1
|
Giannakou M, Akrani I, Tsoka A, Myrianthopoulos V, Mikros E, Vorgias C, Hatzinikolaou DG. Discovery of Novel Inhibitors against ALS-Related SOD1(A4V) Aggregation through the Screening of a Chemical Library Using Differential Scanning Fluorimetry (DSF). Pharmaceuticals (Basel) 2024; 17:1286. [PMID: 39458929 PMCID: PMC11510448 DOI: 10.3390/ph17101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cu/Zn Superoxide Dismutase 1 (SOD1) is a 32 kDa cytosolic dimeric metalloenzyme that neutralizes superoxide anions into oxygen and hydrogen peroxide. Mutations in SOD1 are associated with ALS, a disease causing motor neuron atrophy and subsequent mortality. These mutations exert their harmful effects through a gain of function mechanism, rather than a loss of function. Despite extensive research, the mechanism causing selective motor neuron death still remains unclear. A defining feature of ALS pathogenesis is protein misfolding and aggregation, evidenced by ubiquitinated protein inclusions containing SOD1 in affected motor neurons. This work aims to identify compounds countering SOD1(A4V) misfolding and aggregation, which could potentially aid in ALS treatment. METHODS The approach employed was in vitro screening of a library comprising 1280 pharmacologically active compounds (LOPAC®) in the context of drug repurposing. Using differential scanning fluorimetry (DSF), these compounds were tested for their impact on SOD1(A4V) thermal stability. RESULTS AND CONCLUSIONS Dimer stability was the parameter chosen as the criterion for screening, since the dissociation of the native SOD1 dimer is the step prior to its in vitro aggregation. The screening revealed one compound raising protein-ligand Tm by 6 °C, eleven inducing a higher second Tm, suggesting a stabilization effect, and fourteen reducing Tm from 10 up to 26 °C, suggesting possible interactions or non-specific binding.
Collapse
Affiliation(s)
- Maria Giannakou
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Ifigeneia Akrani
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Angeliki Tsoka
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Vassilios Myrianthopoulos
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Emmanuel Mikros
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Constantinos Vorgias
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| |
Collapse
|
2
|
Neupane K, Narayan A, Sen Mojumdar S, Adhikari G, Garen CR, Woodside MT. Direct observation of prion-like propagation of protein misfolding templated by pathogenic mutants. Nat Chem Biol 2024; 20:1220-1226. [PMID: 39009686 DOI: 10.1038/s41589-024-01672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/06/2024] [Indexed: 07/17/2024]
Abstract
Many neurodegenerative diseases feature misfolded proteins that propagate via templated conversion of natively folded molecules. However, crucial questions about how such prion-like conversion occurs and what drives it remain unsolved, partly because technical challenges have prevented direct observation of conversion for any protein. We observed prion-like conversion in single molecules of superoxide dismutase-1 (SOD1), whose misfolding is linked to amyotrophic lateral sclerosis. Tethering pathogenic misfolded SOD1 mutants to wild-type molecules held in optical tweezers, we found that the mutants vastly increased misfolding of the wild-type molecule, inducing multiple misfolded isoforms. Crucially, the pattern of misfolding was the same in the mutant and converted wild-type domains and varied when the misfolded mutant was changed, reflecting the templating effect expected for prion-like conversion. Ensemble measurements showed decreased enzymatic activity in tethered heterodimers as conversion progressed, mirroring the single-molecule results. Antibodies sensitive to disease-specific epitopes bound to the converted protein, implying that conversion produced disease-relevant misfolded conformers.
Collapse
Affiliation(s)
- Krishna Neupane
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Abhishek Narayan
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Supratik Sen Mojumdar
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, India
| | - Gaurav Adhikari
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Craig R Garen
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada.
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Ahmed R, Liang M, Hudson RP, Rangadurai AK, Huang SK, Forman-Kay JD, Kay LE. Atomic resolution map of the solvent interactions driving SOD1 unfolding in CAPRIN1 condensates. Proc Natl Acad Sci U S A 2024; 121:e2408554121. [PMID: 39172789 PMCID: PMC11363255 DOI: 10.1073/pnas.2408554121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Biomolecules can be sequestered into membrane-less compartments, referred to as biomolecular condensates. Experimental and computational methods have helped define the physical-chemical properties of condensates. Less is known about how the high macromolecule concentrations in condensed phases contribute "solvent" interactions that can remodel the free-energy landscape of other condensate-resident proteins, altering thermally accessible conformations and, in turn, modulating function. Here, we use solution NMR spectroscopy to obtain atomic resolution insights into the interactions between the immature form of superoxide dismutase 1 (SOD1), which can mislocalize and aggregate in stress granules, and the RNA-binding protein CAPRIN1, a component of stress granules. NMR studies of CAPRIN1:SOD1 interactions, focused on both unfolded and folded SOD1 states in mixed phase and demixed CAPRIN1-based condensates, establish that CAPRIN1 shifts the SOD1 folding equilibrium toward the unfolded state through preferential interactions with the unfolded ensemble, with little change to the structure of the folded conformation. Key contacts between CAPRIN1 and the H80-H120 region of unfolded SOD1 are identified, as well as SOD1 interaction sites near both the arginine-rich and aromatic-rich regions of CAPRIN1. Unfolding of immature SOD1 in the CAPRIN1 condensed phase is shown to be coupled to aggregation, while a more stable zinc-bound, dimeric form of SOD1 is less susceptible to unfolding when solvated by CAPRIN1. Our work underscores the impact of the condensate solvent environment on the conformational states of resident proteins and supports the hypothesis that ALS mutations that decrease metal binding or dimerization function as drivers of aggregation in condensates.
Collapse
Affiliation(s)
- Rashik Ahmed
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| | - Mingyang Liang
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Rhea P. Hudson
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| | - Atul K. Rangadurai
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| | - Shuya Kate Huang
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| | - Julie D. Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| | - Lewis E. Kay
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| |
Collapse
|
4
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
5
|
Ahmed R, Rangadurai AK, Ruetz L, Tollinger M, Kreutz C, Kay LE. A delayed decoupling methyl-TROSY pulse sequence for atomic resolution studies of folded proteins and RNAs in condensates. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107667. [PMID: 38626504 DOI: 10.1016/j.jmr.2024.107667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/18/2024]
Abstract
Solution NMR spectroscopy has tremendous potential for providing atomic resolution insights into the interactions between proteins and nucleic acids partitioned into condensed phases of phase-separated systems. However, the highly viscous nature of the condensed phase challenges applications, and in particular, the extraction of quantitative, site-specific information. Here, we present a delayed decoupling-based HMQC pulse sequence for methyl-TROSY studies of 'client' proteins and nucleic acids partitioned into 'scaffold' proteinaceous phase-separated solvents. High sensitivity and excellent quality spectra are recorded of a nascent form of superoxide dismutase and of a small RNA fragment partitioned into CAPRIN1 condensates.
Collapse
Affiliation(s)
- Rashik Ahmed
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Atul K Rangadurai
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Lisa Ruetz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada.
| |
Collapse
|
6
|
Cui Y, Jin Y, Hou Y, Han X, Cao H, Kay LE, Yuwen T. Optimization of TROSY- and anti-TROSY-based 15N CPMG relaxation dispersion experiments through phase cycling. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 361:107629. [PMID: 38503148 DOI: 10.1016/j.jmr.2024.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 03/21/2024]
Abstract
CPMG relaxation dispersion studies of biomolecular dynamics on the μs-ms timescale can provide detailed kinetic, thermodynamic, and structural insights into function. Frequently, the 15N spin serves as the probe of choice, as uniform incorporation of the 15N isotope is facile and cost-effective, and the interpretation of the resulting data is often relatively straightforward. In conventional CPMG relaxation dispersion experiments the application of CPMG pulses with constant radiofrequency (RF) phase can lead to artifactual dispersion profiles that result from off-resonance effects, RF field inhomogeneity, and pulse miscalibration. The development of CPMG experiments with the [0013]-phase cycle has significantly reduced the impact of pulse imperfections over a greater bandwidth of frequency offsets in comparison to constant phase experiments. Application of 15N-TROSY-based CPMG schemes to studies of the dynamics of large molecules is necessary for high sensitivity, yet the correct incorporation of the [0013]-phase cycle is non-trivial. Here we present TROSY- and anti-TROSY-based 15N CPMG experiments with the [0013]-phase cycling scheme and demonstrate, through comprehensive numerical simulations and experimental validation, enhanced resistance to pulse imperfections relative to traditional schemes utilizing constant phase CPMG pulses. Notably, exchange parameters derived from the new experiments are in good agreement with those obtained using other, more established, 15N-based CPMG approaches.
Collapse
Affiliation(s)
- Yingxian Cui
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yangzhuoyue Jin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yu Hou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoxu Han
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Haiyan Cao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada; Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1X8, Canada.
| | - Tairan Yuwen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
7
|
Ng YK, Konermann L. Mechanism of Protein Aggregation Inhibition by Arginine: Blockage of Anionic Side Chains Favors Unproductive Encounter Complexes. J Am Chem Soc 2024; 146:8394-8406. [PMID: 38477601 DOI: 10.1021/jacs.3c14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Aggregation refers to the assembly of proteins into nonphysiological higher order structures. While amyloid has been studied extensively, much less is known about amorphous aggregation, a process that interferes with protein expression and storage. Free arginine (Arg+) is a widely used aggregation inhibitor, but its mechanism remains elusive. Focusing on myoglobin (Mb), we recently applied atomistic molecular dynamics (MD) simulations for gaining detailed insights into amorphous aggregation (Ng J. Phys. Chem. B 2021, 125, 13099). Building on that approach, the current work for the first time demonstrates that MD simulations can directly elucidate aggregation inhibition mechanisms. Comparative simulations with and without Arg+ reproduced the experimental finding that Arg+ significantly decreased the Mb aggregation propensity. Our data reveal that, without Arg+, protein-protein encounter complexes readily form salt bridges and hydrophobic contacts, culminating in firmly linked dimeric aggregation nuclei. Arg+ promotes the dissociation of encounter complexes. These "unproductive" encounter complexes are favored because Arg+ binding to D- and E- lowers the tendency of these anionic residues to form interprotein salt bridges. Side chain blockage is mediated largely by the guanidinium group of Arg+, which binds carboxylates through H-bond-reinforced ionic contacts. Our MD data revealed Arg+ self-association into a dynamic quasi-infinite network, but we found no evidence that this self-association is important for protein aggregation inhibition. Instead, aggregation inhibition by Arg+ is similar to that mediated by free guanidinium ions. The computational strategy used here should be suitable for the rational design of aggregation inhibitors with enhanced potency.
