1
|
Sanz-Gálvez R, Falardeau D, Kolta A, Inglebert Y. The role of astrocytes from synaptic to non-synaptic plasticity. Front Cell Neurosci 2024; 18:1477985. [PMID: 39493508 PMCID: PMC11527691 DOI: 10.3389/fncel.2024.1477985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Information storage and transfer in the brain require a high computational power. Neuronal network display various local or global mechanisms to allow information storage and transfer in the brain. From synaptic to intrinsic plasticity, the rules of input-output function modulation have been well characterized in neurons. In the past years, astrocytes have been suggested to increase the computational power of the brain and we are only just starting to uncover their role in information processing. Astrocytes maintain a close bidirectional communication with neurons to modify neuronal network excitability, transmission, axonal conduction, and plasticity through various mechanisms including the release of gliotransmitters or local ion homeostasis. Astrocytes have been significantly studied in the context of long-term or short-term synaptic plasticity, but this is not the only mechanism involved in memory formation. Plasticity of intrinsic neuronal excitability also participates in memory storage through regulation of voltage-gated ion channels or axonal morphological changes. Yet, the contribution of astrocytes to these other forms of non-synaptic plasticity remains to be investigated. In this review, we summarized the recent advances on the role of astrocytes in different forms of plasticity and discuss new directions and ideas to be explored regarding astrocytes-neuronal communication and regulation of plasticity.
Collapse
Affiliation(s)
- Rafael Sanz-Gálvez
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
| | - Dominic Falardeau
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
| | - Arlette Kolta
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
- Department of Stomatology, Université de Montréal, Montréal, QC, Canada
| | - Yanis Inglebert
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
| |
Collapse
|
2
|
Hananeia N, Ebner C, Galanis C, Cuntz H, Opitz A, Vlachos A, Jedlicka P. Multi-scale modelling of location- and frequency-dependent synaptic plasticity induced by transcranial magnetic stimulation in the dendrites of pyramidal neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601851. [PMID: 39005474 PMCID: PMC11244966 DOI: 10.1101/2024.07.03.601851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) induces long-term changes of synapses, but the mechanisms behind these modifications are not fully understood. Although there has been progress in the development of multi-scale modeling tools, no comprehensive module for simulating rTMS-induced synaptic plasticity in biophysically realistic neurons exists.. Objective We developed a modelling framework that allows the replication and detailed prediction of long-term changes of excitatory synapses in neurons stimulated by rTMS. Methods We implemented a voltage-dependent plasticity model that has been previously established for simulating frequency-, time-, and compartment-dependent spatio-temporal changes of excitatory synapses in neuronal dendrites. The plasticity model can be incorporated into biophysical neuronal models and coupled to electrical field simulations. Results We show that the plasticity modelling framework replicates long-term potentiation (LTP)-like plasticity in hippocampal CA1 pyramidal cells evoked by 10-Hz repetitive magnetic stimulation (rMS). This plasticity was strongly distance dependent and concentrated at the proximal synapses of the neuron. We predicted a decrease in the plasticity amplitude for 5 Hz and 1 Hz protocols with decreasing frequency. Finally, we successfully modelled plasticity in distal synapses upon local electrical theta-burst stimulation (TBS) and predicted proximal and distal plasticity for rMS TBS. Notably, the rMS TBS-evoked synaptic plasticity exhibited robust facilitation by dendritic spikes and low sensitivity to inhibitory suppression. Conclusion The plasticity modelling framework enables precise simulations of LTP-like cellular effects with high spatio-temporal resolution, enhancing the efficiency of parameter screening and the development of plasticity-inducing rTMS protocols.
Collapse
Affiliation(s)
- Nicholas Hananeia
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
| | - Christian Ebner
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
- Charité · NeuroCure (NCRC), Charité Universitätsmedizin Berlin
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg
- Bernstein Center Freiburg, University of Freiburg
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hermann Cuntz
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Alexander Opitz
- Dept of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg
- Bernstein Center Freiburg, University of Freiburg
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Jedlicka
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
| |
Collapse
|
3
|
Tomko M, Benuskova L, Jedlicka P. A voltage-based Event-Timing-Dependent Plasticity rule accounts for LTP subthreshold and suprathreshold for dendritic spikes in CA1 pyramidal neurons. J Comput Neurosci 2024; 52:125-131. [PMID: 38470534 PMCID: PMC11035391 DOI: 10.1007/s10827-024-00868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Long-term potentiation (LTP) is a synaptic mechanism involved in learning and memory. Experiments have shown that dendritic sodium spikes (Na-dSpikes) are required for LTP in the distal apical dendrites of CA1 pyramidal cells. On the other hand, LTP in perisomatic dendrites can be induced by synaptic input patterns that can be both subthreshold and suprathreshold for Na-dSpikes. It is unclear whether these results can be explained by one unifying plasticity mechanism. Here, we show in biophysically and morphologically realistic compartmental models of the CA1 pyramidal cell that these forms of LTP can be fully accounted for by a simple plasticity rule. We call it the voltage-based Event-Timing-Dependent Plasticity (ETDP) rule. The presynaptic event is the presynaptic spike or release of glutamate. The postsynaptic event is the local depolarization that exceeds a certain plasticity threshold. Our model reproduced the experimentally observed LTP in a variety of protocols, including local pharmacological inhibition of dendritic spikes by tetrodotoxin (TTX). In summary, we have provided a validation of the voltage-based ETDP, suggesting that this simple plasticity rule can be used to model even complex spatiotemporal patterns of long-term synaptic plasticity in neuronal dendrites.
Collapse
Affiliation(s)
- Matus Tomko
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 840 05, Slovakia.
- Faculty of Medicine, Institute of Medical Physics and Biophysics, Comenius University Bratislava, Bratislava, Slovakia.
| | - Lubica Benuskova
- Faculty of Mathematics, Physics and Informatics, Centre for Cognitive Science, Department of Applied Informatics, Comenius University Bratislava, Bratislava, Slovakia
| | - Peter Jedlicka
- Faculty of Medicine, ICAR3R-Interdisciplinary Centre for 3Rs in Animal Research, Justus Liebig University Giessen, Giessen, Germany
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt/Main, Germany
| |
Collapse
|
4
|
Rathour RK, Kaphzan H. Dendritic effects of tDCS insights from a morphologically realistic model neuron. iScience 2024; 27:109230. [PMID: 38433894 PMCID: PMC10907852 DOI: 10.1016/j.isci.2024.109230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/04/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) induces subcellular compartmental-dependent polarization, maximal in the distal portions of axons and dendrites. Using a morphologically realistic neuron model, we simulated tDCS-induced membrane polarization of the apical dendrite. Thus, we investigated the differential dendritic effects of anodal and cathodal tDCS on membrane potential polarization along the dendritic structure and its subsequent effects on dendritic membrane resistance, excitatory postsynaptic potential amplitude, backpropagating action potential amplitude, input/output relations, and long-term synaptic plasticity. We further showed that the effects of anodal and cathodal tDCS on the backpropagating action potential were asymmetric, and explained this asymmetry. Additionally, we showed that the effects on input/output relations were rather weak and limited to the low-mid range of stimulation frequencies, and that synaptic plasticity effects were mostly limited to the distal portion of the dendrite. Thus, we demonstrated how tDCS modifies dendritic physiology due to the dendrite's unique morphology and composition of voltage-gated ion channels.
Collapse
Affiliation(s)
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| |
Collapse
|
5
|
Plitt MH, Kaganovsky K, Südhof TC, Giocomo LM. Hippocampal place code plasticity in CA1 requires postsynaptic membrane fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567978. [PMID: 38045362 PMCID: PMC10690209 DOI: 10.1101/2023.11.20.567978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Rapid delivery of glutamate receptors to the postsynaptic membrane via vesicle fusion is a central component of synaptic plasticity. However, it is unknown how this process supports specific neural computations during behavior. To bridge this gap, we combined conditional genetic deletion of a component of the postsynaptic membrane fusion machinery, Syntaxin3 (Stx3), in hippocampal CA1 neurons of mice with population in vivo calcium imaging. This approach revealed that Stx3 is necessary for forming the neural dynamics that support novelty processing, spatial reward memory and offline memory consolidation. In contrast, CA1 Stx3 was dispensable for maintaining aspects of the neural code that exist presynaptic to CA1 such as representations of context and space. Thus, manipulating postsynaptic membrane fusion identified computations that specifically require synaptic restructuring via membrane trafficking in CA1 and distinguished them from neural representation that could be inherited from upstream brain regions or learned through other mechanisms.
Collapse
Affiliation(s)
- Mark H. Plitt
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
- These authors contributed equally to this work
- Present address: Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA, USA
| | - Konstantin Kaganovsky
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA, USA
- These authors contributed equally to this work
- Present address: Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Thomas C. Südhof
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine; Stanford, CA, USA
| | - Lisa M. Giocomo
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
| |
Collapse
|
6
|
Rissardo JP, Fornari Caprara AL. Cenobamate (YKP3089) and Drug-Resistant Epilepsy: A Review of the Literature. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1389. [PMID: 37629678 PMCID: PMC10456719 DOI: 10.3390/medicina59081389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Cenobamate (CNB), ([(R)-1-(2-chlorophenyl)-2-(2H-tetrazol-2-yl)ethyl], is a novel tetrazole alkyl carbamate derivative. In November 2019, the Food and Drug Administration approved Xcopri®, marketed by SK Life Science Inc., (Paramus, NJ, USA) for adult focal seizures. The European Medicines Agency approved Ontozry® by Arvelle Therapeutics Netherlands B.V.(Amsterdam, The Neatherlands) in March 2021. Cenobamate is a medication that could potentially change the perspectives regarding the management and prognosis of refractory epilepsy. In this way, this study aims to review the literature on CNB's pharmacological properties, pharmacokinetics, efficacy, and safety. CNB is a highly effective drug in managing focal onset seizures, with more than twenty percent of individuals with drug-resistant epilepsy achieving seizure freedom. This finding is remarkable in the antiseizure medication literature. The mechanism of action of CNB is still poorly understood, but it is associated with transient and persistent sodium currents and GABAergic neurotransmission. In animal studies, CNB showed sustained efficacy and potency in the 6 Hz test regardless of the stimulus intensity. CNB was revealed to be the most cost-effective drug among different third-generation antiseizure medications. Also, CNB could have neuroprotective effects. However, there are still concerns regarding its potential for abuse and suicidality risk, which future studies should clearly assess, after which protocols should be changed. The major drawback of CNB therapy is the slow and complex titration and maintenance phases preventing the wide use of this new agent in clinical practice.
