1
|
Zhydzetski A, Głowacka-Grzyb Z, Bukowski M, Żądło T, Bonar E, Władyka B. Agents Targeting the Bacterial Cell Wall as Tools to Combat Gram-Positive Pathogens. Molecules 2024; 29:4065. [PMID: 39274911 PMCID: PMC11396672 DOI: 10.3390/molecules29174065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
The cell wall is an indispensable element of bacterial cells and a long-known target of many antibiotics. Penicillin, the first discovered beta-lactam antibiotic inhibiting the synthesis of cell walls, was successfully used to cure many bacterial infections. Unfortunately, pathogens eventually developed resistance to it. This started an arms race, and while novel beta-lactams, either natural or (semi)synthetic, were discovered, soon upon their application, bacteria were developing resistance. Currently, we are facing the threat of losing the race since more and more multidrug-resistant (MDR) pathogens are emerging. Therefore, there is an urgent need for developing novel approaches to combat MDR bacteria. The cell wall is a reasonable candidate for a target as it differentiates not only bacterial and human cells but also has a specific composition unique to various groups of bacteria. This ensures the safety and specificity of novel antibacterial agents that target this structure. Due to the shortage of low-molecular-weight candidates for novel antibiotics, attention was focused on peptides and proteins that possess antibacterial activity. Here, we describe proteinaceous agents of various origins that target bacterial cell wall, including bacteriocins and phage and bacterial lysins, as alternatives to classic antibiotic candidates for antimicrobial drugs. Moreover, advancements in protein chemistry and engineering currently allow for the production of stable, specific, and effective drugs. Finally, we introduce the concept of selective targeting of dangerous pathogens, exemplified by staphylococci, by agents specifically disrupting their cell walls.
Collapse
Affiliation(s)
- Aliaksandr Zhydzetski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Zuzanna Głowacka-Grzyb
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Tomasz Żądło
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Emilia Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Benedykt Władyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| |
Collapse
|
2
|
Sensing microbial infections in the Drosophila melanogaster genetic model organism. Immunogenetics 2022; 74:35-62. [DOI: 10.1007/s00251-021-01239-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/20/2021] [Indexed: 12/17/2022]
|
3
|
Shi L, Qin J, Zheng H, Guo Y, Zhang H, Zhong Y, Yang C, Dong S, Yang F, Wu Y, Zhao G, Song Y, Yang R, Wang P, Cui Y. New Genotype of Yersinia pestis Found in Live Rodents in Yunnan Province, China. Front Microbiol 2021; 12:628335. [PMID: 33935990 PMCID: PMC8084289 DOI: 10.3389/fmicb.2021.628335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Yunnan Province, China is thought to be the original source of biovar Orientalis of Yersinia pestis, the causative agent of the third plague pandemic that has spread globally since the end of the 19th century. Although encompassing a large area of natural plague foci, Y. pestis strains have rarely been found in live rodents during surveillance in Yunnan, and most isolates are from rodent corpses and their fleas. In 2017, 10 Y. pestis strains were isolated from seven live rodents and three fleas in Heqing County of Yunnan. These strains were supposed to have low virulence to local rodents Eothenomys miletus and Apodemus chevrieri because the rodents were healthy and no dead animals were found in surrounding areas, as had occurred in previous epizootic disease. We performed microscopic and biochemical examinations of the isolates, and compared their whole-genome sequences and transcriptome with those of 10 high virulence Y. pestis strains that were isolated from nine rodents and one parasitic flea in adjacent city (Lijiang). We analyzed the phenotypic, genomic, and transcriptomic characteristics of live rodent isolates. The isolates formed a previously undefined monophyletic branch of Y. pestis that was named 1.IN5. Six SNPs, two indels, and one copy number variation were detected between live rodent isolates and the high virulence neighbors. No obvious functional consequence of these variations was found according to the known annotation information. Among genes which expression differential in the live rodent isolates compared to their high virulent neighbors, we found five iron transfer related ones that were significant up-regulated (| log2 (FC) | > 1, p.adjust < 0.05), indicating these genes may be related to the low-virulence phenotype. The novel genotype of Y. pestis reported here provides further insights into the evolution and spread of plague as well as clues that may help to decipher the virulence mechanism of this notorious pathogen.
Collapse
Affiliation(s)
- Liyuan Shi
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Jingliang Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hongyuan Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ying Guo
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Haipeng Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Youhong Zhong
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shanshan Dong
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Fengyi Yang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Peng Wang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Vesga P, Flury P, Vacheron J, Keel C, Croll D, Maurhofer M. Transcriptome plasticity underlying plant root colonization and insect invasion by Pseudomonas protegens. THE ISME JOURNAL 2020; 14:2766-2782. [PMID: 32879461 PMCID: PMC7784888 DOI: 10.1038/s41396-020-0729-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/08/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022]
Abstract
Pseudomonas protegens shows a high degree of lifestyle plasticity since it can establish both plant-beneficial and insect-pathogenic interactions. While P. protegens protects plants against soilborne pathogens, it can also invade insects when orally ingested leading to the death of susceptible pest insects. The mechanism whereby pseudomonads effectively switch between lifestyles, plant-beneficial or insecticidal, and the specific factors enabling plant or insect colonization are poorly understood. We generated a large-scale transcriptomics dataset of the model P. protegens strain CHA0 which includes data from the colonization of wheat roots, the gut of Plutella xylostella after oral uptake and the Galleria mellonella hemolymph after injection. We identified extensive plasticity in transcriptomic profiles depending on the environment and specific factors associated to different hosts or different stages of insect infection. Specifically, motor-activity and Reb toxin-related genes were highly expressed on wheat roots but showed low expression within insects, while certain antimicrobial compounds (pyoluteorin), exoenzymes (a chitinase and a polyphosphate kinase), and a transposase exhibited insect-specific expression. We further identified two-partner secretion systems as novel factors contributing to pest insect invasion. Finally, we use genus-wide comparative genomics to retrace the evolutionary origins of cross-kingdom colonization.
