1
|
Zhong Z, Li Y, Sun Q, Chen D. Tiny but mighty: Diverse functions of uORFs that regulate gene expression. Comput Struct Biotechnol J 2024; 23:3771-3779. [PMID: 39525088 PMCID: PMC11550727 DOI: 10.1016/j.csbj.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Upstream open reading frames (uORFs) are critical cis-acting regulators of downstream gene expression. Specifically, uORFs regulate translation by disrupting translation initiation or mediating mRNA decay. We herein summarize the effects of several uORFs that regulate gene expression in microbes to illustrate the detailed mechanisms mediating uORF functions. Microbes are ideal for uORF studies because of their prompt responses to stimuli. Recent studies revealed uORFs are ubiquitous in higher eukaryotes. Moreover, they influence various physiological processes in mammalian cells by regulating gene expression, mostly at the translational level. Research conducted using rapidly evolving methods for ribosome profiling combined with protein analyses and computational annotations showed that uORFs in mammalian cells control gene expression similar to microbial uORFs, but they also have unique tumorigenesis-related roles because of their protein-encoding capacities. We briefly introduce cutting-edge research findings regarding uORFs in mammalian cells.
Collapse
Affiliation(s)
- Zhenfei Zhong
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, China
| | - Yajie Li
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, China
- Southwest United Graduate School, Kunming 650500, China
| |
Collapse
|
2
|
Record CJ, O'Connor A, Verbeek NE, van Rheenen W, Zamba Papanicolaou E, Peric S, Ligthart PC, Skorupinska M, van Binsbergen E, Campeau PM, Ivanovic V, Hennigan B, McHugh JC, Blake JC, Murakami Y, Laura M, Murphy SM, Reilly MM. Recessive Variants in PIGG Cause a Motor Neuropathy with Variable Conduction Block, Childhood Tremor, and Febrile Seizures: Expanding the Phenotype. Ann Neurol 2024. [PMID: 39444079 DOI: 10.1002/ana.27113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
Biallelic variants in phosphatidylinositol glycan anchor biosynthesis, class G (PIGG) cause hypotonia, intellectual disability, seizures, and cerebellar features. We present 8 patients from 6 families with a childhood-onset motor neuropathy and neurophysiology demonstrating variable motor conduction block and temporal dispersion. All individuals had a childhood onset tremor, 5 of 8 had cerebellar involvement, and 6 of 8 had childhood febrile seizures. All individuals have biallelic PIGG variants, including the previously reported pathogenic variant Trp505*, plus 6 novel variants. Null enzyme activity is demonstrated via PIGO/PIGG double knockout system for Val339Gly and Gly19Glu, and residual activity for Trp505* due to read-through. Emm negative blood group status was confirmed in 1 family. PIGG should be considered in unsolved motor neuropathy. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Christopher J Record
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | | | - Nienke E Verbeek
- Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Wouter van Rheenen
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Stojan Peric
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Neurology Clinic, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Peter C Ligthart
- Department of Immunohematology Diagnostic Services, Sanquin Diagnostic Services, Amsterdam, The Netherlands
| | - Mariola Skorupinska
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Vukan Ivanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Neurology Clinic, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Brian Hennigan
- Clinical Neurophysiology Department, Tallaght University Hospital, Dublin, Ireland
| | - John C McHugh
- Clinical Neurophysiology Department, Tallaght University Hospital, Dublin, Ireland
- Clinical Neurophysiology Department, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Julian C Blake
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical Neurophysiology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Yoshiko Murakami
- Laboratory of Immunoglycobiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Matilde Laura
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Sinéad M Murphy
- Department of Neurology, Tallaght University Hospital, Dublin, Ireland
- Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
3
|
Akhtar MN, Singh A, Manjunath LE, Dey D, Kumar SD, Vasu K, Das A, Eswarappa SM. Hominini-specific regulation of the cell cycle by stop codon readthrough of FEM1B. J Cell Sci 2024; 137:jcs261921. [PMID: 39140134 PMCID: PMC11385324 DOI: 10.1242/jcs.261921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
FEM1B is a substrate-recognition component of the CRL2 E3 ubiquitin-protein ligase. This multi-protein complex targets specific proteins for ubiquitylation, which leads to their degradation. Here, we demonstrate the regulation of FEM1B expression by stop codon readthrough (SCR). In this process, translating ribosomes readthrough the stop codon of FEM1B to generate a C-terminally extended isoform that is highly unstable. A total of 81 nucleotides in the proximal 3'UTR of FEM1B constitute the necessary and sufficient cis-signal for SCR. Also, they encode the amino acid sequence responsible for the degradation of the SCR product. CRISPR-edited cells lacking this region, and therefore SCR of FEM1B, showed increased FEM1B expression. This in turn resulted in reduced expression of SLBP (a target of FEM1B-mediated degradation) and replication-dependent histones (target of SLBP for mRNA stability), causing cell cycle delay. Evolutionary analysis revealed that this phenomenon is specific to the genus Pan and Homo (Hominini). Overall, we show a relatively recently evolved SCR process that relieves the cell cycle from the negative regulation by FEM1B.
Collapse
Affiliation(s)
- Md Noor Akhtar
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Anumeha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Lekha E. Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Dhruba Dey
- Undergraduate Program, Indian Institute of Science, Bengaluru 560012, India
| | - Sangeetha Devi Kumar
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Kirtana Vasu
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Arpan Das
- Undergraduate Program, Indian Institute of Science, Bengaluru 560012, India
| | - Sandeep M. Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
4
|
Jiang D, Kejiou N, Qiu Y, Palazzo AF, Pennell M. Genetic and selective constraints on the optimization of gene product diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603951. [PMID: 39091777 PMCID: PMC11291005 DOI: 10.1101/2024.07.17.603951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
RNA and protein expressed from the same gene can have diverse isoforms due to various post-transcriptional and post-translational modifications. For the vast majority of alternative isoforms, It is unknown whether they are adaptive or simply biological noise. As we cannot experimentally probe the function of each isoform, we can ask whether the distribution of isoforms across genes and across species is consistent with expectations from different evolutionary processes. However, there is currently no theoretical framework that can generate such predictions. To address this, we developed a mathematical model where isoform abundances are determined collectively by cis-acting loci, trans-acting factors, gene expression levels, and isoform decay rates to predict isoform abundance distributions across species and genes in the face of mutation, genetic drift, and selection. We found that factors beyond selection, such as effective population size and the number of cis-acting loci, significantly influence evolutionary outcomes. Notably, suboptimal phenotypes are more likely to evolve when the population is small and/or when the number of cis-loci is large. We also explored scenarios where modification processes have both beneficial and detrimental effects, revealing a non-monotonic relationship between effective population size and optimization, demonstrating how opposing selection pressures on cis- and trans-acting loci can constrain the optimization of gene product diversity. As a demonstration of the power of our theory, we compared the expected distribution of A-to-I RNA editing levels in coleoids and found this to be largely consistent with non-adaptive explanations.
Collapse
Affiliation(s)
- Daohan Jiang
- Department of Quantitative and Computational Biology, University of Southern California, USA
| | - Nevraj Kejiou
- Department of Biochemistry, University of Toronto, Canada
| | - Yi Qiu
- Department of Biochemistry, University of Toronto, Canada
| | | | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, USA
- Department of Biological Sciences, University of Southern California, USA
| |
Collapse
|
5
|
Ichinose T, Kondo S, Kanno M, Shichino Y, Mito M, Iwasaki S, Tanimoto H. Translational regulation enhances distinction of cell types in the nervous system. eLife 2024; 12:RP90713. [PMID: 39010741 PMCID: PMC11251722 DOI: 10.7554/elife.90713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5' leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5' leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.
Collapse
Grants
- 21K06369 Ministry of Education, Culture, Sports, Science and Technology
- 21H05713 Ministry of Education, Culture, Sports, Science and Technology
- JP20H05784 Ministry of Education, Culture, Sports, Science and Technology
- JP21K15023 Ministry of Education, Culture, Sports, Science and Technology
- 22H05481 Ministry of Education, Culture, Sports, Science and Technology
- 22KK0106 Ministry of Education, Culture, Sports, Science and Technology
- 20H00519 Ministry of Education, Culture, Sports, Science and Technology
- JP20gm1410001 Japan Agency for Medical Research and Development
- Biology of Intracellular Environments RIKEN
- Special Postdoctoral Researchers RIKEN
- Incentive Research Projects RIKEN
- Takeda Science Foundation
- Tohoku University Research Program "Frontier Research in Duo"
- The Uehara Memorial Foundation
Collapse
Affiliation(s)
- Toshiharu Ichinose
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku UniversitySendaiJapan
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Shu Kondo
- Faculty of Advanced Engineering, Tokyo University of SciencesTokyoJapan
| | - Mai Kanno
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku UniversitySendaiJapan
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, WakoSaitamaJapan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, WakoSaitamaJapan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, WakoSaitamaJapan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwaJapan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| |
Collapse
|
6
|
Tierney JAS, Świrski M, Tjeldnes H, Mudge JM, Kufel J, Whiffin N, Valen E, Baranov PV. Ribosome decision graphs for the representation of eukaryotic RNA translation complexity. Genome Res 2024; 34:530-538. [PMID: 38719470 PMCID: PMC11146595 DOI: 10.1101/gr.278810.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/01/2024] [Indexed: 05/21/2024]
Abstract
The application of ribosome profiling has revealed an unexpected abundance of translation in addition to that responsible for the synthesis of previously annotated protein-coding regions. Multiple short sequences have been found to be translated within single RNA molecules, within both annotated protein-coding and noncoding regions. The biological significance of this translation is a matter of intensive investigation. However, current schematic or annotation-based representations of mRNA translation generally do not account for the apparent multitude of translated regions within the same molecules. They also do not take into account the stochasticity of the process that allows alternative translations of the same RNA molecules by different ribosomes. There is a need for formal representations of mRNA complexity that would enable the analysis of quantitative information on translation and more accurate models for predicting the phenotypic effects of genetic variants affecting translation. To address this, we developed a conceptually novel abstraction that we term ribosome decision graphs (RDGs). RDGs represent translation as multiple ribosome paths through untranslated and translated mRNA segments. We termed the latter "translons." Nondeterministic events, such as initiation, reinitiation, selenocysteine insertion, or ribosomal frameshifting, are then represented as branching points. This representation allows for an adequate representation of eukaryotic translation complexity and focuses on locations critical for translation regulation. We show how RDGs can be used for depicting translated regions and for analyzing genetic variation and quantitative genome-wide data on translation for characterization of regulatory modulators of translation.
