photorespiration. This complex trait evolved independently in >60 angiosperm lineages. Its evolution can be investigated in genera such as Flaveria (Asteraceae) that contain species representing intermediate stages between C3 and C4 photosynthesis. Previous studies have indicated that the first major change in metabolism probably involved relocation of glycine decarboxylase and photorespiratory CO2 release to the bundle sheath and establishment of intercellular shuttles to maintain nitrogen stoichiometry. This was followed by selection for a CO2-concentrating cycle between phosphoenolpyruvate carboxylase in the mesophyll and decarboxylases in the bundle sheath, and relocation of Rubisco to the latter. We have profiled 52 metabolites in nine Flaveria species and analysed 13CO2 labelling patterns for four species. Our results point to operation of multiple shuttles, including movement of aspartate in C3-C4 intermediates and a switch towards a malate/pyruvate shuttle in C4-like species. The malate/pyruvate shuttle increases from C4-like to complete C4 species, accompanied by a rise in ancillary organic acid pools. Our findings support current models and uncover further modifications of metabolism along the evolutionary path to C4 photosynthesis in the genus Flaveria.
Collapse
Affiliation(s)
- Gian Luca Borghi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
- Correspondence:
| | - Manuela Günther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - David Barbosa Medeiros
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Emilia Dell’Aversana
- Universitá degli Studi della Campania, Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Via Vivaldi 43, 81100 Caserta, Italy
| | - Giovanna Marta Fusco
- Universitá degli Studi della Campania, Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Via Vivaldi 43, 81100 Caserta, Italy
| | - Petronia Carillo
- Universitá degli Studi della Campania, Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Via Vivaldi 43, 81100 Caserta, Italy
| | - Martha Ludwig
- The University of Western Australia, School of Molecular Sciences, 35 Stirling Highway, 6009 Perth, Australia
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
21
|
Casola C, Li J. Beyond RuBisCO: convergent molecular evolution of multiple chloroplast genes in C 4 plants. PeerJ 2022; 10:e12791. [PMID: 35127287 PMCID: PMC8801178 DOI: 10.7717/peerj.12791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The recurrent evolution of the C4 photosynthetic pathway in angiosperms represents one of the most extraordinary examples of convergent evolution of a complex trait. Comparative genomic analyses have unveiled some of the molecular changes associated with the C4 pathway. For instance, several key enzymes involved in the transition from C3 to C4 photosynthesis have been found to share convergent amino acid replacements along C4 lineages. However, the extent of convergent replacements potentially associated with the emergence of C4 plants remains to be fully assessed. Here, we conducted an organelle-wide analysis to determine if convergent evolution occurred in multiple chloroplast proteins beside the well-known case of the large RuBisCO subunit encoded by the chloroplast gene rbcL. METHODS Our study was based on the comparative analysis of 43 C4 and 21 C3 grass species belonging to the PACMAD clade, a focal taxonomic group in many investigations of C4 evolution. We first used protein sequences of 67 orthologous chloroplast genes to build an accurate phylogeny of these species. Then, we inferred amino acid replacements along 13 C4 lineages and 9 C3 lineages using reconstructed protein sequences of their reference branches, corresponding to the branches containing the most recent common ancestors of C4-only clades and C3-only clades. Pairwise comparisons between reference branches allowed us to identify both convergent and non-convergent amino acid replacements between C4:C4, C3:C3 and C3:C4 lineages. RESULTS The reconstructed phylogenetic tree of 64 PACMAD grasses was characterized by strong supports in all nodes used for analyses of convergence. We identified 217 convergent replacements and 201 non-convergent replacements in 45/67 chloroplast proteins in both C4 and C3 reference branches. C4:C4 branches showed higher levels of convergent replacements than C3:C3 and C3:C4 branches. Furthermore, we found that more proteins shared unique convergent replacements in C4 lineages, with both RbcL and RpoC1 (the RNA polymerase beta' subunit 1) showing a significantly higher convergent/non-convergent replacements ratio in C4 branches. Notably, more C4:C4 reference branches showed higher numbers of convergent vs. non-convergent replacements than C3:C3 and C3:C4 branches. Our results suggest that, in the PACMAD clade, C4 grasses experienced higher levels of molecular convergence than C3 species across multiple chloroplast genes. These findings have important implications for our understanding of the evolution of the C4 photosynthesis pathway.
Collapse
Affiliation(s)
- Claudio Casola
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States of America
- Interdisciplinary Graduate Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, United States of America
| | - Jingjia Li
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
22
|
Stitt M, Luca Borghi G, Arrivault S. Targeted metabolite profiling as a top-down approach to uncover interspecies diversity and identify key conserved operational features in the Calvin-Benson cycle. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5961-5986. [PMID: 34473300 PMCID: PMC8411860 DOI: 10.1093/jxb/erab291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/21/2021] [Indexed: 05/02/2023]
Abstract
Improving photosynthesis is a promising avenue to increase crop yield. This will be aided by better understanding of natural variance in photosynthesis. Profiling of Calvin-Benson cycle (CBC) metabolites provides a top-down strategy to uncover interspecies diversity in CBC operation. In a study of four C4 and five C3 species, principal components analysis separated C4 species from C3 species and also separated different C4 species. These separations were driven by metabolites that reflect known species differences in their biochemistry and pathways. Unexpectedly, there was also considerable diversity between the C3 species. Falling atmospheric CO2 and changing temperature, nitrogen, and water availability have driven evolution of C4 photosynthesis in multiple lineages. We propose that analogous selective pressures drove lineage-dependent evolution of the CBC in C3 species. Examples of species-dependent variation include differences in the balance between the CBC and the light reactions, and in the balance between regulated steps in the CBC. Metabolite profiles also reveal conserved features including inactivation of enzymes in low irradiance, and maintenance of CBC metabolites at relatively high levels in the absence of net CO2 fixation. These features may be important for photosynthetic efficiency in low light, fluctuating irradiance, and when stomata close due to low water availability.
Collapse
Affiliation(s)
- Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Gian Luca Borghi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
23
|
Huang CF, Liu WY, Jade Lu MY, Chen YH, Ku MSB, Li WH. Whole genome duplication facilitated the evolution of C4 photosynthesis in Gynandropsis gynandra. Mol Biol Evol 2021; 38:4715-4731. [PMID: 34191030 PMCID: PMC8557433 DOI: 10.1093/molbev/msab200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In higher plants, whole-genome duplication (WGD) is thought to facilitate the evolution of C4 photosynthesis from C3 photosynthesis. To understand this issue, we used new and existing leaf-development transcriptomes to construct two coding sequence databases for C4Gynandropsis gynandra and C3Tarenaya hassleriana, which shared a WGD before their divergence. We compared duplicated genes in the two species and found that the WGD contributed to four aspects of the evolution of C4 photosynthesis in G. gynandra. First, G. gynandra has retained the duplicates of ALAAT (alanine aminotransferase) and GOGAT (glutamine oxoglutarate aminotransferase) for nitrogen recycling to establish a photorespiratory CO2 pump in bundle sheath (BS) cells for increasing photosynthesis efficiency, suggesting that G. gynandra experienced a C3–C4 intermediate stage during the C4 evolution. Second, G. gynandra has retained almost all known vein-development-related paralogous genes derived from the WGD event, likely contributing to the high vein complexity of G. gynandra. Third, the WGD facilitated the evolution of C4 enzyme genes and their recruitment into the C4 pathway. Fourth, several genes encoding photosystem I proteins were derived from the WGD and are upregulated in G. gynandra, likely enabling the NADH dehydrogenase-like complex to produce extra ATPs for the C4 CO2 concentration mechanism. Thus, the WGD apparently played an enabler role in the evolution of C4 photosynthesis in G. gynandra. Importantly, an ALAAT duplicate became highly expressed in BS cells in G. gynandra, facilitating nitrogen recycling and transition to the C4 cycle. This study revealed how WDG may facilitate C4 photosynthesis evolution.