Collapse
Affiliation(s)
- Pilar Vesga
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Pascale Flury
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Crop Sciences, Research Institute of Organic Agriculture FiBL, Frick, Switzerland
| | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
5
|
Vaz F, Kounatidis I, Covas G, Parton RM, Harkiolaki M, Davis I, Filipe SR, Ligoxygakis P. Accessibility to Peptidoglycan Is Important for the Recognition of Gram-Positive Bacteria in Drosophila. Cell Rep 2020; 27:2480-2492.e6. [PMID: 31116990 PMCID: PMC6533200 DOI: 10.1016/j.celrep.2019.04.103] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 03/19/2019] [Accepted: 04/23/2019] [Indexed: 11/16/2022] Open
Abstract
In Drosophila, it is thought that peptidoglycan recognition proteins (PGRPs) SA and LC structurally discriminate between bacterial peptidoglycans with lysine (Lys) or diaminopimelic (DAP) acid, respectively, thus inducing differential antimicrobial transcription response. Here, we find that accessibility to PG at the cell wall plays a central role in immunity to infection. When wall teichoic acids (WTAs) are genetically removed from S. aureus (Lys type) and Bacillus subtilis (DAP type), thus increasing accessibility, the binding of both PGRPs to either bacterium is increased. PGRP-SA and -LC double mutant flies are more susceptible to infection with both WTA-less bacteria. In addition, WTA-less bacteria grow better in PGRP-SA/-LC double mutant flies. Finally, infection with WTA-less bacteria abolishes any differential activation of downstream antimicrobial transcription. Our results indicate that accessibility to cell wall PG is a major factor in PGRP-mediated immunity and may be the cause for discrimination between classes of pathogens.
Collapse
Affiliation(s)
- Filipa Vaz
- Department of Biochemistry, University of Oxford, South Parks Rd., OX1 3QU Oxford, UK; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Ilias Kounatidis
- Department of Biochemistry, University of Oxford, South Parks Rd., OX1 3QU Oxford, UK; Diamond Light Source, Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
| | - Gonçalo Covas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Richard M Parton
- Department of Biochemistry, University of Oxford, South Parks Rd., OX1 3QU Oxford, UK
| | - Maria Harkiolaki
- Diamond Light Source, Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Rd., OX1 3QU Oxford, UK
| | - Sergio Raposo Filipe
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Petros Ligoxygakis
- Department of Biochemistry, University of Oxford, South Parks Rd., OX1 3QU Oxford, UK.
| |
Collapse
|
6
|
Gajdiss M, Monk IR, Bertsche U, Kienemund J, Funk T, Dietrich A, Hort M, Sib E, Stinear TP, Bierbaum G. YycH and YycI Regulate Expression of Staphylococcus aureus Autolysins by Activation of WalRK Phosphorylation. Microorganisms 2020; 8:microorganisms8060870. [PMID: 32526915 PMCID: PMC7355866 DOI: 10.3390/microorganisms8060870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is a facultative pathogen that can encode numerous antibiotic resistance and immune evasion genes and can cause severe infections. Reduced susceptibility to last resort antibiotics such as vancomycin and daptomycin is often associated with mutations in walRK, an essential two-component regulatory system (TCS). This study focuses on the WalK accessory membrane proteins YycH and YycI and their influence on WalRK phosphorylation. Depletion of YycH and YycI by antisense RNA caused an impaired autolysis, indicating a positive regulatory function on WalK as has been previously described. Phosphorylation assays with full-length recombinant proteins in phospholipid liposomes showed that YycH and YycI stimulate WalK activity and that both regulatory proteins are needed for full activation of the WalK kinase. This was validated in vivo through examining the phosphorylation status of WalR using Phos-tag SDS-PAGE with a yycHI deletion mutant exhibiting reduced levels of phosphorylated WalR. In the yycHI knockdown strain, muropeptide composition of the cell wall was not affected, however, the wall teichoic acid content was increased. In conclusion, a direct modulation of WalRK phosphorylation activity by the accessory proteins YycH and YycI is reported both in vitro and in vivo. Taken together, our results show that YycH and YycI are important in the direct regulation of WalRK-dependent cell wall metabolism.
Collapse
Affiliation(s)
- Mike Gajdiss
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Ian R. Monk
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3010, Australia; (I.R.M.); (T.P.S.)
| | - Ute Bertsche
- Department of Infection Biology, University of Tuebingen, 72076 Tuebingen, Germany;
| | - Janina Kienemund
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Tanja Funk
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Alina Dietrich
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Michael Hort
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Esther Sib
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3010, Australia; (I.R.M.); (T.P.S.)
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
- Correspondence:
| |
Collapse
|
7
|
Culp EJ, Waglechner N, Wang W, Fiebig-Comyn AA, Hsu YP, Koteva K, Sychantha D, Coombes BK, Van Nieuwenhze MS, Brun YV, Wright GD. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling. Nature 2020; 578:582-587. [DOI: 10.1038/s41586-020-1990-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/12/2019] [Indexed: 11/09/2022]
|
8
|
Schuster CF, Wiedemann DM, Kirsebom FCM, Santiago M, Walker S, Gründling A. High-throughput transposon sequencing highlights the cell wall as an important barrier for osmotic stress in methicillin resistant Staphylococcus aureus and underlines a tailored response to different osmotic stressors. Mol Microbiol 2019; 113:699-717. [PMID: 31770461 PMCID: PMC7176532 DOI: 10.1111/mmi.14433] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/28/2022]
Abstract
Staphylococcus aureus is an opportunistic pathogen that can cause soft tissue infections but is also a frequent cause of foodborne illnesses. One contributing factor for this food association is its high salt tolerance allowing this organism to survive commonly used food preservation methods. How this resistance is mediated is poorly understood, particularly during long-term exposure. In this study, we used transposon sequencing (TN-seq) to understand how the responses to osmotic stressors differ. Our results revealed distinctly different long-term responses to NaCl, KCl and sucrose stresses. In addition, we identified the DUF2538 domain containing gene SAUSA300_0957 (gene 957) as essential under salt stress. Interestingly, a 957 mutant was less susceptible to oxacillin and showed increased peptidoglycan crosslinking. The salt sensitivity phenotype could be suppressed by amino acid substitutions in the transglycosylase domain of the penicillin-binding protein Pbp2, and these changes restored the peptidoglycan crosslinking to WT levels. These results indicate that increased crosslinking of the peptidoglycan polymer can be detrimental and highlight a critical role of the bacterial cell wall for osmotic stress resistance. This study will serve as a starting point for future research on osmotic stress response and help develop better strategies to tackle foodborne staphylococcal infections.
