1
|
Valencia AP, Pharaoh G, Brandao AF, Marcinek DJ. High-Resolution Fluorespirometry to Assess Dynamic Changes in Mitochondrial Membrane Potential in Human Immune Cells. J Vis Exp 2024:10.3791/66863. [PMID: 38856231 PMCID: PMC11257029 DOI: 10.3791/66863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Peripheral mononuclear cells (PBMCs) exhibit robust changes in mitochondrial respiratory capacity in response to health and disease. While these changes do not always reflect what occurs in other tissues, such as skeletal muscle, these cells are an accessible and valuable source of viable mitochondria from human subjects. PBMCs are exposed to systemic signals that impact their bioenergetic state. Thus, expanding our tools to interrogate mitochondrial metabolism in this population will elucidate mechanisms related to disease progression. Functional assays of mitochondria are often limited to using respiratory outputs following maximal substrate, inhibitor, and uncoupler concentrations to determine the full range of respiratory capacity, which may not be achievable in vivo. The conversion of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) by ATP-synthase results in a decrease in mitochondrial membrane potential (mMP) and an increase in oxygen consumption. To provide a more integrated analysis of mitochondrial dynamics, this article describes the use of high-resolution fluorespirometry to measure the simultaneous response of oxygen consumption and mitochondrial membrane potential (mMP) to physiologically relevant concentrations of ADP. This technique uses tetramethylrhodamine methylester (TMRM) to measure mMP polarization in response to ADP titrations following maximal hyperpolarization with complex I and II substrates. This technique can be used to quantify how changes in health status, such as aging and metabolic disease, affect the sensitivity of mitochondrial response to energy demand in PBMCs, T-cells, and monocytes from human subjects.
Collapse
Affiliation(s)
- Ana P Valencia
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington;
| | | | - Arthur F Brandao
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington
| | - David J Marcinek
- Department of Radiology, University of Washington; Department of Laboratory Medicine and Pathology, University of Washington;
| |
Collapse
|
2
|
Lu Y, Wu YW, Pu J, Wu QF, Dong Q, Zhao N, Li GR, Du YM. Acacetin alleviates autoimmune myocarditis by regulating CD4+ T cell mitochondrial respiration. Chin Med 2024; 19:68. [PMID: 38741130 DOI: 10.1186/s13020-024-00943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/05/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Myocarditis refers to an autoimmune inflammatory response of the myocardium with characterization of self-reactive CD4+ T cell activation, which lacks effective treatment and has a poor prognosis. Acacetin is a natural flavonoid product that has been reported to have anti-inflammatory effects. However, acacetin has not been investigated in myocarditis. METHODS Oral acacetin treatment was administered in an experimental autoimmune myocarditis model established with myosin heavy chain-alpha peptide. Echocardiography, pathological staining, and RT-qPCR were used to detect cardiac function, myocardial injury, and inflammation levels. Flow cytometry was utilized to detect the effect of acacetin on CD4+ T cell function. RNA-seq, molecular docking, and microscale thermophoresis (MST) were employed to investigate potential mechanisms. Seahorse analysis, mitoSOX, JC-1, and mitotracker were utilized to detect the effect of acacetin on mitochondrial function. RESULTS Acacetin attenuated cardiac injury and fibrosis as well as heart dysfunction, and reduced cardiac inflammatory cytokines and ratio of effector CD4+ T and Th17 cells. Acacetin inhibited CD4+ T cell activation, proliferation, and Th17 cell differentiation. Mechanistically, the effects of acacetin were related to reducing mitochondrial complex II activity thereby inhibiting mitochondrial respiration and mitochondrial reactive oxygen species in CD4+ T cells. CONCLUSION Acacetin may be a valuable therapeutic drug in treating CD4+ T cell-mediated myocarditis.
Collapse
Affiliation(s)
- Yang Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Wei Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiu Pu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong-Feng Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Zhao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gui-Rong Li
- Nanjing Amazigh Pharma Limited, Nanjing, Jiangsu, China
| | - Yi-Mei Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Zhang CC, Li Y, Jiang CY, Le QM, Liu X, Ma L, Wang FF. O-GlcNAcylation mediates H 2O 2-induced apoptosis through regulation of STAT3 and FOXO1. Acta Pharmacol Sin 2024; 45:714-727. [PMID: 38191912 PMCID: PMC10943090 DOI: 10.1038/s41401-023-01218-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024] Open
Abstract
The O-linked-β-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation) is a critical post-translational modification that couples the external stimuli to intracellular signal transduction networks. However, the critical protein targets of O-GlcNAcylation in oxidative stress-induced apoptosis remain to be elucidated. Here, we show that treatment with H2O2 inhibited O-GlcNAcylation, impaired cell viability, increased the cleaved caspase 3 and accelerated apoptosis of neuroblastoma N2a cells. The O-GlcNAc transferase (OGT) inhibitor OSMI-1 or the O-GlcNAcase (OGA) inhibitor Thiamet-G enhanced or inhibited H2O2-induced apoptosis, respectively. The total and phosphorylated protein levels, as well as the promoter activities of signal transducer and activator of transcription factor 3 (STAT3) and Forkhead box protein O 1 (FOXO1) were suppressed by OSMI-1. In contrast, overexpressing OGT or treating with Thiamet-G increased the total protein levels of STAT3 and FOXO1. Overexpression of STAT3 or FOXO1 abolished OSMI-1-induced apoptosis. Whereas the anti-apoptotic effect of OGT and Thiamet-G in H2O2-treated cells was abolished by either downregulating the expression or activity of endogenous STAT3 or FOXO1. These results suggest that STAT3 or FOXO1 are the potential targets of O-GlcNAcylation involved in the H2O2-induced apoptosis of N2a cells.
Collapse
Affiliation(s)
- Chen-Chun Zhang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Yuan Li
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Chang-You Jiang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Qiu-Min Le
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Xing Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Lan Ma
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Fei-Fei Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China.
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China.
| |
Collapse
|
4
|
Qin D, Chen Z, Deng X, Liu X, Peng L, Li G, Liu Y, Zhu X, Ding Q, Zhang X, Bao S. CD24+ decidual stromal cells: a novel heterogeneous population with impaired regulatory T cell induction and potential association with recurrent miscarriage. Fertil Steril 2024; 121:519-530. [PMID: 38036240 DOI: 10.1016/j.fertnstert.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVE To explore the heterogeneity of CD24+ decidual stromal cells (DSCs) in patients with recurrent miscarriages (RMs). DESIGN We have discerned that the expression of CD24 serves to differentiate two stable and functionally distinct lineages of DSCs. The heterogeneity of CD24+ DSCs has been scrutinized, encompassing variances in stromal markers, transcriptional profiles, metabolic activity, and immune regulation. SETTING Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University; Shanghai Institute of Immunity and Infection, Chinese Academy of Science. PATIENTS A total of 129 early decidual samples were obtained, comprising 36 from healthy donors and 93 from patients with RMs. Blood samples were collected before the surgical procedure. Paraffin-embedded segments from 20 decidual samples of patients with RMs were obtained. INTERVENTIONS None. MAIN OUTCOME MEASURES The flow cytometry was used to quantify the expression of CD24+ DSCs in both healthy donors and patients with RMs, although it also evaluated the cellular heterogeneity. To ascertain the transcriptomic profiles of CD24+ DSCs by reanalyzing our single-cell transcriptomic data. Additionally, to measure the metabolomic activity of CD24+ DSCs from patients with RMs, ultraperformance liquid chromatography-mass spectrometry was employed. Through the implementation of a coculture system, we unraveled the role of CD24+ DSCs in immune regulation. RESULTS Patients with RMs exhibit a notable enrichment of CD24+ DSCs, revealing a pronounced heterogeneity characterized by variations in stromal markers and transcriptional profiles. The heightened enrichment of CD24+ DSCs may play a pivotal role in triggering decidual inflammation and dysfunction in decidualization. Furthermore, CD24+ DSCs showed diverse metabolic activities and impeded the induction of naïve CD4+ T cells into regulatory T cells through the abundant secretion of 3-hydroxyisovaleric acid. Finally, our investigations have revealed that intraperitoneal administration of 3-hydroxyisovaleric acid in mouse models can elevate the risk of RM. CONCLUSION We have successfully identified a disease-associated subset of CD24+ decidual stromal cells that could potentially contribute to the development of RM through the impairment of decidual immune tolerance. Targeting these specific CD24+ DSCs might hold promising prospects for therapeutic interventions in the clinical management of RM.
Collapse
Affiliation(s)
- Dengke Qin
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Zechuan Chen
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, Shanghai, People's Republic of China
| | - Xujing Deng
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiaoshan Liu
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, Shanghai, People's Republic of China; Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Liying Peng
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Guohua Li
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yuan Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiuxian Zhu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Qiuhong Ding
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiaoming Zhang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, Shanghai, People's Republic of China
| | - Shihua Bao
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Hu Y, Dong Z, Liu K. Unraveling the complexity of STAT3 in cancer: molecular understanding and drug discovery. J Exp Clin Cancer Res 2024; 43:23. [PMID: 38245798 PMCID: PMC10799433 DOI: 10.1186/s13046-024-02949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcriptional factor involved in almost all cancer hallmark features including tumor proliferation, metastasis, angiogenesis, immunosuppression, tumor inflammation, metabolism reprogramming, drug resistance, cancer stemness. Therefore, STAT3 has become a promising therapeutic target in a wide range of cancers. This review focuses on the up-to-date knowledge of STAT3 signaling in cancer. We summarize both the positive and negative modulators of STAT3 together with the cancer hallmarks involving activities regulated by STAT3 and highlight its extremely sophisticated regulation on immunosuppression in tumor microenvironment and metabolic reprogramming. Direct and indirect inhibitors of STAT3 in preclinical and clinical studies also have been summarized and discussed. Additionally, we highlight and propose new strategies of targeting STAT3 and STAT3-based combinations with established chemotherapy, targeted therapy, immunotherapy and combination therapy. These efforts may provide new perspectives for STAT3-based target therapy in cancer.
Collapse
Affiliation(s)
- Yamei Hu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zigang Dong
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| | - Kangdong Liu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Escrig-Larena JI, Delgado-Pulido S, Mittelbrunn M. Mitochondria during T cell aging. Semin Immunol 2023; 69:101808. [PMID: 37473558 DOI: 10.1016/j.smim.2023.101808] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Mitochondrial dysfunction is a hallmark of aging that contributes to inflammaging. It is characterized by alterations of the mitochondrial DNA, reduced respiratory capacity, decreased mitochondrial membrane potential and increased reactive oxygen species production. These primary alterations disrupt other interconnected and important mitochondrial-related processes such as metabolism, mitochondrial dynamics and biogenesis, mitophagy, calcium homeostasis or apoptosis. In this review, we gather the current knowledge about the different mitochondrial processes which are altered during aging, with special focus on their contribution to age-associated T cell dysfunction and inflammaging.