Collapse
Affiliation(s)
- Chi-Fa Huang
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Yu Liu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Hua Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Maurice S B Ku
- Department of Bioagricultural Science, National Chiayi University, Chiayi, 600, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.,Department of Ecology and Evolution, University of Chicago, Chicago, 60637, USA
| |
Collapse
|
24
|
Olofsson JK, Curran EV, Nyirenda F, Bianconi ME, Dunning LT, Milenkovic V, Sotelo G, Hidalgo O, Powell RF, Lundgren MR, Leitch IJ, Nosil P, Osborne CP, Christin PA. Low dispersal and ploidy differences in a grass maintain photosynthetic diversity despite gene flow and habitat overlap. Mol Ecol 2021; 30:2116-2130. [PMID: 33682242 DOI: 10.1111/mec.15871] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Geographical isolation facilitates the emergence of distinct phenotypes within a single species, but reproductive barriers or selection are needed to maintain the polymorphism after secondary contact. Here, we explore the processes that maintain intraspecific variation of C4 photosynthesis, a complex trait that results from the combined action of multiple genes. The grass Alloteropsis semialata includes C4 and non-C4 populations, which have coexisted as a polyploid series for more than 1 million years in the miombo woodlands of Africa. Using population genomics, we show that there is genome-wide divergence for the photosynthetic types, but the current geographical distribution does not reflect a simple habitat displacement scenario as the genetic clusters overlap, being occasionally mixed within a given habitat. Despite evidence of recurrent introgression between non-C4 and C4 groups, in both diploids and polyploids, the distinct genetic lineages retain their identity, potentially because of selection against hybrids. Coupled with strong isolation by distance within each genetic group, this selection created a geographical mosaic of photosynthetic types. Diploid C4 and non-C4 types never grew together, and the C4 type from mixed populations constantly belonged to the hexaploid lineage. By limiting reproductive interactions between photosynthetic types, the ploidy difference probably allows their co-occurrence, reinforcing the functional diversity within this species. Together, these factors enabled the persistence of divergent physiological traits of ecological importance within a single species despite gene flow and habitat overlap.
Collapse
Affiliation(s)
- Jill K Olofsson
- Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | - Emma V Curran
- Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | - Florence Nyirenda
- Department of Biological Sciences, University of Zambia, Lusaka, Zambia
| | - Matheus E Bianconi
- Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | - Luke T Dunning
- Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | - Vanja Milenkovic
- Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | - Graciela Sotelo
- Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | | | | | - Marjorie R Lundgren
- Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | | | - Patrik Nosil
- Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | - Colin P Osborne
- Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
25
|
Russ Monson and the evolution of C 4 photosynthesis. Oecologia 2021; 197:823-840. [PMID: 33661402 DOI: 10.1007/s00442-021-04883-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
Early in his career, Russ Monson produced a series of influential eco-physiological papers that helped lay the foundation for the study of C4 plant evolution. Among the most important was a 1984 paper with Maurice Ku and Gerry Edwards that outlined the pathway for the evolutionary bridge from C3 to C4 photosynthesis. This model proposed C4 photosynthesis arose out of a shuttle that imported photorespiratory metabolites into bundle sheath (BS) cells, where glycine decarboxylase cleaved off CO2, allowing it to accumulate and be efficiently refixed by BS Rubisco. By the mid-1990's, Monson's research focus had shifted away from C4 plants, save for one 2003 paper on C3 versus C4 stomatal control with Travis Huxman, and a series of critical reviews on C4 evolution. These reviews heavily influenced the modern synthesis of C4 evolutionary studies, which incorporates phylogenomic understanding with physiological, molecular, and structural characterizations of trait shifts in multiple evolutionary lineages. Subsequent research supported the Monson et al. model from 1984, by showing a glycine shuttle occurs in nearly all C3-C4 intermediate species identified. Monson also examined the physiological controls over the ecological distribution of C3, C3-C4 intermediate, and C4 photosynthesis, building our understanding of the fitness value of the intermediate and C4 pathway in relevant microenvironments. By establishing the foundation for discoveries that followed, Russ Monson can rightly be considered a leading pioneer contributing to the evolutionary biology of C4 photosynthesis.
Collapse
|
26
|
Ludwig M, Busch FA, Khoshravesh R, Covshoff S. Editorial: Understanding C 4 Evolution and Function. FRONTIERS IN PLANT SCIENCE 2021; 12:774818. [PMID: 34745197 PMCID: PMC8570096 DOI: 10.3389/fpls.2021.774818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/29/2021] [Indexed: 05/15/2023]
Affiliation(s)
- Martha Ludwig
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| | - Florian A. Busch
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, United Kingdom
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Roxana Khoshravesh
- Department of Biology, University of New Mexico, Albuquerque, MN, United States
| | - Sarah Covshoff
- Independent Researcher, Las Vegas, NV, United States
- *Correspondence: Sarah Covshoff
| |
Collapse
|
27
|
Johnston IG, Røyrvik EC. Data-Driven Inference Reveals Distinct and Conserved Dynamic Pathways of Tool Use Emergence across Animal Taxa. iScience 2020; 23:101245. [PMID: 32629611 PMCID: PMC7306607 DOI: 10.1016/j.isci.2020.101245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/24/2020] [Accepted: 06/04/2020] [Indexed: 11/29/2022] Open
Abstract
Tool use is a striking aspect of animal behavior, but it is hard to infer how the capacity for different types of tool use emerged across animal taxa. Here we address this question with HyperTraPS, a statistical approach that uses contemporary observations to infer the likely orderings in which different types of tool use (digging, reaching, and more) were historically acquired. Strikingly, despite differences linked to environment and family, many similarities in these appear across animal taxa, suggesting some universality in the process of tool use acquisition across different animals and environments. Four broad classes of tool use are supported, progressing from simple object manipulations (acquired relatively early) to more complex interactions and abstractions (acquired relatively late or not at all). This data-driven, comparative approach supports existing and suggests new mechanistic hypotheses, predicts future and possible unobserved behaviors, and sheds light on patterns of tool use emergence across animals. Historical pathways of tool use acquisition inferred from large catalog of data Striking similarities in acquisition pathways across environments and lineages Acquisitions of different modes of tool use broadly follow conceptual complexity Wild/domestic differences and predictions of future/unobserved behaviors quantified
Collapse
Affiliation(s)
- Iain G Johnston
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway; Alan Turing Institute, London, UK.