Collapse
Affiliation(s)
- Yuen Ki Ng
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
8
|
Saccuzzo EG, Mebrat MD, Scelsi HF, Kim M, Ma MT, Su X, Hill SE, Rheaume E, Li R, Torres MP, Gumbart JC, Van Horn WD, Lieberman RL. Competition between inside-out unfolding and pathogenic aggregation in an amyloid-forming β-propeller. Nat Commun 2024; 15:155. [PMID: 38168102 PMCID: PMC10762032 DOI: 10.1038/s41467-023-44479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Studies of folded-to-misfolded transitions using model protein systems reveal a range of unfolding needed for exposure of amyloid-prone regions for subsequent fibrillization. Here, we probe the relationship between unfolding and aggregation for glaucoma-associated myocilin. Mutations within the olfactomedin domain of myocilin (OLF) cause a gain-of-function, namely cytotoxic intracellular aggregation, which hastens disease progression. Aggregation by wild-type OLF (OLFWT) competes with its chemical unfolding, but only below the threshold where OLF loses tertiary structure. Representative moderate (OLFD380A) and severe (OLFI499F) disease variants aggregate differently, with rates comparable to OLFWT in initial stages of unfolding, and variants adopt distinct partially folded structures seen along the OLFWT urea-unfolding pathway. Whether initiated with mutation or chemical perturbation, unfolding propagates outward to the propeller surface. In sum, for this large protein prone to amyloid formation, the requirement for a conformational change to promote amyloid fibrillization leads to direct competition between unfolding and aggregation.
Collapse
Affiliation(s)
- Emily G Saccuzzo
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Mubark D Mebrat
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, USA
- School of Molecular Sciences, Arizona State University, Tempe, USA
| | - Hailee F Scelsi
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Minjoo Kim
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, USA
- School of Molecular Sciences, Arizona State University, Tempe, USA
| | - Minh Thu Ma
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Xinya Su
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Shannon E Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Elisa Rheaume
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, USA
| | - Matthew P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - James C Gumbart
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
- School of Physics, Georgia Institute of Technology, Atlanta, USA
| | - Wade D Van Horn
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, USA.
- School of Molecular Sciences, Arizona State University, Tempe, USA.
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA.
| |
Collapse
|
9
|
Basith S, Manavalan B, Lee G. Unveiling local and global conformational changes and allosteric communications in SOD1 systems using molecular dynamics simulation and network analyses. Comput Biol Med 2024; 168:107688. [PMID: 37988788 DOI: 10.1016/j.compbiomed.2023.107688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a serious neurodegenerative disorder affecting nerve cells in the brain and spinal cord that is caused by mutations in the superoxide dismutase 1 (SOD1) enzyme. ALS-related mutations cause misfolding, dimerisation instability, and increased formation of aggregates. The underlying allosteric mechanisms, however, remain obscure as far as details of their fundamental atomistic structure are concerned. Hence, this gap in knowledge limits the development of novel SOD1 inhibitors and the understanding of how disease-associated mutations in distal sites affect enzyme activity. METHODS We combined microsecond-scale based unbiased molecular dynamics (MD) simulation with network analysis to elucidate the local and global conformational changes and allosteric communications in SOD1 Apo (unmetallated form), Holo, Apo_CallA (mutant and unmetallated form), and Holo_CallA (mutant form) systems. To identify hotspot residues involved in SOD1 signalling and allosteric communications, we performed network centrality, community network, and path analyses. RESULTS Structural analyses showed that unmetallated SOD1 systems and cysteine mutations displayed large structural variations in the catalytic sites, affecting structural stability. Inter- and intra H-bond analyses identified several important residues crucial for maintaining interfacial stability, structural stability, and enzyme catalysis. Dynamic motion analysis demonstrated more balanced atomic displacement and highly correlated motions in the Holo system. The rationale for structural disparity observed in the disulfide bond formation and R143 configuration in Apo and Holo systems were elucidated using distance and dihedral probability distribution analyses. CONCLUSION Our study highlights the efficiency of combining extensive MD simulations with network analyses to unravel the features of protein allostery.
Collapse
Affiliation(s)
- Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
10
|
Lim L, Kang J, Song J. Extreme diversity of 12 cations in folding ALS-linked hSOD1 unveils novel hSOD1-dependent mechanisms for Fe 2+/Cu 2+-induced cytotoxicity. Sci Rep 2023; 13:19868. [PMID: 37964005 PMCID: PMC10645853 DOI: 10.1038/s41598-023-47338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/12/2023] [Indexed: 11/16/2023] Open
Abstract
153-Residue copper-zinc superoxide dismutase 1 (hSOD1) is the first gene whose mutation was linked to FALS. To date, > 180 ALS-causing mutations have been identified within hSOD1, yet the underlying mechanism still remains mysterious. Mature hSOD1 is exceptionally stable constrained by a disulfide bridge to adopt a Greek-key β-barrel fold that accommodates copper/zinc cofactors. Conversely, nascent hSOD1 is unfolded and susceptible to aggregation and amyloid formation, requiring Zn2+ to initiate folding to a coexistence of folded and unfolded states. Recent studies demonstrate mutations that disrupt Zn2+-binding correlate with their ability to form toxic aggregates. Therefore, to decode the role of cations in hSOD1 folding provides not only mechanistic insights, but may bear therapeutic implications for hSOD1-linked ALS. Here by NMR, we visualized the effect of 12 cations: 8 essential for humans (Na+, K+, Ca2+, Zn2+, Mg2+, Mn2+, Cu2+, Fe2+), 3 mimicking zinc (Ni2+, Cd2+, Co2+), and environmentally abundant Al3+. Surprisingly, most cations, including Zn2+-mimics, showed negligible binding or induction for folding of nascent hSOD1. Cu2+ exhibited extensive binding to the unfolded state but led to severe aggregation. Unexpectedly, for the first time Fe2+ was deciphered to have Zn2+-like folding-inducing capacity. Zn2+ was unable to induce folding of H80S/D83S-hSOD1, while Fe2+ could. In contrast, Zn2+ could trigger folding of G93A-hSOD1, but Fe2+ failed. Notably, pre-existing Fe2+ disrupted the Zn2+-induced folding of G93A-hSOD1. Comparing with the ATP-induced folded state, our findings delineate that hSOD1 maturation requires: (1) intrinsic folding capacity encoded by the sequence; (2) specific Zn2+-coordination; (3) disulfide formation and Cu-load catalyzed by hCCS. This study unveils a previously-unknown interplay of cations in governing the initial folding of hSOD1, emphasizing the pivotal role of Zn2+ in hSOD1-related ALS and implying new hSOD1-dependent mechanisms for Cu2+/Fe2+-induced cytotoxicity, likely relevant to aging and other diseases.
Collapse
Affiliation(s)
- Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Republic of Singapore
| | - Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Republic of Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Republic of Singapore.
| |
Collapse
|
11
|
Kumar A, Madhurima K, Naganathan AN, Vallurupalli P, Sekhar A. Probing excited state 1Hα chemical shifts in intrinsically disordered proteins with a triple resonance-based CEST experiment: Application to a disorder-to-order switch. Methods 2023; 218:198-209. [PMID: 37607621 PMCID: PMC7615522 DOI: 10.1016/j.ymeth.2023.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
Over 40% of eukaryotic proteomes and 15% of bacterial proteomes are predicted to be intrinsically disordered based on their amino acid sequence. Intrinsically disordered proteins (IDPs) exist as heterogeneous ensembles of interconverting conformations and pose a challenge to the structure-function paradigm by apparently functioning without possessing stable structural elements. IDPs play a prominent role in biological processes involving extensive intermolecular interaction networks and their inherently dynamic nature facilitates their promiscuous interaction with multiple structurally diverse partner molecules. NMR spectroscopy has made pivotal contributions to our understanding of IDPs because of its unique ability to characterize heterogeneity at atomic resolution. NMR methods such as Chemical Exchange Saturation Transfer (CEST) and relaxation dispersion have enabled the detection of 'invisible' excited states in biomolecules which are transiently and sparsely populated, yet central for function. Here, we develop a 1Hα CEST pulse sequence which overcomes the resonance overlap problem in the 1Hα-13Cα plane of IDPs by taking advantage of the superior resolution in the 1H-15N correlation spectrum. In this sequence, magnetization is transferred after 1H CEST using a triple resonance coherence transfer pathway from 1Hα (i) to 1HN(i + 1) during which the 15N(t1) and 1HN(t2) are frequency labelled. This approach is integrated with spin state-selective CEST for eliminating spurious dips in CEST profiles resulting from dipolar cross-relaxation. We apply this sequence to determine the excited state 1Hα chemical shifts of the intrinsically disordered DNA binding domain (CytRN) of the bacterial cytidine repressor (CytR), which transiently acquires a functional globally folded conformation. The structure of the excited state, calculated using 1Hα chemical shifts in conjunction with other excited state NMR restraints, is a three-helix bundle incorporating a helix-turn-helix motif that is vital for binding DNA.