Collapse
Affiliation(s)
- Jack A S Tierney
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 K8AF, Ireland
- SFI Centre for Research Training in Genomics Data Science, University College Cork, Cork T12 K8AF, Ireland
| | - Michał Świrski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Håkon Tjeldnes
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 K8AF, Ireland
- Computational Biology Unit, Department of Informatics, University of Bergen, NO-5020 Bergen, Norway
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, Cambridge, United Kingdom
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Nicola Whiffin
- The Big Data Institute and Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, NO-5020 Bergen, Norway
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 K8AF, Ireland;
| |
Collapse
|
7
|
Hacisuleyman E, Hale CR, Noble N, Luo JD, Fak JJ, Saito M, Chen J, Weissman JS, Darnell RB. Neuronal activity rapidly reprograms dendritic translation via eIF4G2:uORF binding. Nat Neurosci 2024; 27:822-835. [PMID: 38589584 PMCID: PMC11088998 DOI: 10.1038/s41593-024-01615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/05/2024] [Indexed: 04/10/2024]
Abstract
Learning and memory require activity-induced changes in dendritic translation, but which mRNAs are involved and how they are regulated are unclear. In this study, to monitor how depolarization impacts local dendritic biology, we employed a dendritically targeted proximity labeling approach followed by crosslinking immunoprecipitation, ribosome profiling and mass spectrometry. Depolarization of primary cortical neurons with KCl or the glutamate agonist DHPG caused rapid reprogramming of dendritic protein expression, where changes in dendritic mRNAs and proteins are weakly correlated. For a subset of pre-localized messages, depolarization increased the translation of upstream open reading frames (uORFs) and their downstream coding sequences, enabling localized production of proteins involved in long-term potentiation, cell signaling and energy metabolism. This activity-dependent translation was accompanied by the phosphorylation and recruitment of the non-canonical translation initiation factor eIF4G2, and the translated uORFs were sufficient to confer depolarization-induced, eIF4G2-dependent translational control. These studies uncovered an unanticipated mechanism by which activity-dependent uORF translational control by eIF4G2 couples activity to local dendritic remodeling.
Collapse
Affiliation(s)
- Ezgi Hacisuleyman
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY, USA.
| | - Caryn R Hale
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natalie Noble
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - John J Fak
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY, USA
| | - Misa Saito
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY, USA
| | - Jin Chen
- Department of Pharmacology and Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Altos Labs, Bay Area Institute of Science, Redwood City, CA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Robert B Darnell
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
8
|
Samuels TJ, Gui J, Gebert D, Karam Teixeira F. Two distinct waves of transcriptome and translatome changes drive Drosophila germline stem cell differentiation. EMBO J 2024; 43:1591-1617. [PMID: 38480936 PMCID: PMC11021484 DOI: 10.1038/s44318-024-00070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/18/2024] Open
Abstract
The tight control of fate transitions during stem cell differentiation is essential for proper tissue development and maintenance. However, the challenges in studying sparsely distributed adult stem cells in a systematic manner have hindered efforts to identify how the multilayered regulation of gene expression programs orchestrates stem cell differentiation in vivo. Here, we synchronised Drosophila female germline stem cell (GSC) differentiation in vivo to perform in-depth transcriptome and translatome analyses at high temporal resolution. This characterisation revealed widespread and dynamic changes in mRNA level, promoter usage, exon inclusion, and translation efficiency. Transient expression of the master regulator, Bam, drives a first wave of expression changes, primarily modifying the cell cycle program. Surprisingly, as Bam levels recede, differentiating cells return to a remarkably stem cell-like transcription and translation program, with a few crucial changes feeding into a second phase driving terminal differentiation to form the oocyte. Altogether, these findings reveal that rather than a unidirectional accumulation of changes, the in vivo differentiation of stem cells relies on distinctly regulated and developmentally sequential waves.
Collapse
Affiliation(s)
- Tamsin J Samuels
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, CB2 3DY, Cambridge, UK
| | - Jinghua Gui
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH, Cambridge, UK
| | - Daniel Gebert
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, CB2 3DY, Cambridge, UK
| | - Felipe Karam Teixeira
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, CB2 3DY, Cambridge, UK.
| |
Collapse
|
9
|
Skojec C, Godfrey RK, Kawahara AY. Long read genome assembly of Automeris io (Lepidoptera: Saturniidae) an emerging model for the evolution of deimatic displays. G3 (BETHESDA, MD.) 2024; 14:jkad292. [PMID: 38324397 PMCID: PMC10917498 DOI: 10.1093/g3journal/jkad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/11/2023] [Indexed: 02/09/2024]
Abstract
Automeris moths are a morphologically diverse group with 135 described species that have a geographic range that spans from the New World temperate zone to the Neotropics. Many Automeris have elaborate hindwing eyespots that are thought to deter or disrupt the attack of potential predators, allowing the moth time to escape. The Io moth (Automeris io), known for its striking eyespots, is a well-studied species within the genus and is an emerging model system to study the evolution of deimatism. Existing research on the eyespot pattern development will be augmented by genomic resources that allow experimental manipulation of this emerging model. Here, we present a high-quality, PacBio HiFi genome assembly for Io moth to aid existing research on the molecular development of eyespots and future research on other deimatic traits. This 490 Mb assembly is highly contiguous (N50 = 15.78 mbs) and complete (benchmarking universal single-copy orthologs = 98.4%). Additionally, we were able to recover orthologs of genes previously identified as being involved in wing pattern formation and movement.
Collapse
Affiliation(s)
- Chelsea Skojec
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural
History, University of Florida, Gainesville, FL
32611, USA
- Department of Biology, University of Florida, 220 Bartram
Hall, Gainesville, FL 32611, USA
| | - R Keating Godfrey
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural
History, University of Florida, Gainesville, FL
32611, USA
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural
History, University of Florida, Gainesville, FL
32611, USA
- Department of Biology, University of Florida, 220 Bartram
Hall, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Zhang Y, Li H, Shen Y, Wang S, Tian L, Yin H, Shi J, Xing A, Zhang J, Ali U, Sami A, Chen X, Gao C, Zhao Y, Lyu Y, Wang X, Chen Y, Tian Z, Wu SB, Wu L. Readthrough events in plants reveal plasticity of stop codons. Cell Rep 2024; 43:113723. [PMID: 38300801 DOI: 10.1016/j.celrep.2024.113723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/02/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Stop codon readthrough (SCR) has important biological implications but remains largely uncharacterized. Here, we identify 1,009 SCR events in plants using a proteogenomic strategy. Plant SCR candidates tend to have shorter transcript lengths and fewer exons and splice variants than non-SCR transcripts. Mass spectrometry evidence shows that stop codons involved in SCR events can be recoded as 20 standard amino acids, some of which are also supported by suppressor tRNA analysis. We also observe multiple functional signals in 34 maize extended proteins and characterize the structural and subcellular localization changes in the extended protein of basic transcription factor 3. Furthermore, the SCR events exhibit non-conserved signature, and the extensions likely undergo protein-coding selection. Overall, our study not only characterizes that SCR events are commonly present in plants but also identifies the recoding plasticity of stop codons, which provides important insights into the flexibility of genetic decoding.
Collapse
Affiliation(s)
- Yuqian Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China; School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Hehuan Li
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yanting Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shunxi Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Lei Tian
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Haoqiang Yin
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Jiawei Shi
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Anqi Xing
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Usman Ali
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Abdul Sami
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Xueyan Chen
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Chenxuan Gao
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yangtao Zhao
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yajing Lyu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Xiaoxu Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yanhui Chen
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China; School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
11
|
Mao Y, Qian SB. Making sense of mRNA translational "noise". Semin Cell Dev Biol 2024; 154:114-122. [PMID: 36925447 PMCID: PMC10500040 DOI: 10.1016/j.semcdb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023]
Abstract
The importance of translation fidelity has been apparent since the discovery of genetic code. It is commonly believed that translation deviating from the main coding region is to be avoided at all times inside cells. However, ribosome profiling and mass spectrometry have revealed pervasive noncanonical translation. Both the scope and origin of translational "noise" are just beginning to be appreciated. Although largely overlooked, those translational "noises" are associated with a wide range of cellular functions, such as producing unannotated protein products. Furthermore, the dynamic nature of translational "noise" is responsive to stress conditions, highlighting the beneficial effect of translational "noise" in stress adaptation. Mechanistic investigation of translational "noise" will provide better insight into the mechanisms of translational regulation. Ultimately, they are not "noise" at all but represent a signature of cellular activities under pathophysiological conditions. Deciphering translational "noise" holds the therapeutic and diagnostic potential in a wide spectrum of human diseases.
Collapse
Affiliation(s)
- Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
12
|
Zhang T, Xue Y, Su S, Altouma V, Ho K, Martindale JL, Lee SK, Shen W, Park A, Zhang Y, De S, Gorospe M, Wang W. RNA-binding protein Nocte regulates Drosophila development by promoting translation reinitiation on mRNAs with long upstream open reading frames. Nucleic Acids Res 2024; 52:885-905. [PMID: 38000373 PMCID: PMC10810208 DOI: 10.1093/nar/gkad1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
RNA-binding proteins (RBPs) with intrinsically disordered regions (IDRs) are linked to multiple human disorders, but their mechanisms of action remain unclear. Here, we report that one such protein, Nocte, is essential for Drosophila eye development by regulating a critical gene expression cascade at translational level. Knockout of nocte in flies leads to lethality, and its eye-specific depletion impairs eye size and morphology. Nocte preferentially enhances translation of mRNAs with long upstream open reading frames (uORFs). One of the key Nocte targets, glass mRNA, encodes a transcription factor critical for differentiation of photoreceptor neurons and accessory cells, and re-expression of Glass largely rescued the eye defects caused by Nocte depletion. Mechanistically, Nocte counteracts long uORF-mediated translational suppression by promoting translation reinitiation downstream of the uORF. Nocte interacts with translation factors eIF3 and Rack1 through its BAT2 domain, and a Nocte mutant lacking this domain fails to promote translation of glass mRNA. Notably, de novo mutations of human orthologs of Nocte have been detected in schizophrenia patients. Our data suggest that Nocte family of proteins can promote translation reinitiation to overcome long uORFs-mediated translational suppression, and disruption of this function can lead to developmental defects and neurological disorders.