Collapse
Affiliation(s)
- Jose Ignacio Escrig-Larena
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molcular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sandra Delgado-Pulido
- Departamento de Biología Molecular, Facultad de Ciencias (UAM), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - María Mittelbrunn
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molcular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
7
|
Zhang Z, Lv Y, Harati J, Song J, Du P, Ou P, Liang J, Wang H, Wang PY. Submicron-Grooved Films Modulate the Directional Alignment and Biological Function of Schwann Cells. J Funct Biomater 2023; 14:jfb14050238. [PMID: 37233348 DOI: 10.3390/jfb14050238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Topographical cues on material surfaces are crucial for guiding the behavior of nerve cells and facilitating the repair of peripheral nerve defects. Previously, micron-grooved surfaces have shown great potential in controlling nerve cell alignment for studying the behavior and functions of those cells and peripheral nerve regeneration. However, the effects of smaller-sized topographical cues, such as those in the submicron- and nano-scales, on Schwann cell behavior remain poorly understood. In this study, four different submicron-grooved polystyrene films (800/400, 800/100, 400/400, and 400/100) were fabricated to study the behavior, gene expression, and membrane potential of Schwann cells. The results showed that all submicron-grooved films could guide the cell alignment and cytoskeleton in a groove depth-dependent manner. Cell proliferation and cell cycle assays revealed that there was no significant difference between the submicron groove samples and the flat control. However, the submicron grooves can direct the migration of cells and upregulate the expression of critical genes in axon regeneration and myelination (e.g., MBP and Smad6). Finally, the membrane potential of the Schwann cells was significantly altered on the grooved sample. In conclusion, this study sheds light on the role of submicron-grooved patterns in regulating the behavior and function of Schwann cells, which provides unique insights for the development of implants for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Zhen Zhang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanliang Lv
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Javad Harati
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianan Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou 325000, China
| | - Ping Du
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peiyan Ou
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Liang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou 325000, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
8
|
Strickland M, Lee S, Neo SY, Balachander A, Low I, Mustafah S, Goh WI, Wright GD, Larbi A, Pender SLF. Mitochondrial Dysfunction in CD4+ T Effector Memory RA+ Cells. BIOLOGY 2023; 12:biology12040597. [PMID: 37106796 PMCID: PMC10136242 DOI: 10.3390/biology12040597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
Human ageing is accompanied by poor responses to infection and decreased vaccine efficacy. While the causes of this can be attributed to defects in the immune system that increase with age, it is unknown whether mitochondrial dysfunction may also contribute to these phenomena. This study aims to assess mitochondrial dysfunction in CD4+ terminal effector memory T cells re-expressing CD45RA (TEMRA) cells and other CD4+ memory T cell subtypes, which are increased in number in the elderly population, with respect to how their metabolic responses to stimulation are altered compared to CD4+ naïve T cells. In this study, we show that CD4+ TEMRA cells exhibit altered mitochondrial dynamics compared to CD4+ naïve cells and CD4+ central and effector memory cells, with a 25% reduction in OPA1 expression. CD4+ TEMRA and memory cells show increased upregulation of Glucose transporter 1 following stimulation and higher levels of mitochondrial mass compared to CD4+ naïve T cells. Additionally, TEMRA cells exhibit a decrease in mitochondrial membrane potential compared to other CD4+ memory cell subsets by up to 50%. By comparing young to aged individuals, more significant mitochondria mass and lower membrane potential were observed in CD4+ TEMRA of young individuals. In conclusion, we suggest that CD4+ TEMRA cells may be impaired with respect to their metabolic response to stimulation, possibly contributing to impaired responses to infection and vaccination.
Collapse
Affiliation(s)
- Marie Strickland
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Salanne Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Shi Yong Neo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Akhila Balachander
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Ivy Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Seri Mustafah
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Wah Ing Goh
- Research Support Centre (RSC), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix Building, Singapore 138671, Singapore
| | - Graham D Wright
- Research Support Centre (RSC), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix Building, Singapore 138671, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
- Research Support Centre (RSC), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix Building, Singapore 138671, Singapore
| | - Sylvia L F Pender
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
9
|
Perucho L, Icardi L, Di Simone E, Basso V, Agresti A, Vilas Zornoza A, Lozano T, Prosper F, Lasarte JJ, Mondino A. The transcriptional regulator Sin3A balances IL-17A and Foxp3 expression in primary CD4 T cells. EMBO Rep 2023; 24:e55326. [PMID: 36929576 PMCID: PMC10157306 DOI: 10.15252/embr.202255326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
The Sin3 transcriptional regulator homolog A (Sin3A) is the core member of a multiprotein chromatin-modifying complex. Its inactivation at the CD4/CD8 double-negative stage halts further thymocyte development. Among various functions, Sin3A regulates STAT3 transcriptional activity, central to the differentiation of Th17 cells active in inflammatory disorders and opportunistic infections. To further investigate the consequences of conditional Sin3A inactivation in more mature precursors and post-thymic T cell, we have generated CD4-Cre and CD4-CreERT2 Sin3AF/F mice. Sin3A inactivation in vivo hinders both thymocyte development and peripheral T-cell survival. In vitro, in Th17 skewing conditions, Sin3A-deficient cells proliferate and acquire memory markers and yet fail to properly upregulate Il17a, Il23r, and Il22. Instead, IL-2+ and FOXP3+ are mostly enriched for, and their inhibition partially rescues IL-17A+ T cells. Notably, Sin3A deletion also causes an enrichment of genes implicated in the mTORC1 signaling pathway, overt STAT3 activation, and aberrant cytoplasmic RORγt accumulation. Thus, together our data unveil a previously unappreciated role for Sin3A in shaping critical signaling events central to the acquisition of immunoregulatory T-cell phenotypes.
Collapse
Affiliation(s)
- Laura Perucho
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Icardi
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Di Simone
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Veronica Basso
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Agresti
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Amaia Vilas Zornoza
- Departamento de Hematología, Clínica Universidad de Navarra and CCUN, IDISNA, Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Teresa Lozano
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), CCUN, IDISNA, University of Navarra, Pamplona, Spain
| | - Felipe Prosper
- Departamento de Hematología, Clínica Universidad de Navarra and CCUN, IDISNA, Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), CCUN, IDISNA, University of Navarra, Pamplona, Spain
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
10
|
Barron A, Manna S, McElwain CJ, Musumeci A, McCarthy FP, O’Keeffe GW, McCarthy CM. Maternal pre-eclampsia serum increases neurite growth and mitochondrial function through a potential IL-6-dependent mechanism in differentiated SH-SY5Y cells. Front Physiol 2023; 13:1043481. [PMID: 36714304 PMCID: PMC9877349 DOI: 10.3389/fphys.2022.1043481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction: Pre-eclampsia (PE) is a common and serious hypertensive disorder of pregnancy, which affects 3%-5% of first-time pregnancies and is a leading cause of maternal and neonatal morbidity and mortality. Prenatal exposure to PE is associated with an increased risk of neurodevelopmental disorders in affected offspring, although the cellular and molecular basis of this increased risk is largely unknown. Methods: Here, we examined the effects of exposure to maternal serum from women with PE or a healthy uncomplicated pregnancy on the survival, neurite growth and mitochondrial function of neuronally differentiated human SH-SY5Y neuroblastoma cells, which are commonly used to study neurite growth. Neurite growth and mitochondrial function are two strongly linked neurodevelopmental parameters in which alterations have been implicated in neurodevelopmental disorders. Following this, we investigated the pleiotropic cytokine interleukin-6 (IL-6) levels as a potential mechanism. Results: Cells exposed to 3% (v/v) PE serum for 72 h exhibited increased neurite growth (p < 0.05), which was validated in the human neural progenitor cell line, ReNcell® VM (p < 0.01), and mitochondrial respiration (elevated oxygen consumption rate (p < 0.05), basal mitochondrial respiration, proton leak, ATP synthesis, and non-mitochondrial respiration) compared to control serum-treated cells. ELISA analysis showed elevations in maternal IL-6 in PE sera (p < 0.05) and placental explants (p < 0.05). In support of this, SH-SY5Y cells exposed to 3% (v/v) PE serum for 24 h had increased phospho-STAT3 levels, which is a key intracellular mediator of IL-6 signalling (p < 0.05). Furthermore, treatment with anti-IL-6 neutralizing antibody blocked the effects of PE serum on neurite growth (p < 0.05), and exposure to IL-6 promoted neurite growth in SH-SY5Y cells (p < 0.01). Discussion: Collectively these data show elevated serum levels of maternal IL-6 in PE, which increases neurite growth and mitochondrial function in SH-SY5Y cells. This rationalizes the further study of IL-6 as a potential mediator between PE exposure and neurodevelopmental outcome in the offspring.
Collapse
Affiliation(s)
- Aaron Barron
- Department of Anatomy and Neuroscience, University College, Cork, Ireland,Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Samprikta Manna
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland,Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Colm J. McElwain
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Andrea Musumeci
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Gerard W. O’Keeffe
- Department of Anatomy and Neuroscience, University College, Cork, Ireland,Cork Neuroscience Centre, University College Cork, Cork, Ireland,*Correspondence: Gerard W. O’Keeffe, ; Cathal M. McCarthy,
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland,*Correspondence: Gerard W. O’Keeffe, ; Cathal M. McCarthy,
| |
Collapse
|
11
|
Hu Q, Bian Q, Rong D, Wang L, Song J, Huang HS, Zeng J, Mei J, Wang PY. JAK/STAT pathway: Extracellular signals, diseases, immunity, and therapeutic regimens. Front Bioeng Biotechnol 2023; 11:1110765. [PMID: 36911202 PMCID: PMC9995824 DOI: 10.3389/fbioe.2023.1110765] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Janus kinase/signal transduction and transcription activation (JAK/STAT) pathways were originally thought to be intracellular signaling pathways that mediate cytokine signals in mammals. Existing studies show that the JAK/STAT pathway regulates the downstream signaling of numerous membrane proteins such as such as G-protein-associated receptors, integrins and so on. Mounting evidence shows that the JAK/STAT pathways play an important role in human disease pathology and pharmacological mechanism. The JAK/STAT pathways are related to aspects of all aspects of the immune system function, such as fighting infection, maintaining immune tolerance, strengthening barrier function, and cancer prevention, which are all important factors involved in immune response. In addition, the JAK/STAT pathways play an important role in extracellular mechanistic signaling and might be an important mediator of mechanistic signals that influence disease progression, immune environment. Therefore, it is important to understand the mechanism of the JAK/STAT pathways, which provides ideas for us to design more drugs targeting diseases based on the JAK/STAT pathway. In this review, we discuss the role of the JAK/STAT pathway in mechanistic signaling, disease progression, immune environment, and therapeutic targets.
Collapse
Affiliation(s)
- Qian Hu
- Department of Pharmacy, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Qihui Bian
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Dingchao Rong
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Leiyun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Department of Pharmacy, Wuhan First Hospital, Wuhan, China
| | - Jianan Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Hsuan-Shun Huang
- Department of Research, Center for Prevention and Therapy of Gynecological Cancers, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Jun Zeng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Mei
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Hu H, Guo L, Overholser J, Wang X. Mitochondrial VDAC1: A Potential Therapeutic Target of Inflammation-Related Diseases and Clinical Opportunities. Cells 2022; 11:cells11193174. [PMID: 36231136 PMCID: PMC9562648 DOI: 10.3390/cells11193174] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 12/03/2022] Open
Abstract
The multifunctional protein, voltage-dependent anion channel 1 (VDAC1), is located on the mitochondrial outer membrane. It is a pivotal protein that maintains mitochondrial function to power cellular bioactivities via energy generation. VDAC1 is involved in regulating energy production, mitochondrial oxidase stress, Ca2+ transportation, substance metabolism, apoptosis, mitochondrial autophagy (mitophagy), and many other functions. VDAC1 malfunction is associated with mitochondrial disorders that affect inflammatory responses, resulting in an up-regulation of the body’s defensive response to stress stimulation. Overresponses to inflammation may cause chronic diseases. Mitochondrial DNA (mtDNA) acts as a danger signal that can further trigger native immune system activities after its secretion. VDAC1 mediates the release of mtDNA into the cytoplasm to enhance cytokine levels by activating immune responses. VDAC1 regulates mitochondrial Ca2+ transportation, lipid metabolism and mitophagy, which are involved in inflammation-related disease pathogenesis. Many scientists have suggested approaches to deal with inflammation overresponse issues via specific targeting therapies. Due to the broad functionality of VDAC1, it may become a useful target for therapy in inflammation-related diseases. The mechanisms of VDAC1 and its role in inflammation require further exploration. We comprehensively and systematically summarized the role of VDAC1 in the inflammatory response, and hope that our research will lead to novel therapeutic strategies that target VDAC1 in order to treat inflammation-related disorders.