Collapse
Affiliation(s)
- Ajith Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Kulkarni Madhurima
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India.
| |
Collapse
|
12
|
Khandave NP, Sekhar A, Vallurupalli P. Studying micro to millisecond protein dynamics using simple amide 15N CEST experiments supplemented with major-state R 2 and visible peak-position constraints. JOURNAL OF BIOMOLECULAR NMR 2023; 77:165-181. [PMID: 37300639 PMCID: PMC7615914 DOI: 10.1007/s10858-023-00419-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
Over the last decade amide 15N CEST experiments have emerged as a popular tool to study protein dynamics that involves exchange between a 'visible' major state and sparsely populated 'invisible' minor states. Although initially introduced to study exchange between states that are in slow exchange with each other (typical exchange rates of, 10 to 400 s-1), they are now used to study interconversion between states on the intermediate to fast exchange timescale while still using low to moderate (5 to 350 Hz) 'saturating' B1 fields. The 15N CEST experiment is very sensitive to exchange as the exchange delay TEX can be quite long (~0.5 s) allowing for a large number of exchange events to occur making it a very powerful tool to detect minor sates populated ([Formula: see text]) to as low as 1%. When systems are in fast exchange and the 15N CEST data has to be described using a model that contains exchange, the exchange parameters are often poorly defined because the [Formula: see text] versus [Formula: see text] and [Formula: see text] versus exchange rate ([Formula: see text]) plots can be quite flat with shallow or no minima and the analysis of such 15N CEST data can lead to wrong estimates of the exchange parameters due to the presence of 'spurious' minima. Here we show that the inclusion of experimentally derived constraints on the intrinsic transverse relaxation rates and the inclusion of visible state peak-positions during the analysis of amide 15N CEST data acquired with moderate B1 values (~50 to ~350 Hz) results in convincing minima in the [Formula: see text] versus [Formula: see text] and the [Formula: see text] versus [Formula: see text] plots even when exchange occurs on the 100 μs timescale. The utility of this strategy is demonstrated on the fast-folding Bacillus stearothermophilus peripheral subunit binding domain that folds with a rate constant ~104 s-1. Here the analysis of 15N CEST data alone results in [Formula: see text] versus [Formula: see text] and [Formula: see text] versus [Formula: see text] plots that contain shallow minima, but the inclusion of visible-state peak positions and restraints on the intrinsic transverse relaxation rates of both states during the analysis of the 15N CEST data results in pronounced minima in the [Formula: see text] versus [Formula: see text] and [Formula: see text] versus [Formula: see text] plots and precise exchange parameters even in the fast exchange regime ([Formula: see text]~5). Using this strategy we find that the folding rate constant of PSBD is invariant (~10,500 s-1) from 33.2 to 42.9 °C while the unfolding rates (~70 to ~500 s-1) and unfolded state populations (~0.7 to ~4.3%) increase with temperature. The results presented here show that protein dynamics occurring on the 10 to 104 s-1 timescale can be studied using amide 15N CEST experiments.
Collapse
Affiliation(s)
- Nihar Pradeep Khandave
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India.
| |
Collapse
|
13
|
Chen H, Chen TY. Probing Oxidant Effects on Superoxide Dismutase 1 Oligomeric States in Live Cells Using Single-Molecule Fluorescence Anisotropy. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:49-57. [PMID: 37122833 PMCID: PMC10131266 DOI: 10.1021/cbmi.3c00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 05/02/2023]
Abstract
The protein Cu/Zn superoxide dismutase (SOD1) is known to function as a dimer, but its concentration in cells (∼50 μM) and the dimerization constant (K d of 500 μM) results suggest that it exists in a monomer-dimer equilibrium. It is unclear how the oligomeric state of SOD1 changes when cells are initially exposed to high levels of extracellular oxidative stress. To address this problem, we introduced the single-molecule fluorescence anisotropy (smFA) assay to explore SOD1 oligomeric states in live COS7 cells. smFA specifically probes the fluorescence polarization changes caused by molecular rotations where the fast-rotating molecules (either due to smaller hydrodynamic volume or less viscous environments) deteriorate the emission polarization and thus lower the anisotropy. After validating that smFA is effective in distinguishing monomeric and dimeric fluorescence proteins, we overexpressed SOD1 in live COS7 cells and investigated how its oligomeric state changes under basal, 2 h, and 24 h 100 μM H2O2 treatments. We found that treating cells with H2O2 promotes SOD1 dimerization and decreases cellular viscosity in 2 h. Interestingly, prolonged H2O2 treatments show similar results as the basal conditions, indicating that cells return to a steady state similar to the basal state after 24 h, despite the presence of H2O2. Our results demonstrate that SOD1 changes its oligomeric state equilibrium in response to extracellular oxidative stresses. smFA will open new opportunities to explore the relationship between the SOD1 oligomer state and its H2O2-based signaling and transcription regulation roles.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Chemistry, University
of Houston, Houston, Texas 77204, United States
| | - Tai-Yen Chen
- Department of Chemistry, University
of Houston, Houston, Texas 77204, United States
| |
Collapse
|
14
|
Sharma S, Tomar VR, Jayaraj A, Deep S. A computational strategy for therapeutic development against superoxide dismutase (SOD1) amyloid formation: effect of polyphenols on the various events in the aggregation pathway. Phys Chem Chem Phys 2023; 25:6232-6246. [PMID: 36756854 DOI: 10.1039/d2cp05537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pathology of superoxide dismutase 1 (SOD1) aggregation is linked to a neurodegenerative disease known as amyotrophic lateral sclerosis (ALS). Without suitable post-translational modifications (PTMs), the protein structure tends to become aggregation-prone. Understanding the role of PTMs and targeting the aggregation-prone SOD1 with small molecules can be used to design a strategy to inhibit its aggregation. Microsecond long molecular dynamics (MD) simulations followed by free energy surface (FES) analyses show that the loss of structure in the apo monomer happens locally and stepwise. Removing the disulfide bond from apoprotein leads to further instability in the zinc-binding loop, giving rise to non-native protein conformations. Further, it was found that these non-native conformations have a higher propensity to form a non-native dimer. We chose three structurally similar polyphenols based on their binding energies and investigated their impact on SOD1 aggregation kinetics. MD simulations of apo-SOD1SH/corkscrew fibril-polyphenol complexes were also carried out. The effect of polyphenols was seen on fibril elongation as well. Based on the experiments and MD simulation results, it can be inferred that the choice of inhibitors is influenced not only by the binding energy but also by dimer interface stabilization, the proclivity to form non-native dimers, the propensity to break fibrils, and the propensity to decrease the rate of elongation. The polyphenols with 3' and 4' hydroxyl groups are better inhibitors of SOD1 aggregation.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, 110016.
| | - Vijay Raj Tomar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, 110016.
| | - Abhilash Jayaraj
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, 110016.
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, 110016.
| |
Collapse
|
15
|
Mouro PR, Sanches MN, Leite VBP, Chahine J. Exploring the Folding Mechanism of Dimeric Superoxide Dismutase. J Phys Chem B 2023; 127:1338-1349. [PMID: 36716437 DOI: 10.1021/acs.jpcb.2c08877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Cu/Zn Human Superoxide Dismutase (SOD1) is a dimeric metalloenzyme whose genetic mutations are directly related to amyotrophic lateral sclerosis (ALS), so understanding its folding mechanism is of fundamental importance. Currently, the SOD1 dimer formation is studied via molecular dynamics simulations using a simplified structure-based model and an all-atom model. Results from the simplified model reveal a mechanism dependent on distances between monomers, which are limited by constraints to mimic concentration dependence. The stability of intermediates (during the int state) is significantly affected by this distance, as well as by the presence of two folded monomers prior to dimer formation. The kinetics of interface formation are also highly dependent on the separation distance. The folding temperature of the dimer is about 4.2% higher than that of the monomer, a value not too different from experimental data. All-atom simulations on the apo dimer give binding free energy between monomers similar to experimental values. An intermediate state is evident for the apo form at a separation distance between monomers slightly larger than the native distance which has little formed interface between monomers. We have shown that this intermediate is stabilized by non-native intra- and intercontacts.
Collapse
Affiliation(s)
- Paulo R Mouro
- São Paulo State University (UNESP), IBILCE, São José do Rio Preto15054-000, Brazil
| | - Murilo N Sanches
- São Paulo State University (UNESP), IBILCE, São José do Rio Preto15054-000, Brazil
| | - Vitor B P Leite
- São Paulo State University (UNESP), IBILCE, São José do Rio Preto15054-000, Brazil
| | - Jorge Chahine
- São Paulo State University (UNESP), IBILCE, São José do Rio Preto15054-000, Brazil
| |
Collapse
|
16
|
Das B, Roychowdhury S, Mohanty P, Rizuan A, Chakraborty J, Mittal J, Chattopadhyay K. A Zn-dependent structural transition of SOD1 modulates its ability to undergo phase separation. EMBO J 2023; 42:e111185. [PMID: 36416085 PMCID: PMC9841336 DOI: 10.15252/embj.2022111185] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
The misfolding and mutation of Cu/Zn superoxide dismutase (SOD1) is commonly associated with amyotrophic lateral sclerosis (ALS). SOD1 can accumulate within stress granules (SGs), a type of membraneless organelle, which is believed to form via liquid-liquid phase separation (LLPS). Using wild-type, metal-deficient, and different ALS disease mutants of SOD1 and computer simulations, we report here that the absence of Zn leads to structural disorder within two loop regions of SOD1, triggering SOD1 LLPS and amyloid formation. The addition of exogenous Zn to either metal-free SOD1 or to the severe ALS mutation I113T leads to the stabilization of the loops and impairs SOD1 LLPS and aggregation. Moreover, partial Zn-mediated inhibition of LLPS was observed for another severe ALS mutant, G85R, which shows perturbed Zn-binding. By contrast, the ALS mutant G37R, which shows reduced Cu-binding, does not undergo LLPS. In addition, SOD1 condensates induced by Zn-depletion exhibit greater cellular toxicity than aggregates formed by prolonged incubation under aggregating conditions. Overall, our work establishes a role for Zn-dependent modulation of SOD1 conformation and LLPS properties that may contribute to amyloid formation.