Collapse
Affiliation(s)
- Jamir Pitton Rissardo
- Medicine Department, Federal University of Santa Maria, Santa Maria 97105-900, Brazil;
| | | |
Collapse
|
7
|
Pahlavan B, Buitrago N, Santamaria F. Macromolecular rate theory explains the temperature dependence of membrane conductance kinetics. Biophys J 2023; 122:522-532. [PMID: 36567527 PMCID: PMC9941726 DOI: 10.1016/j.bpj.2022.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/19/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022] Open
Abstract
The factor Q10 is used in neuroscience to adjust reaction rates of voltage-activated membrane conductances to different temperatures and is widely assumed to be constant. By performing an analysis of published data of the reaction rates of sodium, potassium, and calcium membrane conductances, we demonstrate that 1) Q10 is temperature dependent, 2) this relationship is similar across conductances, and 3) there is a strong effect at low temperatures (<15°C). We show that macromolecular rate theory (MMRT) explains this temperature dependency. MMRT predicts the existence of optimal temperatures at which reaction rates decrease as temperature increases, a phenomenon that we also found in the published data sets. We tested the consequences of using MMRT-adjusted reaction rates in the Hodgkin-Huxley model of the squid's giant axon. The MMRT-adjusted model reproduces the temperature dependence of the rising and falling times of the action potential. Furthermore, the model also reproduces these properties for different squid species that live in different climates. In a second example, we compare spiking patterns of biophysical models based on human pyramidal neurons from the Allen Cell Types database at room and physiological temperatures. The original models, calibrated at 34°C, failed to generate realistic spikes at room temperature in more than half of the tested models, while the MMRT produces realistic spiking in all conditions. In another example, we show that using the MMRT correction in hippocampal pyramidal cell models results in 100% differences in voltage responses. Finally, we show that the shape of the Q10 function results in systematic errors in predicting reaction rates. We propose that the optimal temperature could be a thermodynamical barrier to avoid over excitation in neurons. While this study is centered on membrane conductances, our results have important consequences for all biochemical reactions involved in cell signaling.
Collapse
Affiliation(s)
- Bahram Pahlavan
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas
| | - Nicolas Buitrago
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas
| | - Fidel Santamaria
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas.
| |
Collapse
|
8
|
Bilash OM, Chavlis S, Johnson CD, Poirazi P, Basu J. Lateral entorhinal cortex inputs modulate hippocampal dendritic excitability by recruiting a local disinhibitory microcircuit. Cell Rep 2023; 42:111962. [PMID: 36640337 DOI: 10.1016/j.celrep.2022.111962] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
The lateral entorhinal cortex (LEC) provides multisensory information to the hippocampus, directly to the distal dendrites of CA1 pyramidal neurons. LEC neurons perform important functions for episodic memory processing, coding for contextually salient elements of an environment or experience. However, we know little about the functional circuit interactions between the LEC and the hippocampus. We combine functional circuit mapping and computational modeling to examine how long-range glutamatergic LEC projections modulate compartment-specific excitation-inhibition dynamics in hippocampal area CA1. We demonstrate that glutamatergic LEC inputs can drive local dendritic spikes in CA1 pyramidal neurons, aided by the recruitment of a disinhibitory VIP interneuron microcircuit. Our circuit mapping and modeling further reveal that LEC inputs also recruit CCK interneurons that may act as strong suppressors of dendritic spikes. These results highlight a cortically driven GABAergic microcircuit mechanism that gates nonlinear dendritic computations, which may support compartment-specific coding of multisensory contextual features within the hippocampus.
Collapse
Affiliation(s)
- Olesia M Bilash
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete 70013, Greece
| | - Cara D Johnson
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete 70013, Greece.
| | - Jayeeta Basu
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Psychiatry, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
9
|
Pagkalos M, Chavlis S, Poirazi P. Introducing the Dendrify framework for incorporating dendrites to spiking neural networks. Nat Commun 2023; 14:131. [PMID: 36627284 PMCID: PMC9832130 DOI: 10.1038/s41467-022-35747-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Computational modeling has been indispensable for understanding how subcellular neuronal features influence circuit processing. However, the role of dendritic computations in network-level operations remains largely unexplored. This is partly because existing tools do not allow the development of realistic and efficient network models that account for dendrites. Current spiking neural networks, although efficient, are usually quite simplistic, overlooking essential dendritic properties. Conversely, circuit models with morphologically detailed neuron models are computationally costly, thus impractical for large-network simulations. To bridge the gap between these two extremes and facilitate the adoption of dendritic features in spiking neural networks, we introduce Dendrify, an open-source Python package based on Brian 2. Dendrify, through simple commands, automatically generates reduced compartmental neuron models with simplified yet biologically relevant dendritic and synaptic integrative properties. Such models strike a good balance between flexibility, performance, and biological accuracy, allowing us to explore dendritic contributions to network-level functions while paving the way for developing more powerful neuromorphic systems.
Collapse
Affiliation(s)
- Michalis Pagkalos
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece
- Department of Biology, University of Crete, Heraklion, 70013, Greece
| | - Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece.
| |
Collapse
|
10
|
Song WS, Cho YS, Oh SP, Yoon SH, Kim YS, Kim MH. Cognitive and behavioral effects of the anti-epileptic drug cenobamate (YKP3089) and underlying synaptic and cellular mechanisms. Neuropharmacology 2022; 221:109292. [DOI: 10.1016/j.neuropharm.2022.109292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/08/2022]
|
11
|
Gonzalez KC, Losonczy A, Negrean A. Dendritic Excitability and Synaptic Plasticity In Vitro and In Vivo. Neuroscience 2022; 489:165-175. [PMID: 34998890 PMCID: PMC9392867 DOI: 10.1016/j.neuroscience.2021.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023]
Abstract
Much of our understanding of dendritic and synaptic physiology comes from in vitro experimentation, where the afforded mechanical stability and convenience of applying drugs allowed patch-clamping based recording techniques to investigate ion channel distributions, their gating kinetics, and to uncover dendritic integrative and synaptic plasticity rules. However, with current efforts to study these questions in vivo, there is a great need to translate existing knowledge between in vitro and in vivo experimental conditions. In this review, we identify discrepancies between in vitro and in vivo ionic composition of extracellular media and discuss how changes in ionic composition alter dendritic excitability and plasticity induction. Here, we argue that under physiological in vivo ionic conditions, dendrites are expected to be more excitable and the threshold for synaptic plasticity induction to be lowered. Consequently, the plasticity rules described in vitro vary significantly from those implemented in vivo.
Collapse
Affiliation(s)
- Kevin C Gonzalez
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA.
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA; Kavli Institute for Brain Science, New York, NY, USA.
| | - Adrian Negrean
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA.
| |
Collapse
|
12
|
Rolotti SV, Blockus H, Sparks FT, Priestley JB, Losonczy A. Reorganization of CA1 dendritic dynamics by hippocampal sharp-wave ripples during learning. Neuron 2022; 110:977-991.e4. [PMID: 35041805 PMCID: PMC8930454 DOI: 10.1016/j.neuron.2021.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/23/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022]
Abstract
The hippocampus plays a critical role in memory consolidation, mediated by coordinated network activity during sharp-wave ripple (SWR) events. Despite the link between SWRs and hippocampal plasticity, little is known about how network state affects information processing in dendrites, the primary sites of synaptic input integration and plasticity. Here, we monitored somatic and basal dendritic activity in CA1 pyramidal cells in behaving mice using longitudinal two-photon calcium imaging integrated with simultaneous local field potential recordings. We found immobility was associated with an increase in dendritic activity concentrated during SWRs. Coincident dendritic and somatic activity during SWRs predicted increased coupling during subsequent exploration of a novel environment. In contrast, somatic-dendritic coupling and SWR recruitment varied with cells' tuning distance to reward location during a goal-learning task. Our results connect SWRs with the stabilization of information processing within CA1 neurons and suggest that these mechanisms may be dynamically biased by behavioral demands.
Collapse
Affiliation(s)
- Sebi V Rolotti
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| | - Heike Blockus
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Fraser T Sparks
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - James B Priestley
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
13
|
Ramdas T, Mel BW. Optimizing a Neuron for Reliable Dendritic Subunit Pooling. Neuroscience 2021; 489:216-233. [PMID: 34715265 DOI: 10.1016/j.neuroscience.2021.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022]
Abstract
In certain biologically relevant computing scenarios, a neuron "pools" the outputs of multiple independent functional subunits, firing if any one of them crosses threshold. Recent studies suggest that active dendrites could provide the thresholding mechanism, so that both the thresholding and pooling operations could take place within a single neuron. A pooling neuron faces a difficult task, however. Dendrites can produce highly variable responses depending on the density and spatial patterning of their synaptic inputs, and bona fide dendritic firing may be very rare, making it difficult for a neuron to reliably detect when one of its many dendrites has "gone suprathreshold". Our goal has been to identify biological adaptations that optimize a neuron's performance at the binary subunit pooling (BSP) task. Katz et al. (2009) pointed to the importance of spine density gradients in shaping dendritic responses. In a similar vein, we used a compartmental model to study how a neuron's performance at the BSP task is affected by different spine density layouts and other biological variables. We found BSP performance was optimized when dendrites have (1) a decreasing spine density gradient (true for many types of pyramidal neurons); (2) low-to-medium resistance spine necks; (3) strong NMDA currents; (4) fast spiking Na+ channels; and (5) powerful hyperpolarizing inhibition. Our findings provide a normative account that links several neuronal properties within the context of a behaviorally relevant task, and thus provide new insights into nature's subtle strategies for optimizing the computing capabilities of neural tissue.
Collapse
Affiliation(s)
- Tejas Ramdas
- Computational Neuroscience Program, USC, United States.
| | - Bartlett W Mel
- Biomedical Engineering Department and Neuroscience Graduate Program, USC, United States.
| |
Collapse
|
14
|
Zhao X, Hsu CL, Spruston N. Rapid synaptic plasticity contributes to a learned conjunctive code of position and choice-related information in the hippocampus. Neuron 2021; 110:96-108.e4. [PMID: 34678146 DOI: 10.1016/j.neuron.2021.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/30/2021] [Accepted: 10/01/2021] [Indexed: 01/04/2023]
Abstract
To successfully perform goal-directed navigation, animals must know where they are and what they are doing-e.g., looking for water, bringing food back to the nest, or escaping from a predator. Hippocampal neurons code for these critical variables conjunctively, but little is known about how this "where/what" code is formed or flexibly routed to other brain regions. To address these questions, we performed intracellular whole-cell recordings in mouse CA1 during a cued, two-choice virtual navigation task. We demonstrate that plateau potentials in CA1 pyramidal neurons rapidly strengthen synaptic inputs carrying conjunctive information about position and choice. Plasticity-induced response fields were modulated by cues only in animals previously trained to collect rewards based on available cues. Thus, we reveal that gradual learning is required for the formation of a conjunctive population code, upstream of CA1, while plateau-potential-induced synaptic plasticity in CA1 enables flexible routing of the code to downstream brain regions.