Collapse
Affiliation(s)
- Christopher F Schuster
- Section of Molecular Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - David M Wiedemann
- Section of Molecular Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Freja C M Kirsebom
- Section of Molecular Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Marina Santiago
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Angelika Gründling
- Section of Molecular Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| |
Collapse
|
9
|
G C B, Sahukhal GS, Elasri MO. Role of the msaABCR Operon in Cell Wall Biosynthesis, Autolysis, Integrity, and Antibiotic Resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2019; 63:e00680-19. [PMID: 31307991 PMCID: PMC6761503 DOI: 10.1128/aac.00680-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is an important human pathogen in both community and health care settings. One of the challenges with S. aureus as a pathogen is its acquisition of antibiotic resistance. Previously, we showed that deletion of the msaABCR operon reduces cell wall thickness, resulting in decreased resistance to vancomycin in vancomycin-intermediate S. aureus (VISA). In this study, we investigated the nature of the cell wall defect in the msaABCR operon mutant in the Mu50 (VISA) and USA300 LAC methicillin-resistant Staphylococcus aureus (MRSA) strains. Results showed that msaABCR mutant cells had decreased cross-linking in both strains. This defect is typically due to increased murein hydrolase activity and/or nonspecific processing of murein hydrolases mediated by increased protease activity in mutant cells. The defect was enhanced by a decrease in teichoic acid content in the msaABCR mutant. Therefore, we propose that deletion of the msaABCR operon results in decreased peptidoglycan cross-linking, leading to increased susceptibility toward cell wall-targeting antibiotics, such as β-lactams and vancomycin. Moreover, we also observed significantly downregulated transcription of early cell wall-synthesizing genes, supporting the finding that msaABCR mutant cells have decreased peptidoglycan synthesis. More specifically, the msaABCR mutant in the USA300 LAC strain (MRSA) showed significantly reduced expression of the murA gene, whereas the msaABCR mutant in the Mu50 strain (VISA) showed significantly reduced expression of glmU, murA, and murD Thus, we conclude that the msaABCR operon controls the balance between cell wall synthesis and cell wall hydrolysis, which is required for maintaining a robust cell wall and acquiring resistance to cell wall-targeting antibiotics, such as vancomycin and the β-lactams.
Collapse
Affiliation(s)
- Bibek G C
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Gyan S Sahukhal
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Mohamed O Elasri
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| |
Collapse
|
10
|
Sudhakar P, Jacomin AC, Hautefort I, Samavedam S, Fatemian K, Ari E, Gul L, Demeter A, Jones E, Korcsmaros T, Nezis IP. Targeted interplay between bacterial pathogens and host autophagy. Autophagy 2019; 15:1620-1633. [PMID: 30909843 PMCID: PMC6693458 DOI: 10.1080/15548627.2019.1590519] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Due to the critical role played by autophagy in pathogen clearance, pathogens have developed diverse strategies to subvert it. Despite previous key findings of bacteria-autophagy interplay, asystems-level insight into selective targeting by the host and autophagy modulation by the pathogens is lacking. We predicted potential interactions between human autophagy proteins and effector proteins from 56 pathogenic bacterial species by identifying bacterial proteins predicted to have recognition motifs for selective autophagy receptors SQSTM1/p62, CALCOCO2/NDP52 and MAP1LC3/LC3. Using structure-based interaction prediction, we identified bacterial proteins capable to modify core autophagy components. Our analysis revealed that autophagy receptors in general potentially target mostly genus-specific proteins, and not those present in multiple genera. The complementarity between the predicted SQSTM1/p62 and CALCOCO2/NDP52 targets, which has been shown for Salmonella, Listeria and Shigella, could be observed across other pathogens. This complementarity potentially leaves the host more susceptible to chronic infections upon the mutation of autophagy receptors. Proteins derived from enterotoxigenic and non-toxigenic Bacillus outer membrane vesicles indicated that autophagy targets pathogenic proteins rather than non-pathogenic ones. We also observed apathogen-specific pattern as to which autophagy phase could be modulated by specific genera. We found intriguing examples of bacterial proteins that could modulate autophagy, and in turn being targeted by autophagy as ahost defense mechanism. We confirmed experimentally an interplay between a Salmonella protease, YhjJ and autophagy. Our comparative meta-analysis points out key commonalities and differences in how pathogens could affect autophagy and how autophagy potentially recognizes these pathogenic effectors. Abbreviations: ATG5: autophagy related 5; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; GST: glutathione S-transferase; LIR: MAP1LC3/LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3 alpha; OMV: outer membrane vesicles; SQSTM1/p62: sequestosome 1; SCV: Salmonella containing vesicle; TECPR1: tectonin beta-propeller repeat containing 1; YhjJ: hypothetical zinc-protease.
Collapse
Affiliation(s)
- Padhmanand Sudhakar
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Health and Microbes Programme, Quadram Institute, Norwich Research Park, Norwich, UK
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | | | | | - Siva Samavedam
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Koorosh Fatemian
- School of Life Sciences, University of Warwick, Coventry, UK
- Current affiliation:Exaelements LTD, Coventry, UK
| | - Eszter Ari
- Department of Genetics, Eotvos Lorand University, Budapest, Hungary
- Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Leila Gul
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Amanda Demeter
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Health and Microbes Programme, Quadram Institute, Norwich Research Park, Norwich, UK
- Department of Genetics, Eotvos Lorand University, Budapest, Hungary
| | - Emily Jones
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Health and Microbes Programme, Quadram Institute, Norwich Research Park, Norwich, UK
| | - Tamas Korcsmaros
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Health and Microbes Programme, Quadram Institute, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
11
|
Abstract
Dating back to the 1960s, initial studies on the staphylococcal cell wall were driven by the need to clarify the mode of action of the first antibiotics and the resistance mechanisms developed by the bacteria. During the following decades, the elucidation of the biosynthetic path and primary composition of staphylococcal cell walls was propelled by advances in microbial cell biology, specifically, the introduction of high-resolution analytical techniques and molecular genetic approaches. The field of staphylococcal cell wall gradually gained its own significance as the complexity of its chemical structure and involvement in numerous cellular processes became evident, namely its versatile role in host interactions, coordination of cell division and environmental stress signaling.This chapter includes an updated description of the anatomy of staphylococcal cell walls, paying particular attention to information from the last decade, under four headings: high-resolution analysis of the Staphylococcus aureus peptidoglycan; variations in peptidoglycan composition; genetic determinants and enzymes in cell wall synthesis; and complex functions of cell walls. The latest contributions to a more precise picture of the staphylococcal cell envelope were possible due to recently developed state-of-the-art microscopy and spectroscopy techniques and to a wide combination of -omics approaches, that are allowing to obtain a more integrative view of this highly dynamic structure.
Collapse
Affiliation(s)
- Rita Sobral
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | |
Collapse
|
12
|
A novel autolysin AtlA SS mediates bacterial cell separation during cell division and contributes to full virulence in Streptococcus suis. Vet Microbiol 2019; 234:92-100. [PMID: 31213278 DOI: 10.1016/j.vetmic.2019.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
Streptococcus suis (SS) is a major pathogen in the swine industry, and also an important zoonotic agent for humans. The novel SS cell surface protein, AtlASS, comprising the special GW module and N-acetylmuramidases domain, was designated as a putative autolysin. Indeed, the atlASS deletion mutant almost completely lost its activity in Triton X-100 induced bacterial autolysis, while the wild-type and CΔatlASS strains showed significant decrease, to less than 20% of the initial OD600 values. Unexpectedly, both immunofluorescence and immunogold electron microscopy confirmed that AtlASS is mainly located in the cell division septum, suggesting autolytic activity in peptidoglycan hydrolysis may be required for cell separation, thus modulating and truncating bacterial chain length. The biofilm capacity of the AtlASS mutation was reduced ˜ 40%, as compared to the wild-type strain. The ΔatlASS strain also attenuated bacterial adherence in human brain microvessel endothelial cells (HBMECs). Furthermore, we confirmed that AtlASS has fibrinogen/fibronectin binding capacities. In mouse infection model, the AtlASS inactivation also significantly attenuated bacterial virulence and proliferation in vivo. In conclusion, these results indicate that AtlASS autolysin modulates bacterial chain length, and contributes to the full virulence of SS during infection.
