1
|
Li B. Telomere maintenance in African trypanosomes. Front Mol Biosci 2023; 10:1302557. [PMID: 38074093 PMCID: PMC10704157 DOI: 10.3389/fmolb.2023.1302557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/15/2023] [Indexed: 02/12/2024] Open
Abstract
Telomere maintenance is essential for genome integrity and chromosome stability in eukaryotic cells harboring linear chromosomes, as telomere forms a specialized structure to mask the natural chromosome ends from DNA damage repair machineries and to prevent nucleolytic degradation of the telomeric DNA. In Trypanosoma brucei and several other microbial pathogens, virulence genes involved in antigenic variation, a key pathogenesis mechanism essential for host immune evasion and long-term infections, are located at subtelomeres, and expression and switching of these major surface antigens are regulated by telomere proteins and the telomere structure. Therefore, understanding telomere maintenance mechanisms and how these pathogens achieve a balance between stability and plasticity at telomere/subtelomere will help develop better means to eradicate human diseases caused by these pathogens. Telomere replication faces several challenges, and the "end replication problem" is a key obstacle that can cause progressive telomere shortening in proliferating cells. To overcome this challenge, most eukaryotes use telomerase to extend the G-rich telomere strand. In addition, a number of telomere proteins use sophisticated mechanisms to coordinate the telomerase-mediated de novo telomere G-strand synthesis and the telomere C-strand fill-in, which has been extensively studied in mammalian cells. However, we recently discovered that trypanosomes lack many telomere proteins identified in its mammalian host that are critical for telomere end processing. Rather, T. brucei uses a unique DNA polymerase, PolIE that belongs to the DNA polymerase A family (E. coli DNA PolI family), to coordinate the telomere G- and C-strand syntheses. In this review, I will first briefly summarize current understanding of telomere end processing in mammals. Subsequently, I will describe PolIE-mediated coordination of telomere G- and C-strand synthesis in T. brucei and implication of this recent discovery.
Collapse
Affiliation(s)
- Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
2
|
Shepelev N, Dontsova O, Rubtsova M. Post-Transcriptional and Post-Translational Modifications in Telomerase Biogenesis and Recruitment to Telomeres. Int J Mol Sci 2023; 24:5027. [PMID: 36902458 PMCID: PMC10003056 DOI: 10.3390/ijms24055027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Telomere length is associated with the proliferative potential of cells. Telomerase is an enzyme that elongates telomeres throughout the entire lifespan of an organism in stem cells, germ cells, and cells of constantly renewed tissues. It is activated during cellular division, including regeneration and immune responses. The biogenesis of telomerase components and their assembly and functional localization to the telomere is a complex system regulated at multiple levels, where each step must be tuned to the cellular requirements. Any defect in the function or localization of the components of the telomerase biogenesis and functional system will affect the maintenance of telomere length, which is critical to the processes of regeneration, immune response, embryonic development, and cancer progression. An understanding of the regulatory mechanisms of telomerase biogenesis and activity is necessary for the development of approaches toward manipulating telomerase to influence these processes. The present review focuses on the molecular mechanisms involved in the major steps of telomerase regulation and the role of post-transcriptional and post-translational modifications in telomerase biogenesis and function in yeast and vertebrates.
Collapse
Affiliation(s)
- Nikita Shepelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Olga Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Maria Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
3
|
Telomeres and Their Neighbors. Genes (Basel) 2022; 13:genes13091663. [PMID: 36140830 PMCID: PMC9498494 DOI: 10.3390/genes13091663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel’s anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel’s early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
Collapse
|
4
|
Malyavko AN, Petrova OA, Zvereva MI, Polshakov VI, Dontsova OA. Telomere length regulation by Rif1 protein from Hansenula polymorpha. eLife 2022; 11:75010. [PMID: 35129114 PMCID: PMC8820739 DOI: 10.7554/elife.75010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Rif1 is a large multifaceted protein involved in various processes of DNA metabolism – from telomere length regulation and replication to double-strand break repair. The mechanistic details of its action, however, are often poorly understood. Here, we report functional characterization of the Rif1 homologue from methylotrophic thermotolerant budding yeast Hansenula polymorpha DL-1. We show that, similar to other yeast species, H. polymorpha Rif1 suppresses telomerase-dependent telomere elongation. We uncover two novel modes of Rif1 recruitment at H. polymorpha telomeres: via direct DNA binding and through the association with the Ku heterodimer. Both of these modes (at least partially) require the intrinsically disordered N-terminal extension – a region of the protein present exclusively in yeast species. We also demonstrate that Rif1 binds Stn1 and promotes its accumulation at telomeres in H. polymorpha.
