1
|
Tiwari A, Myeong J, Hashemiaghdam A, Stunault MI, Zhang H, Niu X, Laramie MA, Sponagel J, Shriver LP, Patti GJ, Klyachko VA, Ashrafi G. Mitochondrial pyruvate transport regulates presynaptic metabolism and neurotransmission. SCIENCE ADVANCES 2024; 10:eadp7423. [PMID: 39546604 PMCID: PMC11567002 DOI: 10.1126/sciadv.adp7423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Glucose has long been considered the primary fuel source for the brain. However, glucose levels fluctuate in the brain during sleep or circuit activity, posing major metabolic stress. Here, we demonstrate that the mammalian brain uses pyruvate as a fuel source, and pyruvate can support neuronal viability in the absence of glucose. Nerve terminals are sites of metabolic vulnerability, and we show that mitochondrial pyruvate uptake is a critical step in oxidative ATP production in hippocampal terminals. We find that the mitochondrial pyruvate carrier is post-translationally modified by lysine acetylation, which, in turn, modulates mitochondrial pyruvate uptake. Our data reveal that the mitochondrial pyruvate carrier regulates distinct steps in neurotransmission, namely, the spatiotemporal pattern of synaptic vesicle release and the efficiency of vesicle retrieval-functions that have profound implications for synaptic plasticity. In summary, we identify pyruvate as a potent neuronal fuel and mitochondrial pyruvate uptake as a critical node for the metabolic control of neurotransmission in hippocampal terminals.
Collapse
Affiliation(s)
- Anupama Tiwari
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jongyun Myeong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Arsalan Hashemiaghdam
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marion I. Stunault
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hao Zhang
- Department of Chemistry, Department of Medicine, Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiangfeng Niu
- Department of Chemistry, Department of Medicine, Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Marissa A. Laramie
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jasmin Sponagel
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leah P. Shriver
- Department of Chemistry, Department of Medicine, Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Gary J. Patti
- Department of Chemistry, Department of Medicine, Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Vitaly A. Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Chiu DN, Carter BC. Extracellular glutamate is not modulated by cannabinoid receptor activity. Sci Rep 2024; 14:26889. [PMID: 39505963 PMCID: PMC11541540 DOI: 10.1038/s41598-024-75962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Cannabinoid receptor activation has been proposed to trigger glutamate release from astrocytes located in cortical layer 2/3. Here, we measure the basal concentration of extracellular glutamate in layer 2/3 of mouse somatosensory cortex and find it to be 20-30 nM. We further examine the effect of cannabinoid receptor signaling on extracellular glutamate, and find no evidence for increased extracellular glutamate upon cannabinoid receptor agonist application.
Collapse
Affiliation(s)
- Delia N Chiu
- ENI-G, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Brett C Carter
- ENI-G, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany.
| |
Collapse
|
3
|
van Boven MA, Mestroni M, Zwijnenburg PJG, Verhage M, Cornelisse LN. A de novo missense mutation in synaptotagmin-1 associated with neurodevelopmental disorder desynchronizes neurotransmitter release. Mol Psychiatry 2024; 29:1798-1809. [PMID: 38321119 PMCID: PMC11371641 DOI: 10.1038/s41380-024-02444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Synaptotagmin-1 (Syt1) is a presynaptic calcium sensor with two calcium binding domains, C2A and C2B, that triggers action potential-induced synchronous neurotransmitter release, while suppressing asynchronous and spontaneous release. We identified a de novo missense mutation (P401L) in the C2B domain in a patient with developmental delay and autistic symptoms. Expressing the orthologous mouse mutant (P400L) in cultured Syt1 null mutant neurons revealed a reduction in dendrite outgrowth with a proportional reduction in synapses. This was not observed in single Syt1PL-rescued neurons that received normal synaptic input when cultured in a control network. Patch-clamp recordings showed that spontaneous miniature release events per synapse were increased more than 500% in Syt1PL-rescued neurons, even beyond the increased rates in Syt1 KO neurons. Furthermore, action potential-induced asynchronous release was increased more than 100%, while synchronous release was unaffected. A similar shift to more asynchronous release was observed during train stimulations. These cellular phenotypes were also observed when Syt1PL was overexpressed in wild type neurons. Our findings show that Syt1PL desynchronizes neurotransmission by increasing the readily releasable pool for asynchronous release and reducing the suppression of spontaneous and asynchronous release. Neurons respond to this by shortening their dendrites, possibly to counteract the increased synaptic input. Syt1PL acts in a dominant-negative manner supporting a causative role for the mutation in the heterozygous patient. We propose that the substitution of a rigid proline to a more flexible leucine at the bottom of the C2B domain impairs clamping of release by interfering with Syt1's primary interface with the SNARE complex. This is a novel cellular phenotype, distinct from what was previously found for other SYT1 disease variants, and points to a role for spontaneous and asynchronous release in SYT1-associated neurodevelopmental disorder.
Collapse
Affiliation(s)
- Maaike A van Boven
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Marta Mestroni
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | | | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Functional Genomics and Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam UMC-Location VUmc, 1081 HV, Amsterdam, The Netherlands
| | - L Niels Cornelisse
- Department of Functional Genomics and Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam UMC-Location VUmc, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Ralowicz AJ, Hokeness S, Hoppa MB. Frequency of Spontaneous Neurotransmission at Individual Boutons Corresponds to the Size of the Readily Releasable Pool of Vesicles. J Neurosci 2024; 44:e1253232024. [PMID: 38383495 PMCID: PMC11063817 DOI: 10.1523/jneurosci.1253-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
Synapses maintain two forms of neurotransmitter release to support communication in the brain. First, evoked neurotransmitter release is triggered by the invasion of an action potential (AP) across en passant boutons that form along axons. The probability of evoked release (Pr) varies substantially across boutons, even within a single axon. Such heterogeneity is the result of differences in the probability of a single synaptic vesicle (SV) fusing (Pv) and in the number of vesicles available for immediate release, known as the readily releasable pool (RRP). Spontaneous release (also known as a mini) is an important form of neurotransmission that occurs in the absence of APs. Because it cannot be triggered with electrical stimulation, much less is known about potential heterogeneity in the frequency of spontaneous release between boutons. We utilized a photostable and bright fluorescent indicator of glutamate release (iGluSnFR3) to quantify both spontaneous and evoked release at individual glutamatergic boutons. We found that the rate of spontaneous release is quite heterogenous at the level of individual boutons. Interestingly, when measuring both evoked and spontaneous release at single synapses, we found that boutons with the highest rates of spontaneous release also displayed the largest evoked responses. Using a new optical method to measure RRP at individual boutons, we found that this heterogeneity in spontaneous release was strongly correlated with the size of the RRP, but not related to Pv. We conclude that the RRP is a critical and dynamic aspect of synaptic strength that contributes to both evoked and spontaneous vesicle release.
Collapse
Affiliation(s)
- Amelia J Ralowicz
- Department of Biology, Dartmouth College, Hanover, New Hampshire 03755
| | - Sasipha Hokeness
- Department of Biology, Dartmouth College, Hanover, New Hampshire 03755
| | - Michael B Hoppa
- Department of Biology, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
5
|
López-Murcia FJ, Lin KH, Berns MMM, Ranjan M, Lipstein N, Neher E, Brose N, Reim K, Taschenberger H. Complexin has a dual synaptic function as checkpoint protein in vesicle priming and as a promoter of vesicle fusion. Proc Natl Acad Sci U S A 2024; 121:e2320505121. [PMID: 38568977 PMCID: PMC11009659 DOI: 10.1073/pnas.2320505121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
The presynaptic SNARE-complex regulator complexin (Cplx) enhances the fusogenicity of primed synaptic vesicles (SVs). Consequently, Cplx deletion impairs action potential-evoked transmitter release. Conversely, though, Cplx loss enhances spontaneous and delayed asynchronous release at certain synapse types. Using electrophysiology and kinetic modeling, we show that such seemingly contradictory transmitter release phenotypes seen upon Cplx deletion can be explained by an additional of Cplx in the control of SV priming, where its ablation facilitates the generation of a "faulty" SV fusion apparatus. Supporting this notion, a sequential two-step priming scheme, featuring reduced vesicle fusogenicity and increased transition rates into the faulty primed state, reproduces all aberrations of transmitter release modes and short-term synaptic plasticity seen upon Cplx loss. Accordingly, we propose a dual presynaptic function for the SNARE-complex interactor Cplx, one as a "checkpoint" protein that guarantees the proper assembly of the fusion machinery during vesicle priming, and one in boosting vesicle fusogenicity.