Collapse
|
13
|
Catalão MJ, Filipe SR, Pimentel M. Revisiting Anti-tuberculosis Therapeutic Strategies That Target the Peptidoglycan Structure and Synthesis. Front Microbiol 2019; 10:190. [PMID: 30804921 PMCID: PMC6378297 DOI: 10.3389/fmicb.2019.00190] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), is one of the leading cause of death by an infectious diseases. The biosynthesis of the mycobacterial cell wall (CW) is an area of increasing research significance, as numerous antibiotics used to treat TB target biosynthesis pathways of essential CW components. The main feature of the mycobacterial cell envelope is an intricate structure, the mycolyl-arabinogalactan-peptidoglycan (mAGP) complex responsible for its innate resistance to many commonly used antibiotics and involved in virulence. A hallmark of mAGP is its unusual peptidoglycan (PG) layer, which has subtleties that play a key role in virulence by enabling pathogenic species to survive inside the host and resist antibiotic pressure. This dynamic and essential structure is not a target of currently used therapeutics as Mtb is considered naturally resistant to most β-lactam antibiotics due to a highly active β-lactamase (BlaC) that efficiently hydrolyses many β-lactam drugs to render them ineffective. The emergence of multidrug- and extensive drug-resistant strains to the available antibiotics has become a serious health threat, places an immense burden on health care systems, and poses particular therapeutic challenges. Therefore, it is crucial to explore additional Mtb vulnerabilities that can be used to combat TB. Remodeling PG enzymes that catalyze biosynthesis and recycling of the PG are essential to the viability of Mtb and are therefore attractive targets for novel antibiotics research. This article reviews PG as an alternative antibiotic target for TB treatment, how Mtb has developed resistance to currently available antibiotics directed to PG biosynthesis, and the potential of targeting this essential structure to tackle TB by attacking alternative enzymatic activities involved in Mtb PG modifications and metabolism.
Collapse
Affiliation(s)
- Maria João Catalão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio R. Filipe
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Caparica, Portugal
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Madalena Pimentel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Ghosh C, Sarkar P, Issa R, Haldar J. Alternatives to Conventional Antibiotics in the Era of Antimicrobial Resistance. Trends Microbiol 2019; 27:323-338. [PMID: 30683453 DOI: 10.1016/j.tim.2018.12.010] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/30/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023]
Abstract
As more antibiotics are rendered ineffective by drug-resistant bacteria, focus must be shifted towards alternative therapies for treating infections. Although several alternatives already exist in nature, the challenge is to implement them in clinical use. Advancements within biotechnology, genetic engineering, and synthetic chemistry have opened up new avenues towards the search for therapies that can substitute for antibiotics. This review provides an introduction to the various promising approaches that have been adopted in this regard. Whilst the use of bacteriophages and antibodies has been partly implemented, other promising strategies, such as probiotics, lysins, and antimicrobial peptides, are in various stages of development. Propitious concepts such as genetically modified phages, antibacterial oligonucleotides, and CRISPR-Cas9 are also discussed.
Collapse
Affiliation(s)
- Chandradhish Ghosh
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Rahaf Issa
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India.
| |
Collapse
|
15
|
Carvalho LCR, Queda F, Almeida CV, Filipe SR, Marques MMB. From a Natural Polymer to Relevant NAG‐NAM Precursors. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Luísa C. R. Carvalho
- LAQV@REQUIMTE, Departamento de Química, Faculdade de Ciências e TecnologiaUniversidade Nova de Lisboa Campus de Caparica 2829-516 Caparica Portugal
| | - Fausto Queda
- LAQV@REQUIMTE, Departamento de Química, Faculdade de Ciências e TecnologiaUniversidade Nova de Lisboa Campus de Caparica 2829-516 Caparica Portugal
| | - Cátia V. Almeida
- LAQV@REQUIMTE, Departamento de Química, Faculdade de Ciências e TecnologiaUniversidade Nova de Lisboa Campus de Caparica 2829-516 Caparica Portugal
| | - Sérgio R. Filipe
- UCIBIO@REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e TecnologiaUniversidade Nova de Lisboa Campus de Caparica 2829-516 Caparica Portugal
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e BiológicaUniversidade Nova de Lisboa 2780-157 Oeiras Portugal
| | - M. Manuel B. Marques
- LAQV@REQUIMTE, Departamento de Química, Faculdade de Ciências e TecnologiaUniversidade Nova de Lisboa Campus de Caparica 2829-516 Caparica Portugal
| |
Collapse
|
16
|
Borišek J, Pintar S, Ogrizek M, Grdadolnik SG, Hodnik V, Turk D, Perdih A, Novič M. Discovery of (phenylureido)piperidinyl benzamides as prospective inhibitors of bacterial autolysin E from Staphylococcus aureus. J Enzyme Inhib Med Chem 2018; 33:1239-1247. [PMID: 30141354 PMCID: PMC6116672 DOI: 10.1080/14756366.2018.1493474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Autolysin E (AtlE) is a cell wall degrading enzyme that catalyzes the hydrolysis of the β-1,4-glycosidic bond between the N-acetylglucosamine and N-acetylmuramic acid units of the bacterial peptidoglycan. Using our recently determined crystal structure of AtlE from Staphylococcus aureus and a combination of pharmacophore modeling, similarity search, and molecular docking, a series of (Phenylureido)piperidinyl benzamides were identified as potential binders and surface plasmon resonance (SPR) and saturation-transfer difference (STD) NMR experiments revealed that discovered compounds bind to AtlE in a lower micromolar range. (phenylureido)piperidinyl benzamides are the first reported non-substrate-like compounds that interact with this enzyme and enable further study of the interaction of small molecules with bacterial AtlE as potential inhibitors of this target.