Collapse
Affiliation(s)
- Xinyu Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ching-Lung Hsu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
15
|
Brandalise F, Carta S, Leone R, Helmchen F, Holtmaat A, Gerber U. Dendritic Branch-constrained N-Methyl-d-Aspartate Receptor-mediated Spikes Drive Synaptic Plasticity in Hippocampal CA3 Pyramidal Cells. Neuroscience 2021; 489:57-68. [PMID: 34634424 DOI: 10.1016/j.neuroscience.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
N-methyl-d-aspartate receptor-mediated ( spikes can be causally linked to the induction of synaptic long-term potentiation (LTP) in hippocampal and cortical pyramidal cells. However, it is unclear if they regulate plasticity at a local or global scale in the dendritic tree. Here, we used dendritic patch-clamp recordings and calcium imaging to investigate the integrative properties of single dendrites of hippocampal CA3 cells. We show that local hyperpolarization of a single dendritic segment prevents NMDA spikes, their associated calcium transients, as well as LTP in a branch-specific manner. This result provides direct, causal evidence that the single dendritic branch can operate as a functional unit in regulating CA3 pyramidal cell plasticity.
Collapse
Affiliation(s)
- Federico Brandalise
- Department of Basic Neurosciences and the Center for Neuroscience, Centre Médical Universitaire (CMU), University of Geneva, 1211 Geneva, Switzerland; Former affiliation(b).
| | - Stefano Carta
- Brain Research Institute and Neuroscience Center Zurich, University of Zurich, CH-8057 Zurich, Switzerland
| | - Roberta Leone
- Department of Basic Neurosciences and the Center for Neuroscience, Centre Médical Universitaire (CMU), University of Geneva, 1211 Geneva, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute and Neuroscience Center Zurich, University of Zurich, CH-8057 Zurich, Switzerland
| | - Anthony Holtmaat
- Department of Basic Neurosciences and the Center for Neuroscience, Centre Médical Universitaire (CMU), University of Geneva, 1211 Geneva, Switzerland
| | | |
Collapse
|
16
|
Frequency-Dependent Synaptic Dynamics Differentially Tune CA1 and CA2 Pyramidal Neuron Responses to Cortical Input. J Neurosci 2021; 41:8103-8110. [PMID: 34385360 DOI: 10.1523/jneurosci.0451-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/27/2021] [Accepted: 08/07/2021] [Indexed: 11/21/2022] Open
Abstract
Entorhinal cortex neurons make monosynaptic connections onto distal apical dendrites of CA1 and CA2 pyramidal neurons through the perforant path (PP) projection. Previous studies show that differences in dendritic properties and synaptic input density enable the PP inputs to produce a much stronger excitation of CA2 compared with CA1 pyramidal neurons. Here, using mice of both sexes, we report that the difference in PP efficacy varies substantially as a function of presynaptic firing rate. Although a single PP stimulus evokes a 5- to 6-fold greater EPSP in CA2 compared with CA1, a brief high-frequency train of PP stimuli evokes a strongly facilitating postsynaptic response in CA1, with relatively little change in CA2. Furthermore, we demonstrate that blockade of NMDARs significantly reduces strong temporal summation in CA1 but has little impact on that in CA2. As a result of the differences in the frequency- and NMDAR-dependent temporal summation, naturalistic patterns of presynaptic activity evoke CA1 and CA2 responses with distinct dynamics, differentially tuning CA1 and CA2 responses to bursts of presynaptic firing versus single presynaptic spikes, respectively.SIGNIFICANCE STATEMENT Recent studies have demonstrated that abundant entorhinal cortical innervation and efficient dendritic propagation enable hippocampal CA2 pyramidal neurons to produce robust excitation evoked by single cortical stimuli, compared with CA1. Here we uncovered, unexpectedly, that the difference in efficacy of cortical excitation varies substantially as a function of presynaptic firing rate. A burst of stimuli evokes a strongly facilitating response in CA1, but not in CA2. As a result, the postsynaptic response of CA1 and CA2 to presynaptic naturalistic firing displays contrasting temporal dynamics, which depends on the activation of NMDARs. Thus, whereas CA2 responds to single stimuli, CA1 is selectively recruited by bursts of cortical input.
Collapse
|
17
|
Tejada J, Roque AC. Conductance-based models and the fragmentation problem: A case study based on hippocampal CA1 pyramidal cell models and epilepsy. Epilepsy Behav 2021; 121:106841. [PMID: 31864945 DOI: 10.1016/j.yebeh.2019.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
Epilepsy has been a central topic in computational neuroscience, and in silico models have shown to be excellent tools to integrate and evaluate findings from animal and clinical settings. Among the different languages and tools for computational modeling development, NEURON stands out as one of the most used and mature neurosimulators. However, despite the vast quantity of models developed with NEURON, a fragmentation problem is evident in the great majority of models related to the same type of cell or cell properties. This fragmentation causes a lack of interoperability between the models because of differences in parameters. The problem is not related to the neurosimulator, which is prepared to reuse elements of other models, but related to decisions made during the model development, when it is not uncommon to adjust parameter values according to the necessities of the study. Here, this problem is presented by studying computational models related to temporal lobe epilepsy and the definitions of hippocampal CA1 pyramidal cells. The current assessment aims to highlight the implications of fragmentation for reliable modeling and the need to adopt a framework that allows a better interoperability between different models. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Julian Tejada
- Departamento de Psicologia, DPS, Universidade Federal de Sergipe, SE 49100-000, Brazil; Facultad de Psicología, Fundación Universitaria Konrad Lorenz, Bogotá, Colombia.
| | - Antonio C Roque
- Departamento de Física, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| |
Collapse
|
18
|
Ordemann GJ, Apgar CJ, Chitwood RA, Brager DH. Altered A-Type Potassium Channel Function Impairs Dendritic Spike Initiation and Temporoammonic Long-Term Potentiation in Fragile X Syndrome. J Neurosci 2021; 41:5947-5962. [PMID: 34083256 PMCID: PMC8265803 DOI: 10.1523/jneurosci.0082-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 01/14/2023] Open
Abstract
Fragile X syndrome (FXS) is the leading monogenetic cause of cognitive impairment and autism spectrum disorder. Area CA1 of the hippocampus receives current information about the external world from the entorhinal cortex via the temporoammonic (TA) pathway. Given its role in learning and memory, it is surprising that little is known about TA long-term potentiation (TA-LTP) in FXS. We found that TA-LTP was impaired in male fmr1 KO mice. Although there were no significant differences in basal synaptic transmission, synaptically evoked dendritic calcium signals were smaller in KO neurons. Using dendritic recording, we found no difference in complex spikes or pharmacologically isolated Ca2+ spikes; however, the threshold for fast, Na+-dependent dendritic spikes was depolarized in fmr1 KO mice. Cell-attached patch-clamp recordings found no difference in Na+ channels between wild-type and fmr1 KO CA1 dendrites. Dendritic spike threshold and TA-LTP were restored by blocking A-type K+ channels with either 150 µm Ba2+ or the more specific toxin AmmTx3. The impairment of TA-LTP shown here, coupled with previously described enhanced Schaffer collateral LTP, may contribute to spatial memory alterations in FXS. Furthermore, as both of these LTP phenotypes are attributed to changes in A-type K+ channels in FXS, our findings provide a potential therapeutic target to treat cognitive impairments in FXS.SIGNIFICANCE STATEMENT Alterations in synaptic function and plasticity are likely contributors to learning and memory impairments in many neurologic disorders. Fragile X syndrome is marked by dysfunctional learning and memory and changes in synaptic structure and function. This study shows a lack of LTP at temporoammonic synapses in CA1 neurons associated with biophysical differences in A-type K+ channels in fmr1 KO CA1 neurons. Our results, along with previous findings on A-type K+ channel effects on Schaffer collateral LTP, reveal differential effects of a single ion channelopathy on LTP at the two major excitatory pathways of CA1 pyramidal neurons. These findings expand our understanding of memory deficits in FXS and provide a potential therapeutic target for the treatment of memory dysfunction in FXS.
Collapse
Affiliation(s)
- Gregory J Ordemann
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| | - Christopher J Apgar
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| | - Raymond A Chitwood
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| | - Darrin H Brager
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
19
|
Vyleta NP, Snyder JS. Prolonged development of long-term potentiation at lateral entorhinal cortex synapses onto adult-born neurons. PLoS One 2021; 16:e0253642. [PMID: 34143843 PMCID: PMC8213073 DOI: 10.1371/journal.pone.0253642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/09/2021] [Indexed: 11/18/2022] Open
Abstract
Critical period plasticity at adult-born neuron synapses is widely believed to contribute to the learning and memory functions of the hippocampus. Experience regulates circuit integration and for a transient interval, until cells are ~6 weeks old, new neurons display enhanced long-term potentiation (LTP) at afferent and efferent synapses. Since neurogenesis declines substantially with age, this raises questions about the extent of lasting plasticity offered by adult-born neurons. Notably, however, the hippocampus receives sensory information from two major cortical pathways. Broadly speaking, the medial entorhinal cortex conveys spatial information to the hippocampus via the medial perforant path (MPP), and the lateral entorhinal cortex, via the lateral perforant path (LPP), codes for the cues and items that make experiences unique. While enhanced critical period plasticity at MPP synapses is relatively well characterized, no studies have examined long-term plasticity at LPP synapses onto adult-born neurons, even though the lateral entorhinal cortex is uniquely vulnerable to aging and Alzheimer's pathology. We therefore investigated LTP at LPP inputs both within (4-6 weeks) and beyond (8+ weeks) the traditional critical period. At immature stages, adult-born neurons did not undergo significant LTP at LPP synapses, and often displayed long-term depression after theta burst stimulation. However, over the course of 3-4 months, adult-born neurons displayed increasingly greater amounts of LTP. Analyses of short-term plasticity point towards a presynaptic mechanism, where transmitter release probability declines as cells mature, providing a greater dynamic range for strengthening synapses. Collectively, our findings identify a novel form of new neuron plasticity that develops over an extended interval, and may therefore be relevant for maintaining cognitive function in aging.