Collapse
Affiliation(s)
- Tianyi Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yutong Xue
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Valerie Altouma
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Katherine Ho
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Seung-Kyu Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Weiping Shen
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Aaron Park
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
13
|
Amiri M, Kiniry SJ, Possemato AP, Mahmood N, Basiri T, Dufour CR, Tabatabaei N, Deng Q, Bellucci MA, Harwalkar K, Stokes MP, Giguère V, Kaufman RJ, Yamanaka Y, Baranov PV, Tahmasebi S, Sonenberg N. Impact of eIF2α phosphorylation on the translational landscape of mouse embryonic stem cells. Cell Rep 2024; 43:113615. [PMID: 38159280 PMCID: PMC10962698 DOI: 10.1016/j.celrep.2023.113615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
The integrated stress response (ISR) is critical for cell survival under stress. In response to diverse environmental cues, eIF2α becomes phosphorylated, engendering a dramatic change in mRNA translation. The activation of ISR plays a pivotal role in the early embryogenesis, but the eIF2-dependent translational landscape in pluripotent embryonic stem cells (ESCs) is largely unexplored. We employ a multi-omics approach consisting of ribosome profiling, proteomics, and metabolomics in wild-type (eIF2α+/+) and phosphorylation-deficient mutant eIF2α (eIF2αA/A) mouse ESCs (mESCs) to investigate phosphorylated (p)-eIF2α-dependent translational control of naive pluripotency. We show a transient increase in p-eIF2α in the naive epiblast layer of E4.5 embryos. Absence of eIF2α phosphorylation engenders an exit from naive pluripotency following 2i (two chemical inhibitors of MEK1/2 and GSK3α/β) withdrawal. p-eIF2α controls translation of mRNAs encoding proteins that govern pluripotency, chromatin organization, and glutathione synthesis. Thus, p-eIF2α acts as a key regulator of the naive pluripotency gene regulatory network.
Collapse
Affiliation(s)
- Mehdi Amiri
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Stephen J Kiniry
- School of Biochemistry and Cell Biology, University College Cork, T12 XF62 Cork, Ireland
| | | | - Niaz Mahmood
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Tayebeh Basiri
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Catherine R Dufour
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Negar Tabatabaei
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Qiyun Deng
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Michael A Bellucci
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Keerthana Harwalkar
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Matthew P Stokes
- Cell Signaling Technology, Inc., 3 Trask Lane, Danvers, MA 01923, USA
| | - Vincent Giguère
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Randal J Kaufman
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yojiro Yamanaka
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, T12 XF62 Cork, Ireland
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
14
|
Richardson MO, Eddy SR. ORFeus: a computational method to detect programmed ribosomal frameshifts and other non-canonical translation events. BMC Bioinformatics 2023; 24:471. [PMID: 38093195 PMCID: PMC10720069 DOI: 10.1186/s12859-023-05602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND In canonical protein translation, ribosomes initiate translation at a specific start codon, maintain a single reading frame throughout elongation, and terminate at the first in-frame stop codon. However, ribosomal behavior can deviate at each of these steps, sometimes in a programmed manner. Certain mRNAs contain sequence and structural elements that cause ribosomes to begin translation at alternative start codons, shift reading frame, read through stop codons, or reinitiate on the same mRNA. These processes represent important translational control mechanisms that can allow an mRNA to encode multiple functional protein products or regulate protein expression. The prevalence of these events remains uncertain, due to the difficulty of systematic detection. RESULTS We have developed a computational model to infer non-canonical translation events from ribosome profiling data. CONCLUSION ORFeus identifies known examples of alternative open reading frames and recoding events across different organisms and enables transcriptome-wide searches for novel events.
Collapse
Affiliation(s)
- Mary O Richardson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Sean R Eddy
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
15
|
Wang S, Huang T, Xie Z, Wan L, Ren H, Wu T, Xie L, Luo S, Li M, Xie Z, Fan Q, Huang J, Zeng T, Zhang Y, Zhang M, Wei Y. Transcriptomic and Translatomic Analyses Reveal Insights into the Signaling Pathways of the Innate Immune Response in the Spleens of SPF Chickens Infected with Avian Reovirus. Viruses 2023; 15:2346. [PMID: 38140587 PMCID: PMC10747248 DOI: 10.3390/v15122346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Avian reovirus (ARV) infection is prevalent in farmed poultry and causes viral arthritis and severe immunosuppression. The spleen plays a very important part in protecting hosts against infectious pathogens. In this research, transcriptome and translatome sequencing technology were combined to investigate the mechanisms of transcriptional and translational regulation in the spleen after ARV infection. On a genome-wide scale, ARV infection can significantly reduce the translation efficiency (TE) of splenic genes. Differentially expressed translational efficiency genes (DTEGs) were identified, including 15 upregulated DTEGs and 396 downregulated DTEGs. These DTEGs were mainly enriched in immune regulation signaling pathways, which indicates that ARV infection reduces the innate immune response in the spleen. In addition, combined analyses revealed that the innate immune response involves the effects of transcriptional and translational regulation. Moreover, we discovered the key gene IL4I1, the most significantly upregulated gene at both the transcriptional and translational levels. Further studies in DF1 cells showed that overexpression of IL4I1 could inhibit the replication of ARV, while inhibiting the expression of endogenous IL4I1 with siRNA promoted the replication of ARV. Overexpression of IL4I1 significantly downregulated the mRNA expression of IFN-β, LGP2, TBK1 and NF-κB; however, the expression of these genes was significantly upregulated after inhibition of IL4I1, suggesting that IL4I1 may be a negative feedback effect of innate immune signaling pathways. In addition, there may be an interaction between IL4I1 and ARV σA protein, and we speculate that the IL4I1 protein plays a regulatory role by interacting with the σA protein. This study not only provides a new perspective on the regulatory mechanisms of the innate immune response after ARV infection but also enriches the knowledge of the host defense mechanisms against ARV invasion and the outcome of ARV evasion of the host's innate immune response.
Collapse
Affiliation(s)
- Sheng Wang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery, Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Lijun Wan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Hongyu Ren
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Tian Wu
- NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China;
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Sisi Luo
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Meng Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Zhiqin Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Qing Fan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Jiaoling Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Tingting Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Yanfang Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Minxiu Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - You Wei
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| |
Collapse
|
16
|
Tierney JAS, Świrski M, Tjeldnes H, Mudge JM, Kufel J, Whiffin N, Valen E, Baranov PV. Ribosome Decision Graphs for the Representation of Eukaryotic RNA Translation Complexity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566564. [PMID: 37986835 PMCID: PMC10659439 DOI: 10.1101/2023.11.10.566564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The application of ribosome profiling has revealed an unexpected abundance of translation in addition to that responsible for the synthesis of previously annotated protein-coding regions. Multiple short sequences have been found to be translated within single RNA molecules, both within annotated protein-coding and non-coding regions. The biological significance of this translation is a matter of intensive investigation. However, current schematic or annotation-based representations of mRNA translation generally do not account for the apparent multitude of translated regions within the same molecules. They also do not take into account the stochasticity of the process that allows alternative translations of the same RNA molecules by different ribosomes. There is a need for formal representations of mRNA complexity that would enable the analysis of quantitative information on translation and more accurate models for predicting the phenotypic effects of genetic variants affecting translation. To address this, we developed a conceptually novel abstraction that we term Ribosome Decision Graphs (RDGs). RDGs represent translation as multiple ribosome paths through untranslated and translated mRNA segments. We termed the later 'translons'. Non-deterministic events, such as initiation, re-initiation, selenocysteine insertion or ribosomal frameshifting are then represented as branching points. This representation allows for an adequate representation of eukaryotic translation complexity and focuses on locations critical for translation regulation. We show how RDGs can be used for depicting translated regions, analysis of genetic variation and quantitative genome-wide data on translation for characterisation of regulatory modulators of translation.
Collapse
Affiliation(s)
- Jack A S Tierney
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- SFI Centre for Research Training in Genomics Data Science, University College Cork, Cork, Ireland
| | - Michał Świrski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Håkon Tjeldnes
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Nicola Whiffin
- The Big Data Institute and Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Liu Z, Wang J, Shi Y, Yee BA, Terrey M, Zhang Q, Lee JC, Lin KI, Wang AHJ, Ackerman S, Yeo G, Cui H, Yang XL. Seryl-tRNA synthetase promotes translational readthrough by mRNA binding and involvement of the selenocysteine incorporation machinery. Nucleic Acids Res 2023; 51:10768-10781. [PMID: 37739431 PMCID: PMC10602924 DOI: 10.1093/nar/gkad773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023] Open
Abstract
Translational readthrough of UGA stop codons by selenocysteine-specific tRNA (tRNASec) enables the synthesis of selenoproteins. Seryl-tRNA synthetase (SerRS) charges tRNASec with serine, which is modified into selenocysteine and delivered to the ribosome by a designated elongation factor (eEFSec in eukaryotes). Here we found that components of the human selenocysteine incorporation machinery (SerRS, tRNASec, and eEFSec) also increased translational readthrough of non-selenocysteine genes, including VEGFA, to create C-terminally extended isoforms. SerRS recognizes target mRNAs through a stem-loop structure that resembles the variable loop of its cognate tRNAs. This function of SerRS depends on both its enzymatic activity and a vertebrate-specific domain. Through eCLIP-seq, we identified additional SerRS-interacting mRNAs as potential readthrough genes. Moreover, SerRS overexpression was sufficient to reverse premature termination caused by a pathogenic nonsense mutation. Our findings expand the repertoire of selenoprotein biosynthesis machinery and suggest an avenue for therapeutic targeting of nonsense mutations using endogenous factors.