Collapse
Affiliation(s)
- Hang Hu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Linlin Guo
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (L.G.); (X.W.)
| | - Jay Overholser
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Xing Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Correspondence: (L.G.); (X.W.)
| |
Collapse
|
13
|
Sorafenib combined with STAT3 knockdown triggers ER stress-induced HCC apoptosis and cGAS-STING-mediated anti-tumor immunity. Cancer Lett 2022; 547:215880. [PMID: 35981569 DOI: 10.1016/j.canlet.2022.215880] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 01/07/2023]
Abstract
Sorafenib is the first-line treatment for advanced hepatocellular carcinoma (HCC). However, it is difficult to alleviate this disease process using single-agent chemotherapy. Using combination therapies for advanced HCC has become a major trend. Given that STAT3 overexpression is involved in chemotherapy resistance and the immune escape of HCC cells, it has become a potential therapeutic target for HCC in recent years. GEO database analysis showed that STAT3 levels in tumor tissues from non-responders were significantly higher than those in responders to sorafenib. Our studies demonstrated that STAT3 knockdown promoted sorafenib-induced ER stress-induced apoptosis. Importantly, the DNA released by dead HCC cells stimulated the cGAS-STING signaling pathway in CD103+ DCs and promoted type I interferon production, thus, enhancing the anti-tumor function of CD8+ T and NK cells. In conclusion, our results revealed that the combination strategy of sorafenib and STAT3 knockdown might be a potential treatment strategy for HCC, directly and efficiently disturbing the tumor features of HCC cells while improving the tumor microenvironment via the cGAS-STING-Type I IFNs axis of DCs, inducing anti-HCC immune responses.
Collapse
|
14
|
TNFα-Induced Oxidative Stress and Mitochondrial Dysfunction Alter Hypothalamic Neurogenesis and Promote Appetite Versus Satiety Neuropeptide Expression in Mice. Brain Sci 2022; 12:brainsci12070900. [PMID: 35884707 PMCID: PMC9316209 DOI: 10.3390/brainsci12070900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Maternal obesity results in programmed offspring hyperphagia and obesity. The increased offspring food intake is due in part to the preferential differentiation of hypothalamic neuroprogenitor cells (NPCs) to orexigenic (AgRP) vs. anorexigenic (POMC) neurons. The altered neurogenesis may involve hypothalamic bHLH (basic helix–loop–helix) neuroregulatory factors (Hes1, Mash1, and Ngn3). Whilst the underlying mechanism remains unclear, it is known that mitochondrial function is critical for neurogenesis and is impacted by proinflammatory cytokines such as TNFα. Obesity is associated with the activation of inflammation and oxidative stress pathways. In obese pregnancies, increased levels of TNFα are seen in maternal and cord blood, indicating increased fetal exposure. As TNFα influences neurogenesis and mitochondrial function, we tested the effects of TNFα and reactive oxidative species (ROS) hydrogen peroxide (H2O2) on hypothalamic NPC cultures from newborn mice. TNFα treatment impaired NPC mitochondrial function, increased ROS production and NPC proliferation, and decreased the protein expression of proneurogenic Mash1/Ngn3. Consistent with this, AgRP protein expression was increased and POMC was decreased. Notably, treatment with H2O2 produced similar effects as TNFα and also reduced the protein expression of antioxidant SIRT1. The inhibition of STAT3/NFκB prevented the effects of TNFα, suggesting that TNFα mediates its effects on NPCs via mitochondrial-induced oxidative stress that involves both signaling pathways.
Collapse
|
15
|
Complement C5a induces the generation of neutrophil extracellular traps by inhibiting mitochondrial STAT3 to promote the development of arterial thrombosis. Thromb J 2022; 20:24. [PMID: 35488279 PMCID: PMC9051782 DOI: 10.1186/s12959-022-00384-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/20/2022] [Indexed: 12/26/2022] Open
Abstract
Background Thrombotic events cannot be completely prevented by antithrombotics, implicating a therapeutic gap due to inflammation, a not yet sufficiently addressed mechanism. Neutrophil extracellular traps (NETs) are an essential interface between inflammation and thrombosis, but exactly how the NETotic process is initiated and maintained during arterial thrombosis remains incompletely understood. Methods and results We found that the plasma concentrations of C5a were higher in patients with ST-elevation myocardial infarction (STEMI) than in patients with angina and higher in mice with left common carotid artery (LCCA) thrombosis induced by FeCl3 than in control mice. We observed that the thrombus area and weight were decreased and that NET formation in the thrombi was reduced in the group treated with the selective C5aR1 receptor inhibitor PMX53 compared with the NaCl group. In vitro, NETosis was observed when C5a was added to neutrophil cultures, and this effect was reversed by PMX53. In addition, our data showed that C5a increased the production of mitochondrial reactive oxygen species (ROS) and that the promotion of NET formation by C5a was mitochondrial ROS (Mito-ROS) dependent. Furthermore, we found that C5a induced the production of Mito-ROS by inhibiting mitochondrial STAT3 activity. Conclusions By inhibiting mitochondrial STAT3 to elicit Mito-ROS generation, C5a triggers the generation of NETs to promote the development of arterial thrombosis. Hence, our study identifies complement C5a as a potential new target for the treatment and prevention of thrombosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12959-022-00384-0.
Collapse
|
16
|
STAT3 Role in T-Cell Memory Formation. Int J Mol Sci 2022; 23:ijms23052878. [PMID: 35270020 PMCID: PMC8910982 DOI: 10.3390/ijms23052878] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Along with the clinical success of immuno-oncology drugs and cellular therapies, T-cell biology has attracted considerable attention in the immunology community. Long-term immunity, traditionally analyzed in the context of infection, is increasingly studied in cancer. Many signaling pathways, transcription factors, and metabolic regulators have been shown to participate in the formation of memory T cells. There is increasing evidence that the signal transducer and activator of transcription-3 (STAT3) signaling pathway is crucial for the formation of long-term T-cell immunity capable of efficient recall responses. In this review, we summarize what is currently known about STAT3 role in the context of memory T-cell formation and antitumor immunity.
Collapse
|
17
|
Awasthi N, Liongue C, Ward AC. STAT proteins: a kaleidoscope of canonical and non-canonical functions in immunity and cancer. J Hematol Oncol 2021; 14:198. [PMID: 34809691 PMCID: PMC8607625 DOI: 10.1186/s13045-021-01214-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
STAT proteins represent an important family of evolutionarily conserved transcription factors that play key roles in diverse biological processes, notably including blood and immune cell development and function. Classically, STAT proteins have been viewed as inducible activators of transcription that mediate cellular responses to extracellular signals, particularly cytokines. In this 'canonical' paradigm, latent STAT proteins become tyrosine phosphorylated following receptor activation, typically via downstream JAK proteins, facilitating their dimerization and translocation into the nucleus where they bind to specific sequences in the regulatory region of target genes to activate transcription. However, growing evidence has challenged this paradigm and identified alternate 'non-canonical' functions, such as transcriptional repression and roles outside the nucleus, with both phosphorylated and unphosphorylated STATs involved. This review provides a revised framework for understanding the diverse kaleidoscope of STAT protein functional modalities. It further discusses the implications of this framework for our understanding of STAT proteins in normal blood and immune cell biology and diseases such as cancer, and also provides an evolutionary context to place the origins of these alternative functional modalities.
Collapse
Affiliation(s)
- Nagendra Awasthi
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia.,Institue of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia.,Institue of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia. .,Institue of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
18
|
Comità S, Femmino S, Thairi C, Alloatti G, Boengler K, Pagliaro P, Penna C. Regulation of STAT3 and its role in cardioprotection by conditioning: focus on non-genomic roles targeting mitochondrial function. Basic Res Cardiol 2021; 116:56. [PMID: 34642818 PMCID: PMC8510947 DOI: 10.1007/s00395-021-00898-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Ischemia–reperfusion injury (IRI) is one of the biggest challenges for cardiovascular researchers given the huge death toll caused by myocardial ischemic disease. Cardioprotective conditioning strategies, namely pre- and post-conditioning maneuvers, represent the most important strategies for stimulating pro-survival pathways essential to preserve cardiac health. Conditioning maneuvers have proved to be fundamental for the knowledge of the molecular basis of both IRI and cardioprotection. Among this evidence, the importance of signal transducer and activator of transcription 3 (STAT3) emerged. STAT3 is not only a transcription factor but also exhibits non-genomic pro-survival functions preserving mitochondrial function from IRI. Indeed, STAT3 is emerging as an influencer of mitochondrial function to explain the cardioprotection phenomena. Studying cardioprotection, STAT3 proved to be crucial as an element of the survivor activating factor enhancement (SAFE) pathway, which converges on mitochondria and influences their function by cross-talking with other cardioprotective pathways. Clearly there are still some functional properties of STAT3 to be discovered. Therefore, in this review, we highlight the evidence that places STAT3 as a promoter of the metabolic network. In particular, we focus on the possible interactions of STAT3 with processes aimed at maintaining mitochondrial functions, including the regulation of the electron transport chain, the production of reactive oxygen species, the homeostasis of Ca2+ and the inhibition of opening of mitochondrial permeability transition pore. Then we consider the role of STAT3 and the parallels between STA3/STAT5 in cardioprotection by conditioning, giving emphasis to the human heart and confounders.
Collapse
Affiliation(s)
- Stefano Comità
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy
| | - Saveria Femmino
- Department of Medical Sciences, University of Turin, Torino, Italy
| | - Cecilia Thairi
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy
| | | | - Kerstin Boengler
- Institute of Physiology, University of Giessen, Giessen, Germany
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy.
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy.
| |
Collapse
|
19
|
IL-6 enhances CD4 cell motility by sustaining mitochondrial Ca 2+ through the noncanonical STAT3 pathway. Proc Natl Acad Sci U S A 2021; 118:2103444118. [PMID: 34507993 DOI: 10.1073/pnas.2103444118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
Interleukin 6 (IL-6) is known to regulate the CD4 T cell function by inducing gene expression of a number of cytokines through activation of Stat3 transcription factor. Here, we reveal that IL-6 strengthens the mechanics of CD4 T cells. The presence of IL-6 during activation of mouse and human CD4 T cells enhances their motility (random walk and exploratory spread), resulting in an increase in travel distance and higher velocity. This is an intrinsic effect of IL-6 on CD4 T-cell fitness that involves an increase in mitochondrial Ca2+ Although Stat3 transcriptional activity is dispensable for this process, IL-6 uses mitochondrial Stat3 to enhance mitochondrial Ca2+-mediated motility of CD4 T cells. Thus, through a noncanonical pathway, IL-6 can improve competitive fitness of CD4 T cells by facilitating cell motility. These results could lead to alternative therapeutic strategies for inflammatory diseases in which IL-6 plays a pathogenic role.