| | - Ellen C Røyrvik
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
28
|
Wong GKS, Soltis DE, Leebens-Mack J, Wickett NJ, Barker MS, Van de Peer Y, Graham SW, Melkonian M. Sequencing and Analyzing the Transcriptomes of a Thousand Species Across the Tree of Life for Green Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:741-765. [PMID: 31851546 DOI: 10.1146/annurev-arplant-042916-041040] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The 1,000 Plants (1KP) initiative was the first large-scale effort to collect next-generation sequencing (NGS) data across a phylogenetically representative sampling of species for a major clade of life, in this case theViridiplantae, or green plants. As an international multidisciplinary consortium, we focused on plant evolution and its practical implications. Among the major outcomes were the inference of a reference species tree for green plants by phylotranscriptomic analysis of low-copy genes, a survey of paleopolyploidy (whole-genome duplications) across the Viridiplantae, the inferred evolutionary histories for many gene families and biological processes, the discovery of novel light-sensitive proteins for optogenetic studies in mammalian neuroscience, and elucidation of the genetic network for a complex trait (C4 photosynthesis). Altogether, 1KP demonstrated how value can be extracted from a phylodiverse sequencing data set, providing a template for future projects that aim to generate even more data, including complete de novo genomes, across the tree of life.
Collapse
Affiliation(s)
- Gane Ka-Shu Wong
- Department of Biological Sciences and Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2E9, Canada;
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Douglas E Soltis
- Florida Museum of Natural History, Gainesville, Florida 32611, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Norman J Wickett
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, Illinois 60022, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, VIB Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Michael Melkonian
- Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| |
Collapse
|
29
|
Abstract
C4 photosynthesis evolved multiple times independently from ancestral C3 photosynthesis in a broad range of flowering land plant families and in both monocots and dicots. The evolution of C4 photosynthesis entails the recruitment of enzyme activities that are not involved in photosynthetic carbon fixation in C3 plants to photosynthesis. This requires a different regulation of gene expression as well as a different regulation of enzyme activities in comparison to the C3 context. Further, C4 photosynthesis relies on a distinct leaf anatomy that differs from that of C3, requiring a differential regulation of leaf development in C4. We summarize recent progress in the understanding of C4-specific features in evolution and metabolic regulation in the context of C4 photosynthesis.
Collapse
Affiliation(s)
- Urte Schlüter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany; ,
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany; ,
| |
Collapse
|
30
|
HyperTraPS: Inferring Probabilistic Patterns of Trait Acquisition in Evolutionary and Disease Progression Pathways. Cell Syst 2020; 10:39-51.e10. [PMID: 31786211 DOI: 10.1016/j.cels.2019.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 08/23/2019] [Accepted: 10/26/2019] [Indexed: 01/15/2023]
Abstract
The explosion of data throughout the biomedical sciences provides unprecedented opportunities to learn about the dynamics of evolution and disease progression, but harnessing these large and diverse datasets remains challenging. Here, we describe a highly generalizable statistical platform to infer the dynamic pathways by which many, potentially interacting, traits are acquired or lost over time. We use HyperTraPS (hypercubic transition path sampling) to efficiently learn progression pathways from cross-sectional, longitudinal, or phylogenetically linked data, readily distinguishing multiple competing pathways, and identifying the most parsimonious mechanisms underlying given observations. This Bayesian approach allows inclusion of prior knowledge, quantifies uncertainty in pathway structure, and allows predictions, such as which symptom a patient will acquire next. We provide visualization tools for intuitive assessment of multiple, variable pathways. We apply the method to ovarian cancer progression and the evolution of multidrug resistance in tuberculosis, demonstrating its power to reveal previously undetected dynamic pathways.
Collapse
|
31
|
Khoshravesh R, Stata M, Busch FA, Saladié M, Castelli JM, Dakin N, Hattersley PW, Macfarlane TD, Sage RF, Ludwig M, Sage TL. The Evolutionary Origin of C 4 Photosynthesis in the Grass Subtribe Neurachninae. PLANT PHYSIOLOGY 2020; 182:566-583. [PMID: 31611421 PMCID: PMC6945869 DOI: 10.1104/pp.19.00925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/02/2019] [Indexed: 05/10/2023]
Abstract
The Australian grass subtribe Neurachninae contains closely related species that use C3, C4, and C2 photosynthesis. To gain insight into the evolution of C4 photosynthesis in grasses, we examined leaf gas exchange, anatomy and ultrastructure, and tissue localization of Gly decarboxylase subunit P (GLDP) in nine Neurachninae species. We identified previously unrecognized variation in leaf structure and physiology within Neurachne that represents varying degrees of C3-C4 intermediacy in the Neurachninae. These include inverse correlations between the apparent photosynthetic carbon dioxide (CO2) compensation point in the absence of day respiration (C * ) and chloroplast and mitochondrial investment in the mestome sheath (MS), where CO2 is concentrated in C2 and C4 Neurachne species; width of the MS cells; frequency of plasmodesmata in the MS cell walls adjoining the parenchymatous bundle sheath; and the proportion of leaf GLDP invested in the MS tissue. Less than 12% of the leaf GLDP was allocated to the MS of completely C3 Neurachninae species with C * values of 56-61 μmol mol-1, whereas two-thirds of leaf GLDP was in the MS of Neurachne lanigera, which exhibits a newly-identified, partial C2 phenotype with C * of 44 μmol mol-1 Increased investment of GLDP in MS tissue of the C2 species was attributed to more MS mitochondria and less GLDP in mesophyll mitochondria. These results are consistent with a model where C4 evolution in Neurachninae initially occurred via an increase in organelle and GLDP content in MS cells, which generated a sink for photorespired CO2 in MS tissues.
Collapse
Affiliation(s)
- Roxana Khoshravesh
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Matt Stata
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Florian A Busch
- Research School of Biology and Australian Research Council Centre of Excellence for Translational Photosynthesis, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Montserrat Saladié
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Joanne M Castelli
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Nicole Dakin
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Paul W Hattersley
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Terry D Macfarlane
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Perth, Western Australia 6983 Australia
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Martha Ludwig
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| |
Collapse
|
32
|
Blätke MA, Bräutigam A. Evolution of C4 photosynthesis predicted by constraint-based modelling. eLife 2019; 8:e49305. [PMID: 31799932 PMCID: PMC6905489 DOI: 10.7554/elife.49305] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/08/2019] [Indexed: 01/03/2023] Open
Abstract
Constraint-based modelling (CBM) is a powerful tool for the analysis of evolutionary trajectories. Evolution, especially evolution in the distant past, is not easily accessible to laboratory experimentation. Modelling can provide a window into evolutionary processes by allowing the examination of selective pressures which lead to particular optimal solutions in the model. To study the evolution of C4 photosynthesis from a ground state of C3 photosynthesis, we initially construct a C3 model. After duplication into two cells to reflect typical C4 leaf architecture, we allow the model to predict the optimal metabolic solution under various conditions. The model thus identifies resource limitation in conjunction with high photorespiratory flux as a selective pressure relevant to the evolution of C4. It also predicts that light availability and distribution play a role in guiding the evolutionary choice of possible decarboxylation enzymes. The data shows evolutionary CBM in eukaryotes predicts molecular evolution with precision.