Collapse
Affiliation(s)
- Francisco José López-Murcia
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Kun-Han Lin
- Laboratory of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| | - Manon M. M. Berns
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Mrinalini Ranjan
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, Georg August University Göttingen, Göttingen37077, Germany
| | - Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Erwin Neher
- Laboratory of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
- Cluster of Excellence ‘Multiscale Bioimaging’, Georg August University Göttingen, Göttingen37073, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
- Cluster of Excellence ‘Multiscale Bioimaging’, Georg August University Göttingen, Göttingen37073, Germany
| | - Kerstin Reim
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| |
Collapse
|
6
|
Wu Z, Kusick GF, Berns MMM, Raychaudhuri S, Itoh K, Walter AM, Chapman ER, Watanabe S. Synaptotagmin 7 docks synaptic vesicles to support facilitation and Doc2α-triggered asynchronous release. eLife 2024; 12:RP90632. [PMID: 38536730 PMCID: PMC10972563 DOI: 10.7554/elife.90632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Despite decades of intense study, the molecular basis of asynchronous neurotransmitter release remains enigmatic. Synaptotagmin (syt) 7 and Doc2 have both been proposed as Ca2+ sensors that trigger this mode of exocytosis, but conflicting findings have led to controversy. Here, we demonstrate that at excitatory mouse hippocampal synapses, Doc2α is the major Ca2+ sensor for asynchronous release, while syt7 supports this process through activity-dependent docking of synaptic vesicles. In synapses lacking Doc2α, asynchronous release after single action potentials is strongly reduced, while deleting syt7 has no effect. However, in the absence of syt7, docked vesicles cannot be replenished on millisecond timescales. Consequently, both synchronous and asynchronous release depress from the second pulse onward during repetitive activity. By contrast, synapses lacking Doc2α have normal activity-dependent docking, but continue to exhibit decreased asynchronous release after multiple stimuli. Moreover, disruption of both Ca2+ sensors is non-additive. These findings result in a new model whereby syt7 drives activity-dependent docking, thus providing synaptic vesicles for synchronous (syt1) and asynchronous (Doc2 and other unidentified sensors) release during ongoing transmission.
Collapse
Affiliation(s)
- Zhenyong Wu
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Grant F Kusick
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Manon MM Berns
- Department of Neuroscience, University of CopenhagenCopenhagenDenmark
| | - Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Kie Itoh
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Alexander M Walter
- Department of Neuroscience, University of CopenhagenCopenhagenDenmark
- Molecular and Theoretical Neuroscience, Leibniz-Institut für Molekulare Pharmakologie, FMP im CharitéCrossOverBerlinGermany
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
7
|
Meijer M, Öttl M, Yang J, Subkhangulova A, Kumar A, Feng Z, van Voorst TW, Groffen AJ, van Weering JRT, Zhang Y, Verhage M. Tomosyns attenuate SNARE assembly and synaptic depression by binding to VAMP2-containing template complexes. Nat Commun 2024; 15:2652. [PMID: 38531902 PMCID: PMC10965968 DOI: 10.1038/s41467-024-46828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Tomosyns are widely thought to attenuate membrane fusion by competing with synaptobrevin-2/VAMP2 for SNARE-complex assembly. Here, we present evidence against this scenario. In a novel mouse model, tomosyn-1/2 deficiency lowered the fusion barrier and enhanced the probability that synaptic vesicles fuse, resulting in stronger synapses with faster depression and slower recovery. While wild-type tomosyn-1m rescued these phenotypes, substitution of its SNARE motif with that of synaptobrevin-2/VAMP2 did not. Single-molecule force measurements indeed revealed that tomosyn's SNARE motif cannot substitute synaptobrevin-2/VAMP2 to form template complexes with Munc18-1 and syntaxin-1, an essential intermediate for SNARE assembly. Instead, tomosyns extensively bind synaptobrevin-2/VAMP2-containing template complexes and prevent SNAP-25 association. Structure-function analyses indicate that the C-terminal polybasic region contributes to tomosyn's inhibitory function. These results reveal that tomosyns regulate synaptic transmission by cooperating with synaptobrevin-2/VAMP2 to prevent SNAP-25 binding during SNARE assembly, thereby limiting initial synaptic strength and equalizing it during repetitive stimulation.
Collapse
Affiliation(s)
- Marieke Meijer
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands.
| | - Miriam Öttl
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Jie Yang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA.
| | - Aygul Subkhangulova
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Avinash Kumar
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Zicheng Feng
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Torben W van Voorst
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Alexander J Groffen
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands
| | - Jan R T van Weering
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands
| | - Yongli Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.
| | - Matthijs Verhage
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands.
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Salazar Lázaro A, Trimbuch T, Vardar G, Rosenmund C. The stability of the primed pool of synaptic vesicles and the clamping of spontaneous neurotransmitter release rely on the integrity of the C-terminal half of the SNARE domain of syntaxin-1A. eLife 2024; 12:RP90775. [PMID: 38512129 PMCID: PMC10957171 DOI: 10.7554/elife.90775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
The SNARE proteins are central in membrane fusion and, at the synapse, neurotransmitter release. However, their involvement in the dual regulation of the synchronous release while maintaining a pool of readily releasable vesicles remains unclear. Using a chimeric approach, we performed a systematic analysis of the SNARE domain of STX1A by exchanging the whole SNARE domain or its N- or C-terminus subdomains with those of STX2. We expressed these chimeric constructs in STX1-null hippocampal mouse neurons. Exchanging the C-terminal half of STX1's SNARE domain with that of STX2 resulted in a reduced RRP accompanied by an increased release rate, while inserting the C-terminal half of STX1's SNARE domain into STX2 leads to an enhanced priming and decreased release rate. Additionally, we found that the mechanisms for clamping spontaneous, but not for Ca2+-evoked release, are particularly susceptible to changes in specific residues on the outer surface of the C-terminus of the SNARE domain of STX1A. Particularly, mutations of D231 and R232 affected the fusogenicity of the vesicles. We propose that the C-terminal half of the SNARE domain of STX1A plays a crucial role in the stabilization of the RRP as well as in the clamping of spontaneous synaptic vesicle fusion through the regulation of the energetic landscape for fusion, while it also plays a covert role in the speed and efficacy of Ca2+-evoked release.
Collapse
Affiliation(s)
- Andrea Salazar Lázaro
- Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
| | - Thorsten Trimbuch
- Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
| | - Gülçin Vardar
- Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
| | - Christian Rosenmund
- Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
- NeuroCure Excellence ClusterBerlinGermany
| |
Collapse
|
9
|
Kádková A, Murach J, Østergaard M, Malsam A, Malsam J, Lolicato F, Nickel W, Söllner TH, Sørensen JB. SNAP25 disease mutations change the energy landscape for synaptic exocytosis due to aberrant SNARE interactions. eLife 2024; 12:RP88619. [PMID: 38411501 PMCID: PMC10911398 DOI: 10.7554/elife.88619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SNAP25 is one of three neuronal SNAREs driving synaptic vesicle exocytosis. We studied three mutations in SNAP25 that cause epileptic encephalopathy: V48F, and D166Y in the synaptotagmin-1 (Syt1)-binding interface, and I67N, which destabilizes the SNARE complex. All three mutations reduced Syt1-dependent vesicle docking to SNARE-carrying liposomes and Ca2+-stimulated membrane fusion in vitro and when expressed in mouse hippocampal neurons. The V48F and D166Y mutants (with potency D166Y > V48F) led to reduced readily releasable pool (RRP) size, due to increased spontaneous (miniature Excitatory Postsynaptic Current, mEPSC) release and decreased priming rates. These mutations lowered the energy barrier for fusion and increased the release probability, which are gain-of-function features not found in Syt1 knockout (KO) neurons; normalized mEPSC release rates were higher (potency D166Y > V48F) than in the Syt1 KO. These mutations (potency D166Y > V48F) increased spontaneous association to partner SNAREs, resulting in unregulated membrane fusion. In contrast, the I67N mutant decreased mEPSC frequency and evoked EPSC amplitudes due to an increase in the height of the energy barrier for fusion, whereas the RRP size was unaffected. This could be partly compensated by positive charges lowering the energy barrier. Overall, pathogenic mutations in SNAP25 cause complex changes in the energy landscape for priming and fusion.
Collapse
Affiliation(s)
- Anna Kádková
- Department of Neuroscience, University of CopenhagenCopenhagenDenmark
| | | | - Maiken Østergaard
- Department of Neuroscience, University of CopenhagenCopenhagenDenmark
| | - Andrea Malsam
- Heidelberg University Biochemistry CenterHeidelbergDenmark
| | - Jörg Malsam
- Heidelberg University Biochemistry CenterHeidelbergDenmark
| | - Fabio Lolicato
- Heidelberg University Biochemistry CenterHeidelbergDenmark
- Department of Physics, University of HelsinkiHelsinkiFinland
| | - Walter Nickel
- Heidelberg University Biochemistry CenterHeidelbergDenmark
| | | | | |
Collapse
|
10
|
López-Murcia FJ, Reim K, Taschenberger H. Complexins: Ubiquitously Expressed Presynaptic Regulators of SNARE-Mediated Synaptic Vesicle Fusion. ADVANCES IN NEUROBIOLOGY 2023; 33:255-285. [PMID: 37615870 DOI: 10.1007/978-3-031-34229-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitter release is a spatially and temporally tightly regulated process, which requires assembly and disassembly of SNARE complexes to enable the exocytosis of transmitter-loaded synaptic vesicles (SVs) at presynaptic active zones (AZs). While the requirement for the core SNARE machinery is shared by most membrane fusion processes, SNARE-mediated fusion at AZs is uniquely regulated to allow very rapid Ca2+-triggered SV exocytosis following action potential (AP) arrival. To enable a sub-millisecond time course of AP-triggered SV fusion, synapse-specific accessory SNARE-binding proteins are required in addition to the core fusion machinery. Among the known SNARE regulators specific for Ca2+-triggered SV fusion are complexins, which are almost ubiquitously expressed in neurons. This chapter summarizes the structural features of complexins, models for their molecular interactions with SNAREs, and their roles in SV fusion.