Collapse
Affiliation(s)
- Nicholas P. Vyleta
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jason S. Snyder
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
20
|
Tomko M, Benuskova L, Jedlicka P. A new reduced-morphology model for CA1 pyramidal cells and its validation and comparison with other models using HippoUnit. Sci Rep 2021; 11:7615. [PMID: 33828151 PMCID: PMC8027802 DOI: 10.1038/s41598-021-87002-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/19/2021] [Indexed: 01/13/2023] Open
Abstract
Modeling long-term neuronal dynamics may require running long-lasting simulations. Such simulations are computationally expensive, and therefore it is advantageous to use simplified models that sufficiently reproduce the real neuronal properties. Reducing the complexity of the neuronal dendritic tree is one option. Therefore, we have developed a new reduced-morphology model of the rat CA1 pyramidal cell which retains major dendritic branch classes. To validate our model with experimental data, we used HippoUnit, a recently established standardized test suite for CA1 pyramidal cell models. The HippoUnit allowed us to systematically evaluate the somatic and dendritic properties of the model and compare them to models publicly available in the ModelDB database. Our model reproduced (1) somatic spiking properties, (2) somatic depolarization block, (3) EPSP attenuation, (4) action potential backpropagation, and (5) synaptic integration at oblique dendrites of CA1 neurons. The overall performance of the model in these tests achieved higher biological accuracy compared to other tested models. We conclude that, due to its realistic biophysics and low morphological complexity, our model captures key physiological features of CA1 pyramidal neurons and shortens computational time, respectively. Thus, the validated reduced-morphology model can be used for computationally demanding simulations as a substitute for more complex models.
Collapse
Affiliation(s)
- Matus Tomko
- Centre for Cognitive Science, Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48, Bratislava, Slovakia.
| | - Lubica Benuskova
- Centre for Cognitive Science, Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48, Bratislava, Slovakia
| | - Peter Jedlicka
- ICAR3R-Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, Rudolf-Buchheim-Str. 6, 35392, Giessen, Germany. .,Institute of Clinical Neuroanatomy, NeuroScience Center, Goethe-University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
21
|
Farahani F, Kronberg G, FallahRad M, Oviedo HV, Parra LC. Effects of direct current stimulation on synaptic plasticity in a single neuron. Brain Stimul 2021; 14:588-597. [PMID: 33766677 DOI: 10.1016/j.brs.2021.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/02/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (DCS) has lasting effects that may be explained by a boost in synaptic long-term potentiation (LTP). We hypothesized that this boost is the result of a modulation of somatic spiking in the postsynaptic neuron, as opposed to indirect network effects. To test this directly we record somatic spiking in a postsynaptic neuron during LTP induction with concurrent DCS. METHODS We performed rodent in-vitro patch-clamp recordings at the soma of individual CA1 pyramidal neurons. LTP was induced with theta-burst stimulation (TBS) applied concurrently with DCS. To test the causal role of somatic polarization, we manipulated polarization via current injections. We also used a computational multi-compartment neuron model that captures the effect of electric fields on membrane polarization and activity-dependent synaptic plasticity. RESULTS TBS-induced LTP was enhanced when paired with anodal DCS as well as depolarizing current injections. In both cases, somatic spiking during the TBS was increased, suggesting that evoked somatic activity is the primary factor affecting LTP modulation. However, the boost of LTP with DCS was less than expected given the increase in spiking activity alone. In some cells, we also observed DCS-induced spiking, suggesting DCS also modulates LTP via induced network activity. The computational model reproduces these results and suggests that they are driven by both direct changes in postsynaptic spiking and indirect changes due to network activity. CONCLUSION DCS enhances synaptic plasticity by increasing postsynaptic somatic spiking, but we also find that an increase in network activity may boost but also limit this enhancement.
Collapse
Affiliation(s)
- Forouzan Farahani
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| | - Greg Kronberg
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Mohamad FallahRad
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Hysell V Oviedo
- Biology Department, The City College of New York, New York, NY, USA; CUNY Graduate Center, New York, NY, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| |
Collapse
|
22
|
Jensen TP, Kopach O, Reynolds JP, Savtchenko LP, Rusakov DA. Release probability increases towards distal dendrites boosting high-frequency signal transfer in the rodent hippocampus. eLife 2021; 10:e62588. [PMID: 33438578 PMCID: PMC7837677 DOI: 10.7554/elife.62588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/12/2021] [Indexed: 11/30/2022] Open
Abstract
Dendritic integration of synaptic inputs involves their increased electrotonic attenuation at distal dendrites, which can be counterbalanced by the increased synaptic receptor density. However, during network activity, the influence of individual synapses depends on their release fidelity, the dendritic distribution of which remains poorly understood. Here, we employed classical optical quantal analyses and a genetically encoded optical glutamate sensor in acute hippocampal slices of rats and mice to monitor glutamate release at CA3-CA1 synapses. We find that their release probability increases with greater distances from the soma. Similar-fidelity synapses tend to group together, whereas release probability shows no trends regarding the branch ends. Simulations with a realistic CA1 pyramidal cell hosting stochastic synapses suggest that the observed trends boost signal transfer fidelity, particularly at higher input frequencies. Because high-frequency bursting has been associated with learning, the release probability pattern we have found may play a key role in memory trace formation.
Collapse
Affiliation(s)
- Thomas P Jensen
- Queen Square UCL Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Olga Kopach
- Queen Square UCL Institute of Neurology, University College LondonLondonUnited Kingdom
| | - James P Reynolds
- Queen Square UCL Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Leonid P Savtchenko
- Queen Square UCL Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Dmitri A Rusakov
- Queen Square UCL Institute of Neurology, University College LondonLondonUnited Kingdom
| |
Collapse
|
23
|
Zattoni M, Garrovo C, Xerxa E, Spigolon G, Fisone G, Kristensson K, Legname G. NMDA Receptor and L-Type Calcium Channel Modulate Prion Formation. Cell Mol Neurobiol 2020; 41:191-198. [PMID: 32239389 DOI: 10.1007/s10571-020-00834-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/22/2020] [Indexed: 10/24/2022]
Abstract
Transmissible neurodegenerative prion diseases are characterized by the conversion of the cellular prion protein (PrPC) to misfolded isoforms denoted as prions or PrPSc. Although the conversion can occur in the test tube containing recombinant prion protein or cell lysates, efficient prion formation depends on the integrity of intact cell functions. Since neurons are main targets for prion replication, we asked whether their most specialized function, i.e. synaptic plasticity, could be a factor by which PrPSc formation can be modulated.Immortalized gonadotropin-releasing hormone cells infected with the Rocky Mountain Laboratory prion strain were treated with L-type calcium channels (LTCCs) and NMDA receptors (NMDARs) stimulators or inhibitors. Western blotting was used to monitor the effects on PrPSc formation in relation to ERK signalling.Infected cells showed enhanced levels of phosphorylated ERK (pERK) compared with uninfected cells. Exposure of infected cells to the LTCC agonist Bay K8644 enhanced pERK and PrPSc levels. Although treatment with an LTCC blocker (nimodipine) or an NMDAR competitive antagonist (D-AP5) had no effects, their combination reduced both pERK and PrPSc levels. Treatment with the non-competitive NMDAR channel blocker MK-801 markedly reduced pERK and PrPSc levels.Our study shows that changes in LTCCs and NMDARs activities can modulate PrPSc formation through ERK signalling. During synaptic plasticity, while ERK signalling promotes long-term potentiation accompanied by expansion of post-synaptic lipid rafts, other NMDA receptor-depending signalling pathways, p38-JNK, have opposing effects. Our findings indicate that contrasting intracellular signals of synaptic plasticity can influence time-dependent prion conversion.
Collapse
Affiliation(s)
- Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Chiara Garrovo
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Elena Xerxa
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy.,Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Giada Spigolon
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Biological Imaging Facility, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
24
|
Bowers MS, Cacheaux LP, Sahu SU, Schmidt ME, Sennello JA, Leaderbrand K, Khan MA, Kroes RA, Moskal JR. NYX-2925 induces metabotropic N-methyl-d-aspartate receptor (NMDAR) signaling that enhances synaptic NMDAR and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. J Neurochem 2020; 152:523-541. [PMID: 31376158 PMCID: PMC7065110 DOI: 10.1111/jnc.14845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) mediate both physiological and pathophysiological processes, although selective ligands lack broad clinical utility. NMDARs are composed of multiple subunits, but N-methyl-d-aspartate receptor subunit 2 (GluN2) is predominately responsible for functional heterogeneity. Specifically, the GluN2A- and GluN2B-containing subtypes are enriched in adult hippocampus and cortex and impact neuronal communication via dynamic trafficking into and out of the synapse. We sought to understand if ((2S, 3R)-3-hydroxy-2-((R)-5-isobutyryl-1-oxo-2,5-diazaspiro[3,4]octan-2-yl) butanamide (NYX-2925), a novel NMDAR modulator, alters synaptic levels of GluN2A- or GluN2B-containing NMDARs. Low-picomolar NYX-2925 increased GluN2B colocalization with the excitatory post-synaptic marker post-synaptic density protein 95 (PSD-95) in rat primary hippocampal neurons within 30 min. Twenty-four hours following oral administration, 1 mg/kg NYX-2925 increased GluN2B in PSD-95-associated complexes ex vivo, and low-picomolar NYX-2925 regulated numerous trafficking pathways in vitro. Because the NYX-2925 concentration that increases synaptic GluN2B was markedly below that which enhances long-term potentiation (mid-nanomolar), we sought to elucidate the basis of this effect. Although NMDAR-dependent, NYX-2925-mediated colocalization of GluN2B with PSD-95 occurred independent of ion flux, as colocalization increased in the presence of either the NMDAR channel blocker (5R,10S)-(-)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate or glycine site antagonist 7-chlorokynurenic acid. Moreover, while mid-nanomolar NYX-2925 concentrations, which do not increase synaptic GluN2B, enhanced calcium transients, functional plasticity was only enhanced by picomolar NYX-2925. Thus, NYX-2925 concentrations that increase synaptic GluN2B facilitated the chemical long-term potentiation induced insertion of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA1 subunit levels. Basal (unstimulated by chemical long-term potentiation) levels of synaptic GluA1 were only increased by mid-nanomolar NYX-2925. These data suggest that NYX-2925 facilitates homeostatic plasticity by initially increasing synaptic GluN2B via metabotropic-like NMDAR signaling. Cover Image for this issue: doi: 10.1111/jnc.14735.