Collapse
Affiliation(s)
- Ze Liu
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Justin Wang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yi Shi
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biochemistry, School of Medicine, Nankai University, Tianjin, China
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Markus Terrey
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Qian Zhang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jenq-Chang Lee
- Department of Surgery, National Cheng Kung University Medical College and Hospital, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taiwan
| | - Andrew H-J Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurobiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Haissi Cui
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
18
|
Li N, Duan Y, Ye Q, Ma Y, Ma R, Zhao L, Zhu S, Yu F, Qi S, Wang Y. The Arabidopsis eIF4E1 regulates NRT1.1-mediated nitrate signaling at both translational and transcriptional levels. THE NEW PHYTOLOGIST 2023; 240:338-353. [PMID: 37424317 DOI: 10.1111/nph.19129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/18/2023] [Indexed: 07/11/2023]
Abstract
Identifying new nitrate regulatory genes and illustrating their mechanisms in modulating nitrate signaling are of great significance for achieving the high yield and nitrogen use efficiency (NUE) of crops. Here, we screened a mutant with defects in nitrate response and mapped the mutation to the gene eIF4E1 in Arabidopsis. Our results showed that eIF4E1 regulated nitrate signaling and metabolism. Ribo-seq and polysome profiling analysis revealed that eIF4E1 modulated the amount of some nitrogen (N)-related mRNAs being translated, especially the mRNA of NRT1.1 was reduced in the eif4e1 mutant. RNA-Seq results enriched some N-related genes, supporting that eIF4E1 is involved in nitrate regulation. The genetic analysis indicated that eIF4E1 worked upstream of NRT1.1 in nitrate signaling. In addition, an eIF4E1-interacting protein GEMIN2 was identified and found to be involved in nitrate signaling. Further investigation showed that overexpression of eIF4E1 promoted plant growth and enhanced yield and NUE. These results demonstrate that eIF4E1 regulates nitrate signaling by modulating NRT1.1 at both translational and transcriptional levels, laying the foundation for future research on the regulation of mineral nutrition at the translational level.
Collapse
Affiliation(s)
- Na Li
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yawen Duan
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qing Ye
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yuhan Ma
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Rongjie Ma
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Lufei Zhao
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan, 410082, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan, 410082, China
| | - Shengdong Qi
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yong Wang
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
19
|
Pandit M, Akhtar MN, Sundaram S, Sahoo S, Manjunath LE, Eswarappa SM. Termination codon readthrough of NNAT mRNA regulates calcium-mediated neuronal differentiation. J Biol Chem 2023; 299:105184. [PMID: 37611826 PMCID: PMC10506107 DOI: 10.1016/j.jbc.2023.105184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Termination codon readthrough (TCR) is a process in which ribosomes continue to translate an mRNA beyond a stop codon generating a C-terminally extended protein isoform. Here, we demonstrate TCR in mammalian NNAT mRNA, which encodes NNAT, a proteolipid important for neuronal differentiation. This is a programmed event driven by cis-acting RNA sequences present immediately upstream and downstream of the canonical stop codon and is negatively regulated by NONO, an RNA-binding protein known to promote neuronal differentiation. Unlike the canonical isoform NNAT, we determined that the TCR product (NNATx) does not show detectable interaction with the sarco/endoplasmic reticulum Ca2+-ATPase isoform 2 Ca2+ pump, cannot increase cytoplasmic Ca2+ levels, and therefore does not enhance neuronal differentiation in Neuro-2a cells. Additionally, an antisense oligonucleotide that targets a region downstream of the canonical stop codon reduced TCR of NNAT and enhanced the differentiation of Neuro-2a cells to cholinergic neurons. Furthermore, NNATx-deficient Neuro-2a cells, generated using CRISPR-Cas9, showed increased cytoplasmic Ca2+ levels and enhanced neuronal differentiation. Overall, these results demonstrate regulation of neuronal differentiation by TCR of NNAT. Importantly, this process can be modulated using a synthetic antisense oligonucleotide.
Collapse
Affiliation(s)
- Madhuparna Pandit
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Md Noor Akhtar
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Susinder Sundaram
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sarthak Sahoo
- Undergraduate Program, Indian Institute of Science, Bengaluru, India
| | - Lekha E Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sandeep M Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India.
| |
Collapse
|
20
|
Breznak SM, Peng Y, Deng L, Kotb NM, Flamholz Z, Rapisarda IT, Martin ET, LaBarge KA, Fabris D, Gavis ER, Rangan P. H/ACA snRNP-dependent ribosome biogenesis regulates translation of polyglutamine proteins. SCIENCE ADVANCES 2023; 9:eade5492. [PMID: 37343092 PMCID: PMC10284551 DOI: 10.1126/sciadv.ade5492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Stem cells in many systems, including Drosophila germline stem cells (GSCs), increase ribosome biogenesis and translation during terminal differentiation. Here, we show that the H/ACA small nuclear ribonucleoprotein (snRNP) complex that promotes pseudouridylation of ribosomal RNA (rRNA) and ribosome biogenesis is required for oocyte specification. Reducing ribosome levels during differentiation decreased the translation of a subset of messenger RNAs that are enriched for CAG trinucleotide repeats and encode polyglutamine-containing proteins, including differentiation factors such as RNA-binding Fox protein 1. Moreover, ribosomes were enriched at CAG repeats within transcripts during oogenesis. Increasing target of rapamycin (TOR) activity to elevate ribosome levels in H/ACA snRNP complex-depleted germlines suppressed the GSC differentiation defects, whereas germlines treated with the TOR inhibitor rapamycin had reduced levels of polyglutamine-containing proteins. Thus, ribosome biogenesis and ribosome levels can control stem cell differentiation via selective translation of CAG repeat-containing transcripts.
Collapse
Affiliation(s)
- Shane M. Breznak
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
| | - Yingshi Peng
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Limin Deng
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
- Department of Chemistry, University of Connecticut, 55N Eagleville Rd, Storrs, CT 06269, USA
| | - Noor M. Kotb
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY 12144, USA
| | - Zachary Flamholz
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ian T. Rapisarda
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
- Lake Erie College of Osteopathic Medicine, College of Medicine, 1858 W Grandview Blvd, Erie, PA 16509, USA
| | - Elliot T. Martin
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
| | - Kara A. LaBarge
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
| | - Dan Fabris
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
- Department of Chemistry, University of Connecticut, 55N Eagleville Rd, Storrs, CT 06269, USA
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Prashanth Rangan
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
21
|
Müller MBD, Kasturi P, Jayaraj GG, Hartl FU. Mechanisms of readthrough mitigation reveal principles of GCN1-mediated translational quality control. Cell 2023:S0092-8674(23)00587-1. [PMID: 37339632 PMCID: PMC10364623 DOI: 10.1016/j.cell.2023.05.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Readthrough into the 3' untranslated region (3' UTR) of the mRNA results in the production of aberrant proteins. Metazoans efficiently clear readthrough proteins, but the underlying mechanisms remain unknown. Here, we show in Caenorhabditis elegans and mammalian cells that readthrough proteins are targeted by a coupled, two-level quality control pathway involving the BAG6 chaperone complex and the ribosome-collision-sensing protein GCN1. Readthrough proteins with hydrophobic C-terminal extensions (CTEs) are recognized by SGTA-BAG6 and ubiquitylated by RNF126 for proteasomal degradation. Additionally, cotranslational mRNA decay initiated by GCN1 and CCR4/NOT limits the accumulation of readthrough products. Unexpectedly, selective ribosome profiling uncovered a general role of GCN1 in regulating translation dynamics when ribosomes collide at nonoptimal codons, enriched in 3' UTRs, transmembrane proteins, and collagens. GCN1 dysfunction increasingly perturbs these protein classes during aging, resulting in mRNA and proteome imbalance. Our results define GCN1 as a key factor acting during translation in maintaining protein homeostasis.
Collapse
Affiliation(s)
- Martin B D Müller
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Prasad Kasturi
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Gopal G Jayaraj
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
22
|
Jian H, Wen S, Liu R, Zhang W, Li Z, Chen W, Zhou Y, Khassanov V, Mahmoud AMA, Wang J, Lyu D. Dynamic Translational Landscape Revealed by Genome-Wide Ribosome Profiling under Drought and Heat Stress in Potato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2232. [PMID: 37375858 DOI: 10.3390/plants12122232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
The yield and quality of potatoes, an important staple crop, are seriously threatened by high temperature and drought stress. In order to deal with this adverse environment, plants have evolved a series of response mechanisms. However, the molecular mechanism of potato's response to environmental changes at the translational level is still unclear. In this study, we performed transcriptome- and ribosome-profiling assays with potato seedlings growing under normal, drought, and high-temperature conditions to reveal the dynamic translational landscapes for the first time. The translational efficiency was significantly affected by drought and heat stress in potato. A relatively high correlation (0.88 and 0.82 for drought and heat stress, respectively) of the fold changes of gene expression was observed between the transcriptional level and translational level globally based on the ribosome-profiling and RNA-seq data. However, only 41.58% and 27.69% of the different expressed genes were shared by transcription and translation in drought and heat stress, respectively, suggesting that the transcription or translation process can be changed independently. In total, the translational efficiency of 151 (83 and 68 for drought and heat, respectively) genes was significantly changed. In addition, sequence features, including GC content, sequence length, and normalized minimal free energy, significantly affected the translational efficiencies of genes. In addition, 28,490 upstream open reading frames (uORFs) were detected on 6463 genes, with an average of 4.4 uORFs per gene and a median length of 100 bp. These uORFs significantly affected the translational efficiency of downstream major open reading frames (mORFs). These results provide new information and directions for analyzing the molecular regulatory network of potato seedlings in response to drought and heat stress.
Collapse
Affiliation(s)
- Hongju Jian
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
| | - Shiqi Wen
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Rongrong Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Wenzhe Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Ziyan Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Weixi Chen
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yonghong Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
| | - Vadim Khassanov
- Department of Plant Protection and Quarantine, Faculty of Agronomy, S. Seifullin Kazakh Agrotechnical University, Zhenis Avenue, 010011 Astana, Kazakhstan
| | - Ahmed M A Mahmoud
- Department of Vegetable Crops, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Jichun Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
| | - Dianqiu Lyu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
| |
Collapse
|
23
|
Carollo PS, Tutone M, Culletta G, Fiduccia I, Corrao F, Pibiri I, Di Leonardo A, Zizzo MG, Melfi R, Pace A, Almerico AM, Lentini L. Investigating the Inhibition of FTSJ1, a Tryptophan tRNA-Specific 2'-O-Methyltransferase by NV TRIDs, as a Mechanism of Readthrough in Nonsense Mutated CFTR. Int J Mol Sci 2023; 24:9609. [PMID: 37298560 PMCID: PMC10253411 DOI: 10.3390/ijms24119609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive genetic disease caused by mutations in the CFTR gene, coding for the CFTR chloride channel. About 10% of the CFTR gene mutations are "stop" mutations that generate a premature termination codon (PTC), thus synthesizing a truncated CFTR protein. A way to bypass PTC relies on ribosome readthrough, which is the ribosome's capacity to skip a PTC, thus generating a full-length protein. "TRIDs" are molecules exerting ribosome readthrough; for some, the mechanism of action is still under debate. We investigate a possible mechanism of action (MOA) by which our recently synthesized TRIDs, namely NV848, NV914, and NV930, could exert their readthrough activity by in silico analysis and in vitro studies. Our results suggest a likely inhibition of FTSJ1, a tryptophan tRNA-specific 2'-O-methyltransferase.