Collapse
Affiliation(s)
- Francisco José López-Murcia
- Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Kerstin Reim
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
11
|
Kobbersmed JRL, Berns MMM, Ditlevsen S, Sørensen JB, Walter AM. Allosteric stabilization of calcium and phosphoinositide dual binding engages several synaptotagmins in fast exocytosis. eLife 2022; 11:74810. [PMID: 35929728 PMCID: PMC9489213 DOI: 10.7554/elife.74810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/04/2022] [Indexed: 12/04/2022] Open
Abstract
Synaptic communication relies on the fusion of synaptic vesicles with the plasma membrane, which leads to neurotransmitter release. This exocytosis is triggered by brief and local elevations of intracellular Ca2+ with remarkably high sensitivity. How this is molecularly achieved is unknown. While synaptotagmins confer the Ca2+ sensitivity of neurotransmitter exocytosis, biochemical measurements reported Ca2+ affinities too low to account for synaptic function. However, synaptotagmin’s Ca2+ affinity increases upon binding the plasma membrane phospholipid PI(4,5)P2 and, vice versa, Ca2+ binding increases synaptotagmin’s PI(4,5)P2 affinity, indicating a stabilization of the Ca2+/PI(4,5)P2 dual-bound state. Here, we devise a molecular exocytosis model based on this positive allosteric stabilization and the assumptions that (1.) synaptotagmin Ca2+/PI(4,5)P2 dual binding lowers the energy barrier for vesicle fusion and that (2.) the effect of multiple synaptotagmins on the energy barrier is additive. The model, which relies on biochemically measured Ca2+/PI(4,5)P2 affinities and protein copy numbers, reproduced the steep Ca2+ dependency of neurotransmitter release. Our results indicate that each synaptotagmin engaging in Ca2+/PI(4,5)P2 dual-binding lowers the energy barrier for vesicle fusion by ~5 kBT and that allosteric stabilization of this state enables the synchronized engagement of several (typically three) synaptotagmins for fast exocytosis. Furthermore, we show that mutations altering synaptotagmin’s allosteric properties may show dominant-negative effects, even though synaptotagmins act independently on the energy barrier, and that dynamic changes of local PI(4,5)P2 (e.g. upon vesicle movement) dramatically impact synaptic responses. We conclude that allosterically stabilized Ca2+/PI(4,5)P2 dual binding enables synaptotagmins to exert their coordinated function in neurotransmission. For our brains and nervous systems to work properly, the nerve cells within them must be able to ‘talk’ to each other. They do this by releasing chemical signals called neurotransmitters which other cells can detect and respond to. Neurotransmitters are packaged in tiny membrane-bound spheres called vesicles. When a cell of the nervous system needs to send a signal to its neighbours, the vesicles fuse with the outer membrane of the cell, discharging their chemical contents for other cells to detect. The initial trigger for neurotransmitter release is a short, fast increase in the amount of calcium ions inside the signalling cell. One of the main proteins that helps regulate this process is synaptotagmin which binds to calcium and gives vesicles the signal to start unloading their chemicals. Despite acting as a calcium sensor, synaptotagmin actually has a very low affinity for calcium ions by itself, meaning that it would not be efficient for the protein to respond alone. Synpatotagmin is more likely to bind to calcium if it is attached to a molecule called PIP2, which is found in the membranes of cells The effect also occurs in reverse, as the binding of calcium to synaptotagmin increases the protein’s affinity for PIP2. However, how these three molecules – synaptotagmin, PIP2, and calcium – work together to achieve the physiological release of neurotransmitters is poorly understood. To help answer this question, Kobbersmed, Berns et al. set up a computer simulation of ‘virtual vesicles’ using available experimental data on synaptotagmin’s affinity with calcium and PIP2. In this simulation, synaptotagmin could only trigger the release of neurotransmitters when bound to both calcium and PIP2. The model also showed that each ‘complex’ of synaptotagmin/calcium/PIP2 made the vesicles more likely to fuse with the outer membrane of the cell – to the extent that only a handful of synaptotagmin molecules were needed to start neurotransmitter release from a single vesicle. These results shed new light on a biological process central to the way nerve cells communicate with each other. In the future, Kobbersmed, Berns et al. hope that this insight will help us to understand the cause of diseases where communication in the nervous system is impaired.
Collapse
Affiliation(s)
- Janus R L Kobbersmed
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manon M M Berns
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Ditlevsen
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Alexander M Walter
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Cheng XT, Huang N, Sheng ZH. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 2022; 110:1899-1923. [PMID: 35429433 PMCID: PMC9233091 DOI: 10.1016/j.neuron.2022.03.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
Abstract
Mitochondria generate ATP essential for neuronal growth, function, and regeneration. Due to their polarized structures, neurons face exceptional challenges to deliver mitochondria to and maintain energy homeostasis throughout long axons and terminal branches where energy is in high demand. Chronic mitochondrial dysfunction accompanied by bioenergetic failure is a pathological hallmark of major neurodegenerative diseases. Brain injury triggers acute mitochondrial damage and a local energy crisis that accelerates neuron death. Thus, mitochondrial maintenance defects and axonal energy deficits emerge as central problems in neurodegenerative disorders and brain injury. Recent studies have started to uncover the intrinsic mechanisms that neurons adopt to maintain (or reprogram) axonal mitochondrial density and integrity, and their bioenergetic capacity, upon sensing energy stress. In this review, we discuss recent advances in how neurons maintain a healthy pool of axonal mitochondria, as well as potential therapeutic strategies that target bioenergetic restoration to power neuronal survival, function, and regeneration.
Collapse
Affiliation(s)
- Xiu-Tang Cheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
13
|
Energy matters: presynaptic metabolism and the maintenance of synaptic transmission. Nat Rev Neurosci 2021; 23:4-22. [PMID: 34782781 DOI: 10.1038/s41583-021-00535-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/14/2022]
Abstract
Synaptic activity imposes large energy demands that are met by local adenosine triphosphate (ATP) synthesis through glycolysis and mitochondrial oxidative phosphorylation. ATP drives action potentials, supports synapse assembly and remodelling, and fuels synaptic vesicle filling and recycling, thus sustaining synaptic transmission. Given their polarized morphological features - including long axons and extensive branching in their terminal regions - neurons face exceptional challenges in maintaining presynaptic energy homeostasis, particularly during intensive synaptic activity. Recent studies have started to uncover the mechanisms and signalling pathways involved in activity-dependent and energy-sensitive regulation of presynaptic energetics, or 'synaptoenergetics'. These conceptual advances have established the energetic regulation of synaptic efficacy and plasticity as an exciting research field that is relevant to a range of neurological disorders associated with bioenergetic failure and synaptic dysfunction.
Collapse
|
14
|
O'Neil SD, Rácz B, Brown WE, Gao Y, Soderblom EJ, Yasuda R, Soderling SH. Action potential-coupled Rho GTPase signaling drives presynaptic plasticity. eLife 2021; 10:63756. [PMID: 34269176 PMCID: PMC8285108 DOI: 10.7554/elife.63756] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 07/06/2021] [Indexed: 12/30/2022] Open
Abstract
In contrast to their postsynaptic counterparts, the contributions of activity-dependent cytoskeletal signaling to presynaptic plasticity remain controversial and poorly understood. To identify and evaluate these signaling pathways, we conducted a proteomic analysis of the presynaptic cytomatrix using in vivo biotin identification (iBioID). The resultant proteome was heavily enriched for actin cytoskeleton regulators, including Rac1, a Rho GTPase that activates the Arp2/3 complex to nucleate branched actin filaments. Strikingly, we find Rac1 and Arp2/3 are closely associated with synaptic vesicle membranes in adult mice. Using three independent approaches to alter presynaptic Rac1 activity (genetic knockout, spatially restricted inhibition, and temporal optogenetic manipulation), we discover that this pathway negatively regulates synaptic vesicle replenishment at both excitatory and inhibitory synapses, bidirectionally sculpting short-term synaptic depression. Finally, we use two-photon fluorescence lifetime imaging to show that presynaptic Rac1 activation is coupled to action potentials by voltage-gated calcium influx. Thus, this study uncovers a previously unrecognized mechanism of actin-regulated short-term presynaptic plasticity that is conserved across excitatory and inhibitory terminals. It also provides a new proteomic framework for better understanding presynaptic physiology, along with a blueprint of experimental strategies to isolate the presynaptic effects of ubiquitously expressed proteins.