Collapse
Affiliation(s)
- Bidisha Das
- Structural Biology and Bioinformatics DivisionCSIR‐Indian Institute of Chemical BiologyKolkataIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Sumangal Roychowdhury
- Structural Biology and Bioinformatics DivisionCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Priyesh Mohanty
- Artie McFerrin Department of Chemical EngineeringTexas A&M UniversityCollege StationTXUSA
| | - Azamat Rizuan
- Artie McFerrin Department of Chemical EngineeringTexas A&M UniversityCollege StationTXUSA
| | - Joy Chakraborty
- Cell Biology and Physiology DivisionCSIR‐Indian Institute of Chemical BiologyKolkataIndia
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical EngineeringTexas A&M UniversityCollege StationTXUSA
| | - Krishnananda Chattopadhyay
- Structural Biology and Bioinformatics DivisionCSIR‐Indian Institute of Chemical BiologyKolkataIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
17
|
Dashnaw CM, Zhang AY, Gonzalez M, Koone JC, Shaw BF. Metal migration and subunit swapping in ALS-linked SOD1: Zn 2+ transfer between mutant and wild-type occurs faster than the rate of heterodimerization. J Biol Chem 2022; 298:102610. [PMID: 36265587 PMCID: PMC9667317 DOI: 10.1016/j.jbc.2022.102610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
The heterodimerization of WT Cu, Zn superoxide dismutase-1 (SOD1), and mutant SOD1 might be a critical step in the pathogenesis of SOD1-linked amyotrophic lateral sclerosis (ALS). Rates and free energies of heterodimerization (ΔGHet) between WT and ALS-mutant SOD1 in mismatched metalation states-where one subunit is metalated and the other is not-have been difficult to obtain. Consequently, the hypothesis that under-metalated SOD1 might trigger misfolding of metalated SOD1 by "stealing" metal ions remains untested. This study used capillary zone electrophoresis and mass spectrometry to track heterodimerization and metal transfer between WT SOD1, ALS-variant SOD1 (E100K, E100G, D90A), and triply deamidated SOD1 (modeled with N26D/N131D/N139D substitutions). We determined that rates of subunit exchange between apo dimers and metalated dimers-expressed as time to reach 30% heterodimer-ranged from t30% = 67.75 ± 9.08 to 338.53 ± 26.95 min; free energies of heterodimerization ranged from ΔGHet = -1.21 ± 0.31 to -3.06 ± 0.12 kJ/mol. Rates and ΔGHet values of partially metalated heterodimers were more similar to those of fully metalated heterodimers than apo heterodimers, and largely independent of which subunit (mutant or WT) was metal-replete or metal-free. Mass spectrometry and capillary electrophoresis demonstrated that mutant or WT 4Zn-SOD1 could transfer up to two equivalents of Zn2+ to mutant or WT apo-SOD1 (at rates faster than the rate of heterodimerization). This result suggests that zinc-replete SOD1 can function as a chaperone to deliver Zn2+ to apo-SOD1, and that WT apo-SOD1 might increase the toxicity of mutant SOD1 by stealing its Zn2+.
Collapse
|
18
|
Tarasca MV, Naser D, Schaefer A, Soule TG, Meiering EM. Quenched hydrogen-deuterium amide exchange optimization for high-resolution structural analysis of cellular protein aggregates. Anal Biochem 2022; 652:114675. [PMID: 35390328 DOI: 10.1016/j.ab.2022.114675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022]
Abstract
Inclusion bodies (IBs) are large, insoluble aggregates that often form during the overexpression of proteins in bacteria. These aggregates are of broad fundamental and practical significance, for recombinant protein preparation and due to their relevance to aggregation-related medical conditions and their recent emergence as promising functional nanomaterials. Despite their significance, high resolution knowledge of IB structure remains very limited. Such knowledge will advance understanding and control of IB formation and properties in myriad practical applications. Here, we report a detailed quenched hydrogen-deuterium amide exchange (qHDX) method with NMR readout to define the structure of IBs at the level of individual residues throughout the protein. Applying proper control of experimental conditions, such as sample pH, water content, temperature, and intrinsic rate of amide exchange, yields in depth results for these cellular protein aggregates. qHDX results illustrated for Cu, Zn superoxide dismutase 1 (SOD1) and Adnectins show their IBs include native-like structure and some but not all mutations alter IB structure.
Collapse
Affiliation(s)
| | - Dalia Naser
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| | - Anna Schaefer
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| | - Tyler Gb Soule
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| | | |
Collapse
|
19
|
SOD1 gains pro-oxidant activity upon aberrant oligomerization: change in enzymatic activity by intramolecular disulfide bond cleavage. Sci Rep 2022; 12:11750. [PMID: 35817830 PMCID: PMC9273606 DOI: 10.1038/s41598-022-15701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/28/2022] [Indexed: 11/08/2022] Open
Abstract
Copper-zinc superoxide dismutase (SOD1) has been proposed as one of the causative proteins of amyotrophic lateral sclerosis (ALS). The accumulation of non-native conformers, oligomers, and aggregates of SOD1 in motor neurons is considered responsible for this disease. However, it remains unclear which specific feature of these species induces the onset of ALS. In this study, we showed that disulfide-linked oligomers of denatured SOD1 exhibit pro-oxidant activity. Substituting all the cysteine residues in the free thiol state with serine resulted in the loss of both the propensity to oligomerize and the increase in pro-oxidant activity after denaturation. In contrast, these cysteine mutants oligomerized and acquired the pro-oxidant activity after denaturation in the presence of a reductant that cleaves the intramolecular disulfide bond. These results indicate that one of the toxicities of SOD1 oligomers is the pro-oxidant activity induced by scrambling of the disulfide bonds. Small oligomers such as dimers and trimers exhibit stronger pro-oxidant activity than large oligomers and aggregates, consistent with the trend of the cytotoxicity of oligomers and aggregates reported in previous studies. We propose that the cleavage of the intramolecular disulfide bond accompanied by the oligomerization reduces the substrate specificity of SOD1, leading to the non-native enzymatic activity.
Collapse
|
20
|
MacKenzie DWS, Schaefer A, Steckner J, Leo CA, Naser D, Artikis E, Broom A, Ko T, Shah P, Ney MQ, Tran E, Smith MTJ, Fuglestad B, Wand AJ, Brooks CL, Meiering EM. A fine balance of hydrophobic-electrostatic communication pathways in a pH-switching protein. Proc Natl Acad Sci U S A 2022; 119:e2119686119. [PMID: 35737838 PMCID: PMC9245636 DOI: 10.1073/pnas.2119686119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/29/2022] [Indexed: 12/24/2022] Open
Abstract
Allostery is the phenomenon of coupling between distal binding sites in a protein. Such coupling is at the crux of protein function and regulation in a myriad of scenarios, yet determining the molecular mechanisms of coupling networks in proteins remains a major challenge. Here, we report mechanisms governing pH-dependent myristoyl switching in monomeric hisactophilin, whereby the myristoyl moves between a sequestered state, i.e., buried within the core of the protein, to an accessible state, in which the myristoyl has increased accessibility for membrane binding. Measurements of the pH and temperature dependence of amide chemical shifts reveal protein local structural stability and conformational heterogeneity that accompany switching. An analysis of these measurements using a thermodynamic cycle framework shows that myristoyl-proton coupling at the single-residue level exists in a fine balance and extends throughout the protein. Strikingly, small changes in the stereochemistry or size of core and surface hydrophobic residues by point mutations readily break, restore, or tune myristoyl switch energetics. Synthesizing the experimental results with those of molecular dynamics simulations illuminates atomistic details of coupling throughout the protein, featuring a large network of hydrophobic interactions that work in concert with key electrostatic interactions. The simulations were critical for discerning which of the many ionizable residues in hisactophilin are important for switching and identifying the contributions of nonnative interactions in switching. The strategy of using temperature-dependent NMR presented here offers a powerful, widely applicable way to elucidate the molecular mechanisms of allostery in proteins at high resolution.
Collapse
Affiliation(s)
| | - Anna Schaefer
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Julia Steckner
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Christopher A. Leo
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Dalia Naser
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Efrosini Artikis
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Aron Broom
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Travis Ko
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Purnank Shah
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mikaela Q. Ney
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Elisa Tran
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Martin T. J. Smith
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Brian Fuglestad
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - A. Joshua Wand
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Charles L. Brooks
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109
| | | |
Collapse
|
21
|
Garg P, Semmler S, Baudouin C, Velde CV, Plotkin SS. Misfolding-Associated Exposure of Natively Buried Residues in Mutant SOD1 Facilitates Binding to TRAF6. J Mol Biol 2022; 434:167697. [PMID: 35753527 DOI: 10.1016/j.jmb.2022.167697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 10/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease primarily impacting motor neurons. Mutations in superoxide dismutase 1 (SOD1) are the second most common cause of familial ALS. Several of these mutations lead to misfolding or toxic gain of function in the SOD1 protein. Recently, we reported that misfolded SOD1 interacts with TNF receptor-associated factor 6 (TRAF6) in the SOD1G93A rat model of ALS. Further, we showed in cultured cells that several mutant SOD1 proteins, but not wildtype SOD1 protein, interact with TRAF6 via the MATH domain. Here, we sought to uncover the structural details of this interaction through molecular dynamics (MD) simulations of a dimeric model system, coarse grained using the AWSEM force field. We used direct MD simulations to identify buried residues, and predict binding poses by clustering frames from the trajectories. Metadynamics simulations were also used to deduce preferred binding regions on the protein surfaces from the potential of the mean force in orientation space. Well-folded SOD1 was found to bind TRAF6 via co-option of its native homodimer interface. However, if loops IV and VII of SOD1 were disordered, as typically occurs in the absence of stabilizing Zn2+ ion binding, these disordered loops now participated in novel interactions with TRAF6. On TRAF6, multiple interaction hot-spots were distributed around the equatorial region of the MATH domain beta barrel. Expression of TRAF6 variants with mutations in this region in cultured cells demonstrated that TRAF6T475 facilitates interaction with different SOD1 mutants. These findings contribute to our understanding of the disease mechanism and uncover potential targets for the development of therapeutics.
Collapse
Affiliation(s)
- Pranav Garg
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Sabrina Semmler
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada; Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - Charlotte Baudouin
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada; Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Christine Vande Velde
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada; Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada; Genome Sciences and Technology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
22
|
Naser D, Tarasca MV, Siebeneichler B, Schaefer A, Deol HK, Soule TGB, Almey J, Kelso S, Mishra GG, Simon H, Meiering EM. High-Resolution NMR H/D Exchange of Human Superoxide Dismutase Inclusion Bodies Reveals Significant Native Features Despite Structural Heterogeneity. Angew Chem Int Ed Engl 2022; 61:e202112645. [PMID: 35316563 DOI: 10.1002/anie.202112645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 01/16/2023]
Abstract
Protein aggregation is central to aging, disease and biotechnology. While there has been recent progress in defining structural features of cellular protein aggregates, many aspects remain unclear due to heterogeneity of aggregates presenting obstacles to characterization. Here we report high-resolution analysis of cellular inclusion bodies (IBs) of immature human superoxide dismutase (SOD1) mutants using NMR quenched amide hydrogen/deuterium exchange (qHDX), FTIR and Congo red binding. The extent of aggregation is correlated with mutant global stability and, notably, the free energy of native dimer dissociation, indicating contributions of native-like monomer associations to IB formation. This is further manifested by a common pattern of extensive protection against H/D exchange throughout nine mutant SOD1s despite their diverse characteristics. These results reveal multiple aggregation-prone regions in SOD1 and illuminate how aggregation may occur via an ensemble of pathways.