Collapse
Affiliation(s)
- Alexander N Malyavko
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga A Petrova
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Maria I Zvereva
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vladimir I Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga A Dontsova
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
5
|
Rosas Bringas FR, Stinus S, de Zoeten P, Cohn M, Chang M. Rif2 protects Rap1-depleted telomeres from MRX-mediated degradation in Saccharomyces cerevisiae. eLife 2022; 11:74090. [PMID: 35044907 PMCID: PMC8791636 DOI: 10.7554/elife.74090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/17/2022] [Indexed: 12/01/2022] Open
Abstract
Rap1 is the main protein that binds double-stranded telomeric DNA in Saccharomyces cerevisiae. Examination of the telomere functions of Rap1 is complicated by the fact that it also acts as a transcriptional regulator of hundreds of genes and is encoded by an essential gene. In this study, we disrupt Rap1 telomere association by expressing a mutant telomerase RNA subunit (tlc1-tm) that introduces mutant telomeric repeats. tlc1-tm cells grow similar to wild-type cells, although depletion of Rap1 at telomeres causes defects in telomere length regulation and telomere capping. Rif2 is a protein normally recruited to telomeres by Rap1, but we show that Rif2 can still associate with Rap1-depleted tlc1-tm telomeres, and that this association is required to inhibit telomere degradation by the MRX complex. Rif2 and the Ku complex work in parallel to prevent tlc1-tm telomere degradation; tlc1-tm cells lacking Rif2 and the Ku complex are inviable. The partially redundant mechanisms may explain the rapid evolution of telomere components in budding yeast species.
Collapse
Affiliation(s)
| | - Sonia Stinus
- European Research Institute for the Biology of Ageing, University Medical Center Groningen
| | - Pien de Zoeten
- European Research Institute for the Biology of Ageing, University Medical Center Groningen
| | | | - Michael Chang
- European Research Institute for the Biology of Ageing, University Medical Center Groningen
| |
Collapse
|
6
|
Bordelet H, Costa R, Brocas C, Dépagne J, Veaute X, Busso D, Batté A, Guérois R, Marcand S, Dubrana K. Sir3 heterochromatin protein promotes non-homologous end joining by direct inhibition of Sae2. EMBO J 2022; 41:e108813. [PMID: 34817085 PMCID: PMC8724767 DOI: 10.15252/embj.2021108813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/07/2023] Open
Abstract
Heterochromatin is a conserved feature of eukaryotic chromosomes, with central roles in gene expression regulation and maintenance of genome stability. How heterochromatin proteins regulate DNA repair remains poorly described. In the yeast Saccharomyces cerevisiae, the silent information regulator (SIR) complex assembles heterochromatin-like chromatin at sub-telomeric chromosomal regions. SIR-mediated repressive chromatin limits DNA double-strand break (DSB) resection, thus protecting damaged chromosome ends during homologous recombination (HR). As resection initiation represents the crossroads between repair by non-homologous end joining (NHEJ) or HR, we asked whether SIR-mediated heterochromatin regulates NHEJ. We show that SIRs promote NHEJ through two pathways, one depending on repressive chromatin assembly, and the other relying on Sir3 in a manner that is independent of its heterochromatin-promoting function. Via physical interaction with the Sae2 protein, Sir3 impairs Sae2-dependent functions of the MRX (Mre11-Rad50-Xrs2) complex, thereby limiting Mre11-mediated resection, delaying MRX removal from DSB ends, and promoting NHEJ.