Collapse
Affiliation(s)
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Walter Evan Brown
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Yudong Gao
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Erik J Soderblom
- Department of Cell Biology, Duke University Medical Center, Durham, United States.,Proteomics and Metabolomics Shared Resource and Center for Genomic and Computational Biology, Duke University Medical Center, Durham, United States
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - Scott H Soderling
- Department of Neurobiology, Duke University Medical Center, Durham, United States.,Department of Cell Biology, Duke University Medical Center, Durham, United States
| |
Collapse
|
15
|
Huson V, Meijer M, Dekker R, Ter Veer M, Ruiter M, van Weering JR, Verhage M, Cornelisse LN. Post-tetanic potentiation lowers the energy barrier for synaptic vesicle fusion independently of Synaptotagmin-1. eLife 2020; 9:55713. [PMID: 32831174 PMCID: PMC7500951 DOI: 10.7554/elife.55713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/23/2020] [Indexed: 11/13/2022] Open
Abstract
Previously, we showed that modulation of the energy barrier for synaptic vesicle fusion boosts release rates supralinearly (Schotten, 2015). Here we show that mouse hippocampal synapses employ this principle to trigger Ca2+-dependent vesicle release and post-tetanic potentiation (PTP). We assess energy barrier changes by fitting release kinetics in response to hypertonic sucrose. Mimicking activation of the C2A domain of the Ca2+-sensor Synaptotagmin-1 (Syt1), by adding a positive charge (Syt1D232N) or increasing its hydrophobicity (Syt14W), lowers the energy barrier. Removing Syt1 or impairing its release inhibitory function (Syt19Pro) increases spontaneous release without affecting the fusion barrier. Both phorbol esters and tetanic stimulation potentiate synaptic strength, and lower the energy barrier equally well in the presence and absence of Syt1. We propose a model where tetanic stimulation activates Syt1-independent mechanisms that lower the energy barrier and act additively with Syt1-dependent mechanisms to produce PTP by exerting multiplicative effects on release rates.
Collapse
Affiliation(s)
- Vincent Huson
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands
| | - Marieke Meijer
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands
| | - Rien Dekker
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands
| | - Mirelle Ter Veer
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - Marvin Ruiter
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - Jan Rt van Weering
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - Lennart Niels Cornelisse
- Department of Functional Genomics, Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center- Location VUmc, Amsterdam, Netherlands
| |
Collapse
|
16
|
Ruiter M, Kádková A, Scheutzow A, Malsam J, Söllner TH, Sørensen JB. An Electrostatic Energy Barrier for SNARE-Dependent Spontaneous and Evoked Synaptic Transmission. Cell Rep 2020; 26:2340-2352.e5. [PMID: 30811985 DOI: 10.1016/j.celrep.2019.01.103] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/05/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
Information transfer across CNS synapses depends on the very low basal vesicle fusion rate and the ability to rapidly upregulate that rate upon Ca2+ influx. We show that local electrostatic repulsion participates in creating an energy barrier, which limits spontaneous synaptic transmission. The barrier amplitude is increased by negative charges and decreased by positive charges on the SNARE-complex surface. Strikingly, the effect of charges on the barrier is additive and this extends to evoked transmission, but with a shallower charge dependence. Action potential-driven synaptic release is equivalent to the abrupt addition of ∼35 positive charges to the fusion machine. Within an electrostatic model for triggering, the Ca2+ sensor synaptotagmin-1 contributes ∼18 charges by binding Ca2+, while also modulating the fusion barrier at rest. Thus, the energy barrier for synaptic vesicle fusion has a large electrostatic component, allowing synaptotagmin-1 to act as an electrostatic switch and modulator to trigger vesicle fusion.
Collapse
Affiliation(s)
- Marvin Ruiter
- Department of Neuroscience, Faculty of Health and Medical Sciences, 2200 Copenhagen N, University of Copenhagen, Copenhagen, Denmark
| | - Anna Kádková
- Department of Neuroscience, Faculty of Health and Medical Sciences, 2200 Copenhagen N, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Scheutzow
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Jörg Malsam
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Thomas H Söllner
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Jakob B Sørensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, 2200 Copenhagen N, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Kobbersmed JR, Grasskamp AT, Jusyte M, Böhme MA, Ditlevsen S, Sørensen JB, Walter AM. Rapid regulation of vesicle priming explains synaptic facilitation despite heterogeneous vesicle:Ca 2+ channel distances. eLife 2020; 9:51032. [PMID: 32077852 PMCID: PMC7145420 DOI: 10.7554/elife.51032] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/14/2020] [Indexed: 12/27/2022] Open
Abstract
Chemical synaptic transmission relies on the Ca2+-induced fusion of transmitter-laden vesicles whose coupling distance to Ca2+ channels determines synaptic release probability and short-term plasticity, the facilitation or depression of repetitive responses. Here, using electron- and super-resolution microscopy at the Drosophila neuromuscular junction we quantitatively map vesicle:Ca2+ channel coupling distances. These are very heterogeneous, resulting in a broad spectrum of vesicular release probabilities within synapses. Stochastic simulations of transmitter release from vesicles placed according to this distribution revealed strong constraints on short-term plasticity; particularly facilitation was difficult to achieve. We show that postulated facilitation mechanisms operating via activity-dependent changes of vesicular release probability (e.g. by a facilitation fusion sensor) generate too little facilitation and too much variance. In contrast, Ca2+-dependent mechanisms rapidly increasing the number of releasable vesicles reliably reproduce short-term plasticity and variance of synaptic responses. We propose activity-dependent inhibition of vesicle un-priming or release site activation as novel facilitation mechanisms. Cells in the nervous system of all animals communicate by releasing and sensing chemicals at contact points named synapses. The ‘talking’ (or pre-synaptic) cell stores the chemicals close to the synapse, in small spheres called vesicles. When the cell is activated, calcium ions flow in and interact with the release-ready vesicles, which then spill the chemicals into the synapse. In turn, the ‘listening’ (or post-synaptic) cell can detect the chemicals and react accordingly. When the pre-synaptic cell is activated many times in a short period, it can release a greater quantity of chemicals, allowing a bigger reaction in the post-synaptic cell. This phenomenon is known as facilitation, but it is still unclear how exactly it can take place. This is especially the case when many of the vesicles are not ready to respond, for example when they are too far from where calcium flows into the cell. Computer simulations have been created to model facilitation but they have assumed that all vesicles are placed at the same distance to the calcium entry point: Kobbersmed et al. now provide evidence that this assumption is incorrect. Two high-resolution imaging techniques were used to measure the actual distances between the vesicles and the calcium source in the pre-synaptic cells of fruit flies: this showed that these distances are quite variable – some vesicles sit much closer to the source than others. This information was then used to create a new computer model to simulate facilitation. The results from this computing work led Kobbersmed et al. to suggest that facilitation may take place because a calcium-based mechanism in the cell increases the number of vesicles ready to release their chemicals. This new model may help researchers to better understand how the cells in the nervous system work. Ultimately, this can guide experiments to investigate what happens when information processing at synapses breaks down, for example in diseases such as epilepsy.
Collapse
Affiliation(s)
- Janus Rl Kobbersmed
- Department of Mathematical Sciences, University of Copenhagen, København, Denmark.,Department of Neuroscience, University of Copenhagen, København, Denmark
| | - Andreas T Grasskamp
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP im CharitéCrossOver, Berlin, Germany
| | - Meida Jusyte
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP im CharitéCrossOver, Berlin, Germany.,Einstein Center for Neuroscience, Berlin, Germany
| | - Mathias A Böhme
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP im CharitéCrossOver, Berlin, Germany
| | - Susanne Ditlevsen
- Department of Mathematical Sciences, University of Copenhagen, København, Denmark
| | | | - Alexander M Walter
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP im CharitéCrossOver, Berlin, Germany.,Einstein Center for Neuroscience, Berlin, Germany
| |
Collapse
|
18
|
Wesseling JF. Considerations for Measuring Activity-Dependence of Recruitment of Synaptic Vesicles to the Readily Releasable Pool. Front Synaptic Neurosci 2019; 11:32. [PMID: 31824292 PMCID: PMC6879548 DOI: 10.3389/fnsyn.2019.00032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/06/2019] [Indexed: 11/29/2022] Open
Abstract
The connection strength of most chemical synapses changes dynamically during normal use as a function of the recent history of activity. The phenomenon is known as short-term synaptic plasticity or synaptic dynamics, and is thought to be involved in processing and filtering information as it is transmitted across the synaptic cleft. Multiple presynaptic mechanisms have been implicated, but large gaps remain in our understanding of how the mechanisms are modulated and how they interact. One important factor is the timing of recruitment of synaptic vesicles to a readily-releasable pool. A number of studies have concluded that activity and/or residual Ca2+ can accelerate the mechanism, but alternative explanations for some of the evidence have emerged. Here I review the methodology that we have developed for isolating the recruitment and the dependence on activity from other kinds of mechanisms that are activated concurrently.