Collapse
Affiliation(s)
- Dalia Naser
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Michael V Tarasca
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Bruna Siebeneichler
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Anna Schaefer
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Harmeen K Deol
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Tyler G B Soule
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Current address: Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Johnathan Almey
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Susan Kelso
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Current address: Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Gyana G Mishra
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Current address: Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hilary Simon
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | |
Collapse
|
23
|
Jain S, Sekhar A. Elucidating the mechanisms underlying protein conformational switching using NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE OPEN 2022; 10-11:100034. [PMID: 35586549 PMCID: PMC7612731 DOI: 10.1016/j.jmro.2022.100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
How proteins switch between various ligand-free and ligand-bound structures has been a key biophysical question ever since the postulation of the Monod-Wyman-Changeux and Koshland-Nemethy-Filmer models over six decades ago. The ability of NMR spectroscopy to provide structural and kinetic information on biomolecular conformational exchange places it in a unique position as an analytical tool to interrogate the mechanisms of biological processes such as protein folding and biomolecular complex formation. In addition, recent methodological developments in the areas of saturation transfer and relaxation dispersion have expanded the scope of NMR for probing the mechanics of transitions in systems where one or more states constituting the exchange process are sparsely populated and 'invisible' in NMR spectra. In this review, we highlight some of the strategies available from NMR spectroscopy for examining the nature of multi-site conformational exchange, using five case studies that have employed NMR, either in isolation, or in conjunction with other biophysical tools.
Collapse
|
24
|
Deol HK, Broom HR, Sienbeneichler B, Lee B, Leonenko Z, Meiering EM. Immature ALS-associated mutant superoxide dismutases form variable aggregate structures through distinct oligomerization processes. Biophys Chem 2022; 288:106844. [DOI: 10.1016/j.bpc.2022.106844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/15/2022]
|
25
|
Naser D, Tarasca MV, Siebeneichler B, Schaefer A, Deol HK, Soule TGB, Almey J, Kelso S, Mishra GG, Simon H, Meiering EM. High‐Resolution NMR H/D Exchange of Human Superoxide Dismutase Inclusion Bodies Reveals Significant Native Features Despite Structural Heterogeneity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dalia Naser
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | - Michael V. Tarasca
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | | | - Anna Schaefer
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | - Harmeen K. Deol
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | - Tyler G. B. Soule
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
- Current address: Department of Clinical Neurosciences University of Calgary Calgary, AB T2N 1N4 Canada
| | - Johnathan Almey
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | - Susan Kelso
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
- Current address: Department of Molecular Genetics University of Toronto Toronto, ON M5S 1A1 Canada
| | - Gyana G. Mishra
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
- Current address: Department of Biology University of Waterloo Waterloo, ON N2L 3G1 Canada
| | - Hilary Simon
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | | |
Collapse
|
26
|
Tajiri M, Aoki H, Shintani A, Sue K, Akashi S, Furukawa Y. Metal distribution in Cu/Zn-superoxide dismutase revealed by native mass spectrometry. Free Radic Biol Med 2022; 183:60-68. [PMID: 35314356 DOI: 10.1016/j.freeradbiomed.2022.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 01/09/2023]
Abstract
Cu/Zn-superoxide dismutase (SOD1) is a homodimer with two identical subunits, each of which binds a copper and zinc ion in the native state. In contrast to such a text book case, SOD1 proteins purified in vitro or even in vivo have been often reported to bind a non-stoichiometric amount of the metal ions. Nonetheless, it is difficult to probe how those metal ions are distributed in the two identical subunits. By utilizing native mass spectrometry, we showed here that addition of a sub-stoichiometric copper/zinc ion to SOD1 led to the formation of a homodimer with a stochastic combination of the subunits binding 0, 1, and even 2 metal ions. We also found that the homodimer was able to bind four copper or four zinc ions, implying the binding of a copper and zinc ion at the canonical zinc and copper site, respectively. Such ambiguity in the metal quota and selectivity could be avoided when an intra-subunit disulfide bond in SOD1 was reduced before addition of the metal ions. Apo-SOD1 in the disulfide-reduced state was monomeric and was found to bind only one zinc ion per monomer. By binding a zinc ion, the disulfide-reduced SOD1 became conformationally compact and acquired the ability to dimerize. Based upon the results in vitro, we describe the pathway in vivo enabling SOD1 to bind copper and zinc ions with high accuracy in their quota and selectivity. A failure of correct metallation in SOD1 will also be discussed in relation to amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Michiko Tajiri
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Hiroto Aoki
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Atsuko Shintani
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Kaori Sue
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan.
| | - Yoshiaki Furukawa
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan.
| |
Collapse
|
27
|
Hsueh SCC, Nijland M, Peng X, Hilton B, Plotkin SS. First Principles Calculation of Protein-Protein Dimer Affinities of ALS-Associated SOD1 Mutants. Front Mol Biosci 2022; 9:845013. [PMID: 35402516 PMCID: PMC8988244 DOI: 10.3389/fmolb.2022.845013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/08/2022] [Indexed: 01/03/2023] Open
Abstract
Cu,Zn superoxide dismutase (SOD1) is a 32 kDa homodimer that converts toxic oxygen radicals in neurons to less harmful species. The dimerization of SOD1 is essential to the stability of the protein. Monomerization increases the likelihood of SOD1 misfolding into conformations associated with aggregation, cellular toxicity, and neuronal death in familial amyotrophic lateral sclerosis (fALS). The ubiquity of disease-associated mutations throughout the primary sequence of SOD1 suggests an important role of physicochemical processes, including monomerization of SOD1, in the pathology of the disease. Herein, we use a first-principles statistical mechanics method to systematically calculate the free energy of dimer binding for SOD1 using molecular dynamics, which involves sequentially computing conformational, orientational, and separation distance contributions to the binding free energy. We consider the effects of two ALS-associated mutations in SOD1 protein on dimer stability, A4V and D101N, as well as the role of metal binding and disulfide bond formation. We find that the penalty for dimer formation arising from the conformational entropy of disordered loops in SOD1 is significantly larger than that for other protein-protein interactions previously considered. In the case of the disulfide-reduced protein, this leads to a bound complex whose formation is energetically disfavored. Somewhat surprisingly, the loop free energy penalty upon dimerization is still significant for the holoprotein, despite the increased structural order induced by the bound metal cations. This resulted in a surprisingly modest increase in dimer binding free energy of only about 1.5 kcal/mol upon metalation of the protein, suggesting that the most significant stabilizing effects of metalation are on folding stability rather than dimer binding stability. The mutant A4V has an unstable dimer due to weakened monomer-monomer interactions, which are manifested in the calculation by a separation free energy surface with a lower barrier. The mutant D101N has a stable dimer partially due to an unusually rigid β-barrel in the free monomer. D101N also exhibits anticooperativity in loop folding upon dimerization. These computational calculations are, to our knowledge, the most quantitatively accurate calculations of dimer binding stability in SOD1 to date.
Collapse
Affiliation(s)
- Shawn C. C. Hsueh
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Mark Nijland
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, Netherlands
| | - Xubiao Peng
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Center for Quantum Technology Research, School of Physics, Beijing Institute of Technology, Beijing, China
| | - Benjamin Hilton
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Imperial College London, London, United Kingdom
| | - Steven S. Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
28
|
Trainor K, Doyle CM, Metcalfe-Roach A, Steckner J, Lipovšek D, Malakian H, Langley D, Krystek SR, Meiering EM. Design for Solubility May Reveal Induction of Amide Hydrogen/Deuterium Exchange by Protein Self-Association. J Mol Biol 2021; 434:167398. [PMID: 34902431 DOI: 10.1016/j.jmb.2021.167398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Structural heterogeneity often constrains the characterization of aggregating proteins to indirect or low-resolution methods, obscuring mechanistic details of association. Here, we report progress in understanding the aggregation of Adnectins, engineered binding proteins with an immunoglobulin-like fold. We rationally design Adnectin solubility and measure amide hydrogen/deuterium exchange (HDX) under conditions that permit transient protein self-association. Protein-protein binding commonly slows rates of HDX; in contrast, we find that Adnectin association may induce faster HDX for certain amides, particularly in the C-terminal β-strand. In aggregation-prone proteins, we identify a pattern of very different rates of amide HDX for residues linked by reciprocal hydrogen bonds in the native structure. These results may be explained by local loss of native structure and formation of an inter-protein interface. Amide HDX induced by self-association, detected here by deliberate modulation of propensity for such interactions, may be a general phenomenon with the potential to expose mechanisms of aggregation by diverse proteins.
Collapse
Affiliation(s)
- Kyle Trainor
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Colleen M Doyle
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada.
| | - Avril Metcalfe-Roach
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada.
| | - Julia Steckner
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Daša Lipovšek
- Bristol Myers Squibb, Cambridge, MA 02140, United States.
| | | | - David Langley
- Bristol Myers Squibb, Cambridge, MA 02140, United States
| | | | - Elizabeth M Meiering
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada.
| |
Collapse
|
29
|
Ng YK, Tajoddin NN, Scrosati PM, Konermann L. Mechanism of Thermal Protein Aggregation: Experiments and Molecular Dynamics Simulations on the High-Temperature Behavior of Myoglobin. J Phys Chem B 2021; 125:13099-13110. [PMID: 34808050 DOI: 10.1021/acs.jpcb.1c07210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Proteins that encounter unfavorable solvent conditions are prone to aggregation, a phenomenon that remains poorly understood. This work focuses on myoglobin (Mb) as a model protein. Upon heating, Mb produces amorphous aggregates. Thermal unfolding experiments at low concentration (where aggregation is negligible), along with centrifugation assays, imply that Mb aggregation proceeds via globally unfolded conformers. This contrasts studies on other proteins that emphasized the role of partially folded structures as aggregate precursors. Molecular dynamics (MD) simulations were performed to gain insights into the mechanism by which heat-unfolded Mb molecules associate with one another. A prerequisite for these simulations was the development of a method for generating monomeric starting structures. Periodic boundary condition artifacts necessitated the implementation of a partially immobilized water layer lining the walls of the simulation box. Aggregation simulations were performed at 370 K to track the assembly of monomeric Mb into pentameric species. Binding events were preceded by multiple unsuccessful encounters. Even after association, protein-protein contacts remained in flux. Binding was mediated by hydrophobic contacts, along with salt bridges that involved hydrophobically embedded Lys residues. Overall, this work illustrates that atomistic MD simulations are well suited for garnering insights into protein aggregation mechanisms.