Collapse
Affiliation(s)
- M. Scott Bowers
- Falk Center for Molecular Therapeutics, Biomedical EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Aptinyx, Inc.EvanstonIllinoisUSA
| | | | - Srishti U. Sahu
- Falk Center for Molecular Therapeutics, Biomedical EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | | | | | | | | | - Roger A. Kroes
- Falk Center for Molecular Therapeutics, Biomedical EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Aptinyx, Inc.EvanstonIllinoisUSA
| | - Joseph R. Moskal
- Falk Center for Molecular Therapeutics, Biomedical EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Aptinyx, Inc.EvanstonIllinoisUSA
| |
Collapse
|
25
|
Synaptic Plasticity Depends on the Fine-Scale Input Pattern in Thin Dendrites of CA1 Pyramidal Neurons. J Neurosci 2020; 40:2593-2605. [PMID: 32047054 PMCID: PMC7096145 DOI: 10.1523/jneurosci.2071-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 12/19/2022] Open
Abstract
Coordinated long-term plasticity of nearby excitatory synaptic inputs has been proposed to shape experience-related neuronal information processing. To elucidate the induction rules leading to spatially structured forms of synaptic potentiation in dendrites, we explored plasticity of glutamate uncaging-evoked excitatory input patterns with various spatial distributions in perisomatic dendrites of CA1 pyramidal neurons in slices from adult male rats. Coordinated long-term plasticity of nearby excitatory synaptic inputs has been proposed to shape experience-related neuronal information processing. To elucidate the induction rules leading to spatially structured forms of synaptic potentiation in dendrites, we explored plasticity of glutamate uncaging-evoked excitatory input patterns with various spatial distributions in perisomatic dendrites of CA1 pyramidal neurons in slices from adult male rats. We show that (1) the cooperativity rules governing the induction of synaptic LTP depend on dendritic location; (2) LTP of input patterns that are subthreshold or suprathreshold to evoke local dendritic spikes (d-spikes) requires different spatial organization; and (3) input patterns evoking d-spikes can strengthen nearby, nonsynchronous synapses by local heterosynaptic plasticity crosstalk mediated by NMDAR-dependent MEK/ERK signaling. These results suggest that multiple mechanisms can trigger spatially organized synaptic plasticity on various spatial and temporal scales, enriching the ability of neurons to use synaptic clustering for information processing. SIGNIFICANCE STATEMENT A fundamental question in neuroscience is how neuronal feature selectivity is established via the combination of dendritic processing of synaptic input patterns with long-term synaptic plasticity. As these processes have been mostly studied separately, the relationship between the rules of integration and rules of plasticity remained elusive. Here we explore how the fine-grained spatial pattern and the form of voltage integration determine plasticity of different excitatory synaptic input patterns in perisomatic dendrites of CA1 pyramidal cells. We demonstrate that the plasticity rules depend highly on three factors: (1) the location of the input within the dendritic branch (proximal vs distal), (2) the strength of the input pattern (subthreshold or suprathreshold for dendritic spikes), and (3) the stimulation of neighboring synapses.
Collapse
|
26
|
Gidon A, Zolnik TA, Fidzinski P, Bolduan F, Papoutsi A, Poirazi P, Holtkamp M, Vida I, Larkum ME. Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science 2020; 367:83-87. [DOI: 10.1126/science.aax6239] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/22/2019] [Indexed: 01/10/2023]
Abstract
The active electrical properties of dendrites shape neuronal input and output and are fundamental to brain function. However, our knowledge of active dendrites has been almost entirely acquired from studies of rodents. In this work, we investigated the dendrites of layer 2 and 3 (L2/3) pyramidal neurons of the human cerebral cortex ex vivo. In these neurons, we discovered a class of calcium-mediated dendritic action potentials (dCaAPs) whose waveform and effects on neuronal output have not been previously described. In contrast to typical all-or-none action potentials, dCaAPs were graded; their amplitudes were maximal for threshold-level stimuli but dampened for stronger stimuli. These dCaAPs enabled the dendrites of individual human neocortical pyramidal neurons to classify linearly nonseparable inputs—a computation conventionally thought to require multilayered networks.
Collapse
|
27
|
Wang Z, Lin Y, Liu W, Kuang P, Lao W, Ji Y, Zhu H. Voltage-Gated Sodium Channels Are Involved in Cognitive Impairments in Parkinson's Disease- like Rats. Neuroscience 2019; 418:231-243. [DOI: 10.1016/j.neuroscience.2019.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 01/08/2023]
|
28
|
Data-Driven Predictive Modeling of Neuronal Dynamics Using Long Short-Term Memory. ALGORITHMS 2019. [DOI: 10.3390/a12100203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modeling brain dynamics to better understand and control complex behaviors underlying various cognitive brain functions have been of interest to engineers, mathematicians and physicists over the last several decades. With the motivation of developing computationally efficient models of brain dynamics to use in designing control-theoretic neurostimulation strategies, we have developed a novel data-driven approach in a long short-term memory (LSTM) neural network architecture to predict the temporal dynamics of complex systems over an extended long time-horizon in future. In contrast to recent LSTM-based dynamical modeling approaches that make use of multi-layer perceptrons or linear combination layers as output layers, our architecture uses a single fully connected output layer and reversed-order sequence-to-sequence mapping to improve short time-horizon prediction accuracy and to make multi-timestep predictions of dynamical behaviors. We demonstrate the efficacy of our approach in reconstructing the regular spiking to bursting dynamics exhibited by an experimentally-validated 9-dimensional Hodgkin-Huxley model of hippocampal CA1 pyramidal neurons. Through simulations, we show that our LSTM neural network can predict the multi-time scale temporal dynamics underlying various spiking patterns with reasonable accuracy. Moreover, our results show that the predictions improve with increasing predictive time-horizon in the multi-timestep deep LSTM neural network.
Collapse
|
29
|
Ujfalussy BB, Makara JK, Lengyel M, Branco T. Global and Multiplexed Dendritic Computations under In Vivo-like Conditions. Neuron 2019; 100:579-592.e5. [PMID: 30408443 PMCID: PMC6226578 DOI: 10.1016/j.neuron.2018.08.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/07/2018] [Accepted: 08/21/2018] [Indexed: 10/27/2022]
Abstract
Dendrites integrate inputs nonlinearly, but it is unclear how these nonlinearities contribute to the overall input-output transformation of single neurons. We developed statistically principled methods using a hierarchical cascade of linear-nonlinear subunits (hLN) to model the dynamically evolving somatic response of neurons receiving complex, in vivo-like spatiotemporal synaptic input patterns. We used the hLN to predict the somatic membrane potential of an in vivo-validated detailed biophysical model of a L2/3 pyramidal cell. Linear input integration with a single global dendritic nonlinearity achieved above 90% prediction accuracy. A novel hLN motif, input multiplexing into parallel processing channels, could improve predictions as much as conventionally used additional layers of local nonlinearities. We obtained similar results in two other cell types. This approach provides a data-driven characterization of a key component of cortical circuit computations: the input-output transformation of neurons during in vivo-like conditions.
Collapse
Affiliation(s)
- Balázs B Ujfalussy
- MRC Laboratory of Molecular Biology, Cambridge, UK; Laboratory of Neuronal Signaling, Institute of Experimental Medicine, Budapest, Hungary; Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK; MTA Wigner Research Center for Physics, Budapest, Hungary.
| | - Judit K Makara
- Laboratory of Neuronal Signaling, Institute of Experimental Medicine, Budapest, Hungary
| | - Máté Lengyel
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK; Department of Cognitive Science, Central European University, Budapest, Hungary
| | - Tiago Branco
- MRC Laboratory of Molecular Biology, Cambridge, UK; Sainsbury Wellcome Centre, University College London, London, UK
| |
Collapse
|
30
|
The Autism-Associated Gene Scn2a Contributes to Dendritic Excitability and Synaptic Function in the Prefrontal Cortex. Neuron 2019; 103:673-685.e5. [PMID: 31230762 DOI: 10.1016/j.neuron.2019.05.037] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 03/23/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022]
Abstract
Autism spectrum disorder (ASD) is strongly associated with de novo gene mutations. One of the most commonly affected genes is SCN2A. ASD-associated SCN2A mutations impair the encoded protein NaV1.2, a sodium channel important for action potential initiation and propagation in developing excitatory cortical neurons. The link between an axonal sodium channel and ASD, a disorder typically attributed to synaptic or transcriptional dysfunction, is unclear. Here we show that NaV1.2 is unexpectedly critical for dendritic excitability and synaptic function in mature pyramidal neurons in addition to regulating early developmental axonal excitability. NaV1.2 loss reduced action potential backpropagation into dendrites, impairing synaptic plasticity and synaptic strength, even when NaV1.2 expression was disrupted in a cell-autonomous fashion late in development. These results reveal a novel dendritic function for NaV1.2, providing insight into cellular mechanisms probably underlying circuit and behavioral dysfunction in ASD.
Collapse
|
31
|
Shin W, Kweon H, Kang R, Kim D, Kim K, Kang M, Kim SY, Hwang SN, Kim JY, Yang E, Kim H, Kim E. Scn2a Haploinsufficiency in Mice Suppresses Hippocampal Neuronal Excitability, Excitatory Synaptic Drive, and Long-Term Potentiation, and Spatial Learning and Memory. Front Mol Neurosci 2019; 12:145. [PMID: 31249508 PMCID: PMC6582764 DOI: 10.3389/fnmol.2019.00145] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/17/2019] [Indexed: 01/13/2023] Open
Abstract
Nav1.2, a voltage-gated sodium channel subunit encoded by the Scn2a gene, has been implicated in various brain disorders, including epilepsy, autism spectrum disorder, intellectual disability, and schizophrenia. Nav1.2 is known to regulate the generation of action potentials in the axon initial segment and their propagation along axonal pathways. Nav1.2 also regulates synaptic integration and plasticity by promoting back-propagation of action potentials to dendrites, but whether Nav1.2 deletion in mice affects neuronal excitability, synaptic transmission, synaptic plasticity, and/or disease-related animal behaviors remains largely unclear. Here, we report that mice heterozygous for the Scn2a gene (Scn2a+/- mice) show decreased neuronal excitability and suppressed excitatory synaptic transmission in the presence of network activity in the hippocampus. In addition, Scn2a+/- mice show suppressed hippocampal long-term potentiation (LTP) in association with impaired spatial learning and memory, but show largely normal locomotor activity, anxiety-like behavior, social interaction, repetitive behavior, and whole-brain excitation. These results suggest that Nav1.2 regulates hippocampal neuronal excitability, excitatory synaptic drive, LTP, and spatial learning and memory in mice.