Collapse
Affiliation(s)
- John F Wesseling
- CSIC/Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
19
|
Ruiter M, Houy S, Engholm-Keller K, Graham ME, Sørensen JB. SNAP-25 phosphorylation at Ser187 is not involved in Ca 2+ or phorbolester-dependent potentiation of synaptic release. Mol Cell Neurosci 2019; 102:103452. [PMID: 31794878 DOI: 10.1016/j.mcn.2019.103452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/13/2019] [Accepted: 11/29/2019] [Indexed: 11/25/2022] Open
Abstract
SNAP-25, one of the three SNARE-proteins responsible for synaptic release, can be phosphorylated by Protein Kinase C on Ser-187, close to the fusion pore. In neuroendocrine cells, this phosphorylation event potentiates vesicle recruitment into releasable pools, whereas the consequences of phosphorylation for synaptic release remain unclear. We mutated Ser-187 and expressed two mutants (S187C and S187E) in the context of the SNAP-25B-isoform in SNAP-25 knockout glutamatergic autaptic neurons. Whole-cell patch clamp recordings were performed to assess the effect of Ser-187 phosphorylation on synaptic transmission. Blocking phosphorylation by expressing the S187C mutant did not affect synapse density, basic evoked or spontaneous neurotransmission, the readily-releasable pool size or its Ca2+-independent or Ca2+-dependent replenishment. Furthermore, it did not affect the response to phorbol esters, which activate PKC. Expressing S187C in the context of the SNAP-25A isoform also did not affect synaptic transmission. Strikingly, the - potentially phosphomimetic - mutant S187E reduced spontaneous release and release probability, with the largest effect seen in the SNAP-25B isoform, showing that a negative charge in this position is detrimental for neurotransmission, in agreement with electrostatic fusion triggering. During the course of our experiments, we found that higher SNAP-25B expression levels led to decreased paired pulse potentiation, probably due to higher release probabilities. Under these conditions, the potentiation of evoked EPSCs by phorbol esters was followed by a persistent down-regulation, probably due to a ceiling effect. In conclusion, our results indicate that phosphorylation of Ser-187 in SNAP-25 is not involved in modulation of synaptic release by Ca2+ or phorbol esters.
Collapse
Affiliation(s)
- Marvin Ruiter
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3C, 2200 Copenhagen N, Denmark
| | - Sébastien Houy
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3C, 2200 Copenhagen N, Denmark
| | - Kasper Engholm-Keller
- Synapse Proteomics Group, Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead NSW 2145, New South Wales, Australia; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Mark E Graham
- Synapse Proteomics Group, Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead NSW 2145, New South Wales, Australia
| | - Jakob B Sørensen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3C, 2200 Copenhagen N, Denmark.
| |
Collapse
|
20
|
Dong W, Radulovic T, Goral RO, Thomas C, Suarez Montesinos M, Guerrero-Given D, Hagiwara A, Putzke T, Hida Y, Abe M, Sakimura K, Kamasawa N, Ohtsuka T, Young SM. CAST/ELKS Proteins Control Voltage-Gated Ca 2+ Channel Density and Synaptic Release Probability at a Mammalian Central Synapse. Cell Rep 2019; 24:284-293.e6. [PMID: 29996090 PMCID: PMC6372087 DOI: 10.1016/j.celrep.2018.06.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/25/2018] [Accepted: 06/05/2018] [Indexed: 12/29/2022] Open
Abstract
In the presynaptic terminal, the magnitude and location of Ca2+ entry through voltage-gated Ca2+ channels (VGCCs) regulate the efficacy of neurotransmitter release. However, how presynaptic active zone proteins control mammalian VGCC levels and organization is unclear. To address this, we deleted the CAST/ELKS protein family at the calyx of Held, a CaV2.1 channel-exclusive presynaptic terminal. We found that loss of CAST/ELKS reduces the CaV2.1 current density with concomitant reductions in CaV2.1 channel numbers and clusters. Surprisingly, deletion of CAST/ELKS increases release probability while decreasing the readily releasable pool, with no change in active zone ultrastructure. In addition, Ca2+ channel coupling is unchanged, but spontaneous release rates are elevated. Thus, our data identify distinct roles for CAST/ELKS as positive regulators of CaV2.1 channel density and suggest that they regulate release probability through a post-priming step that controls synaptic vesicle fusogenicity. Dong et al. show that CAST/ELKS have multiple roles in presynaptic function. These proteins positively regulate CaV2.1 channel abundance and negatively regulate release probability. The authors propose that CAST/ELKS regulate release probability at a step in synaptic vesicle release that regulates the energy barrier for synaptic vesicle fusion.
Collapse
Affiliation(s)
- Wei Dong
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA; Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Tamara Radulovic
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - R Oliver Goral
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Connon Thomas
- Max Planck Florida Institute for Neuroscience Electron Microscopy Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Monica Suarez Montesinos
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Debbie Guerrero-Given
- Max Planck Florida Institute for Neuroscience Electron Microscopy Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Akari Hagiwara
- Department of Biochemistry, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Travis Putzke
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Yamato Hida
- Department of Biochemistry, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Naomi Kamasawa
- Max Planck Florida Institute for Neuroscience Electron Microscopy Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Toshihisa Ohtsuka
- Department of Biochemistry, University of Yamanashi, Yamanashi 409-3898, Japan.
| | - Samuel M Young
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA; Department of Otolaryngology, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA; Aging Mind Brain Initiative, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
21
|
Synaptotagmin-1 enables frequency coding by suppressing asynchronous release in a temperature dependent manner. Sci Rep 2019; 9:11341. [PMID: 31383906 PMCID: PMC6683208 DOI: 10.1038/s41598-019-47487-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023] Open
Abstract
To support frequency-coded information transfer, mammalian synapses tightly synchronize neurotransmitter release to action potentials (APs). However, release desynchronizes during AP trains, especially at room temperature. Here we show that suppression of asynchronous release by Synaptotagmin-1 (Syt1), but not release triggering, is highly temperature sensitive, and enhances synchronous release during high-frequency stimulation. In Syt1-deficient synapses, asynchronous release increased with temperature, opposite to wildtype synapses. Mutations in Syt1 C2B-domain polybasic stretch (Syt1 K326Q,K327Q,K331Q) did not affect synchronization during sustained activity, while the previously observed reduced synchronous response to a single AP was confirmed. However, an inflexible linker between the C2-domains (Syt1 9Pro) reduced suppression, without affecting synchronous release upon a single AP. Syt1 9Pro expressing synapses showed impaired synchronization during AP trains, which was rescued by buffering global Ca2+ to prevent asynchronous release. Hence, frequency coding relies on Syt1's temperature sensitive suppression of asynchronous release, an aspect distinct from its known vesicle recruitment and triggering functions.
Collapse
|
22
|
How to Build a Fast and Highly Sensitive Sound Detector That Remains Robust to Temperature Shifts. J Neurosci 2019; 39:7260-7276. [PMID: 31315946 DOI: 10.1523/jneurosci.2510-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 06/13/2019] [Accepted: 07/09/2019] [Indexed: 12/26/2022] Open
Abstract
Frogs must have sharp hearing abilities during the warm summer months to successfully find mating partners. This study aims to understand how frog hair cell ribbon-type synapses preserve both sensitivity and temporal precision during temperature changes. Under room (∼24°C) and high (∼32°C) temperature, we performed in vitro patch-clamp recordings of hair cells and their afferent fibers in amphibian papillae of either male or female bullfrogs. Afferent fibers exhibited a wide heterogeneity in membrane input resistance (Rin) from 100 mΩ to 1000 mΩ, which may contribute to variations in spike threshold and firing frequency. At higher temperatures, most fibers increased their frequency of spike firing due to an increase in spontaneous EPSC frequencies. Hair cell resting membrane potential (Vrest) remained surprisingly stable during temperature increases, because Ca2+ influx and K+ outflux increased simultaneously. This increase in Ca2+ current likely enhanced spontaneous EPSC frequencies. These larger "leak currents" at Vrest also lowered Rin and produced higher electrical resonant frequencies. Lowering Rin will reduce the hair cells receptor potential and presumably moderate the systems sensitivity. Using membrane capacitance measurements, we suggest that hair cells can partially compensate for this reduced sensitivity by increasing exocytosis efficiency and the size of the readily releasable pool of synaptic vesicles. Furthermore, paired recordings of hair cells and their afferent fibers showed that synaptic delays shortened and multivesicular release becomes more synchronous at higher temperatures, which should improve temporal precision. Together, our results explain many previous in vivo observations on the temperature dependence of spikes in auditory nerves.SIGNIFICANCE STATEMENT The vertebrate inner ear detects and transmits auditory information over a broad dynamic range of sound frequency and intensity. It achieves remarkable sensitivity to soft sounds and precise frequency selectivity. How does the ear of cold-blooded vertebrates maintain its performance level as temperature changes? More specifically, how does the hair cell to afferent fiber synapse in bullfrog amphibian papilla adjust to a wide range of physiological temperatures without losing its sensitivity and temporal fidelity to sound signals? This study uses in vitro experiments to reveal the biophysical mechanisms that explain many observations made from in vivo auditory nerve fiber recordings. We find that higher temperature facilitates vesicle exocytosis and electrical tuning to higher sound frequencies, which benefits sensitivity and selectivity.