Collapse
Affiliation(s)
- Mary-Ann Blätke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
| | - Andrea Bräutigam
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
- Computational Biology, Faculty of Biology, Bielefeld University, UniversitätsstraßeBielefeldGermany
| |
Collapse
|
33
|
Edwards EJ. Evolutionary trajectories, accessibility and other metaphors: the case of C 4 and CAM photosynthesis. THE NEW PHYTOLOGIST 2019; 223:1742-1755. [PMID: 30993711 DOI: 10.1111/nph.15851] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/18/2019] [Indexed: 05/24/2023]
Abstract
Are evolutionary outcomes predictable? Adaptations that show repeated evolutionary convergence across the Tree of Life provide a special opportunity to dissect the context surrounding their origins, and identify any commonalities that may predict why certain traits evolved many times in particular clades and yet never evolved in others. The remarkable convergence of C4 and Crassulacean Acid Metabolism (CAM) photosynthesis in vascular plants makes them exceptional model systems for understanding the repeated evolution of complex phenotypes. This review highlights what we have learned about the recurring assembly of C4 and CAM, focusing on the increasingly predictable stepwise evolutionary integration of anatomy and biochemistry. With the caveat that we currently understand C4 evolution better than we do CAM, I propose a general model that explains and unites C4 and CAM evolutionary trajectories. Available data suggest that anatomical modifications are the 'rate-limiting step' in each trajectory, which in large part determines the evolutionary accessibility of both syndromes. The idea that organismal structure exerts a primary influence on innovation is discussed in the context of other systems. Whether the rate-limiting step occurs early or late in the evolutionary assembly of a new phenotype may have profound implications for its distribution across the Tree of Life.
Collapse
Affiliation(s)
- Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St, New Haven, CT, 06520-8105, USA
| |
Collapse
|
34
|
Jobe TO, Zenzen I, Rahimzadeh Karvansara P, Kopriva S. Integration of sulfate assimilation with carbon and nitrogen metabolism in transition from C3 to C4 photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4211-4221. [PMID: 31124557 PMCID: PMC6698703 DOI: 10.1093/jxb/erz250] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/21/2019] [Indexed: 05/08/2023]
Abstract
The first product of sulfate assimilation in plants, cysteine, is a proteinogenic amino acid and a source of reduced sulfur for plant metabolism. Cysteine synthesis is the convergence point of the three major pathways of primary metabolism: carbon, nitrate, and sulfate assimilation. Despite the importance of metabolic and genetic coordination of these three pathways for nutrient balance in plants, the molecular mechanisms underlying this coordination, and the sensors and signals, are far from being understood. This is even more apparent in C4 plants, where coordination of these pathways for cysteine synthesis includes the additional challenge of differential spatial localization. Here we review the coordination of sulfate, nitrate, and carbon assimilation, and show how they are altered in C4 plants. We then summarize current knowledge of the mechanisms of coordination of these pathways. Finally, we identify urgent questions to be addressed in order to understand the integration of sulfate assimilation with carbon and nitrogen metabolism particularly in C4 plants. We consider answering these questions to be a prerequisite for successful engineering of C4 photosynthesis into C3 crops to increase their efficiency.
Collapse
Affiliation(s)
- Timothy O Jobe
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Ivan Zenzen
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Parisa Rahimzadeh Karvansara
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Stanislav Kopriva
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
- Correspondence:
| |
Collapse
|
35
|
Precision identification of high-risk phenotypes and progression pathways in severe malaria without requiring longitudinal data. NPJ Digit Med 2019; 2:63. [PMID: 31312723 PMCID: PMC6620311 DOI: 10.1038/s41746-019-0140-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/06/2019] [Indexed: 02/02/2023] Open
Abstract
More than 400,000 deaths from severe malaria (SM) are reported every year, mainly in African children. The diversity of clinical presentations associated with SM indicates important differences in disease pathogenesis that require specific treatment, and this clinical heterogeneity of SM remains poorly understood. Here, we apply tools from machine learning and model-based inference to harness large-scale data and dissect the heterogeneity in patterns of clinical features associated with SM in 2904 Gambian children admitted to hospital with malaria. This quantitative analysis reveals features predicting the severity of individual patient outcomes, and the dynamic pathways of SM progression, notably inferred without requiring longitudinal observations. Bayesian inference of these pathways allows us assign quantitative mortality risks to individual patients. By independently surveying expert practitioners, we show that this data-driven approach agrees with and expands the current state of knowledge on malaria progression, while simultaneously providing a data-supported framework for predicting clinical risk.
Collapse
|
36
|
Johnston IG. Tension and Resolution: Dynamic, Evolving Populations of Organelle Genomes within Plant Cells. MOLECULAR PLANT 2019; 12:764-783. [PMID: 30445187 DOI: 10.1016/j.molp.2018.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Mitochondria and plastids form dynamic, evolving populations physically embedded in the fluctuating environment of the plant cell. Their evolutionary heritage has shaped how the cell controls the genetic structure and the physical behavior of its organelle populations. While the specific genes involved in these processes are gradually being revealed, the governing principles underlying this controlled behavior remain poorly understood. As the genetic and physical dynamics of these organelles are central to bioenergetic performance and plant physiology, this challenges both fundamental biology and strategies to engineer better-performing plants. This article reviews current knowledge of the physical and genetic behavior of mitochondria and chloroplasts in plant cells. An overarching hypothesis is proposed whereby organelles face a tension between genetic robustness and individual control and responsiveness, and different species resolve this tension in different ways. As plants are immobile and thus subject to fluctuating environments, their organelles are proposed to favor individual responsiveness, sacrificing genetic robustness. Several notable features of plant organelles, including large genomes, mtDNA recombination, fragmented organelles, and plastid/mitochondrial differences may potentially be explained by this hypothesis. Finally, the ways that quantitative and systems biology can help shed light on the plethora of open questions in this field are highlighted.