Collapse
Affiliation(s)
- Hélène Bordelet
- Université de Paris and Université Paris‐Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et RadiationsFontenay‐aux‐RosesFrance
- Régulation spatiale des génomes, Institut Pasteur, CNRS UMR3525ParisFrance
| | - Rafaël Costa
- Université de Paris and Université Paris‐Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et RadiationsFontenay‐aux‐RosesFrance
| | - Clémentine Brocas
- Université de Paris and Université Paris‐Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et RadiationsFontenay‐aux‐RosesFrance
| | - Jordane Dépagne
- CIGEx platform. Université de Paris and Université Paris‐Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et RadiationsFontenay‐aux‐RosesFrance
| | - Xavier Veaute
- CIGEx platform. Université de Paris and Université Paris‐Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et RadiationsFontenay‐aux‐RosesFrance
| | - Didier Busso
- CIGEx platform. Université de Paris and Université Paris‐Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et RadiationsFontenay‐aux‐RosesFrance
| | - Amandine Batté
- Université de Paris and Université Paris‐Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et RadiationsFontenay‐aux‐RosesFrance
- Center for Integrative GenomicsBâtiment GénopodeUniversity of LausanneLausanneSwitzerland
| | - Raphaël Guérois
- Institute for Integrative Biology of the Cell (I2BC)CEA, CNRS, Université Paris‐Sud, Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Stéphane Marcand
- Université de Paris and Université Paris‐Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et RadiationsFontenay‐aux‐RosesFrance
| | - Karine Dubrana
- Université de Paris and Université Paris‐Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et RadiationsFontenay‐aux‐RosesFrance
| |
Collapse
|
7
|
Pandey S, Hajikazemi M, Zacheja T, Schalbetter S, Baxter J, Guryev V, Hofmann A, Heermann DW, Juranek SA, Paeschke K. Telomerase subunit Est2 marks internal sites that are prone to accumulate DNA damage. BMC Biol 2021; 19:247. [PMID: 34801008 PMCID: PMC8605574 DOI: 10.1186/s12915-021-01167-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
Background The main function of telomerase is at the telomeres but under adverse conditions telomerase can bind to internal regions causing deleterious effects as observed in cancer cells. Results By mapping the global occupancy of the catalytic subunit of telomerase (Est2) in the budding yeast Saccharomyces cerevisiae, we reveal that it binds to multiple guanine-rich genomic loci, which we termed “non-telomeric binding sites” (NTBS). We characterize Est2 binding to NTBS. Contrary to telomeres, Est2 binds to NTBS in G1 and G2 phase independently of Est1 and Est3. The absence of Est1 and Est3 renders telomerase inactive at NTBS. However, upon global DNA damage, Est1 and Est3 join Est2 at NTBS and telomere addition can be observed indicating that Est2 occupancy marks NTBS regions as particular risks for genome stability. Conclusions Our results provide a novel model of telomerase regulation in the cell cycle using internal regions as “parking spots” of Est2 but marking them as hotspots for telomere addition. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01167-1.
Collapse
Affiliation(s)
- Satyaprakash Pandey
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, 9713 AV, Groningen, Netherlands
| | - Mona Hajikazemi
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | - Theresa Zacheja
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | | | - Jonathan Baxter
- Department of Life Science, University of Sussex, Brighton, UK
| | - Victor Guryev
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, 9713 AV, Groningen, Netherlands
| | - Andreas Hofmann
- Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 12, 69120, Heidelberg, Germany
| | - Dieter W Heermann
- Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 12, 69120, Heidelberg, Germany
| | - Stefan A Juranek
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany.
| | - Katrin Paeschke
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, 9713 AV, Groningen, Netherlands. .,Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
8
|
Hirsch AG, Becker D, Lamping JP, Krebber H. Unraveling the stepwise maturation of the yeast telomerase including a Cse1 and Mtr10 mediated quality control checkpoint. Sci Rep 2021; 11:22174. [PMID: 34773052 PMCID: PMC8590012 DOI: 10.1038/s41598-021-01599-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/29/2021] [Indexed: 01/17/2023] Open
Abstract
Telomerases elongate the ends of chromosomes required for cell immortality through their reverse transcriptase activity. By using the model organism Saccharomyces cerevisiae we defined the order in which the holoenzyme matures. First, a longer precursor of the telomerase RNA, TLC1 is transcribed and exported into the cytoplasm, where it associates with the protecting Sm-ring, the Est and the Pop proteins. This partly matured telomerase is re-imported into the nucleus via Mtr10 and a novel TLC1-import factor, the karyopherin Cse1. Remarkably, while mutations in all known transport factors result in short telomere ends, mutation in CSE1 leads to the amplification of Y′ elements in the terminal chromosome regions and thus elongated telomere ends. Cse1 does not only support TLC1 import, but also the Sm-ring stabilization on the RNA enableling Mtr10 contact and nuclear import. Thus, Sm-ring formation and import factor contact resembles a quality control step in the maturation process of the telomerase. The re-imported immature TLC1 is finally trimmed into the 1158 nucleotides long mature form via the nuclear exosome. TMG-capping of TLC1 finalizes maturation, leading to mature telomerase.
Collapse
Affiliation(s)
- Anna Greta Hirsch
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie Und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Daniel Becker
- Philipps-Universität Marburg, Klinik für Dermatologie Und Allergologie, Baldingerstraße, 35043, Marburg, Germany
| | - Jan-Philipp Lamping
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie Und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie Und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
9
|
Fekete-Szücs E, Rosas Bringas FR, Stinus S, Chang M. Suppression of cdc13-2-associated senescence by pif1-m2 requires Ku-mediated telomerase recruitment. G3-GENES GENOMES GENETICS 2021; 12:6395364. [PMID: 34751785 PMCID: PMC8728030 DOI: 10.1093/g3journal/jkab360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
In Saccharomyces cerevisiae, recruitment of telomerase to telomeres requires an interaction between Cdc13, which binds single-stranded telomeric DNA, and the Est1 subunit of telomerase. A second pathway involving an interaction between the yKu complex and telomerase RNA (TLC1) contributes to telomerase recruitment but cannot sufficiently recruit telomerase on its own to prevent replicative senescence when the primary Cdc13-Est1 pathway is abolished—for example, in the cdc13-2 mutant. In this study, we find that mutation of PIF1, which encodes a helicase that inhibits telomerase, suppresses the replicative senescence of cdc13-2 by increasing reliance on the yKu-TLC1 pathway for telomerase recruitment. Our findings reveal new insight into telomerase-mediated telomere maintenance.