Collapse
|
23
|
Guzman GA, Guzman RE, Jordan N, Hidalgo P. A Tripartite Interaction Among the Calcium Channel α 1- and β-Subunits and F-Actin Increases the Readily Releasable Pool of Vesicles and Its Recovery After Depletion. Front Cell Neurosci 2019; 13:125. [PMID: 31130843 PMCID: PMC6509170 DOI: 10.3389/fncel.2019.00125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/13/2019] [Indexed: 11/13/2022] Open
Abstract
Neurotransmitter release is initiated by the influx of Ca2+via voltage-gated calcium channels. The accessory β-subunit (CaVβ) of these channels shapes synaptic transmission by associating with the pore-forming subunit (CaVα1) and up-regulating presynaptic calcium currents. Besides CaVα1, CaVβ interacts with several partners including actin filaments (F-actin). These filaments are known to associate with synaptic vesicles (SVs) at the presynaptic terminals and support their translocation within different pools, but the role of CaVβ/F-actin association on synaptic transmission has not yet been explored. We here study how CaVβ4, the major calcium channel β isoform in mamalian brain, modifies synaptic transmission in concert with F-actin in cultured hippocampal neurons. We analyzed the effect of exogenous CaVβ4 before and after pharmacological disruption of the actin cytoskeleton and dissected calcium channel-dependent and -independent functions by comparing the effects of the wild-type subunit with the one bearing a double mutation that impairs binding to CaVα1. We found that exogenously expressed wild-type CaVβ4 enhances spontaneous and depolarization-evoked excitatory postsynaptic currents (EPSCs) without altering synaptogenesis. CaVβ4 increases the size of the readily releasable pool (RRP) of SVs at resting conditions and accelerates their recovery after depletion. The enhanced neurotransmitter release induced by CaVβ4 is abolished upon disruption of the actin cytoskeleton. The CaVα1 association-deficient CaVβ4 mutant associates with actin filaments, but neither alters postsynaptic responses nor the time course of the RRP recovery. Furthermore, this mutant protein preserves the ability to increase the RRP size. These results indicate that the interplay between CaVβ4 and F-actin also support the recruitment of SVs to the RRP in a CaVα1-independent manner. Our studies show an emerging role of CaVβ in determining SV maturation toward the priming state and its replenishment after release. We envision that this subunit plays a role in coupling exocytosis to endocytosis during the vesicle cycle.
Collapse
Affiliation(s)
- Gustavo A Guzman
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Raul E Guzman
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Nadine Jordan
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Patricia Hidalgo
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany.,Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
24
|
An Autaptic Culture System for Standardized Analyses of iPSC-Derived Human Neurons. Cell Rep 2019; 27:2212-2228.e7. [DOI: 10.1016/j.celrep.2019.04.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/05/2019] [Accepted: 04/10/2019] [Indexed: 11/17/2022] Open
|
25
|
Fenske P, Grauel MK, Brockmann MM, Dorrn AL, Trimbuch T, Rosenmund C. Autaptic cultures of human induced neurons as a versatile platform for studying synaptic function and neuronal morphology. Sci Rep 2019; 9:4890. [PMID: 30894602 PMCID: PMC6427022 DOI: 10.1038/s41598-019-41259-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/05/2019] [Indexed: 02/08/2023] Open
Abstract
Recently developed technology to differentiate induced pluripotent stem cells (iPSCs) into human induced neurons (iNs) provides an exciting opportunity to study the function of human neurons. However, functional characterisations of iNs have been hampered by the reliance on mass culturing protocols which do not allow assessment of synaptic release characteristics and neuronal morphology at the individual cell level with quantitative precision. Here, we have developed for the first time a protocol to generate autaptic cultures of iPSC-derived iNs. We show that our method efficiently generates mature, autaptic iNs with robust spontaneous and action potential-driven synaptic transmission. The synaptic responses are sensitive to modulation by metabotropic receptor agonists as well as potentiation by acute phorbol ester application. Finally, we demonstrate loss of evoked and spontaneous release by Unc13A knockdown. This culture system provides a versatile platform allowing for quantitative and integrative assessment of morphophysiological and molecular parameters underlying human synaptic transmission.
Collapse
Affiliation(s)
- Pascal Fenske
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin, 10117, Berlin, Germany
| | - M Katharina Grauel
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin, 10117, Berlin, Germany
| | - Marisa M Brockmann
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin, 10117, Berlin, Germany
| | - Anja L Dorrn
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin, 10117, Berlin, Germany
| | - Thorsten Trimbuch
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin, 10117, Berlin, Germany
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117, Berlin, Germany. .,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin, 10117, Berlin, Germany. .,Berlin Institute of Health, Anna-Louise-Karsch-Straße 2, 10178, Berlin, Germany.
| |
Collapse
|
26
|
|
27
|
Emperador-Melero J, Huson V, van Weering J, Bollmann C, Fischer von Mollard G, Toonen RF, Verhage M. Vti1a/b regulate synaptic vesicle and dense core vesicle secretion via protein sorting at the Golgi. Nat Commun 2018; 9:3421. [PMID: 30143604 PMCID: PMC6109172 DOI: 10.1038/s41467-018-05699-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/19/2018] [Indexed: 12/27/2022] Open
Abstract
The SNAREs Vti1a/1b are implicated in regulated secretion, but their role relative to canonical exocytic SNAREs remains elusive. Here, we show that synaptic vesicle and dense-core vesicle (DCV) secretion is indeed severely impaired in Vti1a/b-deficient neurons. The synaptic levels of proteins that mediate secretion were reduced, down to 50% for the exocytic SNARE SNAP25. The delivery of SNAP25 and DCV-cargo into axons was decreased and these molecules accumulated in the Golgi. These defects were rescued by either Vti1a or Vti1b expression. Distended Golgi cisternae and clear vacuoles were observed in Vti1a/b-deficient neurons. The normal non-homogeneous distribution of DCV-cargo inside the Golgi was lost. Cargo trafficking out of, but not into the Golgi, was impaired. Finally, retrograde Cholera Toxin trafficking, but not Sortilin/Sorcs1 distribution, was compromised. We conclude that Vti1a/b support regulated secretion by sorting secretory cargo and synaptic secretion machinery components at the Golgi.
Collapse
Affiliation(s)
- Javier Emperador-Melero
- Departments of Functional Genomics, Clinical Genetics, VUmc, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
| | - Vincent Huson
- Clinical Genetics, VUmc, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
| | - Jan van Weering
- Clinical Genetics, VUmc, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
| | - Christian Bollmann
- Department of Biochemistry III, Bielefeld University, 33615, Bielefeld, Germany
| | | | - Ruud F Toonen
- Departments of Functional Genomics, Clinical Genetics, VUmc, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Departments of Functional Genomics, Clinical Genetics, VUmc, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands. .,Clinical Genetics, VUmc, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Chen C, Satterfield R, Young SM, Jonas P. Triple Function of Synaptotagmin 7 Ensures Efficiency of High-Frequency Transmission at Central GABAergic Synapses. Cell Rep 2018; 21:2082-2089. [PMID: 29166601 PMCID: PMC5863544 DOI: 10.1016/j.celrep.2017.10.122] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/06/2017] [Accepted: 10/29/2017] [Indexed: 12/21/2022] Open
Abstract
Synaptotagmin 7 (Syt7) is thought to be a Ca2+ sensor that mediates asynchronous transmitter release and facilitation at synapses. However, Syt7 is strongly expressed in fast-spiking, parvalbumin-expressing GABAergic interneurons, and the output synapses of these neurons produce only minimal asynchronous release and show depression rather than facilitation. To resolve this apparent contradiction, we examined the effects of genetic elimination of Syt7 on synaptic transmission at the GABAergic basket cell (BC)-Purkinje cell (PC) synapse in cerebellum. Our results indicate that at the BC-PC synapse, Syt7 contributes to asynchronous release, pool replenishment, and facilitation. In combination, these three effects ensure efficient transmitter release during high-frequency activity and guarantee frequency independence of inhibition. Our results identify a distinct function of Syt7: ensuring the efficiency of high-frequency inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Chong Chen
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, A-3400 Klosterneuburg, Austria
| | - Rachel Satterfield
- Max Planck Florida Institute for Neuroscience, Research Group Molecular Mechanisms of Synaptic Function, Jupiter, FL 33458, USA
| | - Samuel M Young
- Max Planck Florida Institute for Neuroscience, Research Group Molecular Mechanisms of Synaptic Function, Jupiter, FL 33458, USA; Department of Anatomy and Cell Biology, Department of Otolaryngology, Iowa Neuroscience Institute, Aging Mind Brain Initiative, University of Iowa, Iowa City, IA 52242, USA
| | - Peter Jonas
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, A-3400 Klosterneuburg, Austria.
| |
Collapse
|
29
|
Böhme MA, Grasskamp AT, Walter AM. Regulation of synaptic release-site Ca 2+ channel coupling as a mechanism to control release probability and short-term plasticity. FEBS Lett 2018; 592:3516-3531. [PMID: 29993122 DOI: 10.1002/1873-3468.13188] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022]
Abstract
Synaptic transmission relies on the rapid fusion of neurotransmitter-containing synaptic vesicles (SVs), which happens in response to action potential (AP)-induced Ca2+ influx at active zones (AZs). A highly conserved molecular machinery cooperates at SV-release sites to mediate SV plasma membrane attachment and maturation, Ca2+ sensing, and membrane fusion. Despite this high degree of conservation, synapses - even within the same organism, organ or neuron - are highly diverse regarding the probability of APs to trigger SV fusion. Additionally, repetitive activation can lead to either strengthening or weakening of transmission. In this review, we discuss mechanisms controlling release probability and this short-term plasticity. We argue that an important layer of control is exerted by evolutionarily conserved AZ scaffolding proteins, which determine the coupling distance between SV fusion sites and voltage-gated Ca2+ channels (VGCC) and, thereby, shape synapse-specific input/output behaviors. We propose that AZ-scaffold modifications may occur to adapt the coupling distance during synapse maturation and plastic regulation of synapse strength.