Collapse
|
20
|
Jenkins RH, Hughes STO, Figueras AC, Jones SA. Unravelling the broader complexity of IL-6 involvement in health and disease. Cytokine 2021; 148:155684. [PMID: 34411990 DOI: 10.1016/j.cyto.2021.155684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/20/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
The classification of interleukin-6 (IL-6) as a pro-inflammatory cytokine undervalues the biological impact of this cytokine in health and disease. With broad activities affecting the immune system, tissue homeostasis and metabolic processes, IL-6 displays complex biology. The significance of these involvements has become increasingly important in clinical settings where IL-6 is identified as a prominent target for therapy. Here, clinical experience with IL-6 antagonists emphasises the need to understand the context-dependent properties of IL-6 within an inflammatory environment and the anticipated or unexpected consequences of IL-6 blockade. In this review, we will describe the immunobiology of IL-6 and explore the gamut of IL-6 bioactivity affecting the clinical response to biological drugs targeting this cytokine pathway.
Collapse
Affiliation(s)
- Robert H Jenkins
- Division of Infection & Immunity, The School of Medicine, Cardiff University, Cardiff, Wales, UK; Systems Immunity Research Institute, The School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Stuart T O Hughes
- Division of Infection & Immunity, The School of Medicine, Cardiff University, Cardiff, Wales, UK; Systems Immunity Research Institute, The School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Ana Cardus Figueras
- Division of Infection & Immunity, The School of Medicine, Cardiff University, Cardiff, Wales, UK; Systems Immunity Research Institute, The School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Simon A Jones
- Division of Infection & Immunity, The School of Medicine, Cardiff University, Cardiff, Wales, UK; Systems Immunity Research Institute, The School of Medicine, Cardiff University, Cardiff, Wales, UK.
| |
Collapse
|
21
|
Ferrer B, Suresh H, Santamaria A, Rocha JB, Bowman AB, Aschner M. The antioxidant role of STAT3 in methylmercury-induced toxicity in mouse hypothalamic neuronal GT1-7 cell line. Free Radic Biol Med 2021; 171:245-259. [PMID: 34010664 PMCID: PMC8217327 DOI: 10.1016/j.freeradbiomed.2021.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 12/27/2022]
Abstract
Oxidative stress, impairment of antioxidant defenses, and disruption of calcium homeostasis are associated with the toxicity of methylmercury (MeHg). Yet, the relative contribution and interdependence of these effects and other molecular mechanisms that mediate MeHg-induced neurotoxicity remain uncertain. The signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates the expression of anti-apoptotic and cell cycle progression genes. In addition to its role in cell growth and survival, STAT3 regulates redox homeostasis and prevents oxidative stress by the modulation of nuclear genes that encode for electron transport complexes (ETC) and antioxidant enzymes. Here we tested the hypothesis that STAT3 contributes to the orchestration of the antioxidant defense response against MeHg injury. We show that MeHg (>1 μM) exposure induced STAT3 activation within 1 h and beyond in mouse hypothalamic neuronal GT1-7 cells in a concentration-and time-dependent manner. Pharmacological inhibition of STAT3 phosphorylation exacerbated MeHg-induced reactive oxygen species (ROS) production and antioxidant responses. Finally, treatment with the antioxidant Trolox demonstrated that MeHg-induced STAT3 activation is mediated, at least in part, by MeHg-induced ROS generation. Combined, our results demonstrated a role for the STAT3 signaling pathway as an early response to MeHg-induced oxidative stress.
Collapse
Affiliation(s)
- Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA.
| | - Harshini Suresh
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA.
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico.
| | - João Batista Rocha
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, United States.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA; IM Sechenov First Moscow State Medical University, Moscow, Russia, Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia.
| |
Collapse
|
22
|
Diallo M, Herrera F. The role of understudied post-translational modifications for the behavior and function of Signal Transducer and Activator of Transcription 3. FEBS J 2021; 289:6235-6255. [PMID: 34235865 DOI: 10.1111/febs.16116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
The Signal Transducer and Activator of Transcription (STAT) family of transcription factors is involved in inflammation, immunity, development, cancer, and response to injury, among other biological phenomena. Canonical STAT signaling is often represented as a 3-step pathway involving the sequential activation of a membrane receptor, an intermediate kinase, and a STAT transcription factor. The rate-limiting phosphorylation at a highly conserved C-terminal tyrosine residue determines the nuclear translocation and transcriptional activity of STATs. This apparent simplicity is actually misleading and can hardly explain the pleiotropic nature of STATs, the existence of various noncanonical STAT pathways, or the key role of the N-terminal domain in STAT functions. More than 80 post-translational modifications (PTMs) have been identified for STAT3, but their functions remain barely understood. Here, we provide a brief but comprehensive overview of these underexplored PTMs and their role on STAT3 canonical and noncanonical functions. A less tyrosine-centric point of view may be required to advance our understanding of STAT signaling.
Collapse
Affiliation(s)
- Mickael Diallo
- Faculdade de Ciências da Universidade de Lisboa, Cell Structure and Dynamics Laboratory, BioISI - Instituto de Biosistemas e Ciências integrativas, Lisbon, Portugal.,MOSTMICRO Research Unit, Instituto de Tecnologia Química e Biológica (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Federico Herrera
- Faculdade de Ciências da Universidade de Lisboa, Cell Structure and Dynamics Laboratory, BioISI - Instituto de Biosistemas e Ciências integrativas, Lisbon, Portugal.,MOSTMICRO Research Unit, Instituto de Tecnologia Química e Biológica (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
23
|
Targeting Canonical and Non-Canonical STAT Signaling Pathways in Renal Diseases. Cells 2021; 10:cells10071610. [PMID: 34199002 PMCID: PMC8305338 DOI: 10.3390/cells10071610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 01/05/2023] Open
Abstract
Signal transducer and activator of transcription (STAT) plays an essential role in the inflammatory reaction and immune response of numerous renal diseases. STATs can transmit the signals of cytokines, chemokines, and growth factors from the cell membrane to the nucleus. In the canonical STAT signaling pathways, upon binding with their cognate receptors, cytokines lead to a caspase of Janus kinases (JAKs) and STATs tyrosine phosphorylation and activation. Besides receptor-associated tyrosine kinases JAKs, receptors with intrinsic tyrosine kinase activities, G-protein coupled receptors, and non-receptor tyrosine kinases can also activate STATs through tyrosine phosphorylation or, alternatively, other post-translational modifications. Activated STATs translocate into the nucleus and mediate the transcription of specific genes, thus mediating the progression of various renal diseases. Non-canonical STAT pathways consist of preassembled receptor complexes, preformed STAT dimers, unphosphorylated STATs (U-STATs), and non-canonical functions including mitochondria modulation, microtubule regulation and heterochromatin stabilization. Most studies targeting STAT signaling pathways have focused on canonical pathways, but research extending into non-canonical STAT pathways would provide novel strategies for treating renal diseases. In this review, we will introduce both canonical and non-canonical STAT pathways and their roles in a variety of renal diseases.
Collapse
|
24
|
Lei W, Liu D, Sun M, Lu C, Yang W, Wang C, Cheng Y, Zhang M, Shen M, Yang Z, Chen Y, Deng C, Yang Y. Targeting STAT3: A crucial modulator of sepsis. J Cell Physiol 2021; 236:7814-7831. [PMID: 33885157 DOI: 10.1002/jcp.30394] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/14/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a cellular signal transcription factor that has recently attracted a great deal of attention. It can trigger a variety of genes transcription in response to cytokines and growth factors stimulation, which plays an important role in many cellular biological processes involved in anti/proinflammatory responses. Sepsis is a life-threatening organ dysfunction resulting from dysregulated host responses to infection. As a converging point of multiple inflammatory responses pathways, accumulating studies have presented the elaborate network of STAT3 in sepsis pathophysiology; these results generally indicate a promising therapeutic application for targeting STAT3 in the treatment of sepsis. In the present review, we evaluated the published literature describing the use of STAT3 in the treatment of experimental and clinical sepsis. The information presented here may be useful for the design of future studies and may highlight the potential of STAT3 as a future biomarker and therapeutic target for sepsis.
Collapse
Affiliation(s)
- Wangrui Lei
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Dianxiao Liu
- Department of Cardiac Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Meng Sun
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chenxi Lu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Wenwen Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Changyu Wang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Department of Cardiology, School of Life Sciences and Medicine, Xi'an No.3 Hospital, Northwest University, Xi'an, China
| | - Ye Cheng
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Meng Zhang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Mingzhi Shen
- Hainan Hospital of PLA General Hospital, The Second School of Clinical Medicine, Southern Medical University, Sanya, Hainan, China
| | - Zhi Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yin Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China
| |
Collapse
|
25
|
Zhou B, Wang DDH, Qiu Y, Airhart S, Liu Y, Stempien-Otero A, O'Brien KD, Tian R. Boosting NAD level suppresses inflammatory activation of PBMCs in heart failure. J Clin Invest 2021; 130:6054-6063. [PMID: 32790648 PMCID: PMC7598081 DOI: 10.1172/jci138538] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUNDWhile mitochondria play an important role in innate immunity, the relationship between mitochondrial dysfunction and inflammation in heart failure (HF) is poorly understood. In this study we aimed to investigate the mechanistic link between mitochondrial dysfunction and inflammatory activation in peripheral blood mononuclear cells (PBMCs), and the potential antiinflammatory effect of boosting the NAD level.METHODSWe compared the PBMC mitochondrial respiration of 19 hospitalized patients with stage D HF with that of 19 healthy participants. We then created an in vitro model of sterile inflammation by treating healthy PBMCs with mitochondrial damage-associated molecular patterns (MitoDAMPs) isolated from human heart tissue. Last, we enrolled patients with stage D HF and sampled their blood before and after taking 5 to 9 days of oral nicotinamide riboside (NR), a NAD precursor.RESULTSWe demonstrated that HF is associated with both reduced respiratory capacity and elevated proinflammatory cytokine gene expressions. In our in vitro model, MitoDAMP-treated PBMCs secreted IL-6 that impaired mitochondrial respiration by reducing complex I activity. Last, oral NR administration enhanced PBMC respiration and reduced proinflammatory cytokine gene expression in 4 subjects with HF.CONCLUSIONThese findings suggest that systemic inflammation in patients with HF is causally linked to mitochondrial function of the PBMCs. Increasing NAD levels may have the potential to improve mitochondrial respiration and attenuate proinflammatory activation of PBMCs in HF.TRIAL REGISTRATIONClinicalTrials.gov NCT03727646.FUNDINGThis study was funded by the NIH, the University of Washington, and the American Heart Association.
Collapse
Affiliation(s)
- Bo Zhou
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine and
| | - Dennis Ding-Hwa Wang
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Yanhua Qiu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine and
| | - Sophia Airhart
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Yaxin Liu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine and
| | - April Stempien-Otero
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kevin D O'Brien
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine and
| |
Collapse
|
26
|
Liu JS, Yeh CA, Huang IC, Huang GY, Chiu CH, Mahalakshmi B, Wen SY, Huang CY, Kuo WW. Signal transducer and activator of transcription 3 mediates apoptosis inhibition through reducing mitochondrial ROS and activating Bcl-2 in gemcitabine-resistant lung cancer A549 cells. J Cell Physiol 2020; 236:3896-3905. [PMID: 33283880 DOI: 10.1002/jcp.30133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/02/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
Lung cancer is a leading cause of cancer-related death worldwide. In this study, we used lung adenocarcinoma cells as a model, as lung adenocarcinoma has the highest mortality rate among all lung cancers. For the past few years, medical treatments or lung cancer have been limited because of chemotherapy resistance. Therefore, understanding the pathogenesis of the development of drug resistance in lung cancer is urgent. Gemcitabine is widely prescribed in the chemotherapeutic treatment of lung cancers. In this study, we developed gemcitabine-resistant lung adenocarcinoma cells (A549-GR) from the A549 cell line. The results showed that apoptotic protein expression and reactive oxygen species (ROS) generation were reduced in A549-GR cells compared to A549 cells. Interestingly, we found that signal transducer and activator of transcription 3 (STAT3) translocated to the nucleus and mitochondria to affect the apoptotic pathway and ROS generation, respectively. Furthermore, treatment with STAT3 small interfering RNA diminished the increase in ROS production, proliferation and antiapoptotic proteins in A549-GR cells. Taken together, the study demonstrated that STAT3 acts as an essential regulator and moderates apoptosis through two major mechanisms to induce gemcitabine resistance in cells; and these findings provide a potential target for the treatment of gemcitabine-resistant lung cancer.