Collapse
Affiliation(s)
- Jure Borišek
- a National Institute of Chemistry , Ljubljana , Slovenia
| | - Sara Pintar
- b Department of Biochemistry, Molecular and Structural Biology , Jozef Stefan Institute , Ljubljana , Slovenia.,c Jozef Stefan International Postgraduate School , Ljubljana , Slovenia
| | - Mitja Ogrizek
- a National Institute of Chemistry , Ljubljana , Slovenia
| | | | - Vesna Hodnik
- d Biotechnical Faculty , Infrastructural Center for Surface Plasmon Resonance , Ljubljana , Slovenia
| | - Dušan Turk
- b Department of Biochemistry, Molecular and Structural Biology , Jozef Stefan Institute , Ljubljana , Slovenia.,e Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins , Ljubljana , Slovenia
| | - Andrej Perdih
- a National Institute of Chemistry , Ljubljana , Slovenia
| | - Marjana Novič
- a National Institute of Chemistry , Ljubljana , Slovenia
| |
Collapse
|
17
|
Resuscitation-Promoting Factors Are Required for Mycobacterium smegmatis Biofilm Formation. Appl Environ Microbiol 2018; 84:AEM.00687-18. [PMID: 29915116 DOI: 10.1128/aem.00687-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/10/2018] [Indexed: 12/19/2022] Open
Abstract
Resuscitation-promoting factors (Rpfs) have previously been shown to act as growth-stimulatory molecules via their lysozyme-like activity on peptidoglycan in the bacterial cell wall. In this study, we investigated the ability of Mycobacterium smegmatis strains lacking rpf genes to form biofilms and tested their susceptibilities to cell wall-targeting agents. M. smegmatis contains four distinct rpf homologues, namely, MSMEG_5700 (rpfA), MSMEG_5439 (rpfB), MSMEG_4640 (rpfE2), and MSMEG_4643 (rpfE). During axenic growth of the wild-type strain, all four mRNA transcripts were expressed to various degrees, but the expression of MSMEG_4643 was significantly greater during exponential growth. Similarly, all rpf mRNA transcripts could be detected in biofilms grown for 7, 14, and 28 days, with MSMEG_4643 expressed at the highest abundance after 7 days. In-frame unmarked deletion mutants (single and combinatorial) were generated and displayed altered colony morphologies and the inability to form typical biofilms. Moreover, any strain lacking rpfA and rpfB simultaneously exhibited increased susceptibility to rifampin, vancomycin, and SDS. Exogenous Rpf supplementation in the form of culture filtrate failed to restore biofilm formation. Liquid chromatography-mass spectrometry (LC-MS) analysis of peptidoglycan (PG) suggested a reduction in 4-3 cross-linked PG in the ΔrpfABEE2 mutant strain. In addition, the level of PG-repeat units terminating in 1,6-anhydroMurNAc appeared to be significantly reduced in the quadruple rpf mutant. Collectively, our data have shown that Rpfs play an important role in biofilm formation, possibly through alterations in PG cross-linking and the production of signaling molecules.IMPORTANCE The cell wall of pathogenic mycobacteria is composed of peptidoglycan, arabinogalactan, mycolic acids, and an outer capsule. This inherent complexity renders it resistant to many antibiotics. Consequently, its biosynthesis and remodeling during growth directly impact viability. Resuscitation-promoting factors (Rpfs), enzymes with lytic transglycosylase activity, have been associated with the revival of dormant cells and subsequent resumption of vegetative growth. Mycobacterium smegmatis, a soil saprophyte and close relative of the human pathogen Mycobacterium tuberculosis, encodes four distinct Rpfs. Herein, we assessed the relationship between Rpfs and biofilm formation, which is used as a model to study drug tolerance and bacterial signaling in mycobacteria. We demonstrated that progressive deletion of rpf genes hampered the development of biofilms and reduced drug tolerance. These effects were accompanied by a reduction in muropeptide production and altered peptidoglycan cross-linking. Collectively, these observations point to an important role for Rpfs in mycobacterial communication and drug tolerance.
Collapse
|
18
|
Total Lipopolysaccharide from the Human Gut Microbiome Silences Toll-Like Receptor Signaling. mSystems 2017; 2:mSystems00046-17. [PMID: 29152585 PMCID: PMC5686520 DOI: 10.1128/msystems.00046-17] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/19/2017] [Indexed: 02/06/2023] Open
Abstract
Cohabitation of microbial communities with the host enables the formation of a symbiotic relationship that maintains homeostasis in the gut and beyond. One prevailing model suggests that this relationship relies on the capacity of host cells and tissues to remain tolerant to the strong immune stimulation generated by the microbiota such as the activation of Toll-like receptor 4 (TLR4) pathways by lipopolysaccharide (LPS). Indeed, gut microbial LPS is thought to be one of the most potent activators of innate immune signaling and an important mediator of the microbiome's influence on host physiology. In this study, we performed computational and experimental analyses of healthy human fecal samples to examine the TLR4 signaling capacity of the gut microbiota. These analyses revealed that an immunoinhibitory activity of LPS, conserved across the members of the order Bacteroidales and derived from an underacylated structural feature, silences TLR4 signaling for the entire consortium of organisms inhabiting the human gut. Comparative analysis of metagenomic data from the Human Microbiome Project and healthy-donor samples indicates that immune silencing via LPS is a microbe-intrinsic feature in all healthy adults. These findings challenge the current belief that robust TLR4 signaling is a feature of the microbiome and demonstrate that microbiome-derived LPS has the ability to facilitate host tolerance of gut microbes. These findings have broad implications for how we model host-microbe interactions and for our understanding of microbiome-linked disease. IMPORTANCE While the ability for humans to host a complex microbial ecosystem is an essential property of life, the mechanisms allowing for immune tolerance of such a large microbial load are not completely understood and are currently the focus of intense research. This study shows that an important proinflammatory pathway that is commonly triggered by pathogenic bacteria upon interaction with the host is, in fact, actively repressed by the bacteria of the gut microbiome, supporting the idea that beneficial microbes themselves contribute to the immune tolerance in support of homeostasis. These findings are important for two reasons. First, many currently assume that proinflammatory signaling by lipopolysaccharide is a fundamental feature of the gut flora. This assumption influences greatly how host-microbiome interactions are theoretically modeled but also how they are experimentally studied, by using robust TLR signaling conditions to simulate commensals. Second, elucidation of the mechanisms that support host-microbe tolerance is key to the development of therapeutics for both intestinal and systemic inflammatory disorders.
Collapse
|
19
|
Li X, Sun Q, Wang Y, Han D, Fan J, Zhang J, Yang C, Ma X, Sun Q. The regulatory effects of L. plantarum peptidoglycan microspheres on innate and humoral immunity in mouse. J Microencapsul 2017; 34:635-643. [PMID: 28862074 DOI: 10.1080/02652048.2017.1375037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To study the effects of Lactobacillus Plantarum cell wall peptidoglycan (LPG) microspheres on mouse intestinal flora changes, peptidoglycan recognitions protein (PGRP) and cytokines expression levels. METHOD Plate counting was used for enumeration of the intestinal flora. Real-time PCR was used for quantification PGRP in different tissues. Cytokines content were determined by ELISA kits. RESULT The mouse administered orally with LPG microspheres showed significantly higher number of Lactobacillus and Bifidobacterium in caecum contents (p < 0.01). The amount of PGRP expression in different organs was highest in LPG microspheres-treated group. IL-4, 12, IFN-γ, TNF-α contents in serum from LPG microspheres-treated mouse were significantly higher than those in normal saline-treated group (p < 0.01). CONCLUSIONS This study shows that the LPG microspheres can regulate intestinal flora imbalance and improve systemic immunity, improve both Th1 and Th2 immune response, which provide some basis for the use of LPG as potential adjuvants.