Collapse
Affiliation(s)
- Yuen Ki Ng
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Nastaran N Tajoddin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
30
|
Zhang Q, Wang B, Zhang Y, Yang J, Deng B, Ding B, Zhong D. Probing Intermolecular Interactions of Amyloidogenic Fragments of SOD1 by Site-Specific Tryptophan and Its Noncanonical Derivative. J Phys Chem B 2021; 125:13088-13098. [PMID: 34812635 DOI: 10.1021/acs.jpcb.1c07175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transient amyloid intermediates are likely to be cytotoxic and play an essential role in amyloid-associated neurodegenerative diseases. Characterization of their structural and dynamic evolution is the key to elucidating the molecular mechanism of amyloid formation. Here, combining circular dichroism (CD), exciton couplet theory, and Fourier transform infrared spectroscopy with site-specific tryptophan (Trp) and its noncanonical derivative 5-cyano-tryptochan (Trp5CN), we developed a method to monitor strand-to-strand tertiary and sheet-to-sheet quaternary interactions in the aggregation cascades of an amyloidogenic fragment from protein SOD128-38 (with the sequence KVKVWGSIKGL). We found that the exciton couplet generated from the Bb band of Trp can be used as a probe for side chain interactions. Its sensitivity can be further improved by four times with the incorporation of Trp5CN. We further observed a red-shift of ∼2 cm-1 and a broadening of ∼2 cm-1 in the IR band generated from the CN stretch during the aggregation, which we attributed to the transition from a corkscrew-like structure to a cross-linked intermediate phase. We show here that the integration of optical methods with unique aromatic side chain-related probes is able to elucidate amyloid intermolecular interactions and even capture elusive transient intermediates on and off the amyloid assembling pathway.
Collapse
Affiliation(s)
- Qin Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingyao Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifei Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Yang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bodan Deng
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
31
|
The A39G FF domain folds on a volcano-shaped free energy surface via separate pathways. Proc Natl Acad Sci U S A 2021; 118:2115113118. [PMID: 34764225 DOI: 10.1073/pnas.2115113118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
Conformational dynamics play critical roles in protein folding, misfolding, function, misfunction, and aggregation. While detecting and studying the different conformational states populated by protein molecules on their free energy surfaces (FESs) remain a challenge, NMR spectroscopy has emerged as an invaluable experimental tool to explore the FES of a protein, as conformational dynamics can be probed at atomic resolution over a wide range of timescales. Here, we use chemical exchange saturation transfer (CEST) to detect "invisible" minor states on the energy landscape of the A39G mutant FF domain that exhibited "two-state" folding kinetics in traditional experiments. Although CEST has mostly been limited to studies of processes with rates between ∼5 to 300 s-1 involving sparse states with populations as low as ∼1%, we show that the line broadening that is often associated with minor state dips in CEST profiles can be exploited to inform on additional conformers, with lifetimes an order of magnitude shorter and populations close to 10-fold smaller than what typically is characterized. Our analysis of CEST profiles that exploits the minor state linewidths of the 71-residue A39G FF domain establishes a folding mechanism that can be described in terms of a four-state exchange process between interconverting states spanning over two orders of magnitude in timescale from ∼100 to ∼15,000 μs. A similar folding scheme is established for the wild-type domain as well. The study shows that the folding of this small domain proceeds through a pair of sparse, partially structured intermediates via two discrete pathways on a volcano-shaped FES.
Collapse
|
32
|
Jaladeep A, Varghese CN, Sekhar A. Measuring radiofrequency fields in NMR spectroscopy using offset-dependent nutation profiles. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 330:107032. [PMID: 34311422 PMCID: PMC7612739 DOI: 10.1016/j.jmr.2021.107032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The application of NMR spectroscopy for studying molecular and reaction dynamics relies crucially on the measurement of the magnitude of radiofrequency (RF) fields that are used to nutate or lock the nuclear magnetization. Here, we report a method for measuring RF field amplitudes that leverages the intrinsic modulations observed in offset-dependent NMR nutation profiles of small molecules. Such nutation profiles are exquisitely sensitive to the magnitude of the RF field, and B1 values ranging from 1 to 2000 Hz, as well the inhomogeneity in B1 distributions, can be determined with high accuracy and precision using this approach. In order to measure B1 fields associated with NMR experiments carried out on protein or nucleic acids, where these modulations are obscured by the large transverse relaxation rate constants of the analyte, our approach can be used in conjunction with a suitable external small molecule standard, expanding the scope of the method for large biomolecules.
Collapse
Affiliation(s)
- Ahallya Jaladeep
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Claris Niya Varghese
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
33
|
Sharma S, Modi P, Sharma G, Deep S. Kinetics theories to understand the mechanism of aggregation of a protein and to design strategies for its inhibition. Biophys Chem 2021; 278:106665. [PMID: 34419715 DOI: 10.1016/j.bpc.2021.106665] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Protein aggregation phenomenon is closely related to the formation of amyloids which results in many neurodegenerative diseases like Alzheimer's, Parkinson's, Huntington's, and Amyotrophic Lateral Sclerosis. In order to prevent and treat these diseases, a clear understanding of the mechanism of misfolding and self-assembly of peptides and proteins is very crucial. The aggregation of a protein may involve various microscopic events. Multiple simulations utilizing the solutions of the master equation have given a better understanding of the kinetic profiles involved in the presence and absence of a particular microscopic event. This review focuses on understanding the contribution of these molecular events to protein aggregation based on the analysis of kinetic profiles of aggregation. We also discuss the effect of inhibitors, which target various species of aggregation pathways, on the kinetic profile of protein aggregation. At the end of this review, some strategies for the inhibition of aggregation that can be utilized by combining the chemical kinetics approach with thermodynamics are proposed.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Priya Modi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Gargi Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
34
|
Molecular and pharmacological chaperones for SOD1. Biochem Soc Trans 2021; 48:1795-1806. [PMID: 32794552 PMCID: PMC7458393 DOI: 10.1042/bst20200318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
The efficacy of superoxide dismutase-1 (SOD1) folding impacts neuronal loss in motor system neurodegenerative diseases. Mutations can prevent SOD1 post-translational processing leading to misfolding and cytoplasmic aggregation in familial amyotrophic lateral sclerosis (ALS). Evidence of immature, wild-type SOD1 misfolding has also been observed in sporadic ALS, non-SOD1 familial ALS and Parkinson's disease. The copper chaperone for SOD1 (hCCS) is a dedicated and specific chaperone that assists SOD1 folding and maturation to produce the active enzyme. Misfolded or misfolding prone SOD1 also interacts with heat shock proteins and macrophage migration inhibitory factor to aid folding, refolding or degradation. Recognition of specific SOD1 structures by the molecular chaperone network and timely dissociation of SOD1-chaperone complexes are, therefore, important steps in SOD1 processing. Harnessing these interactions for therapeutic benefit is actively pursued as is the modulation of SOD1 behaviour with pharmacological and peptide chaperones. This review highlights the structural and mechanistic aspects of a selection of SOD1-chaperone interactions together with their impact on disease models.
Collapse
|
35
|
A Metal-Free, Disulfide Oxidized Form of Superoxide Dismutase 1 as a Primary Misfolded Species with Prion-Like Properties in the Extracellular Environments Surrounding Motor Neuron-Like Cells. Int J Mol Sci 2021; 22:ijms22084155. [PMID: 33923808 PMCID: PMC8074096 DOI: 10.3390/ijms22084155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
Superoxide dismutase 1 (SOD1) is a metalloenzyme with high structural stability, but a lack of Cu and Zn ions decreases its stability and enhances the likelihood of misfolding, which is a pathological hallmark of amyotrophic lateral sclerosis (ALS). A growing body of evidence has demonstrated that misfolded SOD1 has prion-like properties such as transmissibility between cells and intracellular propagation of misfolding of natively folded SOD1. Recently, we found that SOD1 is misfolded in the cerebrospinal fluid of sporadic ALS patients, providing a route by which misfolded SOD1 spreads via the extracellular environment of the central nervous system. Unlike intracellular misfolded SOD1, it is unknown which extracellular misfolded species is most relevant to prion-like properties. Here, we determined a conformational feature of extracellular misfolded SOD1 that is linked to prion-like properties. Using culture media from motor neuron-like cells, NSC-34, extracellular misfolded wild-type, and four ALS-causing SOD1 mutants were characterized as a metal-free, disulfide oxidized form of SOD1 (apo-SOD1S-S). Extracellular misfolded apo-SOD1S-S exhibited cell-to-cell transmission from the culture medium to recipient cells as well as intracellular propagation of SOD1 misfolding in recipient cells. Furthermore, culture medium containing misfolded apo-SOD1S-S exerted cytotoxicity to motor neuron-like cells, which was blocked by removal of misfolded apo-SOD1S-S from the medium. We conclude that misfolded apo-SOD1S-S is a primary extracellular species that is linked to prion-like properties.
Collapse
|
36
|
Sannigrahi A, Chowdhury S, Das B, Banerjee A, Halder A, Kumar A, Saleem M, Naganathan AN, Karmakar S, Chattopadhyay K. The metal cofactor zinc and interacting membranes modulate SOD1 conformation-aggregation landscape in an in vitro ALS model. eLife 2021; 10:e61453. [PMID: 33825682 PMCID: PMC8087447 DOI: 10.7554/elife.61453] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
Aggregation of Cu-Zn superoxide dismutase (SOD1) is implicated in the motor neuron disease, amyotrophic lateral sclerosis (ALS). Although more than 140 disease mutations of SOD1 are available, their stability or aggregation behaviors in membrane environment are not correlated with disease pathophysiology. Here, we use multiple mutational variants of SOD1 to show that the absence of Zn, and not Cu, significantly impacts membrane attachment of SOD1 through two loop regions facilitating aggregation driven by lipid-induced conformational changes. These loop regions influence both the primary (through Cu intake) and the gain of function (through aggregation) of SOD1 presumably through a shared conformational landscape. Combining experimental and theoretical frameworks using representative ALS disease mutants, we develop a 'co-factor derived membrane association model' wherein mutational stress closer to the Zn (but not to the Cu) pocket is responsible for membrane association-mediated toxic aggregation and survival time scale after ALS diagnosis.