Collapse
Affiliation(s)
- Jian-Sheng Liu
- China Medical University Beigang Hospital Thoracic Department, Yunlin, Taiwan.,Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chun-An Yeh
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - I-Chieh Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Guan-Yu Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Hao Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Su-Ying Wen
- Taipei City Hospital, Renai Branch, Dermatology, Taipei, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
27
|
Interleukin-6 and total antioxidant capacity levels following N-acetylcysteine and a combination nutraceutical intervention in a randomised controlled trial for bipolar disorder. Acta Neuropsychiatr 2020; 32:313-320. [PMID: 32600481 DOI: 10.1017/neu.2020.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The aims of this study were to evaluate changes in inflammatory and oxidative stress levels following treatment with N-acetylcysteine (NAC) or mitochondrial-enhancing agents (CT), and to assess the how these changes may predict and/or moderate clinical outcomes primarily the Montgomery-Åsberg Depression Rating Scale (MADRS). METHODS This study involved secondary analysis of a placebo-controlled randomised trial (n = 163). Serum samples were collected at baseline and week 16 of the clinical trial to determine changes in Interleukin-6 (IL-6) and total antioxidant capacity (TAC) following adjunctive CT and/or NAC treatment, and to explore the predictability of the outcome or moderator effects of these markers. RESULTS In the NAC-treated group, no difference was observed in serum IL-6 and TAC levels after 16 weeks of treatment with NAC or CT. However, results from a moderator analysis showed that in the CT group, lower IL-6 levels at baseline was a significant moderator of MADRS χ2 (df) = 4.90, p = 0.027) and Clinical Global Impression-Improvement (CGI-I, χ2 (df) = 6.28 p = 0.012). In addition, IL-6 was a non-specific but significant predictor of functioning (based on the Social and Occupational Functioning Assessment Scale (SOFAS)), indicating that individuals with higher IL-6 levels at baseline had a greater improvement on SOFAS regardless of their treatment (p = 0.023). CONCLUSION Participants with lower IL-6 levels at baseline had a better response to the adjunctive treatment with the mitochondrial-enhancing agents in terms of improvements in MADRS and CGI-I outcomes.
Collapse
|
28
|
Nitzan K, Benhamron S, Valitsky M, Kesner EE, Lichtenstein M, Ben-Zvi A, Ella E, Segalstein Y, Saada A, Lorberboum-Galski H, Rosenmann H. Mitochondrial Transfer Ameliorates Cognitive Deficits, Neuronal Loss, and Gliosis in Alzheimer's Disease Mice. J Alzheimers Dis 2020; 72:587-604. [PMID: 31640104 DOI: 10.3233/jad-190853] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pathogenesis of neurodegenerative diseases involves dysfunction of mitochondria, one of the most important cell organelles in the brain, with its most prominent roles in producing energy and regulating cellular metabolism. Here we investigated the effect of transferring active intact mitochondria as a potential therapy for Alzheimer's disease (AD), in order to correct as many mitochondrial functions as possible, rather than a mono-drug related therapy. For this purpose, AD-mice (amyloid-β intracerebroventricularly injected) were treated intravenously (IV) with fresh human isolated mitochondria. One to two weeks later, a significantly better cognitive performance was noticed in the mitochondria treated AD-mice relative to vehicle treated AD-mice, approaching the performance of non-AD mice. We also detected a significant decrease in neuronal loss and reduced gliosis in the hippocampus of treated mice relative to untreated AD-mice. An amelioration of the mitochondrial dysfunction in brain was noticed by the increase of citrate-synthase and cytochrome c oxidase activities relative to untreated AD-mice, reaching activity levels of non-AD-mice. Increased mitochondrial activity was also detected in the liver of mitochondria treated mice. No treatment-related toxicity was noted. Thus, IV mitochondrial transfer may possibly offer a novel therapeutic approach for AD.
Collapse
Affiliation(s)
- Keren Nitzan
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University medical center, Jerusalem, Israel
| | - Sandrine Benhamron
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University medical center, Jerusalem, Israel
| | - Michael Valitsky
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University medical center, Jerusalem, Israel
| | - Eyal E Kesner
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Michal Lichtenstein
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ayal Ben-Zvi
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ezra Ella
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University medical center, Jerusalem, Israel
| | - Yehudit Segalstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University medical center, Jerusalem, Israel
| | - Ann Saada
- Department of Genetic and Metabolic Diseases, Hadassah Hebrew University medical center, Jerusalem, Israel
| | - Haya Lorberboum-Galski
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanna Rosenmann
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University medical center, Jerusalem, Israel
| |
Collapse
|
29
|
Chen X, Zhang J, Song Y, Yang P, Yang Y, Huang Z, Wang K. Deficiency of anti-inflammatory cytokine IL-4 leads to neural hyperexcitability and aggravates cerebral ischemia-reperfusion injury. Acta Pharm Sin B 2020; 10:1634-1645. [PMID: 33088684 PMCID: PMC7564329 DOI: 10.1016/j.apsb.2020.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/21/2020] [Accepted: 03/09/2020] [Indexed: 01/03/2023] Open
Abstract
Systematic administration of anti-inflammatory cytokine interleukin 4 (IL-4) has been shown to improve recovery after cerebral ischemic stroke. However, whether IL-4 affects neuronal excitability and how IL-4 improves ischemic injury remain largely unknown. Here we report the neuroprotective role of endogenous IL-4 in focal cerebral ischemia–reperfusion (I/R) injury. In multi-electrode array (MEA) recordings, IL-4 reduces spontaneous firings and network activities of mouse primary cortical neurons. IL-4 mRNA and protein expressions are upregulated after I/R injury. Genetic deletion of Il-4 gene aggravates I/R injury in vivo and exacerbates oxygen-glucose deprivation (OGD) injury in cortical neurons. Conversely, supplemental IL-4 protects Il-4−/− cortical neurons against OGD injury. Mechanistically, cortical pyramidal and stellate neurons common for ischemic penumbra after I/R injury exhibit intrinsic hyperexcitability and enhanced excitatory synaptic transmissions in Il-4−/− mice. Furthermore, upregulation of Nav1.1 channel, and downregulations of KCa3.1 channel and α6 subunit of GABAA receptors are detected in the cortical tissues and primary cortical neurons from Il-4−/− mice. Taken together, our findings demonstrate that IL-4 deficiency results in neural hyperexcitability and aggravates I/R injury, thus activation of IL-4 signaling may protect the brain against the development of permanent damage and help recover from ischemic injury after stroke.
Collapse
|
30
|
Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ. Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution. Pharmacol Rev 2020; 72:486-526. [PMID: 32198236 PMCID: PMC7300325 DOI: 10.1124/pr.119.018440] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Before it was molecularly cloned in 1994, acute-phase response factor or signal transducer and activator of transcription (STAT)3 was the focus of intense research into understanding the mammalian response to injury, particularly the acute-phase response. Although known to be essential for liver production of acute-phase reactant proteins, many of which augment innate immune responses, molecular cloning of acute-phase response factor or STAT3 and the research this enabled helped establish the central function of Janus kinase (JAK) family members in cytokine signaling and identified a multitude of cytokines and peptide hormones, beyond interleukin-6 and its family members, that activate JAKs and STAT3, as well as numerous new programs that their activation drives. Many, like the acute-phase response, are adaptive, whereas several are maladaptive and lead to chronic inflammation and adverse consequences, such as cachexia, fibrosis, organ dysfunction, and cancer. Molecular cloning of STAT3 also enabled the identification of other noncanonical roles for STAT3 in normal physiology, including its contribution to the function of the electron transport chain and oxidative phosphorylation, its basal and stress-related adaptive functions in mitochondria, its function as a scaffold in inflammation-enhanced platelet activation, and its contributions to endothelial permeability and calcium efflux from endoplasmic reticulum. In this review, we will summarize the molecular and cellular biology of JAK/STAT3 signaling and its functions under basal and stress conditions, which are adaptive, and then review maladaptive JAK/STAT3 signaling in animals and humans that lead to disease, as well as recent attempts to modulate them to treat these diseases. In addition, we will discuss how consideration of the noncanonical and stress-related functions of STAT3 cannot be ignored in efforts to target the canonical functions of STAT3, if the goal is to develop drugs that are not only effective but safe. SIGNIFICANCE STATEMENT: Key biological functions of Janus kinase (JAK)/signal transducer and activator of transcription (STAT)3 signaling can be delineated into two broad categories: those essential for normal cell and organ development and those activated in response to stress that are adaptive. Persistent or dysregulated JAK/STAT3 signaling, however, is maladaptive and contributes to many diseases, including diseases characterized by chronic inflammation and fibrosis, and cancer. A comprehensive understanding of JAK/STAT3 signaling in normal development, and in adaptive and maladaptive responses to stress, is essential for the continued development of safe and effective therapies that target this signaling pathway.
Collapse
Affiliation(s)
- Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Moses M Kasembeli
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Prema Robinson
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
31
|
Poholek CH, Raphael I, Wu D, Revu S, Rittenhouse N, Uche UU, Majumder S, Kane LP, Poholek AC, McGeachy MJ. Noncanonical STAT3 activity sustains pathogenic Th17 proliferation and cytokine response to antigen. J Exp Med 2020; 217:151964. [PMID: 32697822 PMCID: PMC7537401 DOI: 10.1084/jem.20191761] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/10/2020] [Accepted: 06/08/2020] [Indexed: 01/26/2023] Open
Abstract
The STAT3 signaling pathway is required for early Th17 cell development, and therapies targeting this pathway are used for autoimmune disease. However, the role of STAT3 in maintaining inflammatory effector Th17 cell function has been unexplored. Th17ΔSTAT3 mice, which delete STAT3 in effector Th17 cells, were resistant to experimental autoimmune encephalomyelitis (EAE), a murine model of MS. Th17 cell numbers declined after STAT3 deletion, corresponding to reduced cell cycle. Th17ΔSTAT3 cells had increased IL-6-mediated phosphorylation of STAT1, known to have antiproliferative functions. Th17ΔSTAT3 cells also had reduced mitochondrial membrane potential, which can regulate intracellular Ca2+. Accordingly, Th17ΔSTAT3 cells had reduced production of proinflammatory cytokines when stimulated with myelin antigen but normal production of cytokines when TCR-induced Ca2+ flux was bypassed with ionomycin. Thus, early transcriptional roles of STAT3 in developing Th17 cells are later complimented by noncanonical STAT3 functions that sustain pathogenic Th17 cell proliferation and cytokine production.