Collapse
Affiliation(s)
- Iain G Johnston
- School of Biosciences, University of Birmingham, Birmingham, UK; Birmingham Institute for Forest Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
37
|
Stata M, Sage TL, Sage RF. Mind the gap: the evolutionary engagement of the C 4 metabolic cycle in support of net carbon assimilation. CURRENT OPINION IN PLANT BIOLOGY 2019; 49:27-34. [PMID: 31150949 DOI: 10.1016/j.pbi.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
C4 photosynthesis evolved dozens of times, with a critical step being the engagement of a C4 metabolic cycle to concentrate CO2 into a bundle sheath-like compartment. While C3-C4 intermediate species show a progressive increase in the activity of a C4 metabolic cycle, the integration of the C4 and C3 biochemical cycles in enhancing photosynthetic carbon gain occurs in a punctuated manner, at an initial C4 cycle activity near 60%. Punctuated integration of the C4 cycle could result from the evolutionary acquisition of traits that coordinate the C3 and C4 biochemical cycles (for example, an enzymatic, regulatory or transport function) or from a sudden reduction in the mesophyll C3 cycle. Alternatively, a punctuated pattern could be an artifact of low numbers of C3-C4 intermediates in the evolutionary space where C4 cycle engagement occurs, due to incomplete sampling of natural diversity or evolutionary dynamics rendering such intermediates unstable. Understanding how the C4 cycle becomes integrated with the C3 cycle could reveal new avenues for engineering the C4 pathway into C3 plants. Such efforts would be facilitated by the generation of hybrids, or the discovery of additional intermediates, that span the transition from low to high C4 cycle engagement.
Collapse
Affiliation(s)
- Matt Stata
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, M5S3B2, Canada
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, M5S3B2, Canada
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, M5S3B2, Canada.
| |
Collapse
|
38
|
Weber APM, Bar-Even A. Update: Improving the Efficiency of Photosynthetic Carbon Reactions. PLANT PHYSIOLOGY 2019; 179:803-812. [PMID: 30610109 PMCID: PMC6393813 DOI: 10.1104/pp.18.01521] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/16/2018] [Indexed: 05/09/2023]
Abstract
Inefficiencies in photosynthetic carbon assimilation can be overcome by synthetic biology strategies.
Collapse
Affiliation(s)
- Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, 14476 Golm-Potsdam, Germany
| |
Collapse
|
39
|
Lundgren MR, Dunning LT, Olofsson JK, Moreno‐Villena JJ, Bouvier JW, Sage TL, Khoshravesh R, Sultmanis S, Stata M, Ripley BS, Vorontsova MS, Besnard G, Adams C, Cuff N, Mapaura A, Bianconi ME, Long CM, Christin P, Osborne CP. C 4 anatomy can evolve via a single developmental change. Ecol Lett 2019; 22:302-312. [PMID: 30557904 PMCID: PMC6849723 DOI: 10.1111/ele.13191] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/05/2023]
Abstract
C4 photosynthesis is a complex trait that boosts productivity in warm environments. Paradoxically, it evolved independently in numerous plant lineages, despite requiring specialised leaf anatomy. The anatomical modifications underlying C4 evolution have previously been evaluated through interspecific comparisons, which capture numerous changes besides those needed for C4 functionality. Here, we quantify the anatomical changes accompanying the transition between non-C4 and C4 phenotypes by sampling widely across the continuum of leaf anatomical traits in the grass Alloteropsis semialata. Within this species, the only trait that is shared among and specific to C4 individuals is an increase in vein density, driven specifically by minor vein development that yields multiple secondary effects facilitating C4 function. For species with the necessary anatomical preconditions, developmental proliferation of veins can therefore be sufficient to produce a functional C4 leaf anatomy, creating an evolutionary entry point to complex C4 syndromes that can become more specialised.
Collapse
Affiliation(s)
- Marjorie R. Lundgren
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
- Present address:
Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| | - Luke T. Dunning
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Jill K. Olofsson
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Jose J. Moreno‐Villena
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Jacques W. Bouvier
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Tammy L. Sage
- Department of Ecology and Evolutionary BiologyUniversity of Toronto25 Willcocks StreetTorontoONM5S 3B2Canada
| | - Roxana Khoshravesh
- Department of Ecology and Evolutionary BiologyUniversity of Toronto25 Willcocks StreetTorontoONM5S 3B2Canada
| | - Stefanie Sultmanis
- Department of Ecology and Evolutionary BiologyUniversity of Toronto25 Willcocks StreetTorontoONM5S 3B2Canada
| | - Matt Stata
- Department of Ecology and Evolutionary BiologyUniversity of Toronto25 Willcocks StreetTorontoONM5S 3B2Canada
| | - Brad S. Ripley
- Botany DepartmentRhodes UniversityGrahamstown6139South Africa
| | - Maria S. Vorontsova
- Comparative Plant and Fungal BiologyRoyal Botanic GardensKewRichmondSurreyTW9 3ABUK
| | - Guillaume Besnard
- Laboratoire Évolution & Diversité Biologique (EDB UMR5174)Université de ToulouseCNRSENSFEAUPSIRD118 route de Narbonne31062ToulouseFrance
| | - Claire Adams
- Botany DepartmentRhodes UniversityGrahamstown6139South Africa
| | - Nicholas Cuff
- Northern Territory HerbariumDepartment of Environment and Natural ResourcesPO Box 496PalmerstonNT0831Australia
| | | | - Matheus E. Bianconi
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Christine M. Long
- Department of Primary Industry and FisheriesNorthern Territory GovernmentDarwinNT0801Australia
| | - Pascal‐Antoine Christin
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Colin P. Osborne
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| |
Collapse
|
40
|
Gerlich SC, Walker BJ, Krueger S, Kopriva S. Sulfate Metabolism in C 4 Flaveria Species Is Controlled by the Root and Connected to Serine Biosynthesis. PLANT PHYSIOLOGY 2018; 178:565-582. [PMID: 30104256 PMCID: PMC6181035 DOI: 10.1104/pp.18.00520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/27/2018] [Indexed: 05/21/2023]
Abstract
The evolution of C4 photosynthesis led to an increase in carbon assimilation rates and plant growth compared to C3 photosynthetic plants. This enhanced plant growth, in turn, affects the requirement for soil-derived mineral nutrients. However, mineral plant nutrition has scarcely been considered in connection with C4 photosynthesis. Sulfur is crucial for plant growth and development, and preliminary studies in the genus Flaveria suggested metabolic differences in sulfate assimilation along the C4 evolutionary trajectory. Here, we show that in controlled conditions, foliar accumulation of the reduced sulfur compounds Cys and glutathione (GSH) increased with progressing establishment of the C4 photosynthetic cycle in different Flaveria species. An enhanced demand for reduced sulfur in C4 Flaveria species is reflected in high rates of [35S]sulfate incorporation into GSH upon sulfate deprivation and increased GSH turnover as a reaction to the inhibition of GSH synthesis. Expression analyses indicate that the γ-glutamyl cycle is crucial for the recycling of GSH in C4 species. Sulfate reduction and GSH synthesis seems to be preferentially localized in the roots of C4 species, which might be linked to its colocalization with the phosphorylated pathway of Ser biosynthesis. Interspecies grafting experiments of F. robusta (C3) and F. bidentis (C4) revealed that the root system primarily controls sulfate acquisition, GSH synthesis, and sulfate and metabolite allocation in C3 and C4 plants. This study thus shows that evolution of C4 photosynthesis resulted in a wide range of adaptations of sulfur metabolism and points out the need for broader studies on importance of mineral nutrition for C4 plants.