Collapse
Affiliation(s)
| | - Marco Tutone
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (P.S.C.); (G.C.); (I.F.); (F.C.); (I.P.); (A.D.L.); (M.G.Z.); (R.M.); (A.P.); (A.M.A.)
| | | | | | | | | | | | | | | | | | | | - Laura Lentini
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (P.S.C.); (G.C.); (I.F.); (F.C.); (I.P.); (A.D.L.); (M.G.Z.); (R.M.); (A.P.); (A.M.A.)
| |
Collapse
|
24
|
Rodnina MV. Decoding and Recoding of mRNA Sequences by the Ribosome. Annu Rev Biophys 2023; 52:161-182. [PMID: 37159300 DOI: 10.1146/annurev-biophys-101922-072452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Faithful translation of messenger RNA (mRNA) into protein is essential to maintain protein homeostasis in the cell. Spontaneous translation errors are very rare due to stringent selection of cognate aminoacyl transfer RNAs (tRNAs) and the tight control of the mRNA reading frame by the ribosome. Recoding events, such as stop codon readthrough, frameshifting, and translational bypassing, reprogram the ribosome to make intentional mistakes and produce alternative proteins from the same mRNA. The hallmark of recoding is the change of ribosome dynamics. The signals for recoding are built into the mRNA, but their reading depends on the genetic makeup of the cell, resulting in cell-specific changes in expression programs. In this review, I discuss the mechanisms of canonical decoding and tRNA-mRNA translocation; describe alternative pathways leading to recoding; and identify the links among mRNA signals, ribosome dynamics, and recoding.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany;
| |
Collapse
|
25
|
Wagner RN, Wießner M, Friedrich A, Zandanell J, Breitenbach-Koller H, Bauer JW. Emerging Personalized Opportunities for Enhancing Translational Readthrough in Rare Genetic Diseases and Beyond. Int J Mol Sci 2023; 24:6101. [PMID: 37047074 PMCID: PMC10093890 DOI: 10.3390/ijms24076101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Nonsense mutations trigger premature translation termination and often give rise to prevalent and rare genetic diseases. Consequently, the pharmacological suppression of an unscheduled stop codon represents an attractive treatment option and is of high clinical relevance. At the molecular level, the ability of the ribosome to continue translation past a stop codon is designated stop codon readthrough (SCR). SCR of disease-causing premature termination codons (PTCs) is minimal but small molecule interventions, such as treatment with aminoglycoside antibiotics, can enhance its frequency. In this review, we summarize the current understanding of translation termination (both at PTCs and at cognate stop codons) and highlight recently discovered pathways that influence its fidelity. We describe the mechanisms involved in the recognition and readthrough of PTCs and report on SCR-inducing compounds currently explored in preclinical research and clinical trials. We conclude by reviewing the ongoing attempts of personalized nonsense suppression therapy in different disease contexts, including the genetic skin condition epidermolysis bullosa.
Collapse
Affiliation(s)
- Roland N. Wagner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Michael Wießner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Andreas Friedrich
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Johanna Zandanell
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | | | - Johann W. Bauer
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
26
|
Zhu XT, Zhou R, Che J, Zheng YY, Tahir Ul Qamar M, Feng JW, Zhang J, Gao J, Chen LL. Ribosome profiling reveals the translational landscape and allele-specific translational efficiency in rice. PLANT COMMUNICATIONS 2023; 4:100457. [PMID: 36199246 PMCID: PMC10030323 DOI: 10.1016/j.xplc.2022.100457] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/23/2022] [Accepted: 10/01/2022] [Indexed: 05/04/2023]
Abstract
Translational regulation is a critical step in the process of gene expression and governs the synthesis of proteins from mRNAs. Many studies have revealed translational regulation in plants in response to various environmental stimuli. However, there have been no studies documenting the comprehensive landscape of translational regulation and allele-specific translational efficiency in multiple plant tissues, especially those of rice, a main staple crop that feeds nearly half of the world's population. Here we used RNA sequencing and ribosome profiling data to analyze the transcriptome and translatome of an elite hybrid rice, Shanyou 63 (SY63), and its parental varieties Zhenshan 97 and Minghui 63. The results revealed that gene expression patterns varied more among tissues than among varieties at the transcriptional and translational levels. We identified 3392 upstream open reading frames (uORFs), and the uORF-containing genes were enriched in transcription factors. Only 668 of 13 492 long non-coding RNAs could be translated into peptides. Finally, we discovered numerous genes with allele-specific translational efficiency in SY63 and demonstrated that some cis-regulatory elements may contribute to allelic divergence in translational efficiency. Overall, these findings may improve our understanding of translational regulation in rice and provide information for molecular breeding research.
Collapse
Affiliation(s)
- Xi-Tong Zhu
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Run Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Che
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Yu Zheng
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Tahir Ul Qamar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Wu Feng
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Junxiang Gao
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
27
|
Manjunath LE, Singh A, Som S, Eswarappa SM. Mammalian proteome expansion by stop codon readthrough. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1739. [PMID: 35570338 DOI: 10.1002/wrna.1739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/20/2022]
Abstract
Recognition of a stop codon by translation machinery as a sense codon results in translational readthrough instead of termination. This recoding process, termed stop codon readthrough (SCR) or translational readthrough, is found in all domains of life including mammals. The context of the stop codon, local mRNA topology, and molecules that interact with the mRNA region downstream of the stop codon determine SCR. The products of SCR can have localization, stability, and function different from those of the canonical isoforms. In this review, we discuss how recent technological and computational advances have increased our understanding of the SCR process in the mammalian system. Based on the known molecular events that occur during SCR of multiple mRNAs, we propose transient molecular roadblocks on an mRNA downstream of the stop codon as a possible mechanism for the induction of SCR. We argue, with examples, that the insights gained from the natural SCR events can guide us to develop novel strategies for the treatment of diseases caused by premature stop codons. This article is categorized under: Translation > Regulation.
Collapse
Affiliation(s)
- Lekha E Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Anumeha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Saubhik Som
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sandeep M Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
28
|
Breznak SM, Kotb NM, Rangan P. Dynamic regulation of ribosome levels and translation during development. Semin Cell Dev Biol 2023; 136:27-37. [PMID: 35725716 DOI: 10.1016/j.semcdb.2022.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/20/2022] [Accepted: 06/12/2022] [Indexed: 01/11/2023]
Abstract
The ability of ribosomes to translate mRNAs into proteins is the basis of all life. While ribosomes are essential for cell viability, reduction in levels of ribosomes can affect cell fate and developmental transitions in a tissue specific manner and can cause a plethora of related diseases called ribosomopathies. How dysregulated ribosomes homeostasis influences cell fate and developmental transitions is not fully understood. Model systems such as Drosophila and C. elegans oogenesis have been used to address these questions since defects in conserved steps in ribosome biogenesis result in stem cell differentiation and developmental defects. In this review, we first explore how ribosome levels affect stem cell differentiation. Second, we describe how ribosomal modifications and incorporation of ribosomal protein paralogs contribute to development. Third, we summarize how cells with perturbed ribosome biogenesis are sensed and eliminated during organismal growth.
Collapse
Affiliation(s)
- Shane M Breznak
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, 12222, USA
| | - Noor M Kotb
- Department of Biomedical Sciences, The School of Public Health, University at Albany SUNY, 11 Albany, NY 12222, USA
| | - Prashanth Rangan
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
29
|
Lyu Z, Wilson C, Ling J. Translational Fidelity during Bacterial Stresses and Host Interactions. Pathogens 2023; 12:383. [PMID: 36986305 PMCID: PMC10057733 DOI: 10.3390/pathogens12030383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Translational fidelity refers to accuracy during protein synthesis and is maintained in all three domains of life. Translational errors occur at base levels during normal conditions and may rise due to mutations or stress conditions. In this article, we review our current understanding of how translational fidelity is perturbed by various environmental stresses that bacterial pathogens encounter during host interactions. We discuss how oxidative stress, metabolic stresses, and antibiotics affect various types of translational errors and the resulting effects on stress adaption and fitness. We also discuss the roles of translational fidelity during pathogen-host interactions and the underlying mechanisms. Many of the studies covered in this review will be based on work with Salmonella enterica and Escherichia coli, but other bacterial pathogens will also be discussed.
Collapse
Affiliation(s)
| | | | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
30
|
Zhang J. What Has Genomics Taught An Evolutionary Biologist? GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1-12. [PMID: 36720382 PMCID: PMC10373158 DOI: 10.1016/j.gpb.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/30/2023]
Abstract
Genomics, an interdisciplinary field of biology on the structure, function, and evolution of genomes, has revolutionized many subdisciplines of life sciences, including my field of evolutionary biology, by supplying huge data, bringing high-throughput technologies, and offering a new approach to biology. In this review, I describe what I have learned from genomics and highlight the fundamental knowledge and mechanistic insights gained. I focus on three broad topics that are central to evolutionary biology and beyond-variation, interaction, and selection-and use primarily my own research and study subjects as examples. In the next decade or two, I expect that the most important contributions of genomics to evolutionary biology will be to provide genome sequences of nearly all known species on Earth, facilitate high-throughput phenotyping of natural variants and systematically constructed mutants for mapping genotype-phenotype-fitness landscapes, and assist the determination of causality in evolutionary processes using experimental evolution.