Collapse
Affiliation(s)
- Xiuliang Li
- a College of Life Science , Heilongjiang University , Harbin , China
| | - Quan Sun
- a College of Life Science , Heilongjiang University , Harbin , China
| | - Yawei Wang
- a College of Life Science , Heilongjiang University , Harbin , China
| | - Dequan Han
- a College of Life Science , Heilongjiang University , Harbin , China
| | - Jiahui Fan
- a College of Life Science , Heilongjiang University , Harbin , China
| | - Jialing Zhang
- a College of Life Science , Heilongjiang University , Harbin , China
| | - Chunhai Yang
- a College of Life Science , Heilongjiang University , Harbin , China
| | - Xiaoxiong Ma
- a College of Life Science , Heilongjiang University , Harbin , China
| | - Qingshen Sun
- a College of Life Science , Heilongjiang University , Harbin , China
| |
Collapse
|
20
|
Lioliou E, Fechter P, Caldelari I, Jester BC, Dubrac S, Helfer AC, Boisset S, Vandenesch F, Romby P, Geissmann T. Various checkpoints prevent the synthesis of Staphylococcus aureus peptidoglycan hydrolase LytM in the stationary growth phase. RNA Biol 2016; 13:427-40. [PMID: 26901414 DOI: 10.1080/15476286.2016.1153209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In Staphylococcus aureus, peptidoglycan metabolism plays a role in the host inflammatory response and pathogenesis. Transcription of the peptidoglycan hydrolases is activated by the essential 2-component system WalKR at low cell density. During stationary growth phase, WalKR is not active and transcription of the peptidoglycan hydrolase genes is repressed. In this work, we studied regulation of expression of the glycylglycine endopeptidase LytM. We show that, in addition to the transcriptional regulation mediated by WalKR, the synthesis of LytM is negatively controlled by a unique mechanism at the stationary growth phase. We have identified 2 different mRNAs encoding lytM, which vary in the length of their 5' untranslated (5'UTR) regions. LytM is predominantly produced from the WalKR-regulated mRNA transcript carrying a short 5'UTR. The lytM mRNA is also transcribed as part of a polycistronic operon with the upstream SA0264 gene and is constitutively expressed. Although SA0264 protein can be synthesized from the longer operon transcript, lytM cannot be translated because its ribosome-binding site is sequestered into a translationally inactive secondary structure. In addition, the effector of the agr system, RNAIII, can inhibit translation of lytM present on the operon without altering the transcript level but does not have an effect on the translation of the upstream gene. We propose that this dual regulation of lytM expression, at the transcriptional and post-transcriptional levels, contributes to prevent cell wall damage during the stationary phase of growth.
Collapse
Affiliation(s)
- Efthimia Lioliou
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC , 15 rue René Descartes, Strasbourg , France
| | - Pierre Fechter
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC , 15 rue René Descartes, Strasbourg , France
| | - Isabelle Caldelari
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC , 15 rue René Descartes, Strasbourg , France
| | - Brian C Jester
- b Institute of Systems and Synthetic Biology, University of Evry-Val-d'Essonne, CNRS FRE3561 , Evry , France
| | - Sarah Dubrac
- c Unité de Biologie des Bactéries pathogènes à Gram-positif, Institut Pasteur , 28 rue du Dr Roux, Paris , France
| | - Anne-Catherine Helfer
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC , 15 rue René Descartes, Strasbourg , France
| | - Sandrine Boisset
- d CIRI, Center International de Recherche en Infectiologie - Inserm U1111 - Université Lyon 1 - Ecole Normale Supérieure de Lyon - CNRS UMR5308 , 21 Avenue Tony Garnier, LYON cedex 07 , France
| | - François Vandenesch
- d CIRI, Center International de Recherche en Infectiologie - Inserm U1111 - Université Lyon 1 - Ecole Normale Supérieure de Lyon - CNRS UMR5308 , 21 Avenue Tony Garnier, LYON cedex 07 , France
| | - Pascale Romby
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC , 15 rue René Descartes, Strasbourg , France
| | - Thomas Geissmann
- d CIRI, Center International de Recherche en Infectiologie - Inserm U1111 - Université Lyon 1 - Ecole Normale Supérieure de Lyon - CNRS UMR5308 , 21 Avenue Tony Garnier, LYON cedex 07 , France
| |
Collapse
|
21
|
Gautam S, Kim T, Lester E, Deep D, Spiegel DA. Wall teichoic acids prevent antibody binding to epitopes within the cell wall of Staphylococcus aureus. ACS Chem Biol 2016; 11:25-30. [PMID: 26502318 DOI: 10.1021/acschembio.5b00439] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Staphylococcus aureus is a Gram-positive bacterial pathogen that produces a range of infections including cellulitis, pneumonia, and septicemia. The principle mechanism in antistaphylococcal host defense is opsonization with antibodies and complement proteins, followed by phagocytic clearance. Here we use a previously developed technique for installing chemical epitopes in the peptidoglycan cell wall to show that surface glycopolymers known as wall teichoic acids conceal cell wall epitopes, preventing their recognition and opsonization by antibodies. Thus, our results reveal a previously unrecognized immunoevasive role for wall teichoic acids in S. aureus: repulsion of peptidoglycan-targeted antibodies.
Collapse
Affiliation(s)
- Samir Gautam
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Taehan Kim
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Evan Lester
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Deeksha Deep
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - David A. Spiegel
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
22
|
Covas G, Vaz F, Henriques G, Pinho MG, Filipe SR. Analysis of Cell Wall Teichoic Acids in Staphylococcus aureus. Methods Mol Biol 2016; 1440:201-13. [PMID: 27311674 DOI: 10.1007/978-1-4939-3676-2_15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Most bacterial cells are surrounded by a surface composed mainly of peptidoglycan (PGN), a glycopolymer responsible for ensuring the bacterial shape and a telltale molecule that betrays the presence of bacteria to the host immune system. In Staphylococcus aureus, as in most gram-positive bacteria, peptidoglycan is concealed by covalently linked molecules of wall teichoic acids (WTA)-phosphate rich molecules made of glycerol and ribitol phosphates which may be tailored by different amino acids and sugars.In order to analyze and compare the composition of WTA produced by different S. aureus strains, we describe methods to: (1) quantify the total amount of WTA present at the bacterial cell surface, through the determination of the inorganic phosphate present in phosphodiester linkages of WTA; (2) identify which sugar constituents are present in the assembled WTA molecules, by detecting the monosaccharides, released by acid hydrolysis, through an high-performance anion exchange chromatography analysis coupled with pulsed amperometric detection (HPAEC-PAD) and (3) compare the polymerization degree of WTA found at the cell surface of different S. aureus strains, through their different migration in a polyacrylamide gel electrophoresis (PAGE).