Collapse
Affiliation(s)
- Silke C Gerlich
- Botanical Institute, University of Cologne, 50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
| | - Berkley J Walker
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Stephan Krueger
- Botanical Institute, University of Cologne, 50674 Cologne, Germany
| | - Stanislav Kopriva
- Botanical Institute, University of Cologne, 50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
41
|
Sedelnikova OV, Hughes TE, Langdale JA. Understanding the Genetic Basis of C 4 Kranz Anatomy with a View to Engineering C 3 Crops. Annu Rev Genet 2018; 52:249-270. [PMID: 30208293 DOI: 10.1146/annurev-genet-120417-031217] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the most remarkable examples of convergent evolution is the transition from C3 to C4 photosynthesis, an event that occurred on over 60 independent occasions. The evolution of C4 is particularly noteworthy because of the complexity of the developmental and metabolic changes that took place. In most cases, compartmentalized metabolic reactions were facilitated by the development of a distinct leaf anatomy known as Kranz. C4 Kranz anatomy differs from ancestral C3 anatomy with respect to vein spacing patterns across the leaf, cell-type specification around veins, and cell-specific organelle function. Here we review our current understanding of how Kranz anatomy evolved and how it develops, with a focus on studies that are dissecting the underlying genetic mechanisms. This research field has gained prominence in recent years because understanding the genetic regulation of Kranz may enable the C3-to-C4 transition to be engineered, an endeavor that would significantly enhance crop productivity.
Collapse
Affiliation(s)
- Olga V Sedelnikova
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom; , ,
| | - Thomas E Hughes
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom; , ,
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom; , ,
| |
Collapse
|
42
|
Some like it hot: the physiological ecology of C 4 plant evolution. Oecologia 2018; 187:941-966. [PMID: 29955992 DOI: 10.1007/s00442-018-4191-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 06/05/2018] [Indexed: 10/28/2022]
Abstract
The evolution of C4 photosynthesis requires an intermediate phase where photorespiratory glycine produced in the mesophyll cells must flow to the vascular sheath cells for metabolism by glycine decarboxylase. This glycine flux concentrates photorespired CO2 within the sheath cells, allowing it to be efficiently refixed by sheath Rubisco. A modest C4 biochemical cycle is then upregulated, possibly to support the refixation of photorespired ammonia in sheath cells, with subsequent increases in C4 metabolism providing incremental benefits until an optimized C4 pathway is established. 'Why' C4 photosynthesis evolved is largely explained by ancestral C3 species exploiting photorespiratory CO2 to improve carbon gain and thus enhance fitness. While photorespiration depresses C3 performance, it produces a resource (photorespired CO2) that can be exploited to build an evolutionary bridge to C4 photosynthesis. 'Where' C4 evolved is indicated by the habitat of species branching near C3-to-C4 transitions on phylogenetic trees. Consistent with the photorespiratory bridge hypothesis, transitional species show that the large majority of > 60 C4 lineages arose in hot, dry, and/or saline regions where photorespiratory potential is high. 'When' C4 evolved has been clarified by molecular clock analyses using phylogenetic data, coupled with isotopic signatures from fossils. Nearly all C4 lineages arose after 25 Ma when atmospheric CO2 levels had fallen to near current values. This reduction in CO2, coupled with persistent high temperature at low-to-mid-latitudes, met a precondition where photorespiration was elevated, thus facilitating the evolutionary selection pressure that led to C4 photosynthesis.
Collapse
|
43
|
Reeves G, Singh P, Rossberg TA, Sogbohossou EOD, Schranz ME, Hibberd JM. Natural Variation within a Species for Traits Underpinning C 4 Photosynthesis. PLANT PHYSIOLOGY 2018; 177:504-512. [PMID: 29678862 PMCID: PMC6001323 DOI: 10.1104/pp.18.00168] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/30/2018] [Indexed: 05/20/2023]
Abstract
Engineering C4 photosynthesis into C3 crops could substantially increase their yield by alleviating photorespiratory losses. This objective is challenging because the C4 pathway involves complex modifications to the biochemistry, cell biology, and anatomy of leaves. Forward genetics has provided limited insight into the mechanistic basis of these properties, and there have been no reports of significant quantitative intraspecific variation of C4 attributes that would allow trait mapping. Here, we show that accessions of the C4 species Gynandropsis gynandra collected from locations across Africa and Asia exhibit natural variation in key characteristics of C4 photosynthesis. Variable traits include bundle sheath size and vein density, gas-exchange parameters, and carbon isotope discrimination associated with the C4 state. The abundance of transcripts encoding core enzymes of the C4 cycle also showed significant variation. Traits relating to water use showed more quantitative variation than those associated with carbon assimilation. We propose that variation in these traits likely adapted the hydraulic system for increased water use efficiency rather than improving carbon fixation, indicating that selection pressure may drive C4 diversity in G. gynandra by modifying water use rather than photosynthesis. The accessions analyzed can be easily crossed and produce fertile offspring. Our findings, therefore, indicate that natural variation within this C4 species is sufficiently large to allow genetic mapping of key C4 traits and regulators.
Collapse
Affiliation(s)
- Gregory Reeves
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Pallavi Singh
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Timo A Rossberg
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - E O Deedi Sogbohossou
- Biosystematics Group, Department of Plant Sciences, Wageningen University, Wageningen 6700 AA, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Department of Plant Sciences, Wageningen University, Wageningen 6700 AA, The Netherlands
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
44
|
Goolsby EW, Moore AJ, Hancock LP, De Vos JM, Edwards EJ. Molecular evolution of key metabolic genes during transitions to C 4 and CAM photosynthesis. AMERICAN JOURNAL OF BOTANY 2018; 105:602-613. [PMID: 29660114 DOI: 10.1002/ajb2.1051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/12/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Next-generation sequencing facilitates rapid production of well-sampled phylogenies built from very large genetic data sets, which can then be subsequently exploited to examine the molecular evolution of the genes themselves. We present an evolutionary analysis of 83 gene families (19 containing carbon-concentrating mechanism (CCM) genes, 64 containing non-CCM genes) in the portullugo clade (Caryophyllales), a diverse lineage of mostly arid-adapted plants that contains multiple evolutionary origins of all known photosynthesis types in land plants (C3 , C4 , CAM, C4 -CAM, and various intermediates). METHODS We inferred a phylogeny of 197 individuals from 167 taxa using coalescent-based approaches and individual gene family trees using maximum likelihood. Positive selection analyses were conducted on individual gene family trees with a mixed effects model of evolution (MEME). We devised new indices to compare levels of convergence and prevalence of particular residues between CCM and non-CCM genes and between species with different photosynthetic pathways. KEY RESULTS Contrary to expectations, there were no significant differences in the levels of positive selection detected in CCM versus non-CCM genes. However, we documented a significantly higher level of convergent amino acid substitutions in CCM genes, especially in C4 taxa. CONCLUSIONS Our analyses reveal a new suite of amino acid residues putatively important for C4 and CAM function. We discuss both the advantages and challenges of using targeted enrichment sequence data for exploratory studies of molecular evolution.