Collapse
Affiliation(s)
- Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
31
|
Cytosolic and mitochondrial ribosomal proteins mediate the locust phase transition via divergence of translational profiles. Proc Natl Acad Sci U S A 2023; 120:e2216851120. [PMID: 36701367 PMCID: PMC9945961 DOI: 10.1073/pnas.2216851120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The phase transition from solitary to gregarious locusts is crucial in outbreaks of locust plague, which threaten agricultural yield and food security. Research on the regulatory mechanisms of phase transition in locusts has focused primarily on the transcriptional or posttranslational level. However, the translational regulation of phase transition is unexplored. Here, we show a phase-dependent pattern at the translation level, which exhibits different polysome profiles between gregarious and solitary locusts. The gregarious locusts exhibit significant increases in 60S and polyribosomes, while solitary locusts possess higher peaks of the monoribosome and a specific "halfmer." The polysome profiles, a molecular phenotype, respond to changes in population density. In gregarious locusts, ten genes involved in the cytosolic ribosome pathway exhibited increased translational efficiency (TE). In solitary locusts, five genes from the mitochondrial ribosome pathway displayed increased TE. The high expression of large ribosomal protein 7 at the translational level promotes accumulation of the free 60S ribosomal subunit in gregarious locusts, while solitary locusts employ mitochondrial small ribosomal protein 18c to induce the assembly of mitochondrial ribosomes, causing divergence of the translational profiles and behavioral transition. This study reveals the translational regulatory mechanism of locust phase transition, in which the locusts employ divergent ribosome pathways to cope with changes in population density.
Collapse
|
32
|
Kunze M. Computational Evaluation of Peroxisomal Targeting Signals in Metazoa. Methods Mol Biol 2023; 2643:391-404. [PMID: 36952201 DOI: 10.1007/978-1-0716-3048-8_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Most soluble proteins enclosed in peroxisomes encode either type-1 or type-2 peroxisomal targeting signals (PTS1 or PTS2), which act as postal codes and define the proteins' intracellular destination. Thus, various computational programs have been developed to evaluate the probability of specific peptide sequences for being a functional PTS or to scan the primary sequence of proteins for such signals. Among these prediction algorithms the PTS1-predictor ( https://mendel.imp.ac.at/pts1/ ) has been amply used, but the research logic of this and other PTS1 prediction tools is occasionally misjudged giving rise to characteristic pitfalls. Here, a proper utilization of the PTS1-predictor is introduced together with a framework of additional tests to increase the validity of the interpretation of results. Moreover, a list of possible causes for a mismatch between results of such predictions and experimental outcomes is provided. However, the foundational arguments apply to other prediction tools for PTS1 motifs as well.
Collapse
Affiliation(s)
- Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
33
|
Treichel AJ, Bazzini AA. Casting CRISPR-Cas13d to fish for microprotein functions in animal development. iScience 2022; 25:105547. [PMID: 36444300 PMCID: PMC9700322 DOI: 10.1016/j.isci.2022.105547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein coding genes were originally identified with sequence-based definitions that included a 100-codon cutoff to avoid annotating irrelevant open reading frames. However, many active proteins contain less than 100 amino acids. Indeed, functional genetics, ribosome profiling, and proteomic profiling have identified many short, translated open reading frames, including those with biologically active peptide products (microproteins). Yet, functions for most of these peptide products remain unknown. Because microproteins often act as key signals or fine-tune processes, animal development has already revealed functions for a handful of microproteins and provides an ideal context to uncover additional microprotein functions. However, many mRNAs during early development are maternally provided and hinder targeted mutagenesis approaches to characterize developmental microprotein functions. The recently established, RNA-targeting CRISPR-Cas13d system in zebrafish overcomes this barrier and produces potent knockdown of targeted mRNA, including maternally provided mRNA, and enables flexible, efficient interrogation of microprotein functions in animal development.
Collapse
Affiliation(s)
| | - Ariel Alejandro Bazzini
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
34
|
Loughran G, Li X, O’Loughlin S, Atkins JF, Baranov P. Monitoring translation in all reading frames downstream of weak stop codons provides mechanistic insights into the impact of nucleotide and cellular contexts. Nucleic Acids Res 2022; 51:304-314. [PMID: 36533511 PMCID: PMC9841425 DOI: 10.1093/nar/gkac1180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/08/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
A stop codon entering the ribosome A-site is normally decoded by release factors that induce release of the polypeptide. Certain factors influence the efficiency of the termination which is in competition with elongation in either the same (readthrough) or an alternative (frameshifting) reading frame. To gain insight into the competition between these processes, we monitored translation in parallel from all three reading frames downstream of stop codons while changing the nucleotide context of termination sites or altering cellular conditions (polyamine levels). We found that P-site codon identity can have a major impact on the termination efficiency of the OPRL1 stop signal, whereas for the OAZ1 ORF1 stop signal, the P-site codon mainly influences the reading frame of non-terminating ribosomes. Changes to polyamine levels predominantly influence the termination efficiency of the OAZ1 ORF1 stop signal. In contrast, increasing polyamine levels stimulate readthrough of the OPRL1 stop signal by enhancing near-cognate decoding rather than by decreasing termination efficiency. Thus, by monitoring the four competing processes occurring at stop codons we were able to determine which is the most significantly affected upon perturbation. This approach may be useful for the interrogation of other recoding phenomena where alternative decoding processes compete with standard decoding.
Collapse
Affiliation(s)
- Gary Loughran
- Correspondence may also be addressed to Gary Loughran.
| | - Xiang Li
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Sinead O’Loughlin
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland,Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
35
|
Zhang J, Xu C. Gene product diversity: adaptive or not? Trends Genet 2022; 38:1112-1122. [PMID: 35641344 PMCID: PMC9560964 DOI: 10.1016/j.tig.2022.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 01/24/2023]
Abstract
One gene does not equal one RNA or protein. The genomic revolution has revealed numerous different RNA and protein molecules that can be produced from one gene, such as circular RNAs generated by back-splicing, proteins with residues mismatching the genomic encoding because of RNA editing, and proteins extended in the C terminus via stop codon readthrough in translation. Are these diverse products results of exquisite gene regulations or imprecise biological processes? While there are cases where the gene product diversity appears beneficial, genome-scale patterns suggest that much of this diversity arises from nonadaptive, molecular errors. This finding has important implications for studying the functions of diverse gene products and for understanding the fundamental properties and evolution of cellular life.
Collapse
Affiliation(s)
- Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Chuan Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
36
|
Translation and natural selection of micropeptides from long non-canonical RNAs. Nat Commun 2022; 13:6515. [PMID: 36316320 PMCID: PMC9622821 DOI: 10.1038/s41467-022-34094-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides but lacking canonical coding sequences. Apparently unable to produce peptides, lncRNA function seems to rely only on RNA expression, sequence and structure. Here, we exhaustively detect in-vivo translation of small open reading frames (small ORFs) within lncRNAs using Ribosomal profiling during Drosophila melanogaster embryogenesis. We show that around 30% of lncRNAs contain small ORFs engaged by ribosomes, leading to regulated translation of 100 to 300 micropeptides. We identify lncRNA features that favour translation, such as cistronicity, Kozak sequences, and conservation. For the latter, we develop a bioinformatics pipeline to detect small ORF homologues, and reveal evidence of natural selection favouring the conservation of micropeptide sequence and function across evolution. Our results expand the repertoire of lncRNA biochemical functions, and suggest that lncRNAs give rise to novel coding genes throughout evolution. Since most lncRNAs contain small ORFs with as yet unknown translation potential, we propose to rename them "long non-canonical RNAs".
Collapse
|
37
|
Gao W, Zhou J, Gu X, Zhou Y, Wang L, Si N, Fan X, Bian B, Wang H, Zhao H. A multi-network comparative analysis of whole-transcriptome and translatome reveals the effect of high-fat diet on APP/PS1 mice and the intervention with Chinese medicine. Front Nutr 2022; 9:974333. [PMID: 36352898 PMCID: PMC9638104 DOI: 10.3389/fnut.2022.974333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Different studies on the effects of high-fat diet (HFD) on Alzheimer’s disease (AD) pathology have reported conflicting findings. Our previous studies showed HFD could moderate neuroinflammation and had no significant effect on amyloid-β levels or contextual memory on AD mice. To gain more insights into the involvement of HFD, we performed the whole-transcriptome sequencing and ribosome footprints profiling. Combined with competitive endogenous RNA analysis, the transcriptional regulation mechanism of HFD on AD mice was systematically revealed from RNA level. Mmu-miR-450b-3p and mmu-miR-6540-3p might be involved in regulating the expression of Th and Ddc expression. MiR-551b-5p regulated the expression of a variety of genes including Slc18a2 and Igfbp3. The upregulation of Pcsk9 expression in HFD intervention on AD mice might be closely related to the increase of cholesterol in brain tissues, while Huanglian Jiedu Decoction significantly downregulated the expression of Pcsk9. Our data showed the close connection between the alterations of transcriptome and translatome under the effect of HFD, which emphasized the roles of translational and transcriptional regulation were relatively independent. The profiled molecular responses in current study might be valuable resources for advanced understanding of the mechanisms underlying the effect of HFD on AD.