Collapse
Affiliation(s)
- Catherine H. Poholek
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA,Department of Pediatrics, University of Pittsburgh, Pittsburgh PA
| | - Itay Raphael
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA
| | - Dongwen Wu
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA,The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shankar Revu
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA
| | | | - Uzodinma U. Uche
- Department of Immunology, University of Pittsburgh, Pittsburgh PA
| | - Saikat Majumder
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA
| | - Lawrence P. Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh PA
| | | | - Mandy J. McGeachy
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA,Correspondence to Mandy J. McGeachy:
| |
Collapse
|
32
|
A STAT3 of Addiction: Adipose Tissue, Adipocytokine Signalling and STAT3 as Mediators of Metabolic Remodelling in the Tumour Microenvironment. Cells 2020; 9:cells9041043. [PMID: 32331320 PMCID: PMC7226520 DOI: 10.3390/cells9041043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic remodelling of the tumour microenvironment is a major mechanism by which cancer cells survive and resist treatment. The pro-oncogenic inflammatory cascade released by adipose tissue promotes oncogenic transformation, proliferation, angiogenesis, metastasis and evasion of apoptosis. STAT3 has emerged as an important mediator of metabolic remodelling. As a downstream effector of adipocytokines and cytokines, its canonical and non-canonical activities affect mitochondrial functioning and cancer metabolism. In this review, we examine the central role played by the crosstalk between the transcriptional and mitochondrial roles of STAT3 to promote survival and further oncogenesis within the tumour microenvironment with a particular focus on adipose-breast cancer interactions.
Collapse
|
33
|
Dasgupta A, Wu D, Tian L, Xiong PY, Dunham-Snary KJ, Chen KH, Alizadeh E, Motamed M, Potus F, Hindmarch CCT, Archer SL. Mitochondria in the Pulmonary Vasculature in Health and Disease: Oxygen-Sensing, Metabolism, and Dynamics. Compr Physiol 2020; 10:713-765. [PMID: 32163206 DOI: 10.1002/cphy.c190027] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In lung vascular cells, mitochondria serve a canonical metabolic role, governing energy homeostasis. In addition, mitochondria exist in dynamic networks, which serve noncanonical functions, including regulation of redox signaling, cell cycle, apoptosis, and mitochondrial quality control. Mitochondria in pulmonary artery smooth muscle cells (PASMC) are oxygen sensors and initiate hypoxic pulmonary vasoconstriction. Acquired dysfunction of mitochondrial metabolism and dynamics contribute to a cancer-like phenotype in pulmonary arterial hypertension (PAH). Acquired mitochondrial abnormalities, such as increased pyruvate dehydrogenase kinase (PDK) and pyruvate kinase muscle isoform 2 (PKM2) expression, which increase uncoupled glycolysis (the Warburg phenomenon), are implicated in PAH. Warburg metabolism sustains energy homeostasis by the inhibition of oxidative metabolism that reduces mitochondrial apoptosis, allowing unchecked cell accumulation. Warburg metabolism is initiated by the induction of a pseudohypoxic state, in which DNA methyltransferase (DNMT)-mediated changes in redox signaling cause normoxic activation of HIF-1α and increase PDK expression. Furthermore, mitochondrial division is coordinated with nuclear division through a process called mitotic fission. Increased mitotic fission in PAH, driven by increased fission and reduced fusion favors rapid cell cycle progression and apoptosis resistance. Downregulation of the mitochondrial calcium uniporter complex (MCUC) occurs in PAH and is one potential unifying mechanism linking Warburg metabolism and mitochondrial fission. Mitochondrial metabolic and dynamic disorders combine to promote the hyperproliferative, apoptosis-resistant, phenotype in PAH PASMC, endothelial cells, and fibroblasts. Understanding the molecular mechanism regulating mitochondrial metabolism and dynamics has permitted identification of new biomarkers, nuclear and CT imaging modalities, and new therapeutic targets for PAH. © 2020 American Physiological Society. Compr Physiol 10:713-765, 2020.
Collapse
Affiliation(s)
- Asish Dasgupta
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Danchen Wu
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Lian Tian
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Ping Yu Xiong
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | | | - Kuang-Hueih Chen
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Elahe Alizadeh
- Department of Medicine, Queen's Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Queen's University, Kingston, Ontario, Canada
| | - Mehras Motamed
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - François Potus
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Charles C T Hindmarch
- Department of Medicine, Queen's Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Queen's University, Kingston, Ontario, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada.,Kingston Health Sciences Centre, Kingston, Ontario, Canada.,Providence Care Hospital, Kingston, Ontario, Canada
| |
Collapse
|
34
|
Mohammed F, Gorla M, Bisoyi V, Tammineni P, Sepuri NBV. Rotenone‐induced reactive oxygen species signal the recruitment of STAT3 to mitochondria. FEBS Lett 2020; 594:1403-1412. [DOI: 10.1002/1873-3468.13741] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 01/07/2020] [Indexed: 12/18/2022]
Affiliation(s)
| | - Madhavi Gorla
- Department of Biochemistry University of Hyderabad India
| | - Vandana Bisoyi
- Department of Biochemistry University of Hyderabad India
| | | | | |
Collapse
|
35
|
Tyrrell DJ, Blin MG, Song J, Wood S, Zhang M, Beard D, Goldstein DR. Age-Associated Mitochondrial Dysfunction Accelerates Atherogenesis. Circ Res 2020; 126:298-314. [PMID: 31818196 PMCID: PMC7006722 DOI: 10.1161/circresaha.119.315644] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rationale: Aging is one of the strongest risk factors for atherosclerosis. Yet whether aging increases the risk of atherosclerosis independently of chronic hyperlipidemia is not known. Objective: To determine if vascular aging before the induction of hyperlipidemia enhances atherogenesis. Methods and Results: We analyzed the aortas of young and aged normolipidemic wild type, disease-free mice and found that aging led to elevated IL (interleukin)-6 levels and mitochondrial dysfunction, associated with increased mitophagy and the associated protein Parkin. In aortic tissue culture, we found evidence that with aging mitochondrial dysfunction and IL-6 exist in a positive feedback loop. We triggered acute hyperlipidemia in aged and young mice by inducing liver-specific degradation of the LDL (low-density lipoprotein) receptor combined with a 10-week western diet and found that atherogenesis was enhanced in aged wild-type mice. Hyperlipidemia further reduced mitochondrial function and increased the levels of Parkin in the aortas of aged mice but not young mice. Genetic disruption of autophagy in smooth muscle cells of young mice exposed to hyperlipidemia led to increased aortic Parkin and IL-6 levels, impaired mitochondrial function, and enhanced atherogenesis. Importantly, enhancing mitophagy in aged, hyperlipidemic mice via oral administration of spermidine prevented the increase in aortic IL-6 and Parkin, attenuated mitochondrial dysfunction, and reduced atherogenesis. Conclusions: Before hyperlipidemia, aging elevates IL-6 and impairs mitochondrial function within the aorta, associated with enhanced mitophagy and increased Parkin levels. These age-associated changes prime the vasculature to exacerbate atherogenesis upon acute hyperlipidemia. Our work implies that novel therapeutics aimed at improving vascular mitochondrial bioenergetics or reducing inflammation before hyperlipidemia may reduce age-related atherosclerosis.
Collapse
Affiliation(s)
- Daniel J. Tyrrell
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Muriel G. Blin
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jianrui Song
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sherri Wood
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Min Zhang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Beard
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel R. Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA,Institute of Gerontology, University of Michigan, Ann Arbor, MI, USA,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
36
|
Nobiletin suppresses IL-21/IL-21 receptor-mediated inflammatory response in MH7A fibroblast-like synoviocytes (FLS): An implication in rheumatoid arthritis. Eur J Pharmacol 2020; 875:172939. [PMID: 31978425 DOI: 10.1016/j.ejphar.2020.172939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/17/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
Abstract
The mechanisms driving the development and progression of Rheumatoid arthritis (RA) are complex, novel targeted therapies are gaining traction as potential methods to prevent or slow the progression of RA. Nobiletin is a derivative of citrus fruit that has been shown to attenuate the development of osteoarthritis and inhibit the expression of proinflammatory cytokines. However, the exact mechanisms by which nobiletin exerts these chondroprotective effects remain poorly understood. In the present study, we investigated the impact of nobiletin in mediating the effects of interleukin-21 (IL-21) in MH7A fibroblast-like synoviocytes (FLS), the main cell type found in the articular synovium. Firstly, we demonstrate that nobiletin (25 μM and 50 μM) reduced the expression of the IL-21 receptor by 29% and 51%, respectively, in FLS. Additionally, our findings demonstrate that nobiletin potently ameliorated IL-21-induced increased production of reactive oxygen species and 4-hydroxynonenal, increased expression of interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), and high-mobility group box 1 (HMGB1), and decreased mitochondrial membrane potential. We also demonstrate the ability of nobiletin to attenuate IL-21-induced expression of matrix metalloproteinases 3 and 13 (MMP-3, MMP-13), key degradative enzymes involved in RA-associated cartilage destruction. Finally, we show that the effects of nobiletin are mediated through the JAK1/STAT3 pathway, as nobiletin significantly reduced the phosphorylation of both JAK1 and STAT3. Taken together, our findings indicate that nobiletin may offer a safe and effective treatment against the development and progression of RA induced by the expression of IL-21 and its receptor.
Collapse
|
37
|
Brachet-Botineau M, Polomski M, Neubauer HA, Juen L, Hédou D, Viaud-Massuard MC, Prié G, Gouilleux F. Pharmacological Inhibition of Oncogenic STAT3 and STAT5 Signaling in Hematopoietic Cancers. Cancers (Basel) 2020; 12:E240. [PMID: 31963765 PMCID: PMC7016966 DOI: 10.3390/cancers12010240] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) 3 and 5 are important effectors of cellular transformation, and aberrant STAT3 and STAT5 signaling have been demonstrated in hematopoietic cancers. STAT3 and STAT5 are common targets for different tyrosine kinase oncogenes (TKOs). In addition, STAT3 and STAT5 proteins were shown to contain activating mutations in some rare but aggressive leukemias/lymphomas. Both proteins also contribute to drug resistance in hematopoietic malignancies and are now well recognized as major targets in cancer treatment. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations during the last decade. This review summarizes the current knowledge of oncogenic STAT3 and STAT5 functions in hematopoietic cancers as well as advances in preclinical and clinical development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Marie Brachet-Botineau
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| | - Marion Polomski
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria;
| | - Ludovic Juen
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Damien Hédou
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Marie-Claude Viaud-Massuard
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Gildas Prié
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Fabrice Gouilleux
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| |
Collapse
|
38
|
Chen Q, Lv J, Yang W, Xu B, Wang Z, Yu Z, Wu J, Yang Y, Han Y. Targeted inhibition of STAT3 as a potential treatment strategy for atherosclerosis. Theranostics 2019; 9:6424-6442. [PMID: 31588227 PMCID: PMC6771242 DOI: 10.7150/thno.35528] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis is the main pathological basis of ischemic cardiovascular and cerebrovascular diseases and has attracted more attention in recent years. Multiple studies have demonstrated that the signal transducer and activator of transcription 3 (STAT3) plays essential roles in the process of atherosclerosis. Moreover, aberrant STAT3 activation has been shown to contribute to the occurrence and development of atherosclerosis. Therefore, the study of STAT3 inhibitors has gradually become a focal research topic. In this review, we describe the crucial roles of STAT3 in endothelial cell dysfunction, macrophage polarization, inflammation, and immunity during atherosclerosis. STAT3 in mitochondria is mentioned as well. Then, we present a summary and classification of STAT3 inhibitors, which could offer potential treatment strategies for atherosclerosis. Furthermore, we enumerate some of the problems that have interfered with the development of mature therapies utilizing STAT3 inhibitors to treat atherosclerosis. Finally, we propose ideas that may help to solve these problems to some extent. Collectively, this review may be useful for developing future STAT3 inhibitor therapies for atherosclerosis.