Collapse
Affiliation(s)
- Wangyong Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hanseul Kweon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Ryeonghwa Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Kyungdeok Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Muwon Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Seo Yeong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Sun Nam Hwang
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Jin Yong Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Esther Yang
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| |
Collapse
|
32
|
Wu X, Mel GC, Strouse DJ, Mel BW. How Dendrites Affect Online Recognition Memory. PLoS Comput Biol 2019; 15:e1006892. [PMID: 31050662 PMCID: PMC6527246 DOI: 10.1371/journal.pcbi.1006892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/20/2019] [Accepted: 02/18/2019] [Indexed: 11/18/2022] Open
Abstract
In order to record the stream of autobiographical information that defines our unique personal history, our brains must form durable memories from single brief exposures to the patterned stimuli that impinge on them continuously throughout life. However, little is known about the computational strategies or neural mechanisms that underlie the brain's ability to perform this type of "online" learning. Based on increasing evidence that dendrites act as both signaling and learning units in the brain, we developed an analytical model that relates online recognition memory capacity to roughly a dozen dendritic, network, pattern, and task-related parameters. We used the model to determine what dendrite size maximizes storage capacity under varying assumptions about pattern density and noise level. We show that over a several-fold range of both of these parameters, and over multiple orders-of-magnitude of memory size, capacity is maximized when dendrites contain a few hundred synapses-roughly the natural number found in memory-related areas of the brain. Thus, in comparison to entire neurons, dendrites increase storage capacity by providing a larger number of better-sized learning units. Our model provides the first normative theory that explains how dendrites increase the brain's capacity for online learning; predicts which combinations of parameter settings we should expect to find in the brain under normal operating conditions; leads to novel interpretations of an array of existing experimental results; and provides a tool for understanding which changes associated with neurological disorders, aging, or stress are most likely to produce memory deficits-knowledge that could eventually help in the design of improved clinical treatments for memory loss.
Collapse
Affiliation(s)
- Xundong Wu
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China
| | - Gabriel C. Mel
- Computer Science Department, University of Southern California, Los Angeles, CA, United States
| | - D. J. Strouse
- Physics Department, Princeton University, Princeton, NJ, United States
| | - Bartlett W. Mel
- Biomedical Engineering Department and Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States
- * E-mail:
| |
Collapse
|
33
|
Górski T, Veltz R, Galtier M, Fragnaud H, Goldman JS, Teleńczuk B, Destexhe A. Dendritic sodium spikes endow neurons with inverse firing rate response to correlated synaptic activity. J Comput Neurosci 2018; 45:223-234. [PMID: 30547292 PMCID: PMC6306432 DOI: 10.1007/s10827-018-0707-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 11/28/2022]
Abstract
Many neurons possess dendrites enriched with sodium channels and are capable of generating action potentials. However, the role of dendritic sodium spikes remain unclear. Here, we study computational models of neurons to investigate the functional effects of dendritic spikes. In agreement with previous studies, we found that point neurons or neurons with passive dendrites increase their somatic firing rate in response to the correlation of synaptic bombardment for a wide range of input conditions, i.e. input firing rates, synaptic conductances, or refractory periods. However, neurons with active dendrites show the opposite behavior: for a wide range of conditions the firing rate decreases as a function of correlation. We found this property in three types of models of dendritic excitability: a Hodgkin-Huxley model of dendritic spikes, a model with integrate and fire dendrites, and a discrete-state dendritic model. We conclude that fast dendritic spikes confer much broader computational properties to neurons, sometimes opposite to that of point neurons.
Collapse
Affiliation(s)
- Tomasz Górski
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France. .,European Institute for Theoretical Neuroscience, Paris, France.
| | | | - Mathieu Galtier
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Hélissande Fragnaud
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Jennifer S Goldman
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.,European Institute for Theoretical Neuroscience, Paris, France
| | - Bartosz Teleńczuk
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.,European Institute for Theoretical Neuroscience, Paris, France
| | - Alain Destexhe
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.,European Institute for Theoretical Neuroscience, Paris, France
| |
Collapse
|
34
|
Montes de Oca Balderas P. Flux-Independent NMDAR Signaling: Molecular Mediators, Cellular Functions, and Complexities. Int J Mol Sci 2018; 19:ijms19123800. [PMID: 30501045 PMCID: PMC6321296 DOI: 10.3390/ijms19123800] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
The glutamate (Glu) N-methyl-d-aspartate (NMDA) receptor (NMDAR) plays a critical role in synaptic communication given mainly by its ionotropic function that permeates Ca2+. This in turn activates calmodulin that triggers CaMKII, MAPK, CREB, and PI3K pathways, among others. However, NMDAR signaling is more complex. In the last two decades several groups have shown that the NMDAR also elicits flux-independent signaling (f-iNMDARs). It has been demonstrated that agonist (Glu or NMDA) or co-agonist (Glycine or d-Serine) bindings initiate intracellular events, including conformational changes, exchange of molecular interactions, release of second messengers, and signal transduction, that result in different cellular events including endocytosis, LTD, cell death, and neuroprotection, among others. Interestingly, f-iNMDARs has also been observed in pathological conditions and non-neuronal cells. Here, the molecular and cellular events elicited by these flux-independent actions (non-canonical or metabotropic-like) of the NMDAR are reviewed. Considering the NMDAR complexity, it is possible that these flux-independent events have a more relevant role in intracellular signaling that has been disregarded for decades. Moreover, considering the wide expression and function of the NMDAR in non-neuronal cells and other tissues beyond the nervous system and some evolutionary traits, f-iNMDARs calls for a reconsideration of how we understand the biology of this complex receptor.
Collapse
Affiliation(s)
- Pavel Montes de Oca Balderas
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, UNAM. Av. Universidad 3000, C.U. Coyoacán, Ciudad de México. C.P. 04510, Mexico.
- Unidad de Neurobiología Dinámica, Departamento de Neuroquímica, INNN. Av. Insurgentes Sur #3877 Col. La Fama, Ciudad de México. C.P. 14269, Mexico.
| |
Collapse
|
35
|
Yu W, Kwon J, Sohn J, Lee SH, Kim S, Ho W. mGluR5-dependent modulation of dendritic excitability in CA1 pyramidal neurons mediated by enhancement of persistent Na + currents. J Physiol 2018; 596:4141-4156. [PMID: 29870060 PMCID: PMC6117564 DOI: 10.1113/jp275999] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/31/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS High-frequency stimulation (HFS) of the Schaffer collateral pathway activates metabotropic glutamate receptor 5 (mGluR5) signalling in the proximal apical dendrites of CA1 pyramidal neurons. The synaptic activation of mGluR5-mediated calcium signalling causes a significant increase in persistent sodium current (INa,P ) in the dendrites. Increased INa,P by HFS underlies potentiation of synaptic inputs at both the proximal and distal dendrite, leading to an enhanced probability of action potential firing associated with decreased action potential thresholds. Therefore, HFS-induced activation of intracellular mGluR5 serves an important role as an instructive signal for potentiation of upcoming inputs by increasing dendritic excitability. ABSTRACT Dendritic Na+ channels in pyramidal neurons are known to amplify synaptic signals, thereby facilitating action potential (AP) generation. However, the mechanisms that modulate dendritic Na+ channels have remained largely uncharacterized. Here, we report a new form of short-term plasticity in which proximal excitatory synaptic inputs to hippocampal CA1 pyramidal neurons transiently elevate dendritic excitability. High-frequency stimulations (HFS) to the Schaffer collateral (SC) pathway activate mGluR5-dependent Ca2+ signalling in the apical dendrites, which, with calmodulin, upregulates specifically Nav1.6 channel-mediated persistent Na+ currents (INa,P ) in the dendrites. This HFS-induced increase in dendritic INa,P results in transient increases in the amplitude of excitatory postsynaptic potentials induced by both proximal SC and distal perforant path stimulation, leading to the enhanced probability of AP firing associated with decreased AP thresholds. Taken together, our study identifies dendritic INa,P as a novel target for mediating activity-dependent modulation of dendritic integration and neuronal output.
Collapse
Affiliation(s)
- Weonjin Yu
- Department of PhysiologySeoul National University College of MedicineSeoul110‐799Republic of Korea
- Biomembrane Plasticity Research CenterSeoul National University College of MedicineSeoul110‐799Republic of Korea
| | - Jaehan Kwon
- Department of PhysiologySeoul National University College of MedicineSeoul110‐799Republic of Korea
- Biomembrane Plasticity Research CenterSeoul National University College of MedicineSeoul110‐799Republic of Korea
| | - Jong‐Woo Sohn
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeon305‐701Republic of Korea
| | - Suk Ho Lee
- Department of PhysiologySeoul National University College of MedicineSeoul110‐799Republic of Korea
- Biomembrane Plasticity Research CenterSeoul National University College of MedicineSeoul110‐799Republic of Korea
- Neuroscience Research InstituteSeoul National University College of MedicineSeoul110‐799Republic of Korea
| | - Sooyun Kim
- Department of PhysiologySeoul National University College of MedicineSeoul110‐799Republic of Korea
- Biomembrane Plasticity Research CenterSeoul National University College of MedicineSeoul110‐799Republic of Korea
- Neuroscience Research InstituteSeoul National University College of MedicineSeoul110‐799Republic of Korea
| | - Won‐Kyung Ho
- Department of PhysiologySeoul National University College of MedicineSeoul110‐799Republic of Korea
- Biomembrane Plasticity Research CenterSeoul National University College of MedicineSeoul110‐799Republic of Korea
- Neuroscience Research InstituteSeoul National University College of MedicineSeoul110‐799Republic of Korea
| |
Collapse
|
36
|
Hiester BG, Bourke AM, Sinnen BL, Cook SG, Gibson ES, Smith KR, Kennedy MJ. L-Type Voltage-Gated Ca 2+ Channels Regulate Synaptic-Activity-Triggered Recycling Endosome Fusion in Neuronal Dendrites. Cell Rep 2018; 21:2134-2146. [PMID: 29166605 DOI: 10.1016/j.celrep.2017.10.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/06/2017] [Accepted: 10/25/2017] [Indexed: 01/26/2023] Open
Abstract
The repertoire and abundance of proteins displayed on the surface of neuronal dendrites are tuned by regulated fusion of recycling endosomes (REs) with the dendritic plasma membrane. While this process is critical for neuronal function and plasticity, how synaptic activity drives RE fusion remains unexplored. We demonstrate a multistep fusion mechanism that requires Ca2+ from distinct sources. NMDA receptor Ca2+ initiates RE fusion with the plasma membrane, while L-type voltage-gated Ca2+ channels (L-VGCCs) regulate whether fused REs collapse into the membrane or reform without transferring their cargo to the cell surface. Accordingly, NMDA receptor activation triggered AMPA-type glutamate receptor trafficking to the dendritic surface in an L-VGCC-dependent manner. Conversely, potentiating L-VGCCs enhanced AMPA receptor surface expression only when NMDA receptors were also active. Thus L-VGCCs play a role in tuning activity-triggered surface expression of key synaptic proteins by gating the mode of RE fusion.