Collapse
Affiliation(s)
- Achinta Sannigrahi
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical BiologyKolkataIndia
| | - Sourav Chowdhury
- Chemistry and Chemical Biology, Harvard UniversityCambridgeUnited States
| | - Bidisha Das
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical BiologyKolkataIndia
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource development Centre CampusGhaziabadIndia
| | | | | | - Amaresh Kumar
- School of Biological Sciences, National Institute of Science Education and Research (NISER)BhubaneswarIndia
| | - Mohammed Saleem
- School of Biological Sciences, National Institute of Science Education and Research (NISER)BhubaneswarIndia
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology MadrasChennaiIndia
| | | | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical BiologyKolkataIndia
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource development Centre CampusGhaziabadIndia
| |
Collapse
|
37
|
Iwakawa N, Morimoto D, Walinda E, Leeb S, Shirakawa M, Danielsson J, Sugase K. Transient Diffusive Interactions with a Protein Crowder Affect Aggregation Processes of Superoxide Dismutase 1 β-Barrel. J Phys Chem B 2021; 125:2521-2532. [PMID: 33657322 DOI: 10.1021/acs.jpcb.0c11162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aggregate formation of superoxide dismutase 1 (SOD1) inside motor neurons is known as a major factor in onset of amyotrophic lateral sclerosis. The thermodynamic stability of the SOD1 β-barrel has been shown to decrease in crowded environments such as inside a cell, but it remains unclear how the thermodynamics of crowding-induced protein destabilization relate to SOD1 aggregation. Here we have examined the effects of a protein crowder, lysozyme, on fibril aggregate formation of the SOD1 β-barrel. We found that aggregate formation of SOD1 is decelerated even in mildly crowded solutions. Intriguingly, transient diffusive interactions with lysozyme do not significantly affect the static structure of the SOD1 β-barrel but stabilize an alternative excited "invisible" state. The net effect of crowding is to favor species off the aggregation pathway, thereby explaining the decelerated aggregation in the crowded environment. Our observations suggest that the intracellular environment may have a similar negative (inhibitory) effect on fibril formation of other amyloidogenic proteins in living cells. Deciphering how crowded intracellular environments affect aggregation and fibril formation of such disease-associated proteins will probably become central in understanding the exact role of aggregation in the etiology of these enigmatic diseases.
Collapse
Affiliation(s)
- Naoto Iwakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sarah Leeb
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Jens Danielsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
38
|
Furukawa Y. Good and Bad of Cu/Zn-Superoxide Dismutase Controlled by Metal Ions and Disulfide Bonds. CHEM LETT 2021. [DOI: 10.1246/cl.200770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yoshiaki Furukawa
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku, Kanagawa 223-8522, Japan
| |
Collapse
|
39
|
Alderson TR, Kay LE. NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell 2021; 184:577-595. [PMID: 33545034 DOI: 10.1016/j.cell.2020.12.034] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023]
Abstract
Biomolecules are in constant motion. To understand how they function, and why malfunctions can cause disease, it is necessary to describe their three-dimensional structures in terms of dynamic conformational ensembles. Here, we demonstrate how nuclear magnetic resonance (NMR) spectroscopy provides an essential, dynamic view of structural biology that captures biomolecular motions at atomic resolution. We focus on examples that emphasize the diversity of biomolecules and biochemical applications that are amenable to NMR, such as elucidating functional dynamics in large molecular machines, characterizing transient conformations implicated in the onset of disease, and obtaining atomic-level descriptions of intrinsically disordered regions that make weak interactions involved in liquid-liquid phase separation. Finally, we discuss the pivotal role that NMR has played in driving forward our understanding of the biomolecular dynamics-function paradigm.
Collapse
Affiliation(s)
- T Reid Alderson
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, The University of Toronto, Toronto, ON M5S A18, Canada.
| | - Lewis E Kay
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, The University of Toronto, Toronto, ON M5S A18, Canada; Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
40
|
Bakavayev S, Argueti S, Venkatachalam N, Yehezkel G, Stavsky A, Barak Z, Israelson A, Engel S. Exposure of β6/β7-Loop in Zn/Cu Superoxide Dismutase (SOD1) Is Coupled to Metal Loss and Is Transiently Reversible During Misfolding. ACS Chem Neurosci 2021; 12:49-62. [PMID: 33326235 DOI: 10.1021/acschemneuro.0c00524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Upon losing its structural integrity (misfolding), SOD1 acquires neurotoxic properties to become a pathogenic protein in ALS, a neurodegenerative disease targeting motor neurons; understanding the mechanism of misfolding may enable new treatment strategies for ALS. Here, we reported a monoclonal antibody, SE21, targeting the β6/β7-loop region of SOD1. The exposure of this region is coupled to metal loss and is entirely reversible during the early stages of misfolding. By using SE21 mAb, we demonstrated that, in apo-SOD1 incubated under the misfolding-promoting conditions, the reversible phase, during which SOD1 is capable of restoring its nativelike conformation in the presence of metals, is followed by an irreversible structural transition, autocatalytic in nature, which takes place prior to the onset of SOD1 aggregation and results in the formation of atypical apo-SOD1 that is unable to bind metals. The reversible phase defines a window of opportunity for pharmacological intervention using metal mimetics that stabilize SOD1 structure in its nativelike conformation to attenuate the spreading of the misfolding signal and disease progression by preventing the exposure of pathogenic SOD1 epitopes. Phenotypically similar apo-SOD1 species with impaired metal binding properties may also be produced via oxidation of Cys111, underscoring the diversity of SOD1 misfolding pathways.
Collapse
Affiliation(s)
- Shamchal Bakavayev
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shirel Argueti
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nachiyappan Venkatachalam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Galit Yehezkel
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Alexandra Stavsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Zeev Barak
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
41
|
Cawood EE, Karamanos TK, Wilson AJ, Radford SE. Visualizing and trapping transient oligomers in amyloid assembly pathways. Biophys Chem 2021; 268:106505. [PMID: 33220582 PMCID: PMC8188297 DOI: 10.1016/j.bpc.2020.106505] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022]
Abstract
Oligomers which form during amyloid fibril assembly are considered to be key contributors towards amyloid disease. However, understanding how such intermediates form, their structure, and mechanisms of toxicity presents significant challenges due to their transient and heterogeneous nature. Here, we discuss two different strategies for addressing these challenges: use of (1) methods capable of detecting lowly-populated species within complex mixtures, such as NMR, single particle methods (including fluorescence and force spectroscopy), and mass spectrometry; and (2) chemical and biological tools to bias the amyloid energy landscape towards specific oligomeric states. While the former methods are well suited to following the kinetics of amyloid assembly and obtaining low-resolution structural information, the latter are capable of producing oligomer samples for high-resolution structural studies and inferring structure-toxicity relationships. Together, these different approaches should enable a clearer picture to be gained of the nature and role of oligomeric intermediates in amyloid formation and disease.
Collapse
Affiliation(s)
- Emma E Cawood
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
42
|
McAlary L, Chew YL, Lum JS, Geraghty NJ, Yerbury JJ, Cashman NR. Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises. Front Cell Neurosci 2020; 14:581907. [PMID: 33328890 PMCID: PMC7671971 DOI: 10.3389/fncel.2020.581907] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of the motor neurons that innervate muscle, resulting in gradual paralysis and culminating in the inability to breathe or swallow. This neuronal degeneration occurs in a spatiotemporal manner from a point of onset in the central nervous system (CNS), suggesting that there is a molecule that spreads from cell-to-cell. There is strong evidence that the onset and progression of ALS pathology is a consequence of protein misfolding and aggregation. In line with this, a hallmark pathology of ALS is protein deposition and inclusion formation within motor neurons and surrounding glia of the proteins TAR DNA-binding protein 43, superoxide dismutase-1, or fused in sarcoma. Collectively, the observed protein aggregation, in conjunction with the spatiotemporal spread of symptoms, strongly suggests a prion-like propagation of protein aggregation occurs in ALS. In this review, we discuss the role of protein aggregation in ALS concerning protein homeostasis (proteostasis) mechanisms and prion-like propagation. Furthermore, we examine the experimental models used to investigate these processes, including in vitro assays, cultured cells, invertebrate models, and murine models. Finally, we evaluate the therapeutics that may best prevent the onset or spread of pathology in ALS and discuss what lies on the horizon for treating this currently incurable disease.
Collapse
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Yee Lian Chew
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Stephen Lum
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Nicholas John Geraghty
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Justin John Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Neil R. Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
43
|
Tiwari VP, Vallurupalli P. A CEST NMR experiment to obtain glycine 1H α chemical shifts in 'invisible' minor states of proteins. JOURNAL OF BIOMOLECULAR NMR 2020; 74:443-455. [PMID: 32696193 DOI: 10.1007/s10858-020-00336-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Chemical exchange saturation transfer (CEST) experiments are routinely used to study protein conformational exchange between a 'visible' major state and 'invisible' minor states because they can detect minor states with lifetimes varying from ~ 3 to ~ 100 ms populated to just ~ 0.5%. Consequently several 1H, 15N and 13C CEST experiments have been developed to study exchange and obtain minor state chemical shifts at almost all backbone and sidechain sites in proteins. Conspicuously missing from this extensive set of CEST experiments is a 1H CEST experiment to study exchange at glycine (Gly) 1Hα sites as the existing 1H CEST experiments that have been designed to study dynamics in amide 1H-15N spin systems and methyl 13CH3 groups with three equivalent protons while suppressing 1H-1H NOE induced dips are not suitable for studying exchange in methylene 13CH2 groups with inequivalent protons. Here a Gly 1Hα CEST experiment to obtain the minor state Gly 1Hα chemical shifts is presented. The utility of this experiment is demonstrated on the L99A cavity mutant of T4 Lysozyme (T4L L99A) that undergoes conformational exchange between two compact conformers. The CEST derived minor state Gly 1Hα chemical shifts of T4L L99A are in agreement with those obtained previously using CPMG techniques. The experimental strategy presented here can also be used to obtain methylene proton minor state chemical shifts from protein sidechain and nucleic acid backbone sites.