Collapse
|
39
|
Harhous Z, Badawi S, Bona NG, Pillot B, Augeul L, Paillard M, Booz GW, Canet-Soulas E, Ovize M, Kurdi M, Bidaux G. Critical appraisal of STAT3 pattern in adult cardiomyocytes. J Mol Cell Cardiol 2019; 131:91-100. [PMID: 31022374 DOI: 10.1016/j.yjmcc.2019.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/08/2019] [Accepted: 04/19/2019] [Indexed: 11/19/2022]
Abstract
The signal transducer and activator of transcription 3, STAT3, transfers cellular signals from the plasma membrane to the nucleus, acting as a signaling molecule and a transcription factor. Reports proposed an additional non-canonical role of STAT3 that could regulate the activity of complexes I and II of the electron transport chain and the opening of the mitochondrial permeability transition pore (PTP) after ischemia-reperfusion in various cell types. The native expression of STAT3 in heart mitochondria, together with a direct versus an indirect transcriptional role in mitochondrial functions, have been recently questioned. The objective of the present study was to investigate the cellular distribution of STAT3 in mouse adult cardiomyocytes under basal and stress conditions, along with assessing its presence and activity in cardiac mitochondria using structural and functional approaches. The analysis of the spatial distribution of STAT3 signal in the cardiomyocytes interestingly showed that it is transversely distributed along the T-tubules and in the nucleus. This distribution was neither affected by hypoxia nor by hypoxia/re‑oxygenation conditions. Focusing on the mitochondrial STAT3 localization, our results suggest that serine-phosphorylated STAT3 (PS727-STAT3) and total STAT3 are detected in crude but not in pure mitochondria of mouse adult cardiomyocytes, under basal and ischemia-reperfusion conditions. The inhibition of STAT3, with a pre-validated non-toxic Stattic dose, had no significant effects on mitochondrial respiration, but a weak effect on the calcium retention capacity. Overall, our results exclusively reveal a unique cellular distribution of STAT3 in mouse adult cardiomyocytes, along the T-tubules and in nucleus, under different conditions. They also challenge the expression and activity of STAT3 in mitochondria of these cells under basal conditions and following ischemia-reperfusion. In addition, our results underline technical methods, complemental to cell fractionation, to evaluate STAT3 roles during hypoxia-reoxygenation and at the interface between nucleus and endoplasmic reticulum.
Collapse
Affiliation(s)
- Zeina Harhous
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France; IHU OPeRa, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; Lebanese University, Faculty of Sciences, Doctoral School of Sciences and Techlogy, Laboratory of Experimental and Clinical Pharmacology, Hadat, Lebanon
| | - Sally Badawi
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France; IHU OPeRa, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; Lebanese University, Faculty of Sciences, Doctoral School of Sciences and Techlogy, Laboratory of Experimental and Clinical Pharmacology, Hadat, Lebanon
| | - Noelle Gallo Bona
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France; IHU OPeRa, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France
| | - Bruno Pillot
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France; IHU OPeRa, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France
| | - Lionel Augeul
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France; IHU OPeRa, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France
| | - Melanie Paillard
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France; IHU OPeRa, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA
| | - Emmanuelle Canet-Soulas
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France; IHU OPeRa, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France
| | - Michel Ovize
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France; IHU OPeRa, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France
| | - Mazen Kurdi
- Lebanese University, Faculty of Sciences, Doctoral School of Sciences and Techlogy, Laboratory of Experimental and Clinical Pharmacology, Hadat, Lebanon.
| | - Gabriel Bidaux
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France; IHU OPeRa, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France.
| |
Collapse
|
40
|
Hu S, Cheng D, Peng D, Tan J, Huang Y, Chen C. Leptin attenuates cerebral ischemic injury in rats by modulating the mitochondrial electron transport chain via the mitochondrial STAT3 pathway. Brain Behav 2019; 9:e01200. [PMID: 30632310 PMCID: PMC6379515 DOI: 10.1002/brb3.1200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/24/2018] [Accepted: 11/30/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND According to recent studies, leptin may exert a neuroprotective function by affecting the phosphorylation of signal transducer and activator of transcription 3 (STAT3). During stress, STAT3 regulates mitochondrial oxidative stress and reduces apoptosis. OBJECTIVE In the present study, we hypothesized that leptin increases STAT3 phosphorylation in the mitochondria and protects against mitochondrial oxidative stress in rats subjected to permanent middle cerebral artery occlusion (MCAO). RESULTS Leptin reduced reactive oxygen species (ROS) production, and we confirmed that the mechanism underlying this change involved the enzymatic activities of mitochondrial respiratory chain complexes I and II. In addition, leptin increased the level of STAT3 Ser727 phosphorylation in the mitochondria. CONCLUSIONS Based on these results, leptin may regulate mitochondrial respiratory chain enzymatic activities via mitochondria-targeted STAT3 to reduce ROS production and protect brain tissues from mitochondrial oxidative stress during cerebral ischemia.
Collapse
Affiliation(s)
- Shijun Hu
- Department of Neurology, Hainan General Hospital, Haikou, China
| | - Daobin Cheng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dingtian Peng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Tan
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanlan Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunyong Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
41
|
Neo SY, O'Reilly A, Pico de Coaña Y. Immune Monitoring of Cancer Patients by Multi-color Flow Cytometry. Methods Mol Biol 2019; 1913:49-65. [PMID: 30666598 DOI: 10.1007/978-1-4939-8979-9_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The irruption of immune-activating therapies to treat cancer has created a need for evaluating both the response and possible adverse events related to these novel treatments. Multicolor flow cytometry is a powerful tool that enables tumor immunologists to characterize the immune system of patients before and in response to immunotherapy. We present here a protocol for purifying human peripheral blood mononuclear cells and staining them with a set of six multicolor panels that allow for a thorough characterization of the immune system of healthy donors as well as patients that are undergoing treatments that may modify the immune system.
Collapse
Affiliation(s)
- Shi Yong Neo
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Aine O'Reilly
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Yago Pico de Coaña
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
42
|
Scheld M, Fragoulis A, Nyamoya S, Zendedel A, Denecke B, Krauspe B, Teske N, Kipp M, Beyer C, Clarner T. Mitochondrial Impairment in Oligodendroglial Cells Induces Cytokine Expression and Signaling. J Mol Neurosci 2018; 67:265-275. [PMID: 30547416 DOI: 10.1007/s12031-018-1236-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022]
Abstract
Widespread inflammatory lesions within the central nervous system grey and white matter are major hallmarks of multiple sclerosis. The development of full-blown demyelinating multiple sclerosis lesions might be preceded by preactive lesions which are characterized by focal microglia activation in close spatial relation to apoptotic oligodendrocytes. In this study, we investigated the expression of signaling molecules of oligodendrocytes that might be involved in initial microglia activation during preactive lesion formation. Sodium azide was used to trigger mitochondrial impairment and cellular stress in oligodendroglial cells in vitro. Among various chemokines and cytokines, IL6 was identified as a possible oligodendroglial cell-derived signaling molecule in response to cellular stress. Relevance of this finding for lesion development was further explored in the cuprizone model by applying short-term cuprizone feeding (2-4 days) on male C57BL/6 mice and subsequent analysis of gene expression, in situ hybridization and histology. Additionally, we analyzed the possible signaling of stressed oligodendroglial cells in vitro as well as in the cuprizone mouse model. In vitro, conditioned medium of stressed oligodendroglial cells triggered the activation of microglia cells. In cuprizone-fed animals, IL6 expression in oligodendrocytes was found in close vicinity of activated microglia cells. Taken together, our data support the view that stressed oligodendrocytes have the potential to activate microglia cells through a specific cocktail of chemokines and cytokines among IL6. Further studies will have to identify the temporal activation pattern of these signaling molecules, their cellular sources, and impact on neuroinflammation.
Collapse
Affiliation(s)
- Miriam Scheld
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Stella Nyamoya
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.,Department of Neuroanatomy, Faculty of Medicine, Ludwig-Maximilians-University of Munich, 80336, Munich, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Bernd Denecke
- IZKF Genomics Facility, Interdisciplinary Center for Clinical Research, RWTH Aachen University, 52074, Aachen, Germany
| | - Barbara Krauspe
- Clinic for Gynaecology and Obstetrics, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Nico Teske
- Department of Neuroanatomy, Faculty of Medicine, Ludwig-Maximilians-University of Munich, 80336, Munich, Germany
| | - Markus Kipp
- Institute of Anatomy, Faculty of Medicine, University of Rostock, 18057, Rostock, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Tim Clarner
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| |
Collapse
|
43
|
Nucleus, Mitochondrion, or Reticulum? STAT3 à La Carte. Int J Mol Sci 2018; 19:ijms19092820. [PMID: 30231582 PMCID: PMC6164042 DOI: 10.3390/ijms19092820] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022] Open
Abstract
The transcription factor signal transducer and activator of transcription (STAT)3 mediates the functions of cytokines, growth factors, and oncogenes under both physiological and pathological conditions. Uncontrolled/constitutive STAT3 activity is often detected in tumors of different types, where its role is mostly that of an oncogene, contributing in multiple ways to tumor transformation, growth, and progression. For this reason, many laboratories and pharmaceutical companies are making efforts to develop specific inhibitors. However, STAT3 has also been shown to act as a tumor suppressor in a number of cases, suggesting that its activity is strongly context-specific. Here, we discuss the bases that can explain the multiple roles of this factor in both physiological and pathological contexts. In particular, we focus on the following four features: (i) the distinct properties of the STAT3α and β isoforms; (ii) the multiple post-translational modifications (phosphorylation on tyrosine or serine, acetylation and methylation on different residues, and oxidation and glutathionylation) that can affect its activities downstream of multiple different signals; (iii) the non-canonical functions in the mitochondria, contributing to the maintenance of energy homeostasis under stress conditions; and (iv) the recently discovered functions in the endoplasmic reticulum, where STAT3 contributes to the regulation of calcium homeostasis, energy production, and apoptosis.
Collapse
|
44
|
Kosgodage US, Mould R, Henley AB, Nunn AV, Guy GW, Thomas EL, Inal JM, Bell JD, Lange S. Cannabidiol (CBD) Is a Novel Inhibitor for Exosome and Microvesicle (EMV) Release in Cancer. Front Pharmacol 2018; 9:889. [PMID: 30150937 PMCID: PMC6099119 DOI: 10.3389/fphar.2018.00889] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 07/23/2018] [Indexed: 01/05/2023] Open
Abstract
Exosomes and microvesicles (EMV) are lipid bilayer-enclosed structures, released by cells and involved in intercellular communication through transfer of proteins and genetic material. EMV release is also associated with various pathologies, including cancer, where increased EMV release is amongst other associated with chemo-resistance and active transfer of pro-oncogenic factors. Recent studies show that EMV-inhibiting agents can sensitize cancer cells to chemotherapeutic agents and reduce cancer growth in vivo. Cannabidiol (CBD), a phytocannabinoid derived from Cannabis sativa, has anti-inflammatory and anti-oxidant properties, and displays anti-proliferative activity. Here we report a novel role for CBD as a potent inhibitor of EMV release from three cancer cell lines: prostate cancer (PC3), hepatocellular carcinoma (HEPG2) and breast adenocarcinoma (MDA-MB-231). CBD significantly reduced exosome release in all three cancer cell lines, and also significantly, albeit more variably, inhibited microvesicle release. The EMV modulating effects of CBD were found to be dose dependent (1 and 5 μM) and cancer cell type specific. Moreover, we provide evidence that this may be associated with changes in mitochondrial function, including modulation of STAT3 and prohibitin expression, and that CBD can be used to sensitize cancer cells to chemotherapy. We suggest that the known anti-cancer effects of CBD may partly be due to the regulatory effects on EMV biogenesis, and thus CBD poses as a novel and safe modulator of EMV-mediated pathological events.