Collapse
Affiliation(s)
- Brian G Hiester
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ashley M Bourke
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brooke L Sinnen
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah G Cook
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily S Gibson
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
37
|
Hsu CL, Zhao X, Milstein AD, Spruston N. Persistent Sodium Current Mediates the Steep Voltage Dependence of Spatial Coding in Hippocampal Pyramidal Neurons. Neuron 2018; 99:147-162.e8. [PMID: 29909995 DOI: 10.1016/j.neuron.2018.05.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 04/13/2018] [Accepted: 05/14/2018] [Indexed: 01/19/2023]
Abstract
The mammalian hippocampus forms a cognitive map using neurons that fire according to an animal's position ("place cells") and many other behavioral and cognitive variables. The responses of these neurons are shaped by their presynaptic inputs and the nature of their postsynaptic integration. In CA1 pyramidal neurons, spatial responses in vivo exhibit a strikingly supralinear dependence on baseline membrane potential. The biophysical mechanisms underlying this nonlinear cellular computation are unknown. Here, through a combination of in vitro, in vivo, and in silico approaches, we show that persistent sodium current mediates the strong membrane potential dependence of place cell activity. This current operates at membrane potentials below the action potential threshold and over seconds-long timescales, mediating a powerful and rapidly reversible amplification of synaptic responses, which drives place cell firing. Thus, we identify a biophysical mechanism that shapes the coding properties of neurons composing the hippocampal cognitive map.
Collapse
Affiliation(s)
- Ching-Lung Hsu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Xinyu Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Aaron D Milstein
- Neurosurgery Department, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
38
|
Kim S, Kim Y, Lee SH, Ho WK. Dendritic spikes in hippocampal granule cells are necessary for long-term potentiation at the perforant path synapse. eLife 2018; 7:35269. [PMID: 29578411 PMCID: PMC5896953 DOI: 10.7554/elife.35269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/25/2018] [Indexed: 01/29/2023] Open
Abstract
Long-term potentiation (LTP) of synaptic responses is essential for hippocampal memory function. Perforant-path (PP) synapses on hippocampal granule cells (GCs) contribute to the formation of associative memories, which are considered the cellular correlates of memory engrams. However, the mechanisms of LTP at these synapses are not well understood. Due to sparse firing activity and the voltage attenuation in their dendrites, it remains unclear how associative LTP at distal synapses occurs. Here, we show that NMDA receptor-dependent LTP can be induced at PP-GC synapses without backpropagating action potentials (bAPs) in acute rat brain slices. Dendritic recordings reveal substantial attenuation of bAPs as well as local dendritic Na+ spike generation during PP-GC input. Inhibition of dendritic Na+ spikes impairs LTP induction at PP-GC synapse. These data suggest that dendritic spikes may constitute a key cellular mechanism for memory formation in the dentate gyrus.
Collapse
Affiliation(s)
- Sooyun Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yoonsub Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Suk-Ho Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Won-Kyung Ho
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Jobim PFC, Dos Santos CEI, Jeromel L, Pellicon P, Amaral L, Dias JF. Changes in the element concentration of the dorsal hippocampus CA1 region during memory consolidation and reconsolidation. J Chem Neuroanat 2017; 90:49-56. [PMID: 29248756 DOI: 10.1016/j.jchemneu.2017.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
The concentration and distribution of Mg, P, Cl, K, Cu and Zn in the dorsal hippocampus CA1 region of rat brains were studied during memory consolidation and reconsolidation processes stimulated with inhibitory avoidance (IA) tests. Experimental rats were divided into four groups: i) group not submitted to inhibitory avoidance task (IA-N); ii) group submitted to inhibitory avoidance training session (IA-Y); iii) group submitted to inhibitory avoidance reactivation session but did not step down from the platform (IAR-N); and iv) group submitted to avoidance reactivation session and stepped down from the platform (IAR-Y). Elemental concentration and distribution in the CA1 hippocampus region were obtained through the Particle-Induced X-ray Emission (PIXE) technique. The results indicate that the concentration of Mg, P, Cl, K and Cu increased during memory consolidation. During the memory reconsolidation process, the concentrations of Mg, P, Cl and K increased, while Cu and Zn had no significant changes with respect to their basal condition. These results show that the major part of these elements may be engaged in memory consolidation could be also participating in memory reconsolidation. For all elements, the general trend related to their concentration did not change during reconsolidation regardless the presence of a novelty event, i.e. stepping down from the platform.
Collapse
Affiliation(s)
- Paulo Fernandes Costa Jobim
- Physiology Department, Federal University of Health Sciences of Porto Alegre, Rua Sarmento Leite 245, CEP 90050-170, Porto Alegre, RS, Brazil.
| | - Carla Eliete Iochims Dos Santos
- Institute of Physics, Statistics and Mathematics, Federal University of Rio Grande, CEP 95500-000, Santo Antônio da Patrulha, RS, Brazil.
| | - Luka Jeromel
- Department for Low and Medium Energy Physics, Jožef Stefan Institute, SI-1000, Ljubljana, Slovenia.
| | - Primoz Pellicon
- Department for Low and Medium Energy Physics, Jožef Stefan Institute, SI-1000, Ljubljana, Slovenia.
| | - Livio Amaral
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15051, CEP 91501-970, Porto Alegre, RS, Brazil.
| | - Johnny Ferraz Dias
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15051, CEP 91501-970, Porto Alegre, RS, Brazil.
| |
Collapse
|
40
|
Unconventional NMDA Receptor Signaling. J Neurosci 2017; 37:10800-10807. [PMID: 29118208 DOI: 10.1523/jneurosci.1825-17.2017] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 11/21/2022] Open
Abstract
In the classical view, NMDA receptors (NMDARs) are stably expressed at the postsynaptic membrane, where they act via Ca2+ to signal coincidence detection in Hebbian plasticity. More recently, it has been established that NMDAR-mediated transmission can be dynamically regulated by neural activity. In addition, NMDARs have been found presynaptically, where they cannot act as conventional coincidence detectors. Unexpectedly, NMDARs have also been shown to signal metabotropically, without the need for Ca2+ This review highlights novel findings concerning these unconventional modes of NMDAR action.
Collapse
|
41
|
Johnson KW, Herold KF, Milner TA, Hemmings HC, Platholi J. Sodium channel subtypes are differentially localized to pre- and post-synaptic sites in rat hippocampus. J Comp Neurol 2017; 525:3563-3578. [PMID: 28758202 PMCID: PMC5927368 DOI: 10.1002/cne.24291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/16/2022]
Abstract
Voltage-gated Na+ channels (Nav ) modulate neuronal excitability, but the roles of the various Nav subtypes in specific neuronal functions such as synaptic transmission are unclear. We investigated expression of the three major brain Nav subtypes (Nav 1.1, Nav 1.2, Nav 1.6) in area CA1 and dentate gyrus of rat hippocampus. Using light and electron microscopy, we found labeling for all three Nav subtypes on dendrites, dendritic spines, and axon terminals, but the proportion of pre- and post-synaptic labeling for each subtype varied within and between subregions of CA1 and dentate gyrus. In the central hilus (CH) of the dentate gyrus, Nav 1.1 immunoreactivity was selectively expressed in presynaptic profiles, while Nav 1.2 and Nav 1.6 were expressed both pre- and post-synaptically. In contrast, in the stratum radiatum (SR) of CA1, Nav 1.1, Nav 1.2, and Nav 1.6 were selectively expressed in postsynaptic profiles. We next compared differences in Nav subtype expression between CH and SR axon terminals and between CH and SR dendrites and spines. Nav 1.1 and Nav 1.2 immunoreactivity was preferentially localized to CH axon terminals compared to SR, and in SR dendrites and spines compared to CH. No differences in Nav 1.6 immunoreactivity were found between axon terminals of CH and SR or between dendrites and spines of CH and SR. All Nav subtypes in both CH and SR were preferentially associated with asymmetric synapses rather than symmetric synapses. These findings indicate selective presynaptic and postsynaptic Nav expression in glutamatergic synapses of CH and SR supporting neurotransmitter release and synaptic plasticity.
Collapse
Affiliation(s)
| | - Karl F. Herold
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, NY NY
| | - Hugh C. Hemmings
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | - Jimcy Platholi
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
42
|
Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level. Nat Commun 2017; 8:706. [PMID: 28951585 PMCID: PMC5615054 DOI: 10.1038/s41467-017-00740-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/25/2017] [Indexed: 12/11/2022] Open
Abstract
Synaptic plasticity is thought to be the principal neuronal mechanism underlying learning. Models of plastic networks typically combine point neurons with spike-timing-dependent plasticity (STDP) as the learning rule. However, a point neuron does not capture the local non-linear processing of synaptic inputs allowed for by dendrites. Furthermore, experimental evidence suggests that STDP is not the only learning rule available to neurons. By implementing biophysically realistic neuron models, we study how dendrites enable multiple synaptic plasticity mechanisms to coexist in a single cell. In these models, we compare the conditions for STDP and for synaptic strengthening by local dendritic spikes. We also explore how the connectivity between two cells is affected by these plasticity rules and by different synaptic distributions. Finally, we show that how memory retention during associative learning can be prolonged in networks of neurons by including dendrites. Synaptic plasticity is the neuronal mechanism underlying learning. Here the authors construct biophysical models of pyramidal neurons that reproduce observed plasticity gradients along the dendrite and show that dendritic spike dependent LTP which is predominant in distal sections can prolong memory retention.
Collapse
|
43
|
Bono J, Wilmes KA, Clopath C. Modelling plasticity in dendrites: from single cells to networks. Curr Opin Neurobiol 2017; 46:136-141. [PMID: 28888857 DOI: 10.1016/j.conb.2017.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023]
Abstract
One of the key questions in neuroscience is how our brain self-organises to efficiently process information. To answer this question, we need to understand the underlying mechanisms of plasticity and their role in shaping synaptic connectivity. Theoretical neuroscience typically investigates plasticity on the level of neural networks. Neural network models often consist of point neurons, completely neglecting neuronal morphology for reasons of simplicity. However, during the past decades it became increasingly clear that inputs are locally processed in the dendrites before they reach the cell body. Dendritic properties enable local interactions between synapses and location-dependent modulations of inputs, rendering the position of synapses on dendrites highly important. These insights changed our view of neurons, such that we now think of them as small networks of nearly independent subunits instead of a simple point. Here, we propose that understanding how the brain processes information strongly requires that we consider the following properties: which plasticity mechanisms are present in the dendrites and how do they enable the self-organisation of synapses across the dendritic tree for efficient information processing? Ultimately, dendritic plasticity mechanisms can be studied in networks of neurons with dendrites, possibly uncovering unknown mechanisms that shape the connectivity in our brains.