Collapse
Affiliation(s)
- Enikő Fekete-Szücs
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Fernando R Rosas Bringas
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Sonia Stinus
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| |
Collapse
|
10
|
Corda Y, Maestroni L, Luciano P, Najem MY, Géli V. Genome stability is guarded by yeast Rtt105 through multiple mechanisms. Genetics 2021; 217:6126811. [PMID: 33724421 DOI: 10.1093/genetics/iyaa035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Ty1 mobile DNA element is the most abundant and mutagenic retrotransposon present in the genome of the budding yeast Saccharomyces cerevisiae. Protein regulator of Ty1 transposition 105 (Rtt105) associates with large subunit of RPA and facilitates its loading onto a single-stranded DNA at replication forks. Here, we dissect the role of RTT105 in the maintenance of genome stability under normal conditions and upon various replication stresses through multiple genetic analyses. RTT105 is essential for viability in cells experiencing replication problems and in cells lacking functional S-phase checkpoints and DNA repair pathways involving homologous recombination. Our genetic analyses also indicate that RTT105 is crucial when cohesion is affected and is required for the establishment of normal heterochromatic structures. Moreover, RTT105 plays a role in telomere maintenance as its function is important for the telomere elongation phenotype resulting from the Est1 tethering to telomeres. Genetic analyses indicate that rtt105Δ affects the growth of several rfa1 mutants but does not aggravate their telomere length defects. Analysis of the phenotypes of rtt105Δ cells expressing NLS-Rfa1 fusion protein reveals that RTT105 safeguards genome stability through its role in RPA nuclear import but also by directly affecting RPA function in genome stability maintenance during replication.
Collapse
Affiliation(s)
- Yves Corda
- CNRS UMR7258, INSERM U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Laetitia Maestroni
- CNRS UMR7258, INSERM U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Pierre Luciano
- CNRS UMR7258, INSERM U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Maria Y Najem
- CNRS UMR7258, INSERM U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Vincent Géli
- CNRS UMR7258, INSERM U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
11
|
Sir4 Deficiency Reverses Cell Senescence by Sub-Telomere Recombination. Cells 2021; 10:cells10040778. [PMID: 33915984 PMCID: PMC8066019 DOI: 10.3390/cells10040778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 01/14/2023] Open
Abstract
Telomere shortening results in cellular senescence and the regulatory mechanisms remain unclear. Here, we report that the sub-telomere regions facilitate telomere lengthening by homologous recombination, thereby attenuating senescence in yeast Saccharomyces cerevisiae. The telomere protein complex Sir3/4 represses, whereas Rif1 promotes, the sub-telomere Y' element recombination. Genetic disruption of SIR4 increases Y' element abundance and rescues telomere-shortening-induced senescence in a Rad51-dependent manner, indicating a sub-telomere regulatory switch in regulating organismal senescence by DNA recombination. Inhibition of the sub-telomere recombination requires Sir4 binding to perinuclear protein Mps3 for telomere perinuclear localization and transcriptional repression of the telomeric repeat-containing RNA TERRA. Furthermore, Sir4 repression of Y' element recombination is negatively regulated by Rif1 that mediates senescence-evasion induced by Sir4 deficiency. Thus, our results demonstrate a dual opposing control mechanism of sub-telomeric Y' element recombination by Sir3/4 and Rif1 in the regulation of telomere shortening and cell senescence.