Collapse
Affiliation(s)
- Mathias A Böhme
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Alexander M Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| |
Collapse
|
30
|
Tejero R, Lopez-Manzaneda M, Arumugam S, Tabares L. Synaptotagmin-2, and -1, linked to neurotransmission impairment and vulnerability in Spinal Muscular Atrophy. Hum Mol Genet 2018; 25:4703-4716. [PMID: 28173138 DOI: 10.1093/hmg/ddw297] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/19/2023] Open
Abstract
Spinal muscular atrophy (SMA) is the most frequent genetic cause of infant mortality. The disease is characterized by progressive muscle weakness and paralysis of axial and proximal limb muscles. It is caused by homozygous loss or mutation of the SMN1 gene, which codes for the Survival Motor Neuron (SMN) protein. In mouse models of the disease, neurotransmitter release is greatly impaired, but the molecular mechanisms of the synaptic dysfunction and the basis of the selective muscle vulnerability are unknown. In the present study, we investigated these open questions by comparing the molecular and functional properties of nerve terminals in severely and mildly affected muscles in the SMNΔ7 mouse model. We discovered that synaptotagmin-1 (Syt1) was developmentally downregulated in nerve terminals of highly affected muscles but not in low vulnerable muscles. Additionally, the expression levels of synaptotagmin-2 (Syt2), and its interacting protein, synaptic vesicle protein 2 (SV2) B, were reduced in proportion to the degree of muscle vulnerability while other synaptic proteins, such as syntaxin-1B (Stx1B) and synaptotagmin-7 (Syt7), were not affected. Consistently with the extremely low levels of both Syt-isoforms, and SV2B, in most affected neuromuscular synapses, the functional analysis of neurotransmission revealed highly reduced evoked release, altered short-term plasticity, low release probability, and inability to modulate normally the number of functional release sites. Together, we propose that the strong reduction of Syt2 and SV2B are key factors of the functional synaptic alteration and that the physiological downregulation of Syt1 plays a determinant role in muscle vulnerability in SMA.
Collapse
Affiliation(s)
- Rocío Tejero
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sánchez Pizjuán, 4. 41009 Seville, Spain
| | - Mario Lopez-Manzaneda
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sánchez Pizjuán, 4. 41009 Seville, Spain
| | - Saravanan Arumugam
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sánchez Pizjuán, 4. 41009 Seville, Spain
| | - Lucía Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sánchez Pizjuán, 4. 41009 Seville, Spain
| |
Collapse
|
31
|
Walter AM, Böhme MA, Sigrist SJ. Vesicle release site organization at synaptic active zones. Neurosci Res 2017; 127:3-13. [PMID: 29275162 DOI: 10.1016/j.neures.2017.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
Abstract
Information transfer between nerve cells (neurons) forms the basis of behavior, emotion, and survival. Signal transduction from one neuron to another occurs at synapses, and relies on both electrical and chemical signal propagation. At chemical synapses, incoming electrical action potentials trigger the release of chemical neurotransmitters that are sensed by the connected cell and here reconverted to an electrical signal. The presynaptic conversion of an electrical to a chemical signal is an energy demanding, highly regulated process that relies on a complex, evolutionarily conserved molecular machinery. Here, we review the biophysical characteristics of this process, the current knowledge of the molecules operating in this reaction and genetic specializations that may have evolved to shape inter-neuronal signaling.
Collapse
Affiliation(s)
- Alexander M Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany.
| | - Mathias A Böhme
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany
| | - Stephan J Sigrist
- Freie Universität Berlin, Institute for Biology/Genetics, Takustraße 6, 14195 Berlin, Germany; NeuroCure, Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
32
|
Meijer M, Dörr B, Lammertse HC, Blithikioti C, van Weering JR, Toonen RF, Söllner TH, Verhage M. Tyrosine phosphorylation of Munc18-1 inhibits synaptic transmission by preventing SNARE assembly. EMBO J 2017; 37:300-320. [PMID: 29150433 PMCID: PMC5770875 DOI: 10.15252/embj.201796484] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 11/17/2022] Open
Abstract
Tyrosine kinases are important regulators of synaptic strength. Here, we describe a key component of the synaptic vesicle release machinery, Munc18‐1, as a phosphorylation target for neuronal Src family kinases (SFKs). Phosphomimetic Y473D mutation of a SFK phosphorylation site previously identified by brain phospho‐proteomics abolished the stimulatory effect of Munc18‐1 on SNARE complex formation (“SNARE‐templating”) and membrane fusion in vitro. Furthermore, priming but not docking of synaptic vesicles was disrupted in hippocampal munc18‐1‐null neurons expressing Munc18‐1Y473D. Synaptic transmission was temporarily restored by high‐frequency stimulation, as well as by a Munc18‐1 mutation that results in helix 12 extension, a critical conformational step in vesicle priming. On the other hand, expression of non‐phosphorylatable Munc18‐1 supported normal synaptic transmission. We propose that SFK‐dependent Munc18‐1 phosphorylation may constitute a potent, previously unknown mechanism to shut down synaptic transmission, via direct occlusion of a Synaptobrevin/VAMP2 binding groove and subsequent hindrance of conformational changes in domain 3a responsible for vesicle priming. This would strongly interfere with the essential post‐docking SNARE‐templating role of Munc18‐1, resulting in a largely abolished pool of releasable synaptic vesicles.
Collapse
Affiliation(s)
- Marieke Meijer
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA) VU University Medical Center, Amsterdam, The Netherlands
| | - Bernhard Dörr
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Hanna Ca Lammertse
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA) VU University Amsterdam, Amsterdam, The Netherlands
| | - Chrysanthi Blithikioti
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA) VU University Amsterdam, Amsterdam, The Netherlands
| | - Jan Rt van Weering
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA) VU University Medical Center, Amsterdam, The Netherlands
| | - Ruud Fg Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA) VU University Amsterdam, Amsterdam, The Netherlands
| | - Thomas H Söllner
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Matthijs Verhage
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA) VU University Medical Center, Amsterdam, The Netherlands .,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA) VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Reddy-Alla S, Böhme MA, Reynolds E, Beis C, Grasskamp AT, Mampell MM, Maglione M, Jusyte M, Rey U, Babikir H, McCarthy AW, Quentin C, Matkovic T, Bergeron DD, Mushtaq Z, Göttfert F, Owald D, Mielke T, Hell SW, Sigrist SJ, Walter AM. Stable Positioning of Unc13 Restricts Synaptic Vesicle Fusion to Defined Release Sites to Promote Synchronous Neurotransmission. Neuron 2017; 95:1350-1364.e12. [DOI: 10.1016/j.neuron.2017.08.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 05/10/2017] [Accepted: 08/09/2017] [Indexed: 12/24/2022]
|
34
|
Interactions Between SNAP-25 and Synaptotagmin-1 Are Involved in Vesicle Priming, Clamping Spontaneous and Stimulating Evoked Neurotransmission. J Neurosci 2017; 36:11865-11880. [PMID: 27881774 DOI: 10.1523/jneurosci.1011-16.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 01/20/2023] Open
Abstract
Whether interactions between synaptotagmin-1 (syt-1) and the soluble NSF attachment protein receptors (SNAREs) are required during neurotransmission is debated. We examined five SNAP-25 mutations designed to interfere with syt-1 interactions. One mutation, D51/E52/E55A, targeted negative charges within region II of the primary interface (Zhou et al., 2015); two mutations targeted region I (D166A and D166/E170A) and one mutation targeted both (D51/E52/E55/D166A). The final mutation (D186/D193A) targeted C-terminal residues not expected to interact with syt-1. An in vitro assay showed that the region I, region II, and region I+II (D51/E52/E55/D166A) mutants markedly reduced the attachment between syt-1 and t-SNARE-carrying vesicles in the absence of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. In the presence of PI(4,5)P2, vesicle attachment was unaffected by mutation. When expressed in Snap-25-null mouse autaptic neurons, region I mutations reduced the size of the readily releasable pool of vesicles, whereas the region II mutation reduced vesicular release probability. Combining both in the D51/E52/E55/D166A mutation abrogated evoked release. These data point to a division of labor between region I (vesicle priming) and region II (evoked release). Spontaneous release was disinhibited by region I mutations and found to correlate with defective complexin (Cpx) clamping in an in vitro fusion assay, pointing to an interdependent role of synaptotagmin and Cpx in release clamping. Mutation in region II (D51/E52/E55A) also unclamped release, but this effect could be overcome by synaptotagmin overexpression, arguing against an obligatory role in clamping. We conclude that three synaptic release functions of syt-1, vesicle priming, spontaneous release clamping, and evoked release triggering, depend on direct SNARE complex interaction. SIGNIFICANCE STATEMENT The function of synaptotagmin-1 (syt-1):soluble NSF attachment protein receptor (SNARE) interactions during neurotransmission remains unclear. We mutated SNAP-25 within the recently identified region I and region II of the primary synaptotagmin:SNARE interface. Using in vitro assays and rescue experiments in autaptic neurons, we show that interactions within region II of the primary interface are necessary for synchronized calcium-triggered release, whereas region I is involved in vesicle priming. Spontaneous release was disinhibited by region I mutation and found to correlate with defective complexin (Cpx) clamping in vitro, pointing to an interdependent role of synaptotagmin and Cpx in release clamping. Therefore, vesicle priming, clamping spontaneous release, and eliciting evoked release are three different functions of syt-1 that involve different interaction modes with the SNARE complex.