Collapse
|
38
|
Bittner E, Stehlik T, Freitag J. Sharing the wealth: The versatility of proteins targeted to peroxisomes and other organelles. Front Cell Dev Biol 2022; 10:934331. [PMID: 36225313 PMCID: PMC9549241 DOI: 10.3389/fcell.2022.934331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are eukaryotic organelles with critical functions in cellular energy and lipid metabolism. Depending on the organism, cell type, and developmental stage, they are involved in numerous other metabolic and regulatory pathways. Many peroxisomal functions require factors also relevant to other cellular compartments. Here, we review proteins shared by peroxisomes and at least one different site within the cell. We discuss the mechanisms to achieve dual targeting, their regulation, and functional consequences. Characterization of dual targeting is fundamental to understand how peroxisomes are integrated into the metabolic and regulatory circuits of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
39
|
Sapkota D, Florian C, Doherty BM, White KM, Reardon KM, Ge X, Garbow JR, Yuede CM, Cirrito JR, Dougherty JD. Aqp4 stop codon readthrough facilitates amyloid-β clearance from the brain. Brain 2022; 145:2982-2990. [PMID: 36001414 PMCID: PMC10233234 DOI: 10.1093/brain/awac199] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 05/08/2022] [Accepted: 05/15/2022] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease is initiated by the toxic aggregation of amyloid-β. Immunotherapeutics aimed at reducing amyloid beta are in clinical trials but with very limited success to date. Identification of orthogonal approaches for clearing amyloid beta may complement these approaches for treating Alzheimer's disease. In the brain, the astrocytic water channel Aquaporin 4 is involved in clearance of amyloid beta, and the fraction of Aquaporin 4 found perivascularly is decreased in Alzheimer's disease. Further, an unusual stop codon readthrough event generates a conserved C-terminally elongated variant of Aquaporin 4 (AQP4X), which is exclusively perivascular. However, it is unclear whether the AQP4X variant specifically mediates amyloid beta clearance. Here, using Aquaporin 4 readthrough-specific knockout mice that still express normal Aquaporin 4, we determine that this isoform indeed mediates amyloid beta clearance. Further, with high-throughput screening and counterscreening, we identify small molecule compounds that enhance readthrough of the Aquaporin 4 sequence and validate a subset on endogenous astrocyte Aquaporin 4. Finally, we demonstrate these compounds enhance brain amyloid-β clearance in vivo, which depends on AQP4X. This suggests derivatives of these compounds may provide a viable pharmaceutical approach to enhance clearance of amyloid beta and potentially other aggregating proteins in neurodegenerative disease.
Collapse
Affiliation(s)
- Darshan Sapkota
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Colin Florian
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brookelyn M Doherty
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kelli M White
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kate M Reardon
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joel R Garbow
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla M Yuede
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John R Cirrito
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
40
|
Romero Romero ML, Landerer C, Poehls J, Toth‐Petroczy A. Phenotypic mutations contribute to protein diversity and shape protein evolution. Protein Sci 2022; 31:e4397. [PMID: 36040266 PMCID: PMC9375231 DOI: 10.1002/pro.4397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
Errors in DNA replication generate genetic mutations, while errors in transcription and translation lead to phenotypic mutations. Phenotypic mutations are orders of magnitude more frequent than genetic ones, yet they are less understood. Here, we review the types of phenotypic mutations, their quantifications, and their role in protein evolution and disease. The diversity generated by phenotypic mutation can facilitate adaptive evolution. Indeed, phenotypic mutations, such as ribosomal frameshift and stop codon readthrough, sometimes serve to regulate protein expression and function. Phenotypic mutations have often been linked to fitness decrease and diseases. Thus, understanding the protein heterogeneity and phenotypic diversity caused by phenotypic mutations will advance our understanding of protein evolution and have implications on human health and diseases.
Collapse
Affiliation(s)
- Maria Luisa Romero Romero
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Cedric Landerer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Jonas Poehls
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Agnes Toth‐Petroczy
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of LifeTU DresdenDresdenGermany
| |
Collapse
|
41
|
Chothani SP, Adami E, Widjaja AA, Langley SR, Viswanathan S, Pua CJ, Zhihao NT, Harmston N, D'Agostino G, Whiffin N, Mao W, Ouyang JF, Lim WW, Lim S, Lee CQE, Grubman A, Chen J, Kovalik JP, Tryggvason K, Polo JM, Ho L, Cook SA, Rackham OJL, Schafer S. A high-resolution map of human RNA translation. Mol Cell 2022; 82:2885-2899.e8. [PMID: 35841888 DOI: 10.1016/j.molcel.2022.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 03/10/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
Translated small open reading frames (smORFs) can have important regulatory roles and encode microproteins, yet their genome-wide identification has been challenging. We determined the ribosome locations across six primary human cell types and five tissues and detected 7,767 smORFs with translational profiles matching those of known proteins. The human genome was found to contain highly cell-type- and tissue-specific smORFs and a subset that encodes highly conserved amino acid sequences. Changes in the translational efficiency of upstream-encoded smORFs (uORFs) and the corresponding main ORFs predominantly occur in the same direction. Integration with 456 mass-spectrometry datasets confirms the presence of 603 small peptides at the protein level in humans and provides insights into the subcellular localization of these small proteins. This study provides a comprehensive atlas of high-confidence translated smORFs derived from primary human cells and tissues in order to provide a more complete understanding of the translated human genome.
Collapse
Affiliation(s)
- Sonia P Chothani
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Eleonora Adami
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore; Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Anissa A Widjaja
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Sarah R Langley
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore 308232, Singapore
| | - Sivakumar Viswanathan
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Chee Jian Pua
- National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore
| | - Nevin Tham Zhihao
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore 308232, Singapore
| | - Nathan Harmston
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; Science Division, Yale-NUS College, Singapore 138527, Singapore
| | - Giuseppe D'Agostino
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore 308232, Singapore
| | - Nicola Whiffin
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Wang Mao
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - John F Ouyang
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Wei Wen Lim
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore; National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore
| | - Shiqi Lim
- National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore
| | - Cheryl Q E Lee
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Alexandra Grubman
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Joseph Chen
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - J P Kovalik
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Karl Tryggvason
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Lena Ho
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Stuart A Cook
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore; National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore; London Institute of Medical Sciences, London W12 ONN, UK
| | - Owen J L Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore; School of Biological Sciences, University of Southampton, Southampton, UK.
| | - Sebastian Schafer
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore; National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore.
| |
Collapse
|
42
|
Ho AT, Hurst LD. Stop codon usage as a window into genome evolution: mutation, selection, biased gene conversion and the TAG paradox. Genome Biol Evol 2022; 14:6648529. [PMID: 35867377 PMCID: PMC9348620 DOI: 10.1093/gbe/evac115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/16/2022] Open
Abstract
Protein coding genes terminate with one of three stop codons (TAA, TGA, or TAG) that, like synonymous codons, are not employed equally. With TGA and TAG having identical nucleotide content, analysis of their differential usage provides an unusual window into the forces operating on what are ostensibly functionally identical residues. Across genomes and between isochores within the human genome, TGA usage increases with G + C content but, with a common G + C → A + T mutation bias, this cannot be explained by mutation bias-drift equilibrium. Increased usage of TGA in G + C-rich genomes or genomic regions is also unlikely to reflect selection for the optimal stop codon, as TAA appears to be universally optimal, probably because it has the lowest read-through rate. Despite TAA being favored by selection and mutation bias, as with codon usage bias G + C pressure is the prime determinant of between-species TGA usage trends. In species with strong G + C-biased gene conversion (gBGC), such as mammals and birds, the high usage and conservation of TGA is best explained by an A + T → G + C repair bias. How to explain TGA enrichment in other G + C-rich genomes is less clear. Enigmatically, across bacterial and archaeal species and between human isochores TAG usage is mostly unresponsive to G + C pressure. This unresponsiveness we dub the TAG paradox as currently no mutational, selective, or gBGC model provides a well-supported explanation. That TAG does increase with G + C usage across eukaryotes makes the usage elsewhere yet more enigmatic. We suggest resolution of the TAG paradox may provide insights into either an unknown but common selective preference (probably at the DNA/RNA level) or an unrecognized complexity to the action of gBGC.
Collapse
Affiliation(s)
- Alexander T Ho
- Milner Centre for Evolution, University of Bath, Bath, UK
| | | |
Collapse
|
43
|
Sahoo S, Singh D, Singh A, Pandit M, Vasu K, Som S, Pullagurla NJ, Laha D, Eswarappa SM. Identification and functional characterization of mRNAs that exhibit stop codon readthrough in Arabidopsis thaliana. J Biol Chem 2022; 298:102173. [PMID: 35752360 PMCID: PMC9293766 DOI: 10.1016/j.jbc.2022.102173] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022] Open
Abstract
Stop codon readthrough (SCR) is the process of continuation of translation beyond the stop codon, generating protein isoforms with C-terminal extensions. SCR has been observed in viruses, fungi, and multicellular organisms, including mammals. However, SCR is largely unexplored in plants. In this study, we have analyzed ribosome profiling datasets to identify mRNAs that exhibit SCR in Arabidopsis thaliana. Analyses of the ribosome density, ribosome coverage, and three-nucleotide periodicity of the ribosome profiling reads in the mRNA region downstream of the stop codon provided strong evidence for SCR in mRNAs of 144 genes. We show that SCR generated putative evolutionarily conserved nuclear localization signals, transmembrane helices, and intrinsically disordered regions in the C-terminal extensions of several of these proteins. Furthermore, gene ontology (GO) functional enrichment analysis revealed that these 144 genes belong to three major functional groups - translation, photosynthesis, and abiotic stress tolerance. Using a luminescence-based readthrough assay, we experimentally demonstrated SCR in representative mRNAs belonging to each of these functional classes. Finally, using microscopy, we show that the SCR product of one gene that contains a nuclear localization signal at the C-terminal extension, CURT1B, localizes to the nucleus as predicted. Based on these observations, we propose that SCR plays an important role in plant physiology by regulating protein localization and function.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Undergraduate Program, Indian Institute of Science, Bengaluru, India; Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Divyoj Singh
- Undergraduate Program, Indian Institute of Science, Bengaluru, India
| | - Anumeha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Madhuparna Pandit
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Kirtana Vasu
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Saubhik Som
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | | | - Debabrata Laha
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
44
|
Biziaev N, Sokolova E, Yanvarev DV, Toropygin IY, Shuvalov A, Egorova T, Alkalaeva E. Recognition of 3' nucleotide context and stop codon readthrough are determined during mRNA translation elongation. J Biol Chem 2022; 298:102133. [PMID: 35700825 PMCID: PMC9272376 DOI: 10.1016/j.jbc.2022.102133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
The nucleotide context surrounding stop codons significantly affects the efficiency of translation termination. In eukaryotes, various 3′ contexts that are unfavorable for translation termination have been described; however, the exact molecular mechanism that mediates their effects remains unknown. In this study, we used a reconstituted mammalian translation system to examine the efficiency of stop codons in different contexts, including several previously described weak 3′ stop codon contexts. We developed an approach to estimate the level of stop codon readthrough in the absence of eukaryotic release factors (eRFs). In this system, the stop codon is recognized by the suppressor or near-cognate tRNAs. We observed that in the absence of eRFs, readthrough occurs in a 3′ nucleotide context-dependent manner, and the main factors determining readthrough efficiency were the type of stop codon and the sequence of the 3′ nucleotides. Moreover, the efficiency of translation termination in weak 3′ contexts was almost equal to that in the tested standard context. Therefore, the ability of eRFs to recognize stop codons and induce peptide release is not affected by mRNA context. We propose that ribosomes or other participants of the elongation cycle can independently recognize certain contexts and increase the readthrough of stop codons. Thus, the efficiency of translation termination is regulated by the 3′ nucleotide context following the stop codon and depends on the concentrations of eRFs and suppressor/near-cognate tRNAs.