Collapse
|
12
|
Liu JC, Li QJ, He MH, Hu C, Dai P, Meng FL, Zhou BO, Zhou JQ. Swc4 positively regulates telomere length independently of its roles in NuA4 and SWR1 complexes. Nucleic Acids Res 2021; 48:12792-12803. [PMID: 33270890 PMCID: PMC7736797 DOI: 10.1093/nar/gkaa1150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 11/10/2020] [Indexed: 01/25/2023] Open
Abstract
Telomeres at the ends of eukaryotic chromosomes are essential for genome integrality and stability. In order to identify genes that sustain telomere maintenance independently of telomerase recruitment, we have exploited the phenotype of over-long telomeres in the cells that express Cdc13-Est2 fusion protein, and examined 195 strains, in which individual non-essential gene deletion causes telomere shortening. We have identified 24 genes whose deletion results in dramatic failure of Cdc13-Est2 function, including those encoding components of telomerase, Yku, KEOPS and NMD complexes, as well as quite a few whose functions are not obvious in telomerase activity regulation. We have characterized Swc4, a shared subunit of histone acetyltransferase NuA4 and chromatin remodeling SWR1 (SWR1-C) complexes, in telomere length regulation. Deletion of SWC4, but not other non-essential subunits of either NuA4 or SWR1-C, causes significant telomere shortening. Consistently, simultaneous disassembly of NuA4 and SWR1-C does not affect telomere length. Interestingly, inactivation of Swc4 in telomerase null cells accelerates both telomere shortening and senescence rates. Swc4 associates with telomeric DNA in vivo, suggesting a direct role of Swc4 at telomeres. Taken together, our work reveals a distinct role of Swc4 in telomere length regulation, separable from its canonical roles in both NuA4 and SWR1-C.
Collapse
Affiliation(s)
- Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qian-Jin Li
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming-Hong He
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Can Hu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Pengfei Dai
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei-Long Meng
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo O Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
13
|
Telomerase, the recombination machinery and Rap1 play redundant roles in yeast telomere protection. Curr Genet 2020; 67:153-163. [PMID: 33156376 DOI: 10.1007/s00294-020-01125-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
Telomeres are specialized nucleoprotein complexes that protect the ends of eukaryotic chromosomes and distinguish them from broken DNA ends. Disruption of telomere protection may cause aging-associated pathologies and cancer. Here, we examined what makes telomere protection durable and resistant to perturbations using a budding yeast model organism. The protein Rap1 binds the telomeric repeats, negatively regulates telomere length, and protects telomeres by repressing homologous recombination and non-homologous end joining (NHEJ). A single-nucleotide mutation in the Kluyveromyces lactis telomerase RNA (TER1) template, ter1-16T, is incorporated into the telomeric repeats, disrupting the binding of Rap1 and causing dramatic telomere elongation. However, cell viability is not significantly affected, suggesting the existence of additional mechanism(s) for telomere protection. To examine this hypothesis, we explored the contribution of the recombination factor Rad52 and telomerase to telomere protection in the background of ter1-16T. To disrupt the function of telomerase, we exploited small mutations in a stem-loop domain of TER1 (Reg2), which result in short but stable telomeres. We generated K. lactis strains with combinations of three different mutations: ter1-16T, RAD52 deletion, and a two-nucleotide substitution in Reg2. Our results show that upon Rap1 depletion from telomeres, telomerase and the recombination machinery compensate for the loss of Rap1 protection and play redundant but critical roles in preventing NHEJ and maintaining telomere integrity and cell viability. These results demonstrate how redundant pathways make the essential role of telomeres-protecting our genome integrity and preventing cancer-more robust and resistant to assaults and perturbations.
Collapse
|
14
|
Liu J, Hong X, Liang CY, Liu JP. Simultaneous visualisation of the complete sets of telomeres from the MmeI generated terminal restriction fragments in yeasts. Yeast 2020; 37:585-595. [PMID: 32776370 DOI: 10.1002/yea.3517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 11/07/2022] Open
Abstract
Telomere length is measured using Southern blotting of the chromosomal terminal restriction fragments (TRFs) released by endonuclease digestion in cells from yeast to human. In the budding yeast Saccharomyces cerevisiae, XhoI or PstI is applied to cut the subtelomere Y' element and release TRFs from the 17 subtelomeres. However, telomeres from other 15 X-element-only subtelomeres are omitted from analysis. Here, we report a method for measuring all 32 telomeres in S. cerevisiae using the endonuclease MmeI. Based on analyses of the endonuclease cleavage sites, we found that the TRFs generated by MmeI displayed two distinguishable bands in the sizes of ~500 and ~700 bp comprising telomeres (300 bp) and subtelomeres (200-400 bp). The modified MmeI-restricted TRF (mTRF) method recapitulated telomere shortening and lengthening caused by deficiencies of YKu and Rif1 respectively in S. cerevisiae. Furthermore, we found that mTRF was also applicable to telomere length analysis in S. paradoxus strains. These results demonstrate a useful tool for simultaneous detection of telomeres from all chromosomal ends with both X-element-only and Y'-element subtelomeres in S. cerevisiae species.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Ageing Research, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xiaojing Hong