Collapse
Affiliation(s)
- Uchini S Kosgodage
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London, United Kingdom
| | - Rhys Mould
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Aine B Henley
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Alistair V Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Geoffrey W Guy
- GW Research, Sovereign House Vision Park, Cambridge, United Kingdom
| | - E L Thomas
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Jameel M Inal
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Jimmy D Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, Department of Biomedical Sciences, University of Westminster, London, United Kingdom.,Department of Pharmacology, University College London School of Pharmacy, London, United Kingdom
| |
Collapse
|
45
|
STAT3 localizes to the ER, acting as a gatekeeper for ER-mitochondrion Ca 2+ fluxes and apoptotic responses. Cell Death Differ 2018; 26:932-942. [PMID: 30042492 DOI: 10.1038/s41418-018-0171-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/28/2018] [Accepted: 06/19/2018] [Indexed: 11/08/2022] Open
Abstract
STAT3 is an oncogenic transcription factor exerting its functions both as a canonical transcriptional activator and as a non-canonical regulator of energy metabolism and mitochondrial functions. While both activities are required for cell transformation downstream of different oncogenic stimuli, they rely on different post-translational activating events, namely phosphorylation on either Y705 (nuclear activities) or S727 (mitochondrial functions). Here, we report the discovery of the unexpected STAT3 localization to the endoplasmic reticulum (ER), from where it modulates ER-mitochondria Ca2+ release by interacting with the Ca2+ channel IP3R3 and facilitating its degradation. The release of Ca2+ is of paramount importance for life/death cell decisions, as excessive Ca2+ causes mitochondrial Ca2+ overload, the opening of the mitochondrial permeability transition pore, and the initiation of the intrinsic apoptotic program. Indeed, STAT3 silencing enhances ER Ca2+ release and sensitivity to apoptosis following oxidative stress in STAT3-dependent mammary tumor cells, correlating with increased IP3R3 levels. Accordingly, basal-like mammary tumors, which frequently display constitutively active STAT3, show an inverse correlation between IP3R3 and STAT3 protein levels. These results suggest that STAT3-mediated IP3R3 downregulation in the ER crucially contributes to its anti-apoptotic functions via modulation of Ca2+ fluxes.
Collapse
|
46
|
Ozay EI, Sherman HL, Mello V, Trombley G, Lerman A, Tew GN, Yadava N, Minter LM. Rotenone Treatment Reveals a Role for Electron Transport Complex I in the Subcellular Localization of Key Transcriptional Regulators During T Helper Cell Differentiation. Front Immunol 2018; 9:1284. [PMID: 29930555 PMCID: PMC5999735 DOI: 10.3389/fimmu.2018.01284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/22/2018] [Indexed: 01/19/2023] Open
Abstract
Recent advances in our understanding of tumor cell mitochondrial metabolism suggest it may be an attractive therapeutic target. Mitochondria are central hubs of metabolism that provide energy during the differentiation and maintenance of immune cell phenotypes. Mitochondrial membranes harbor several enzyme complexes that are involved in the process of oxidative phosphorylation, which takes place during energy production. Data suggest that, among these enzyme complexes, deficiencies in electron transport complex I may differentially affect immune responses and may contribute to the pathophysiology of several immunological conditions. Once activated by T cell receptor signaling, along with co-stimulation through CD28, CD4 T cells utilize mitochondrial energy to differentiate into distinct T helper (Th) subsets. T cell signaling activates Notch1, which is cleaved from the plasma membrane to generate its intracellular form (N1ICD). In the presence of specific cytokines, Notch1 regulates gene transcription related to cell fate to modulate CD4 Th type 1, Th2, Th17, and induced regulatory T cell (iTreg) differentiation. The process of differentiating into any of these subsets requires metabolic energy, provided by the mitochondria. We hypothesized that the requirement for mitochondrial metabolism varies between different Th subsets and may intersect with Notch1 signaling. We used the organic pesticide rotenone, a well-described complex I inhibitor, to assess how compromised mitochondrial integrity impacts CD4 T cell differentiation into Th1, Th2, Th17, and iTreg cells. We also investigated how Notch1 localization and downstream transcriptional capabilities regulation may be altered in each subset following rotenone treatment. Our data suggest that mitochondrial integrity impacts each of these Th subsets differently, through its influence on Notch1 subcellular localization. Our work further supports the notion that altered immune responses can result from complex I inhibition. Therefore, understanding how mitochondrial inhibitors affect immune responses may help to inform therapeutic approaches to cancer treatment.
Collapse
Affiliation(s)
- Emrah Ilker Ozay
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Heather L Sherman
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Victoria Mello
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Grace Trombley
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Adam Lerman
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Gregory N Tew
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States.,Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States.,Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Nagendra Yadava
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States.,Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States.,Pioneer Valley Life Sciences Institute, Springfield, MA, United States
| | - Lisa M Minter
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States.,Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
47
|
Rincon M, Pereira FV. A New Perspective: Mitochondrial Stat3 as a Regulator for Lymphocyte Function. Int J Mol Sci 2018; 19:ijms19061656. [PMID: 29866996 PMCID: PMC6032237 DOI: 10.3390/ijms19061656] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022] Open
Abstract
Stat3 as a transcription factor regulating gene expression in lymphocytes during the immune response is well known. However, since the pioneering studies discovering the presence of Stat3 in mitochondria and its role in regulating mitochondrial metabolism, only a few studies have investigated this non-conventional function of Stat3 in lymphocytes. From this perspective, we review what is known about Stat3 as a transcription factor and what is known and unknown about mitochondrial Stat3 (mitoStat3) in lymphocytes. We also provide a framework to consider how some of the functions previously assigned to Stat3 as regulator of gene transcription could be mediated by mitoStat3 in lymphocytes. The goal of this review is to stimulate interest for future studies investigating mitoStat3 in the immune response that could lead to the generation of alternative pharmacological inhibitors of mitoStat3 for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Mercedes Rincon
- Department of Medicine, Immunobiology Division, University of Vermont, Burlington, VT 05405, USA.
| | - Felipe Valença Pereira
- Department of Medicine, Immunobiology Division, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
48
|
Hu W, Lv J, Han M, Yang Z, Li T, Jiang S, Yang Y. STAT3: The art of multi-tasking of metabolic and immune functions in obesity. Prog Lipid Res 2018; 70:17-28. [DOI: 10.1016/j.plipres.2018.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023]
|
49
|
Abstract
Signal transducer and activator of transcription (STAT) 3 is a key signalling protein engaged by a multitude of growth factors and cytokines to elicit diverse biological outcomes including cellular growth, differentiation, and survival. The complete loss of STAT3 is not compatible with life and even partial loss of function mutations lead to debilitating pathologies like hyper IgE syndrome. Conversely, augmented STAT3 activity has been reported in as many as 50% of all human tumours. The dogma of STAT3 activity posits that it is a tyrosine phosphorylated transcription factor which modulates the expression of hundreds of genes. However, the regulation and biological consequences of STAT3 activation are far more complex. In addition to tyrosine phosphorylation, STAT3 is decorated with a plethora of post-translational modifications which regulate STAT3's nuclear function in addition to its non-genomic activities. In addition to these emerging complexities in the biochemical regulation of STAT3 activity, recent studies reveal that STAT3 is either oncogenic or a tumour suppressor. This review will explore these complexities.
Collapse
Affiliation(s)
- Aleks C Guanizo
- a Centre for Cancer Research , Hudson Institute of Medical Research , Clayton , VIC , Australia
- b Department of Molecular and Translational Science , Monash University , Clayton , VIC , Australia
| | - Chamira Dilanka Fernando
- a Centre for Cancer Research , Hudson Institute of Medical Research , Clayton , VIC , Australia
- b Department of Molecular and Translational Science , Monash University , Clayton , VIC , Australia
| | - Daniel J Garama
- a Centre for Cancer Research , Hudson Institute of Medical Research , Clayton , VIC , Australia
- b Department of Molecular and Translational Science , Monash University , Clayton , VIC , Australia
| | - Daniel J Gough
- a Centre for Cancer Research , Hudson Institute of Medical Research , Clayton , VIC , Australia
- b Department of Molecular and Translational Science , Monash University , Clayton , VIC , Australia
| |
Collapse
|
50
|
Human Cytomegalovirus UL111A and US27 Gene Products Enhance the CXCL12/CXCR4 Signaling Axis via Distinct Mechanisms. J Virol 2018; 92:JVI.01981-17. [PMID: 29237840 DOI: 10.1128/jvi.01981-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/06/2017] [Indexed: 01/19/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a prevalent pathogen that establishes lifelong infection in the host. Virus persistence is aided by extensive manipulation of the host immune system, particularly cytokine and chemokine signaling pathways. The HCMV UL111A gene encodes cmvIL-10, an ortholog of human interleukin-10 that has many immunomodulatory effects. We found that cmvIL-10 increased signaling outcomes from human CXCR4, a chemokine receptor with essential roles in hematopoiesis and immune cell trafficking, in response to its natural ligand CXCL12. Calcium flux and chemotaxis to CXCL12 were significantly greater in the presence of cmvIL-10 in monocytes, epithelial cells, and fibroblasts that express CXCR4. cmvIL-10 effects on CXCL12/CXCR4 signaling required the IL-10 receptor and Stat3 activation. Heightened signaling occurred both in HCMV-infected cells and in uninfected bystander cells, suggesting that cmvIL-10 may broadly influence chemokine networks by paracrine signaling during infection. Moreover, CXCL12/CXCR4 signaling was amplified in HCMV-infected cells compared to mock-infected cells even in the absence of cmvIL-10. Enhanced CXCL12/CXCR4 outcomes were associated with expression of the virally encoded chemokine receptor US27, and CXCL12/CXCR4 activation was reduced in cells infected with a deletion mutant lacking US27 (TB40/E-mCherry-US27Δ). US27 effects were Stat3 independent but required close proximity to CXCR4 in cell membranes of either HCMV-infected or US27-transfected cells. Thus, HCMV encodes two proteins, cmvIL-10 and US27, that exhibit distinct mechanisms for enhancing CXCR4 signaling. Either individually or in combination, cmvIL-10 and US27 may enable HCMV to exquisitely manipulate CXCR4 signaling to alter host immune responses and modify cell trafficking patterns during infection.IMPORTANCE The human chemokine system plays a central role in host defense, as evidenced by the many strategies devised by viruses for manipulating it. Human cytomegalovirus (HCMV) is widespread in the human population, but infection rarely causes disease except in immunocompromised hosts. We found that two different HCMV proteins, cmvIL-10 and US27, act through distinct mechanisms to upregulate the signaling activity of a cellular chemokine receptor, CXCR4. cmvIL-10 is a secreted viral cytokine that affects CXCR4 signaling in both infected and uninfected cells, while US27 is a component of the virus particle and impacts CXCR4 activity only in infected cells. Both cmvIL-10 and US27 promote increased intracellular calcium signaling and cell migration in response to chemokine CXCL12 binding to CXCR4. Our results demonstrate that HCMV exerts fine control over the CXCL12/CXCR4 pathway, which could lead to enhanced virus dissemination, altered immune cell trafficking, and serious health implications for HCMV patients.
Collapse
|