Collapse
Affiliation(s)
- Jacopo Bono
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Katharina A Wilmes
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
44
|
Chamberland S, Yang HH, Pan MM, Evans SW, Guan S, Chavarha M, Yang Y, Salesse C, Wu H, Wu JC, Clandinin TR, Toth K, Lin MZ, St-Pierre F. Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators. eLife 2017; 6. [PMID: 28749338 PMCID: PMC5584994 DOI: 10.7554/elife.25690] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/21/2017] [Indexed: 12/22/2022] Open
Abstract
Monitoring voltage dynamics in defined neurons deep in the brain is critical for unraveling the function of neuronal circuits but is challenging due to the limited performance of existing tools. In particular, while genetically encoded voltage indicators have shown promise for optical detection of voltage transients, many indicators exhibit low sensitivity when imaged under two-photon illumination. Previous studies thus fell short of visualizing voltage dynamics in individual neurons in single trials. Here, we report ASAP2s, a novel voltage indicator with improved sensitivity. By imaging ASAP2s using random-access multi-photon microscopy, we demonstrate robust single-trial detection of action potentials in organotypic slice cultures. We also show that ASAP2s enables two-photon imaging of graded potentials in organotypic slice cultures and in Drosophila. These results demonstrate that the combination of ASAP2s and fast two-photon imaging methods enables detection of neural electrical activity with subcellular spatial resolution and millisecond-timescale precision. DOI:http://dx.doi.org/10.7554/eLife.25690.001
Collapse
Affiliation(s)
- Simon Chamberland
- Department of Psychiatry and Neuroscience, Quebec Mental Health Institute, Université Laval, Québec, Canada
| | - Helen H Yang
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Michael M Pan
- Department of Bioengineering, Stanford University, Stanford, United States.,Department of Pediatrics, Stanford University, Stanford, United States
| | - Stephen W Evans
- Department of Neurobiology, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States.,Department of Pediatrics, Stanford University, Stanford, United States
| | - Sihui Guan
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Mariya Chavarha
- Department of Neurobiology, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States.,Department of Pediatrics, Stanford University, Stanford, United States
| | - Ying Yang
- Department of Neurobiology, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States.,Department of Pediatrics, Stanford University, Stanford, United States
| | - Charleen Salesse
- Department of Psychiatry and Neuroscience, Quebec Mental Health Institute, Université Laval, Québec, Canada
| | - Haodi Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, United States
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, United States
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Katalin Toth
- Department of Psychiatry and Neuroscience, Quebec Mental Health Institute, Université Laval, Québec, Canada
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States.,Department of Pediatrics, Stanford University, Stanford, United States
| | - François St-Pierre
- Department of Bioengineering, Stanford University, Stanford, United States.,Department of Pediatrics, Stanford University, Stanford, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
45
|
Synaptic plasticity in dendrites: complications and coping strategies. Curr Opin Neurobiol 2017; 43:177-186. [PMID: 28453975 DOI: 10.1016/j.conb.2017.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 12/15/2022]
Abstract
The elaborate morphology, nonlinear membrane mechanisms and spatiotemporally varying synaptic activation patterns of dendrites complicate the expression, compartmentalization and modulation of synaptic plasticity. To grapple with this complexity, we start with the observation that neurons in different brain areas face markedly different learning problems, and dendrites of different neuron types contribute to the cell's input-output function in markedly different ways. By committing to specific assumptions regarding a neuron's learning problem and its input-output function, specific inferences can be drawn regarding the synaptic plasticity mechanisms and outcomes that we 'ought' to expect for that neuron. Exploiting this assumption-driven approach can help both in interpreting existing experimental data and designing future experiments aimed at understanding the brain's myriad learning processes.
Collapse
|
46
|
Duménieu M, Oulé M, Kreutz MR, Lopez-Rojas J. The Segregated Expression of Voltage-Gated Potassium and Sodium Channels in Neuronal Membranes: Functional Implications and Regulatory Mechanisms. Front Cell Neurosci 2017; 11:115. [PMID: 28484374 PMCID: PMC5403416 DOI: 10.3389/fncel.2017.00115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/05/2017] [Indexed: 01/25/2023] Open
Abstract
Neurons are highly polarized cells with apparent functional and morphological differences between dendrites and axon. A critical determinant for the molecular and functional identity of axonal and dendritic segments is the restricted expression of voltage-gated ion channels (VGCs). Several studies show an uneven distribution of ion channels and their differential regulation within dendrites and axons, which is a prerequisite for an appropriate integration of synaptic inputs and the generation of adequate action potential (AP) firing patterns. This review article will focus on the signaling pathways leading to segmented expression of voltage-gated potassium and sodium ion channels at the neuronal plasma membrane and the regulatory mechanisms ensuring segregated functions. We will also discuss the relevance of proper ion channel targeting for neuronal physiology and how alterations in polarized distribution contribute to neuronal pathology.
Collapse
Affiliation(s)
- Maël Duménieu
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Marie Oulé
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function", University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH)Hamburg, Germany
| | - Jeffrey Lopez-Rojas
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| |
Collapse
|
47
|
Moore JJ, Ravassard PM, Ho D, Acharya L, Kees AL, Vuong C, Mehta MR. Dynamics of cortical dendritic membrane potential and spikes in freely behaving rats. Science 2017; 355:science.aaj1497. [DOI: 10.1126/science.aaj1497] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 01/31/2017] [Indexed: 11/02/2022]
|
48
|
Podlaski WF, Seeholzer A, Groschner LN, Miesenböck G, Ranjan R, Vogels TP. Mapping the function of neuronal ion channels in model and experiment. eLife 2017; 6. [PMID: 28267430 PMCID: PMC5340531 DOI: 10.7554/elife.22152] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/28/2017] [Indexed: 11/13/2022] Open
Abstract
Ion channel models are the building blocks of computational neuron models. Their biological fidelity is therefore crucial for the interpretation of simulations. However, the number of published models, and the lack of standardization, make the comparison of ion channel models with one another and with experimental data difficult. Here, we present a framework for the automated large-scale classification of ion channel models. Using annotated metadata and responses to a set of voltage-clamp protocols, we assigned 2378 models of voltage- and calcium-gated ion channels coded in NEURON to 211 clusters. The IonChannelGenealogy (ICGenealogy) web interface provides an interactive resource for the categorization of new and existing models and experimental recordings. It enables quantitative comparisons of simulated and/or measured ion channel kinetics, and facilitates field-wide standardization of experimentally-constrained modeling.
Collapse
Affiliation(s)
- William F Podlaski
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Alexander Seeholzer
- School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.,Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Lukas N Groschner
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Gero Miesenböck
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Rajnish Ranjan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Tim P Vogels
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
49
|
Manita S, Miyakawa H, Kitamura K, Murayama M. Dendritic Spikes in Sensory Perception. Front Cell Neurosci 2017; 11:29. [PMID: 28261060 PMCID: PMC5309249 DOI: 10.3389/fncel.2017.00029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/31/2017] [Indexed: 11/13/2022] Open
Abstract
What is the function of dendritic spikes? One might argue that they provide conditions for neuronal plasticity or that they are essential for neural computation. However, despite a long history of dendritic research, the physiological relevance of dendritic spikes in brain function remains unknown. This could stem from the fact that most studies on dendrites have been performed in vitro. Fortunately, the emergence of novel techniques such as improved two-photon microscopy, genetically encoded calcium indicators (GECIs), and optogenetic tools has provided the means for vital breakthroughs in in vivo dendritic research. These technologies enable the investigation of the functions of dendritic spikes in behaving animals, and thus, help uncover the causal relationship between dendritic spikes, and sensory information processing and synaptic plasticity. Understanding the roles of dendritic spikes in brain function would provide mechanistic insight into the relationship between the brain and the mind. In this review article, we summarize the results of studies on dendritic spikes from a historical perspective and discuss the recent advances in our understanding of the role of dendritic spikes in sensory perception.
Collapse
Affiliation(s)
- Satoshi Manita
- Laboratory for Behavioral Neurophysiology, Brain Science Institute, RIKENWako City, Saitama, Japan; Department of Neurophysiology, Division of Medicine, University of YamanashiChuo-shi, Japan
| | - Hiroyoshi Miyakawa
- Laboratory of Cellular Neurobiology, Tokyo University of Pharmacy and Life Sciences Hachioji, Japan
| | - Kazuo Kitamura
- Department of Neurophysiology, Division of Medicine, University of Yamanashi Chuo-shi, Japan
| | - Masanori Murayama
- Laboratory for Behavioral Neurophysiology, Brain Science Institute, RIKEN Wako City, Saitama, Japan
| |
Collapse
|
50
|
Brandalise F, Carta S, Helmchen F, Lisman J, Gerber U. Dendritic NMDA spikes are necessary for timing-dependent associative LTP in CA3 pyramidal cells. Nat Commun 2016; 7:13480. [PMID: 27848967 PMCID: PMC5116082 DOI: 10.1038/ncomms13480] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 10/07/2016] [Indexed: 01/12/2023] Open
Abstract
The computational repertoire of neurons is enhanced by regenerative electrical signals initiated in dendrites. These events, referred to as dendritic spikes, can act as cell-intrinsic amplifiers of synaptic input. Among these signals, dendritic NMDA spikes are of interest in light of their correlation with synaptic LTP induction. Because it is not possible to block NMDA spikes pharmacologically while maintaining NMDA receptors available to initiate synaptic plasticity, it remains unclear whether NMDA spikes alone can trigger LTP. Here we use dendritic recordings and calcium imaging to analyse the role of NMDA spikes in associative LTP in CA3 pyramidal cells. We show that NMDA spikes produce regenerative branch-specific calcium transients. Decreasing the probability of NMDA spikes reduces LTP, whereas increasing their probability enhances LTP. NMDA spikes and LTP occur without back-propagating action potentials. However, action potentials can facilitate LTP induction by promoting NMDA spikes. Thus, NMDA spikes are necessary and sufficient to produce the critical postsynaptic depolarization required for associative LTP in CA3 pyramidal cells.
Collapse
Affiliation(s)
- Federico Brandalise
- Brain Research Institute, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, ETH Zurich, CH-8057 Zurich, Switzerland
| | - Stefano Carta
- Brain Research Institute, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, ETH Zurich, CH-8057 Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, ETH Zurich, CH-8057 Zurich, Switzerland
| | - John Lisman
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Urs Gerber
- Brain Research Institute, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, ETH Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|