- Institute of Ageing Research, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Chao-Ya Liang
- Institute of Ageing Research, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jun-Ping Liu
- Institute of Ageing Research, College of Medicine, Hangzhou Normal University, Hangzhou, China
- Department of Immunology, Faculty of Medicine, Monash University, Prahran, Victoria, Australia
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
15
|
Liu J, Liu JP. A method for efficient quantitative analysis of genomic subtelomere Y' element abundance in yeasts. Yeast 2020; 37:373-388. [PMID: 32639041 DOI: 10.1002/yea.3511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 01/09/2023] Open
Abstract
Subtelomere Y' elements get amplified by homologous recombination in sustaining the survival and division of the budding yeast Saccharomyces cerevisiae. However, current method for measurement of the subtelomere structures uses Southern blotting with labelled specific probes, which is laborious and time-consuming. By multiple sequence alignment analysis of all 19 subtelomere Y' elements across the 13 chromosomes of the sequenced S288C strain deposited in the yeast genome SGD database, we identified 12 consensus and relative longer fragments and 14 pairs of unique primers for real-time quantitative PCR analysis. With a PAC2 or ACT1 located near the centromere of chromosome V and VI as internal controls, these primers were applied to real-time quantitative PCR analysis, so the relative Y' element intensity normalised to that of wild type (WT) cells was calculated for subtelomere Y' element copy numbers across all different chromosomes using the formula: 2^[-((CTmutant Y' - CTmutant control ) - (CTWT Y' - CTWT control ))]. This novel quantitative subtelomere amplification assay across chromosomes by real-time PCR proves to be a much simpler and more sensitive way than the traditional Southern blotting method to analyse the Y' element recombination events in survivors derived from telomerase deficiency or recruitment failure.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Ageing Research, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jun-Ping Liu
- Institute of Ageing Research, College of Medicine, Hangzhou Normal University, Hangzhou, China
- Department of Immunology, Faculty of Medicine, Monash University, Prahran, Victoria, Australia
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
16
|
Barral A, Déjardin J. Telomeric Chromatin and TERRA. J Mol Biol 2020; 432:4244-4256. [DOI: 10.1016/j.jmb.2020.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 01/01/2023]
|
17
|
Zappulla DC. Yeast Telomerase RNA Flexibly Scaffolds Protein Subunits: Results and Repercussions. Molecules 2020; 25:E2750. [PMID: 32545864 PMCID: PMC7356895 DOI: 10.3390/molecules25122750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/25/2022] Open
Abstract
It is said that "hindsight is 20-20", so, given the current year, it is an opportune time to review and learn from experiences studying long noncoding RNAs. Investigation of the Saccharomyces cerevisiae telomerase RNA, TLC1, has unveiled striking flexibility in terms of both structural and functional features. Results support the "flexible scaffold" hypothesis for this 1157-nt telomerase RNA. This model describes TLC1 acting as a tether for holoenzyme protein subunits, and it also may apply to a plethora of RNAs beyond telomerase, such as types of lncRNAs. In this short perspective review, I summarize findings from studying the large yeast telomerase ribonucleoprotein (RNP) complex in the hope that this hindsight will sharpen foresight as so many of us seek to mechanistically understand noncoding RNA molecules from vast transcriptomes.
Collapse
Affiliation(s)
- David C Zappulla
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
18
|
Garcia PD, Leach RW, Wadsworth GM, Choudhary K, Li H, Aviran S, Kim HD, Zakian VA. Stability and nuclear localization of yeast telomerase depend on protein components of RNase P/MRP. Nat Commun 2020; 11:2173. [PMID: 32358529 PMCID: PMC7195438 DOI: 10.1038/s41467-020-15875-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 03/27/2020] [Indexed: 01/17/2023] Open
Abstract
RNase P and MRP are highly conserved, multi-protein/RNA complexes with essential roles in processing ribosomal and tRNAs. Three proteins found in both complexes, Pop1, Pop6, and Pop7 are also telomerase-associated. Here, we determine how temperature sensitive POP1 and POP6 alleles affect yeast telomerase. At permissive temperatures, mutant Pop1/6 have little or no effect on cell growth, global protein levels, the abundance of Est1 and Est2 (telomerase proteins), and the processing of TLC1 (telomerase RNA). However, in pop mutants, TLC1 is more abundant, telomeres are short, and TLC1 accumulates in the cytoplasm. Although Est1/2 binding to TLC1 occurs at normal levels, Est1 (and hence Est3) binding is highly unstable. We propose that Pop-mediated stabilization of Est1 binding to TLC1 is a pre-requisite for formation and nuclear localization of the telomerase holoenzyme. Furthermore, Pop proteins affect TLC1 and the RNA subunits of RNase P/MRP in very different ways.