Collapse
Affiliation(s)
- Eric W Goolsby
- Brown University, Department of Ecology and Evolutionary Biology, Box G-W, 80 Waterman St, Providence, Rhode Island, 02912, USA
- Yale University, Department of Ecology and Evolutionary Biology, 165 Prospect Street, New Haven, Connecticut, 06511, USA
| | - Abigail J Moore
- Brown University, Department of Ecology and Evolutionary Biology, Box G-W, 80 Waterman St, Providence, Rhode Island, 02912, USA
- University of Oklahoma, Department of Microbiology and Plant Biology and Oklahoma Biological Survey, 136 George Lynn Cross Hall, 770 Van Vleet Oval, Norman, Oklahoma, 73019, USA
| | - Lillian P Hancock
- Brown University, Department of Ecology and Evolutionary Biology, Box G-W, 80 Waterman St, Providence, Rhode Island, 02912, USA
| | - Jurriaan M De Vos
- Brown University, Department of Ecology and Evolutionary Biology, Box G-W, 80 Waterman St, Providence, Rhode Island, 02912, USA
- University of Basel, Department of Environmental Sciences-Botany, Bernoullistrasse 32, 4056, Basel, Switzerland
| | - Erika J Edwards
- Brown University, Department of Ecology and Evolutionary Biology, Box G-W, 80 Waterman St, Providence, Rhode Island, 02912, USA
- Yale University, Department of Ecology and Evolutionary Biology, 165 Prospect Street, New Haven, Connecticut, 06511, USA
| |
Collapse
|
45
|
Reyna-Llorens I, Burgess SJ, Reeves G, Singh P, Stevenson SR, Williams BP, Stanley S, Hibberd JM. Ancient duons may underpin spatial patterning of gene expression in C 4 leaves. Proc Natl Acad Sci U S A 2018; 115:1931-1936. [PMID: 29432183 PMCID: PMC5828626 DOI: 10.1073/pnas.1720576115] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
If the highly efficient C4 photosynthesis pathway could be transferred to crops with the C3 pathway there could be yield gains of up to 50%. It has been proposed that the multiple metabolic and developmental modifications associated with C4 photosynthesis are underpinned by relatively few master regulators that have allowed the evolution of C4 photosynthesis more than 60 times in flowering plants. Here we identify a component of one such regulator that consists of a pair of cis-elements located in coding sequence of multiple genes that are preferentially expressed in bundle sheath cells of C4 leaves. These motifs represent duons as they play a dual role in coding for amino acids as well as controlling the spatial patterning of gene expression associated with the C4 leaf. They act to repress transcription of C4 photosynthesis genes in mesophyll cells. These duons are also present in the C3 model Arabidopsis thaliana, and, in fact, are conserved in all land plants and even some algae that use C3 photosynthesis. C4 photosynthesis therefore appears to have coopted an ancient regulatory code to generate the spatial patterning of gene expression that is a hallmark of C4 photosynthesis. This intragenic transcriptional regulatory sequence could be exploited in the engineering of efficient photosynthesis of crops.
Collapse
Affiliation(s)
- Ivan Reyna-Llorens
- Department of Plant Sciences, University of Cambridge, CB2 3EA Cambridge, United Kingdom
| | - Steven J Burgess
- Department of Plant Sciences, University of Cambridge, CB2 3EA Cambridge, United Kingdom
| | - Gregory Reeves
- Department of Plant Sciences, University of Cambridge, CB2 3EA Cambridge, United Kingdom
| | - Pallavi Singh
- Department of Plant Sciences, University of Cambridge, CB2 3EA Cambridge, United Kingdom
| | - Sean R Stevenson
- Department of Plant Sciences, University of Cambridge, CB2 3EA Cambridge, United Kingdom
| | - Ben P Williams
- Department of Plant Sciences, University of Cambridge, CB2 3EA Cambridge, United Kingdom
| | - Susan Stanley
- Department of Plant Sciences, University of Cambridge, CB2 3EA Cambridge, United Kingdom
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, CB2 3EA Cambridge, United Kingdom
| |
Collapse
|
46
|
Jun SY, Sattler SA, Cortez GS, Vermerris W, Sattler SE, Kang C. Biochemical and Structural Analysis of Substrate Specificity of a Phenylalanine Ammonia-Lyase. PLANT PHYSIOLOGY 2018; 176:1452-1468. [PMID: 29196539 PMCID: PMC5813539 DOI: 10.1104/pp.17.01608] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/28/2017] [Indexed: 05/18/2023]
Abstract
Phenylalanine ammonia-lyase (PAL) is the first enzyme of the general phenylpropanoid pathway catalyzing the nonoxidative elimination of ammonia from l-phenylalanine to give trans-cinnamate. In monocots, PAL also displays tyrosine ammonia lyase (TAL) activity, leading to the formation of p-coumaric acid. The catalytic mechanism and substrate specificity of a major PAL from sorghum (Sorghum bicolor; SbPAL1), a strategic plant for bioenergy production, were deduced from crystal structures, molecular docking, site-directed mutagenesis, and kinetic and thermodynamic analyses. This first crystal structure of a monocotyledonous PAL displayed a unique conformation in its flexible inner loop of the 4-methylidene-imidazole-5-one (MIO) domain compared with that of dicotyledonous plants. The side chain of histidine-123 in the MIO domain dictated the distance between the catalytic MIO prosthetic group created from 189Ala-Ser-Gly191 residues and the bound l-phenylalanine and l-tyrosine, conferring the deamination reaction through either the Friedel-Crafts or E2 reaction mechanism. Several recombinant mutant SbPAL1 enzymes were generated via structure-guided mutagenesis, one of which, H123F-SbPAL1, has 6.2 times greater PAL activity without significant TAL activity. Additional PAL isozymes of sorghum were characterized and categorized into three groups. Taken together, this approach identified critical residues and explained substrate preferences among PAL isozymes in sorghum and other monocots, which can serve as the basis for the engineering of plants with enhanced biomass conversion properties, disease resistance, or nutritional quality.