Collapse
Affiliation(s)
- Gonçalo Covas
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Apartado 127, 2781-901, Oeiras, Portugal
| | - Filipa Vaz
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Apartado 127, 2781-901, Oeiras, Portugal
| | - Gabriela Henriques
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mariana G Pinho
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sérgio R Filipe
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Apartado 127, 2781-901, Oeiras, Portugal. .,UCIBIO@REQUIMTE, Departamento de Ciências da Vida/ Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal.
| |
Collapse
|
23
|
Minimal Peptidoglycan (PG) Turnover in Wild-Type and PG Hydrolase and Cell Division Mutants of Streptococcus pneumoniae D39 Growing Planktonically and in Host-Relevant Biofilms. J Bacteriol 2015; 197:3472-85. [PMID: 26303829 DOI: 10.1128/jb.00541-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/15/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED We determined whether there is turnover of the peptidoglycan (PG) cell wall of the ovococcus bacterial pathogen Streptococcus pneumoniae (pneumococcus). Pulse-chase experiments on serotype 2 strain D39 radiolabeled with N-acetylglucosamine revealed little turnover and release of PG breakdown products during growth compared to published reports of PG turnover in Bacillus subtilis. PG dynamics were visualized directly by long-pulse-chase-new-labeling experiments using two colors of fluorescent d-amino acid (FDAA) probes to microscopically detect regions of new PG synthesis. Consistent with minimal PG turnover, hemispherical regions of stable "old" PG persisted in D39 and TIGR4 (serotype 4) cells grown in rich brain heart infusion broth, in D39 cells grown in chemically defined medium containing glucose or galactose as the carbon source, and in D39 cells grown as biofilms on a layer of fixed human epithelial cells. In contrast, B. subtilis exhibited rapid sidewall PG turnover in similar FDAA-labeling experiments. High-performance liquid chromatography (HPLC) analysis of biochemically released peptides from S. pneumoniae PG validated that FDAAs incorporated at low levels into pentamer PG peptides and did not change the overall composition of PG peptides. PG dynamics were also visualized in mutants lacking PG hydrolases that mediate PG remodeling, cell separation, or autolysis and in cells lacking the MapZ and DivIVA division regulators. In all cases, hemispheres of stable old PG were maintained. In PG hydrolase mutants exhibiting aberrant division plane placement, FDAA labeling revealed patches of inert PG at turns and bulge points. We conclude that growing S. pneumoniae cells exhibit minimal PG turnover compared to the PG turnover in rod-shaped cells. IMPORTANCE PG cell walls are unique to eubacteria, and many bacterial species turn over and recycle their PG during growth, stress, colonization, and virulence. Consequently, PG breakdown products serve as signals for bacteria to induce antibiotic resistance and as activators of innate immune responses. S. pneumoniae is a commensal bacterium that colonizes the human nasopharynx and opportunistically causes serious respiratory and invasive diseases. The results presented here demonstrate a distinct demarcation between regions of old PG and regions of new PG synthesis and minimal turnover of PG in S. pneumoniae cells growing in culture or in host-relevant biofilms. These findings suggest that S. pneumoniae minimizes the release of PG breakdown products by turnover, which may contribute to evasion of the innate immune system.
Collapse
|
24
|
Monteiro JM, Fernandes PB, Vaz F, Pereira AR, Tavares AC, Ferreira MT, Pereira PM, Veiga H, Kuru E, VanNieuwenhze MS, Brun YV, Filipe SR, Pinho MG. Cell shape dynamics during the staphylococcal cell cycle. Nat Commun 2015; 6:8055. [PMID: 26278781 PMCID: PMC4557339 DOI: 10.1038/ncomms9055] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 07/13/2015] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus is an aggressive pathogen and a model organism to study cell division in sequential orthogonal planes in spherical bacteria. However, the small size of staphylococcal cells has impaired analysis of changes in morphology during the cell cycle. Here we use super-resolution microscopy and determine that S. aureus cells are not spherical throughout the cell cycle, but elongate during specific time windows, through peptidoglycan synthesis and remodelling. Both peptidoglycan hydrolysis and turgor pressure are required during division for reshaping the flat division septum into a curved surface. In this process, the septum generates less than one hemisphere of each daughter cell, a trait we show is common to other cocci. Therefore, cell surface scars of previous divisions do not divide the cells in quadrants, generating asymmetry in the daughter cells. Our results introduce a need to reassess the models for division plane selection in cocci. Staphylococci are spherical bacteria that divide in sequential orthogonal planes. Here, the authors use super-resolution microscopy to show that staphylococcal cells elongate before dividing, and that the division septum generates less than one hemisphere of each daughter cell, generating asymmetry.