Collapse
Affiliation(s)
- P Daniela Garcia
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Robert W Leach
- Bioinformatics Group, Genomics Core Facility, Carl Icahn Laboratory, Princeton University, Princeton, New Jersey, 08544, USA
| | - Gable M Wadsworth
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Krishna Choudhary
- Department of Biomedical Engineering and Genome Center, University of California, Davis, California, 95616, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, 94158, USA
| | - Hua Li
- Department of Biomedical Engineering and Genome Center, University of California, Davis, California, 95616, USA
| | - Sharon Aviran
- Department of Biomedical Engineering and Genome Center, University of California, Davis, California, 95616, USA
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
19
|
Hass EP, Zappulla DC. Repositioning the Sm-Binding Site in Saccharomyces cerevisiae Telomerase RNA Reveals RNP Organizational Flexibility and Sm-Directed 3'-End Formation. Noncoding RNA 2020; 6:ncrna6010009. [PMID: 32121425 PMCID: PMC7151599 DOI: 10.3390/ncrna6010009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 01/10/2023] Open
Abstract
Telomerase RNA contains a template for synthesizing telomeric DNA and has been proposed to act as a flexible scaffold for holoenzyme protein subunits in the RNP. In Saccharomyces cerevisiae, the telomerase RNA, TLC1, is bound by the Sm7 protein complex, which is required for stabilization of the predominant, non-polyadenylated (poly(A)–) TLC1 isoform. However, it remains unclear (1) whether Sm7 retains this function when its binding site is repositioned within TLC1, as has been shown for other TLC1-binding telomerase subunits, and (2) how Sm7 stabilizes poly(A)– TLC1. Here, we first show that Sm7 can stabilize poly(A)– TLC1 even when its binding site is repositioned via circular permutation to several different positions within TLC1, further supporting the conclusion that the telomerase holoenzyme is organizationally flexible. Next, we show that when an Sm site is inserted 5′ of its native position and the native site is mutated, Sm7 stabilizes shorter forms of poly(A)– TLC1 in a manner corresponding to how far upstream the new site was inserted, providing strong evidence that Sm7 binding to TLC1 controls where the mature poly(A)– 3′ is formed by directing a 3′-to-5′ processing mechanism. In summary, our results show that Sm7 and the 3′ end of yeast telomerase RNA comprise an organizationally flexible module within the telomerase RNP and provide insights into the mechanistic role of Sm7 in telomerase RNA biogenesis.
Collapse
Affiliation(s)
- Evan P. Hass
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - David C. Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA;
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
- Correspondence: ; Tel.:+1-(610)-758-5088
| |
Collapse
|
20
|
Shadrina O, Garanina I, Korolev S, Zatsepin T, Van Assche J, Daouad F, Wallet C, Rohr O, Gottikh M. Analysis of RNA binding properties of human Ku protein reveals its interactions with 7SK snRNA and protein components of 7SK snRNP complex. Biochimie 2020; 171-172:110-123. [PMID: 32105815 DOI: 10.1016/j.biochi.2020.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022]
Abstract
Human Ku heterodimeric protein composed of Ku70 and Ku80 subunits plays an important role in the non-homologous end-joining DNA repair pathway as a sensor of double strand DNA breaks. Ku is also involved in numerous cellular processes, and in some of them it acts in an RNA-dependent manner. However, RNA binding properties of the human Ku have not been well studied. Here we have analyzed interactions of a recombinant Ku heterodimer with a set of RNAs of various structure as well as eCLIP (enhanced crosslinking and immunoprecipitation) data for human Ku70. As a result, we have proposed a consensus RNA structure preferable for the Ku binding that is a hairpin possessing a bulge just near GpG sequence-containing terminal loop. 7SK snRNA is a scaffold for a ribonucleoprotein complex (7SK snRNP), which is known to participate in transcription regulation. We have shown that the recombinant Ku specifically binds a G-rich loop of hairpin 1 within 7SK snRNA. Moreover, Ku protein has been co-precipitated from HEK 293T cells with endogenous 7SK snRNA and such proteins included in 7SK snRNP as HEXIM1, Cdk9 and CTIP2. Ku and Cdk9 binding is found to be RNA-independent, meanwhile HEXIM1 and Ku co-precipitation depended on the presence of intact 7SK snRNA. The latter result has been confirmed using recombinant HEXIM1 and Ku proteins. Colocalization of Ku and CTIP2 was additionally confirmed by confocal microscopy. These results allow us to propose human Ku as a new component of the 7SK snRNP complex.