Collapse
Affiliation(s)
- Se-Young Jun
- Department of Chemistry, Washington State University, Pullman, Washington 99164
| | - Steven A Sattler
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99163
| | - Gabriel S Cortez
- Department of Chemistry, Washington State University, Pullman, Washington 99164
| | - Wilfred Vermerris
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, and Genetics Institute, University of Florida, Gainesville, Florida 32610
| | - Scott E Sattler
- United States Department of Agriculture-Agricultural Research Service, Wheat, Sorghum, and Forage Research Unit, and Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, Washington 99164
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99163
| |
Collapse
|
47
|
Wang P, Khoshravesh R, Karki S, Tapia R, Balahadia CP, Bandyopadhyay A, Quick WP, Furbank R, Sage TL, Langdale JA. Re-creation of a Key Step in the Evolutionary Switch from C 3 to C 4 Leaf Anatomy. Curr Biol 2017; 27:3278-3287.e6. [PMID: 29056456 PMCID: PMC5678070 DOI: 10.1016/j.cub.2017.09.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022]
Abstract
The C4 photosynthetic pathway accounts for ∼25% of primary productivity on the planet despite being used by only 3% of species. Because C4 plants are higher yielding than C3 plants, efforts are underway to introduce the C4 pathway into the C3 crop rice. This is an ambitious endeavor; however, the C4 pathway evolved from C3 on multiple independent occasions over the last 30 million years, and steps along the trajectory are evident in extant species. One approach toward engineering C4 rice is to recapitulate this trajectory, one of the first steps of which was a change in leaf anatomy. The transition from C3 to so-called "proto-Kranz" anatomy requires an increase in organelle volume in sheath cells surrounding leaf veins. Here we induced chloroplast and mitochondrial development in rice vascular sheath cells through constitutive expression of maize GOLDEN2-LIKE genes. Increased organelle volume was accompanied by the accumulation of photosynthetic enzymes and by increased intercellular connections. This suite of traits reflects that seen in "proto-Kranz" species, and, as such, a key step toward engineering C4 rice has been achieved.
Collapse
Affiliation(s)
- Peng Wang
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Roxana Khoshravesh
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S3B2, Canada
| | - Shanta Karki
- International Rice Research Institute (IRRI), Los Banos 4030, Laguna, the Philippines
| | - Ronald Tapia
- International Rice Research Institute (IRRI), Los Banos 4030, Laguna, the Philippines
| | - C Paolo Balahadia
- International Rice Research Institute (IRRI), Los Banos 4030, Laguna, the Philippines
| | - Anindya Bandyopadhyay
- International Rice Research Institute (IRRI), Los Banos 4030, Laguna, the Philippines
| | - W Paul Quick
- International Rice Research Institute (IRRI), Los Banos 4030, Laguna, the Philippines; Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Robert Furbank
- CSIRO, Canberra, ACT 2601, Australia; ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S3B2, Canada.
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| |
Collapse
|
48
|
Reyna-Llorens I, Hibberd JM. Recruitment of pre-existing networks during the evolution of C 4 photosynthesis. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160386. [PMID: 28808102 PMCID: PMC5566883 DOI: 10.1098/rstb.2016.0386] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2017] [Indexed: 11/12/2022] Open
Abstract
During C4 photosynthesis, CO2 is concentrated around the enzyme RuBisCO. The net effect is to reduce photorespiration while increasing water and nitrogen use efficiencies. Species that use C4 photosynthesis have evolved independently from their C3 ancestors on more than 60 occasions. Along with mimicry and the camera-like eye, the C4 pathway therefore represents a remarkable example of the repeated evolution of a highly complex trait. In this review, we provide evidence that the polyphyletic evolution of C4 photosynthesis is built upon pre-existing metabolic and genetic networks. For example, cells around veins of C3 species show similarities to those of the C4 bundle sheath in terms of C4 acid decarboxylase activity and also the photosynthetic electron transport chain. Enzymes of C4 photosynthesis function together in gluconeogenesis during early seedling growth of C3Arabidopsis thaliana Furthermore, multiple C4 genes appear to be under control of both light and chloroplast signals in the ancestral C3 state. We, therefore, hypothesize that relatively minor rewiring of pre-existing genetic and metabolic networks has facilitated the recurrent evolution of this trait. Understanding how these changes are likely to have occurred could inform attempts to install C4 traits into C3 crops.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
Collapse
Affiliation(s)
- Ivan Reyna-Llorens
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
49
|
Bräutigam A, Schlüter U, Eisenhut M, Gowik U. On the Evolutionary Origin of CAM Photosynthesis. PLANT PHYSIOLOGY 2017; 174:473-477. [PMID: 28416703 PMCID: PMC5462059 DOI: 10.1104/pp.17.00195] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/12/2017] [Indexed: 05/21/2023]
Abstract
Generation of carbon skeletons for amino acid synthesis in some C3 plants resembles fluxes needed for CAM-type photosynthesis.
Collapse
Affiliation(s)
- Andrea Bräutigam
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Network Analysis and Modeling, D-06466 Seeland, OT Gatersleben; Germany (A.B.); and
- Institute of Plant Biochemistry (U.S., M.E.) and Institute of Developmental and Molecular Plant Biology (U.G.), Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Urte Schlüter
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Network Analysis and Modeling, D-06466 Seeland, OT Gatersleben; Germany (A.B.); and
- Institute of Plant Biochemistry (U.S., M.E.) and Institute of Developmental and Molecular Plant Biology (U.G.), Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Marion Eisenhut
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Network Analysis and Modeling, D-06466 Seeland, OT Gatersleben; Germany (A.B.); and
- Institute of Plant Biochemistry (U.S., M.E.) and Institute of Developmental and Molecular Plant Biology (U.G.), Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Udo Gowik
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Network Analysis and Modeling, D-06466 Seeland, OT Gatersleben; Germany (A.B.); and
- Institute of Plant Biochemistry (U.S., M.E.) and Institute of Developmental and Molecular Plant Biology (U.G.), Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
50
|
Dunning LT, Lundgren MR, Moreno-Villena JJ, Namaganda M, Edwards EJ, Nosil P, Osborne CP, Christin PA. Introgression and repeated co-option facilitated the recurrent emergence of C 4 photosynthesis among close relatives. Evolution 2017; 71:1541-1555. [PMID: 28395112 PMCID: PMC5488178 DOI: 10.1111/evo.13250] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 04/04/2017] [Indexed: 01/16/2023]
Abstract
The origins of novel traits are often studied using species trees and modeling phenotypes as different states of the same character, an approach that cannot always distinguish multiple origins from fewer origins followed by reversals. We address this issue by studying the origins of C4 photosynthesis, an adaptation to warm and dry conditions, in the grass Alloteropsis. We dissect the C4 trait into its components, and show two independent origins of the C4 phenotype via different anatomical modifications, and the use of distinct sets of genes. Further, inference of enzyme adaptation suggests that one of the two groups encompasses two transitions to a full C4 state from a common ancestor with an intermediate phenotype that had some C4 anatomical and biochemical components. Molecular dating of C4 genes confirms the introgression of two key C4 components between species, while the inheritance of all others matches the species tree. The number of origins consequently varies among C4 components, a scenario that could not have been inferred from analyses of the species tree alone. Our results highlight the power of studying individual components of complex traits to reconstruct trajectories toward novel adaptations.
Collapse
Affiliation(s)
- Luke T Dunning
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Marjorie R Lundgren
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Jose J Moreno-Villena
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | | | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, 02912
| | - Patrik Nosil
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|