Collapse
Affiliation(s)
- Ved Prakash Tiwari
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India.
| |
Collapse
|
44
|
Cohen NR, Kayatekin C, Zitzewitz JA, Bilsel O, Matthews CR. Friction-Limited Folding of Disulfide-Reduced Monomeric SOD1. Biophys J 2020; 118:1992-2000. [PMID: 32191862 DOI: 10.1016/j.bpj.2020.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/04/2020] [Accepted: 02/28/2020] [Indexed: 11/16/2022] Open
Abstract
The folding reaction of a stable monomeric variant of Cu/Zn superoxide dismutase (mSOD1), an enzyme responsible for the conversion of superoxide free radicals into hydrogen peroxide and oxygen, is known to be among the slowest folding processes that adhere to two-state behavior. The long lifetime, ∼10 s, of the unfolded state presents ample opportunities for the polypeptide chain to transiently sample nonnative structures before the formation of the productive folding transition state. We recently observed the formation of a nonnative structure in a peptide model of the C-terminus of SOD1, a sequence that might serve as a potential source of internal chain friction-limited folding. To test for friction-limited folding, we performed a comprehensive thermodynamic and kinetic analysis of the folding mechanism of mSOD1 in the presence of the viscogens glycerol and glucose. Using a, to our knowledge, novel analysis of the folding reactions, we found the disulfide-reduced form of the protein that exposes the C-terminal sequence, but not its disulfide-oxidized counterpart that protects it, experiences internal chain friction during folding. The sensitivity of the internal friction to the disulfide bond status suggests that one or both of the cross-linked regions play a critical role in driving the friction-limited folding. We speculate that the molecular mechanisms giving rise to the internal friction of disulfide-reduced mSOD1 might play a role in the amyotrophic lateral sclerosis-linked aggregation of SOD1.
Collapse
Affiliation(s)
- Noah R Cohen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Can Kayatekin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts; Rare and Neurological Therapeutic Area, Sanofi, Framingham, Massachusetts
| | - Jill A Zitzewitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Osman Bilsel
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - C R Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
45
|
Alderson TR, Kay LE. Unveiling invisible protein states with NMR spectroscopy. Curr Opin Struct Biol 2020; 60:39-49. [DOI: 10.1016/j.sbi.2019.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022]
|
46
|
Khan MAI, Weininger U, Kjellström S, Deep S, Akke M. Adsorption of unfolded Cu/Zn superoxide dismutase onto hydrophobic surfaces catalyzes its formation of amyloid fibrils. Protein Eng Des Sel 2019; 32:77-85. [PMID: 31832682 DOI: 10.1093/protein/gzz033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 11/12/2022] Open
Abstract
Intracellular aggregates of superoxide dismutase 1 (SOD1) are associated with amyotrophic lateral sclerosis. In vivo, aggregation occurs in a complex and dense molecular environment with chemically heterogeneous surfaces. To investigate how SOD1 fibril formation is affected by surfaces, we used an in vitro model system enabling us to vary the molecular features of both SOD1 and the surfaces, as well as the surface area. We compared fibril formation in hydrophilic and hydrophobic sample wells, as a function of denaturant concentration and extraneous hydrophobic surface area. In the presence of hydrophobic surfaces, SOD1 unfolding promotes fibril nucleation. By contrast, in the presence of hydrophilic surfaces, increasing denaturant concentration retards the onset of fibril formation. We conclude that the mechanism of fibril formation depends on the surrounding surfaces and that the nucleating species might correspond to different conformational states of SOD1 depending on the nature of these surfaces.
Collapse
Affiliation(s)
- Mohammad Ashhar I Khan
- Biophysical Chemistry, Department of Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, 221 00, Lund, Sweden.,Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ulrich Weininger
- Biophysical Chemistry, Department of Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Sven Kjellström
- Biochemistry and Structural Biology, Department of Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Mikael Akke
- Biophysical Chemistry, Department of Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| |
Collapse
|
47
|
Trainor K, Palumbo JA, MacKenzie DWS, Meiering EM. Temperature dependence of NMR chemical shifts: Tracking and statistical analysis. Protein Sci 2019; 29:306-314. [PMID: 31730280 PMCID: PMC6933856 DOI: 10.1002/pro.3785] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 11/28/2022]
Abstract
Isotropic chemical shifts measured by solution nuclear magnetic resonance (NMR) spectroscopy offer extensive insights into protein structure and dynamics. Temperature dependences add a valuable dimension; notably, the temperature dependences of amide proton chemical shifts are valuable probes of hydrogen bonding, temperature‐dependent loss of structure, and exchange between distinct protein conformations. Accordingly, their uses include structural analysis of both folded and disordered proteins, and determination of the effects of mutations, binding, or solution conditions on protein energetics. Fundamentally, these temperature dependences result from changes in the local magnetic environments of nuclei, but correlations with global thermodynamic parameters measured via calorimetric methods have been observed. Although the temperature dependences of amide proton and nitrogen chemical shifts are often well approximated by a linear model, deviations from linearity are also observed and may be interpreted as evidence of fast exchange between distinct conformational states. Here, we describe computational methods, accessible via the Shift‐T web server, including an automated tracking algorithm that propagates initial (single temperature) 1H—15N cross peak assignments to spectra collected over a range of temperatures. Amide proton and nitrogen temperature coefficients (slopes determined by fitting chemical shift vs. temperature data to a linear model) are subsequently calculated. Also included are methods for the detection of systematic, statistically significant deviation from linearity (curvature) in the temperature dependences of amide proton chemical shifts. The use and utility of these methods are illustrated by example, and the Shift‐T web server is freely available at http://meieringlab.uwaterloo.ca/shiftt.
Collapse
Affiliation(s)
- Kyle Trainor
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Jeffrey A Palumbo
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|
48
|
Abstract
Few proteins have come under such intense scrutiny as superoxide dismutase-1 (SOD1). For almost a century, scientists have dissected its form, function and then later its malfunction in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We now know SOD1 is a zinc and copper metalloenzyme that clears superoxide as part of our antioxidant defence and respiratory regulation systems. The possibility of reduced structural integrity was suggested by the first crystal structures of human SOD1 even before deleterious mutations in the sod1 gene were linked to the ALS. This concept evolved in the intervening years as an impressive array of biophysical studies examined the characteristics of mutant SOD1 in great detail. We now recognise how ALS-related mutations perturb the SOD1 maturation processes, reduce its ability to fold and reduce its thermal stability and half-life. Mutant SOD1 is therefore predisposed to monomerisation, non-canonical self-interactions, the formation of small misfolded oligomers and ultimately accumulation in the tell-tale insoluble inclusions found within the neurons of ALS patients. We have also seen that several post-translational modifications could push wild-type SOD1 down this toxic pathway. Recently we have come to view ALS as a prion-like disease where both the symptoms, and indeed SOD1 misfolding itself, are transmitted to neighbouring cells. This raises the possibility of intervention after the initial disease presentation. Several small-molecule and biologic-based strategies have been devised which directly target the SOD1 molecule to change the behaviour thought to be responsible for ALS. Here we provide a comprehensive review of the many biophysical advances that sculpted our view of SOD1 biology and the recent work that aims to apply this knowledge for therapeutic outcomes in ALS.
Collapse
|
49
|
Jensen KS, Linse S, Nilsson M, Akke M, Malmendal A. Revealing Well-Defined Soluble States during Amyloid Fibril Formation by Multilinear Analysis of NMR Diffusion Data. J Am Chem Soc 2019; 141:18649-18652. [PMID: 31702142 PMCID: PMC7188332 DOI: 10.1021/jacs.9b07952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
Amyloid fibril formation is a hallmark
of neurodegenerative disease
caused by protein aggregation. Oligomeric protein states that arise
during the process of fibril formation often coexist with mature fibrils
and are known to cause cell death in disease model systems. Progress
in this field depends critically on development of analytical methods
that can provide information about the mechanisms and species involved
in oligomerization and fibril formation. Here, we demonstrate how
the powerful combination of diffusion NMR and multilinear data analysis
can efficiently disentangle the number of involved species, their
kinetic rates of formation or disappearance, spectral contributions,
and diffusion coefficients, even without prior knowledge of the time
evolution of the process or chemical shift assignments of the various
species. Using this method we identify oligomeric species that form
transiently during aggregation of human superoxide dismutase 1 (SOD1),
which is known to form misfolded aggregates in patients with amyotrophic
lateral sclerosis. Specifically, over a time course of 42 days, during
which SOD1 fibrils form, we detect the disappearance of the native
monomeric species, formation of a partially unfolded intermediate
in the dimer to tetramer size range, subsequent formation of a distinct
similarly sized species that dominates the final spectrum detected
by solution NMR, and concomitant appearance of small peptide fragments.
Collapse
Affiliation(s)
- Kristine Steen Jensen
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry , Lund University , P.O. Box 124, SE-22100 Lund , Sweden
| | - Sara Linse
- Biochemistry and Structural Biology, Center for Molecular Protein Science, Department of Chemistry , Lund University , P.O. Box 124, SE-22100 Lund , Sweden
| | - Mathias Nilsson
- School of Chemistry , University of Manchester , Oxford Road, Manchester M13 9PL , U.K
| | - Mikael Akke
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry , Lund University , P.O. Box 124, SE-22100 Lund , Sweden
| | - Anders Malmendal
- Biochemistry and Structural Biology, Center for Molecular Protein Science, Department of Chemistry , Lund University , P.O. Box 124, SE-22100 Lund , Sweden.,Department of Science and Environment , Roskilde University , P.O. Box 260, DK-4000 Roskilde , Denmark
| |
Collapse
|
50
|
Kumar A, Narayanan V, Sekhar A. Characterizing Post-Translational Modifications and Their Effects on Protein Conformation Using NMR Spectroscopy. Biochemistry 2019; 59:57-73. [PMID: 31682116 DOI: 10.1021/acs.biochem.9b00827] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The diversity of the cellular proteome substantially exceeds the number of genes coded by the DNA of an organism because one or more residues in a majority of eukaryotic proteins are post-translationally modified (PTM) by the covalent conjugation of specific chemical groups. We now know that PTMs alter protein conformation and function in ways that are not entirely understood at the molecular level. NMR spectroscopy has been particularly successful as an analytical tool in elucidating the themes underlying the structural role of PTMs. In this Perspective, we focus on the NMR-based characterization of three abundant PTMs: phosphorylation, acetylation, and glycosylation. We detail NMR methods that have found success in detecting these modifications at a site-specific level. We also highlight NMR studies that have mapped the conformational changes ensuing from these PTMs as well as evaluated their relation to function. The NMR toolbox is expanding rapidly with experiments available to probe not only the average structure of biomolecules but also how this structure changes with time on time scales ranging from picoseconds to seconds. The atomic resolution insights into the biomolecular structure, dynamics, and mechanism accessible from NMR spectroscopy ensure that NMR will continue to be at the forefront of research in the structural biology of PTMs.
Collapse
Affiliation(s)
- Ajith Kumar
- Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560 012 , India
| | - Vaishali Narayanan
- Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560 012 , India
| | - Ashok Sekhar
- Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560 012 , India
| |
Collapse
|