Collapse
Affiliation(s)
- Nikita Biziaev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Elizaveta Sokolova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Dmitry V Yanvarev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Ilya Yu Toropygin
- Orekhovich Research Institute of Biomedical Chemistry, Moscow, 119992, Russia.
| | - Alexey Shuvalov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Tatiana Egorova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, 117997, Russia.
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
45
|
Matsuura-Suzuki E, Shimazu T, Takahashi M, Kotoshiba K, Suzuki T, Kashiwagi K, Sohtome Y, Akakabe M, Sodeoka M, Dohmae N, Ito T, Shinkai Y, Iwasaki S. METTL18-mediated histidine methylation of RPL3 modulates translation elongation for proteostasis maintenance. eLife 2022; 11:e72780. [PMID: 35674491 PMCID: PMC9177149 DOI: 10.7554/elife.72780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Protein methylation occurs predominantly on lysine and arginine residues, but histidine also serves as a methylation substrate. However, a limited number of enzymes responsible for this modification have been reported. Moreover, the biological role of histidine methylation has remained poorly understood to date. Here, we report that human METTL18 is a histidine methyltransferase for the ribosomal protein RPL3 and that the modification specifically slows ribosome traversal on Tyr codons, allowing the proper folding of synthesized proteins. By performing an in vitro methylation assay with a methyl donor analog and quantitative mass spectrometry, we found that His245 of RPL3 is methylated at the τ-N position by METTL18. Structural comparison of the modified and unmodified ribosomes showed stoichiometric modification and suggested a role in translation reactions. Indeed, genome-wide ribosome profiling and an in vitro translation assay revealed that translation elongation at Tyr codons was suppressed by RPL3 methylation. Because the slower elongation provides enough time for nascent protein folding, RPL3 methylation protects cells from the cellular aggregation of Tyr-rich proteins. Our results reveal histidine methylation as an example of a ribosome modification that ensures proteome integrity in cells.
Collapse
Affiliation(s)
- Eriko Matsuura-Suzuki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchSaitamaJapan
| | - Tadahiro Shimazu
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering ResearchSaitamaJapan
| | - Mari Takahashi
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
| | - Kaoru Kotoshiba
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering ResearchSaitamaJapan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource ScienceSaitamaJapan
| | - Kazuhiro Kashiwagi
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
| | - Yoshihiro Sohtome
- RIKEN Center for Sustainable Resource ScienceSaitamaJapan
- Synthetic Organic Chemistry Lab, RIKEN Cluster for Pioneering ResearchSaitamaJapan
| | - Mai Akakabe
- Synthetic Organic Chemistry Lab, RIKEN Cluster for Pioneering ResearchSaitamaJapan
| | - Mikiko Sodeoka
- RIKEN Center for Sustainable Resource ScienceSaitamaJapan
- Synthetic Organic Chemistry Lab, RIKEN Cluster for Pioneering ResearchSaitamaJapan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource ScienceSaitamaJapan
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering ResearchSaitamaJapan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchSaitamaJapan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoChibaJapan
| |
Collapse
|
46
|
Ho AT, Hurst LD. Unusual mammalian usage of TGA stop codons reveals that sequence conservation need not imply purifying selection. PLoS Biol 2022; 20:e3001588. [PMID: 35550630 PMCID: PMC9129041 DOI: 10.1371/journal.pbio.3001588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/24/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
The assumption that conservation of sequence implies the action of purifying selection is central to diverse methodologies to infer functional importance. GC-biased gene conversion (gBGC), a meiotic mismatch repair bias strongly favouring GC over AT, can in principle mimic the action of selection, this being thought to be especially important in mammals. As mutation is GC→AT biased, to demonstrate that gBGC does indeed cause false signals requires evidence that an AT-rich residue is selectively optimal compared to its more GC-rich allele, while showing also that the GC-rich alternative is conserved. We propose that mammalian stop codon evolution provides a robust test case. Although in most taxa TAA is the optimal stop codon, TGA is both abundant and conserved in mammalian genomes. We show that this mammalian exceptionalism is well explained by gBGC mimicking purifying selection and that TAA is the selectively optimal codon. Supportive of gBGC, we observe (i) TGA usage trends are consistent at the focal stop codon and elsewhere (in UTR sequences); (ii) that higher TGA usage and higher TAA→TGA substitution rates are predicted by a high recombination rate; and (iii) across species the difference in TAA <-> TGA substitution rates between GC-rich and GC-poor genes is largest in genomes that possess higher between-gene GC variation. TAA optimality is supported both by enrichment in highly expressed genes and trends associated with effective population size. High TGA usage and high TAA→TGA rates in mammals are thus consistent with gBGC’s predicted ability to “drive” deleterious mutations and supports the hypothesis that sequence conservation need not be indicative of purifying selection. A general trend for GC-rich trinucleotides to reside at frequencies far above their mutational equilibrium in high recombining domains supports the generality of these results.
Collapse
Affiliation(s)
- Alexander Thomas Ho
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- * E-mail:
| | | |
Collapse
|
47
|
Influence of novel readthrough agents on myelin protein zero translation in the peripheral nervous system. Neuropharmacology 2022; 211:109059. [DOI: 10.1016/j.neuropharm.2022.109059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/24/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022]
|
48
|
Douka K, Agapiou M, Birds I, Aspden JL. Optimization of Ribosome Footprinting Conditions for Ribo-Seq in Human and Drosophila melanogaster Tissue Culture Cells. Front Mol Biosci 2022; 8:791455. [PMID: 35145996 PMCID: PMC8822167 DOI: 10.3389/fmolb.2021.791455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
Our understanding of mRNA translation and its regulation has been transformed by the development of ribosome profiling. This approach relies upon RNase footprinting of translating ribosomes in a precise manner to generate an accurate snapshot of ribosome positions with nucleotide resolution. Here we tested a variety of conditions, which contribute to the preciseness of ribosome footprinting and therefore the success of ribosome profiling. We found that NaCl concentration, RNaseI source, RNaseI amount, and temperature of footprinting all contributed to the quality of ribosome footprinting in human neuroblastoma SH-SY5Y cells. These ideal conditions for footprinting also improved footprint quality when used with Drosophila melanogaster S2 cells. Footprinting under the same conditions generated different footprints sizes and framing patterns in human and D. melanogaster cells. We also found that treatment of S2 cells with cycloheximide prior to footprinting impacted the distribution of footprints across ORFs, without affecting overall read length distribution and framing pattern, as previously found in other organisms. Together our results indicate that a variety of factors affect ribosome footprint quality and the nature of precise footprinting varies across species.
Collapse
Affiliation(s)
- Katerina Douka
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- LeedsOmics, University of Leeds, Leeds, United Kingdom
| | - Michaela Agapiou
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- LeedsOmics, University of Leeds, Leeds, United Kingdom
| | - Isabel Birds
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- LeedsOmics, University of Leeds, Leeds, United Kingdom
| | - Julie L. Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- LeedsOmics, University of Leeds, Leeds, United Kingdom
- *Correspondence: Julie L. Aspden,
| |
Collapse
|
49
|
A critical period of translational control during brain development at codon resolution. Nat Struct Mol Biol 2022; 29:1277-1290. [PMID: 36482253 PMCID: PMC9758057 DOI: 10.1038/s41594-022-00882-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 10/19/2022] [Indexed: 12/13/2022]
Abstract
Translation modulates the timing and amplification of gene expression after transcription. Brain development requires uniquely complex gene expression patterns, but large-scale measurements of translation directly in the prenatal brain are lacking. We measure the reactants, synthesis and products of mRNA translation spanning mouse neocortex neurogenesis, and discover a transient window of dynamic regulation at mid-gestation. Timed translation upregulation of chromatin-binding proteins like Satb2, which is essential for neuronal subtype differentiation, restricts protein expression in neuronal lineages despite broad transcriptional priming in progenitors. In contrast, translation downregulation of ribosomal proteins sharply decreases ribosome biogenesis, coinciding with a major shift in protein synthesis dynamics at mid-gestation. Changing activity of eIF4EBP1, a direct inhibitor of ribosome biogenesis, is concurrent with ribosome downregulation and affects neurogenesis of the Satb2 lineage. Thus, the molecular logic of brain development includes the refinement of transcriptional programs by translation. Modeling of the developmental neocortex translatome is provided as an open-source searchable resource at https://shiny.mdc-berlin.de/cortexomics .
Collapse
|
50
|
Karki P, Carney TD, Maracci C, Yatsenko AS, Shcherbata HR, Rodnina MV. Tissue-specific regulation of translational readthrough tunes functions of the traffic jam transcription factor. Nucleic Acids Res 2021; 50:6001-6019. [PMID: 34897510 PMCID: PMC9226519 DOI: 10.1093/nar/gkab1189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Translational readthrough (TR) occurs when the ribosome decodes a stop codon as a sense codon, resulting in two protein isoforms synthesized from the same mRNA. TR has been identified in several eukaryotic organisms; however, its biological significance and mechanism remain unclear. Here, we quantify TR of several candidate genes in Drosophila melanogaster and characterize the regulation of TR in the large Maf transcription factor Traffic jam (Tj). Using CRISPR/Cas9-generated mutant flies, we show that the TR-generated Tj isoform is expressed in a subset of neural cells of the central nervous system and is excluded from the somatic cells of gonads. Control of TR in Tj is critical for preservation of neuronal integrity and maintenance of reproductive health. The tissue-specific distribution of a release factor splice variant, eRF1H, plays a critical role in modulating differential TR of leaky stop codon contexts. Fine-tuning of gene regulatory functions of transcription factors by TR provides a potential mechanism for cell-specific regulation of gene expression.
Collapse
Affiliation(s)
- Prajwal Karki
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Travis D Carney
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Andriy S Yatsenko
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Halyna R Shcherbata
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| |
Collapse
|