Collapse
Affiliation(s)
- João M Monteiro
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Pedro B Fernandes
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Filipa Vaz
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Ana R Pereira
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Andreia C Tavares
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Maria T Ferreira
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Pedro M Pereira
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Helena Veiga
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Erkin Kuru
- 1] Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, USA [2] Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47405, USA
| | | | - Yves V Brun
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47405, USA
| | - Sérgio R Filipe
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Mariana G Pinho
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| |
Collapse
|
25
|
Peptidoglycan Branched Stem Peptides Contribute to Streptococcus pneumoniae Virulence by Inhibiting Pneumolysin Release. PLoS Pathog 2015; 11:e1004996. [PMID: 26114646 PMCID: PMC4483231 DOI: 10.1371/journal.ppat.1004996] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/02/2015] [Indexed: 11/29/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) colonizes the human nasopharynx and is a significant pathogen worldwide. Pneumolysin (Ply) is a multi-functional, extracellular virulence factor produced by this organism that is critical for pathogenesis. Despite the absence of any apparent secretion or cell surface attachment motifs, Ply localizes to the cell envelope of actively growing cells. We sought to characterize the consequences of this surface localization. Through functional assays with whole cells and subcellular fractions, we determined that Ply activity and its release into the extracellular environment are inhibited by peptidoglycan (PG) structure. The ability of PG to inhibit Ply release was dependent on the stem peptide composition of this macromolecule, which was manipulated by mutation of the murMN operon that encodes proteins responsible for branched stem peptide synthesis. Additionally, removal of choline-binding proteins from the cell surface significantly reduced Ply release to levels observed in a mutant with a high proportion of branched stem peptides suggesting a link between this structural feature and surface-associated choline-binding proteins involved in PG metabolism. Of clinical relevance, we also demonstrate that a hyperactive, mosaic murMN allele associated with penicillin resistance causes decreased Ply release with concomitant increases in the amount of branched stem peptides. Finally, using a murMN deletion mutant, we observed that increased Ply release is detrimental to virulence during a murine model of pneumonia. Taken together, our results reveal a novel role for branched stem peptides in pneumococcal pathogenesis and demonstrate the importance of controlled Ply release during infection. These results highlight the importance of PG composition in pathogenesis and may have broad implications for the diverse PG structures observed in other bacterial pathogens. Pneumolysin (Ply) is a protein toxin produced by Streptococcus pneumoniae that contributes to the ability of this organism to cause invasive disease. Release of this protein from the bacterial cell is necessary for many of its functions but the underlying mechanisms driving this process are not well characterized. Previous research demonstrated that Ply localizes to the cell wall compartment. Here, we address the consequences of this localization and reveal a role for the major cell wall structural component, peptidoglycan, in inhibiting Ply activity and release into the extracellular environment. Peptidoglycan is an essential, mesh-like sac that encases the cell, and alterations affecting its composition lead to differences in the amount of Ply released. How molecules interact with and traverse through the restrictive matrix of the cell wall and its associated structures is incompletely understood, particularly with respect to protein secretion and surface attachment. Our results argue that proper maintenance of cell wall-associated Ply is dependent on surface architecture and may be critical for S. pneumoniae pathogenesis.
Collapse
|
26
|
Jacquier N, Viollier PH, Greub G. The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly. FEMS Microbiol Rev 2015; 39:262-75. [PMID: 25670734 DOI: 10.1093/femsre/fuv001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chlamydiales are obligate intracellular bacteria including some important pathogens causing trachoma, genital tract infections and pneumonia, among others. They share an atypical division mechanism, which is independent of an FtsZ homologue. However, they divide by binary fission, in a process inhibited by penicillin derivatives, causing the formation of an aberrant form of the bacteria, which is able to survive in the presence of the antibiotic. The paradox of penicillin sensitivity of chlamydial cells in the absence of detectable peptidoglycan (PG) was dubbed the chlamydial anomaly, since no PG modified by enzymes (Pbps) that are the usual target of penicillin could be detected in Chlamydiales. We review here the recent advances in this field with the first direct and indirect evidences of PG-like material in both Chlamydiaceae and Chlamydia-related bacteria. Moreover, PG biosynthesis is required for proper localization of the newly described septal proteins RodZ and NlpD. Taken together, these new results set the stage for a better understanding of the role of PG and septal proteins in the division mechanism of Chlamydiales and illuminate the long-standing chlamydial anomaly. Moreover, understanding the chlamydial division mechanism is critical for the development of new antibiotics for the treatment of chlamydial chronic infections.
Collapse
Affiliation(s)
- Nicolas Jacquier
- Institute of Microbiology, University Hospital Center and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Patrick H Viollier
- Department of Microbiology & Molecular Medicine, Institute of Genetics & Genomics in Geneva (iGE3), Faculty of Medicine / CMU, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
27
|
|
28
|
Bai XH, Chen HJ, Jiang YL, Wen Z, Huang Y, Cheng W, Li Q, Qi L, Zhang JR, Chen Y, Zhou CZ. Structure of pneumococcal peptidoglycan hydrolase LytB reveals insights into the bacterial cell wall remodeling and pathogenesis. J Biol Chem 2014; 289:23403-16. [PMID: 25002590 DOI: 10.1074/jbc.m114.579714] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pneumoniae causes a series of devastating infections in humans. Previous studies have shown that the endo-β-N-acetylglucosaminidase LytB is critical for pneumococcal cell division and nasal colonization, but the biochemical mechanism of LytB action remains unknown. Here we report the 1.65 Å crystal structure of the catalytic domain (residues Lys-375-Asp-658) of LytB (termed LytBCAT), excluding the choline binding domain. LytBCAT consists of three structurally independent modules: SH3b, WW, and GH73. These modules form a "T-shaped" pocket that accommodates a putative tetrasaccharide-pentapeptide substrate of peptidoglycan. Structural comparison and simulation revealed that the GH73 module of LytB harbors the active site, including the catalytic residue Glu-564. In vitro assays of hydrolytic activity indicated that LytB prefers the peptidoglycan from the lytB-deficient pneumococci, suggesting the existence of a specific substrate of LytB in the immature peptidoglycan. Combined with in vitro cell-dispersing and in vivo cell separation assays, we demonstrated that all three modules are necessary for the optimal activity of LytB. Further functional analysis showed that the full catalytic activity of LytB is required for pneumococcal adhesion to and invasion into human lung epithelial cells. Structure-based alignment indicated that the unique modular organization of LytB is highly conserved in its orthologs from Streptococcus mitis group and Gemella species. These findings provided structural insights into the pneumococcal cell wall remodeling and novel hints for the rational design of therapeutic agents against pneumococcal growth and thereby the related diseases.
Collapse
Affiliation(s)
- Xiao-Hui Bai
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Hui-Jie Chen
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Yong-Liang Jiang
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Zhensong Wen
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yubin Huang
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Wang Cheng
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Qiong Li
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Lei Qi
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuxing Chen
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Cong-Zhao Zhou
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| |
Collapse
|
29
|
FtsZ-independent septal recruitment and function of cell wall remodelling enzymes in chlamydial pathogens. Nat Commun 2014; 5:4200. [PMID: 24953095 PMCID: PMC4083446 DOI: 10.1038/ncomms5200] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/22/2014] [Indexed: 11/08/2022] Open
Abstract
The nature and assembly of the chlamydial division septum is poorly defined due to the paucity of a detectable peptidoglycan (PG)-based cell wall, the inhibition of constriction by penicillin and the presence of coding sequences for cell wall precursor and remodelling enzymes in the reduced chlamydial (pan-)genome. Here we show that the chlamydial amidase (AmiA) is active and remodels PG in Escherichia coli. Moreover, forward genetics using an E. coli amidase mutant as entry point reveals that the chlamydial LysM-domain protein NlpD is active in an E. coli reporter strain for PG endopeptidase activity (ΔnlpI). Immunolocalization unveils NlpD as the first septal (cell-wall-binding) protein in Chlamydiae and we show that its septal sequestration depends on prior cell wall synthesis. Since AmiA assembles into peripheral clusters, trimming of a PG-like polymer or precursors occurs throughout the chlamydial envelope, while NlpD targets PG-like peptide crosslinks at the chlamydial septum during constriction.
Collapse
|