Collapse
|
35
|
Kaeser PS, Regehr WG. The readily releasable pool of synaptic vesicles. Curr Opin Neurobiol 2017; 43:63-70. [PMID: 28103533 DOI: 10.1016/j.conb.2016.12.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/26/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022]
Abstract
Each presynaptic bouton is densely packed with many vesicles, only a small fraction of which are available for immediate release. These vesicles constitute the readily releasable pool (RRP). The RRP size, and the probability of release of each vesicle within the RRP, together determine synaptic strength. Here, we discuss complications and recent advances in determining the size of the physiologically relevant RRP. We consider molecular mechanisms to generate and regulate the RRP, and discuss the relationship between vesicle docking and the RRP. We conclude that many RRP vesicles are docked, that some docked vesicles may not be part of the RRP, and that undocked vesicles can contribute to the RRP by rapid recruitment to unoccupied, molecularly activated ready-to-release sites.
Collapse
Affiliation(s)
- Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, United States.
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, United States.
| |
Collapse
|
36
|
Pinheiro PS, Houy S, Sørensen JB. C2-domain containing calcium sensors in neuroendocrine secretion. J Neurochem 2016; 139:943-958. [DOI: 10.1111/jnc.13865] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/17/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Paulo S. Pinheiro
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Sébastien Houy
- Department of Neuroscience and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Jakob B. Sørensen
- Department of Neuroscience and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
37
|
Böhme MA, Beis C, Reddy-Alla S, Reynolds E, Mampell MM, Grasskamp AT, Lützkendorf J, Bergeron DD, Driller JH, Babikir H, Göttfert F, Robinson IM, O'Kane CJ, Hell SW, Wahl MC, Stelzl U, Loll B, Walter AM, Sigrist SJ. Active zone scaffolds differentially accumulate Unc13 isoforms to tune Ca2+ channel–vesicle coupling. Nat Neurosci 2016; 19:1311-20. [DOI: 10.1038/nn.4364] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/20/2016] [Indexed: 01/05/2023]
|
38
|
Superpriming of synaptic vesicles as a common basis for intersynapse variability and modulation of synaptic strength. Proc Natl Acad Sci U S A 2016; 113:E4548-57. [PMID: 27432975 DOI: 10.1073/pnas.1606383113] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glutamatergic synapses show large variations in strength and short-term plasticity (STP). We show here that synapses displaying an increased strength either after posttetanic potentiation (PTP) or through activation of the phospholipase-C-diacylglycerol pathway share characteristic properties with intrinsically strong synapses, such as (i) pronounced short-term depression (STD) during high-frequency stimulation; (ii) a conversion of that STD into a sequence of facilitation followed by STD after a few conditioning stimuli at low frequency; (iii) an equalizing effect of such conditioning stimulation, which reduces differences among synapses and abolishes potentiation; and (iv) a requirement of long periods of rest for reconstitution of the original STP pattern. These phenomena are quantitatively described by assuming that a small fraction of "superprimed" synaptic vesicles are in a state of elevated release probability (p ∼ 0.5). This fraction is variable in size among synapses (typically about 30%), but increases after application of phorbol ester or during PTP. The majority of vesicles, released during repetitive stimulation, have low release probability (p ∼ 0.1), are relatively uniform in number across synapses, and are rapidly recruited. In contrast, superprimed vesicles need several seconds to be regenerated. They mediate enhanced synaptic strength at the onset of burst-like activity, the impact of which is subject to modulation by slow modulatory transmitter systems.
Collapse
|
39
|
Trimbuch T, Rosenmund C. Should I stop or should I go? The role of complexin in neurotransmitter release. Nat Rev Neurosci 2016; 17:118-25. [PMID: 26806630 DOI: 10.1038/nrn.2015.16] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
When it comes to fusion with the neuronal cell membrane, does a synaptic vesicle have a choice whether to stop or to go? Recent work suggests that complexin, a tiny protein found within the synaptic terminal, contributes to the mechanism through which this choice is made. How complexin plays this consulting part and which synaptic vesicle proteins it interacts with remain open questions. Indeed, studies in mice and flies have led to the proposal of different models of complexin function. We suggest that understanding the modular nature of complexin will help us to unpick its role in synaptic vesicle release.
Collapse
Affiliation(s)
- Thorsten Trimbuch
- Neuroscience Research Center, Charité Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Christian Rosenmund
- Neuroscience Research Center, Charité Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| |
Collapse
|
40
|
Phosphorylation of synaptotagmin-1 controls a post-priming step in PKC-dependent presynaptic plasticity. Proc Natl Acad Sci U S A 2016; 113:5095-100. [PMID: 27091977 DOI: 10.1073/pnas.1522927113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Presynaptic activation of the diacylglycerol (DAG)/protein kinase C (PKC) pathway is a central event in short-term synaptic plasticity. Two substrates, Munc13-1 and Munc18-1, are essential for DAG-induced potentiation of vesicle priming, but the role of most presynaptic PKC substrates is not understood. Here, we show that a mutation in synaptotagmin-1 (Syt1(T112A)), which prevents its PKC-dependent phosphorylation, abolishes DAG-induced potentiation of synaptic transmission in hippocampal neurons. This mutant also reduces potentiation of spontaneous release, but only if alternative Ca(2+) sensors, Doc2A/B proteins, are absent. However, unlike mutations in Munc13-1 or Munc18-1 that prevent DAG-induced potentiation, the synaptotagmin-1 mutation does not affect paired-pulse facilitation. Furthermore, experiments to probe vesicle priming (recovery after train stimulation and dual application of hypertonic solutions) also reveal no abnormalities. Expression of synaptotagmin-2, which lacks a seven amino acid sequence that contains the phosphorylation site in synaptotagmin-1, or a synaptotagmin-1 variant with these seven residues removed (Syt1(Δ109-116)), supports normal DAG-induced potentiation. These data suggest that this seven residue sequence in synaptotagmin-1 situated in the linker between the transmembrane and C2A domains is inhibitory in the unphosphorylated state and becomes permissive of potentiation upon phosphorylation. We conclude that synaptotagmin-1 phosphorylation is an essential step in PKC-dependent potentiation of synaptic transmission, acting downstream of the two other essential DAG/PKC substrates, Munc13-1 and Munc18-1.
Collapse
|
41
|
Körber C, Kuner T. Molecular Machines Regulating the Release Probability of Synaptic Vesicles at the Active Zone. Front Synaptic Neurosci 2016; 8:5. [PMID: 26973506 PMCID: PMC4773589 DOI: 10.3389/fnsyn.2016.00005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/17/2016] [Indexed: 11/13/2022] Open
Abstract
The fusion of synaptic vesicles (SVs) with the plasma membrane of the active zone (AZ) upon arrival of an action potential (AP) at the presynaptic compartment is a tightly regulated probabilistic process crucial for information transfer. The probability of a SV to release its transmitter content in response to an AP, termed release probability (Pr), is highly diverse both at the level of entire synapses and individual SVs at a given synapse. Differences in Pr exist between different types of synapses, between synapses of the same type, synapses originating from the same axon and even between different SV subpopulations within the same presynaptic terminal. The Pr of SVs at the AZ is set by a complex interplay of different presynaptic properties including the availability of release-ready SVs, the location of the SVs relative to the voltage-gated calcium channels (VGCCs) at the AZ, the magnitude of calcium influx upon arrival of the AP, the buffering of calcium ions as well as the identity and sensitivity of the calcium sensor. These properties are not only interconnected, but can also be regulated dynamically to match the requirements of activity patterns mediated by the synapse. Here, we review recent advances in identifying molecules and molecular machines taking part in the determination of vesicular Pr at the AZ.
Collapse
Affiliation(s)
- Christoph Körber
- Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| |
Collapse
|