Collapse
Affiliation(s)
- Olga Shadrina
- Chemistry Department, Lomonosov Moscow State University, Moscow, 199991, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia.
| | - Irina Garanina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Sergey Korolev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 199991, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Timofei Zatsepin
- Chemistry Department, Lomonosov Moscow State University, Moscow, 199991, Russia; Skolkovo Institute of Science and Technology, Skolkovo, 121205, Russia
| | - Jeanne Van Assche
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Fadoua Daouad
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Clementine Wallet
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Marina Gottikh
- Chemistry Department, Lomonosov Moscow State University, Moscow, 199991, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| |
Collapse
|
21
|
Sui J, Zhang S, Chen BPC. DNA-dependent protein kinase in telomere maintenance and protection. Cell Mol Biol Lett 2020; 25:2. [PMID: 31988640 PMCID: PMC6969447 DOI: 10.1186/s11658-020-0199-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
This review focuses on DNA-dependent protein kinase (DNA-PK), which is the key regulator of canonical non-homologous end-joining (NHEJ), the predominant mechanism of DNA double-strand break (DSB) repair in mammals. DNA-PK consists of the DNA-binding Ku70/80 heterodimer and the catalytic subunit DNA-PKcs. They assemble at DNA ends, forming the active DNA-PK complex, which initiates NHEJ-mediated DSB repair. Paradoxically, both Ku and DNA-PKcs are associated with telomeres, and they play crucial roles in protecting the telomere against fusions. Herein, we discuss possible mechanisms and contributions of Ku and DNA-PKcs in telomere regulation.
Collapse
Affiliation(s)
- Jiangdong Sui
- 1Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030 China
| | - Shichuan Zhang
- 2Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - Benjamin P C Chen
- 3Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Rd., Dallas, TX 75390-9187 USA
| |
Collapse
|
22
|
Deshpande I, Keusch JJ, Challa K, Iesmantavicius V, Gasser SM, Gut H. The Sir4 H-BRCT domain interacts with phospho-proteins to sequester and repress yeast heterochromatin. EMBO J 2019; 38:e101744. [PMID: 31515872 PMCID: PMC6792019 DOI: 10.15252/embj.2019101744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/24/2019] [Accepted: 08/11/2019] [Indexed: 12/22/2022] Open
Abstract
In Saccharomyces cerevisiae, the silent information regulator (SIR) proteins Sir2/3/4 form a complex that suppresses transcription in subtelomeric regions and at the homothallic mating-type (HM) loci. Here, we identify a non-canonical BRCA1 C-terminal domain (H-BRCT) in Sir4, which is responsible for tethering telomeres to the nuclear periphery. We show that Sir4 H-BRCT and the closely related Dbf4 H-BRCT serve as selective phospho-epitope recognition domains that bind to a variety of phosphorylated target peptides. We present detailed structural information about the binding mode of established Sir4 interactors (Esc1, Ty5, Ubp10) and identify several novel interactors of Sir4 H-BRCT, including the E3 ubiquitin ligase Tom1. Based on these findings, we propose a phospho-peptide consensus motif for interaction with Sir4 H-BRCT and Dbf4 H-BRCT. Ablation of the Sir4 H-BRCT phospho-peptide interaction disrupts SIR-mediated repression and perinuclear localization. In conclusion, the Sir4 H-BRCT domain serves as a hub for recruitment of phosphorylated target proteins to heterochromatin to properly regulate silencing and nuclear order.
Collapse
Affiliation(s)
- Ishan Deshpande
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Natural SciencesUniversity of BaselBaselSwitzerland
- Present address:
Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCAUSA
| | - Jeremy J Keusch
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Kiran Challa
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | | | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Natural SciencesUniversity of BaselBaselSwitzerland
| | - Heinz Gut
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| |
Collapse
|
23
|
Rowland TJ, Dumbović G, Hass EP, Rinn JL, Cech TR. Single-cell imaging reveals unexpected heterogeneity of telomerase reverse transcriptase expression across human cancer cell lines. Proc Natl Acad Sci U S A 2019; 116:18488-18497. [PMID: 31451652 PMCID: PMC6744858 DOI: 10.1073/pnas.1908275116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Telomerase is pathologically reactivated in most human cancers, where it maintains chromosomal telomeres and allows immortalization. Because telomerase reverse transcriptase (TERT) is usually the limiting component for telomerase activation, numerous studies have measured TERT mRNA levels in populations of cells or in tissues. In comparison, little is known about TERT expression at the single-cell and single-molecule level. To address this, we analyzed TERT expression across 10 human cancer lines using single-molecule RNA fluorescent in situ hybridization (FISH) and made several unexpected findings. First, there was substantial cell-to-cell variation in number of transcription sites and ratio of transcription sites to gene copies. Second, previous classification of lines as having monoallelic or biallelic TERT expression was found to be inadequate for capturing the TERT gene expression patterns. Finally, spliced TERT mRNA had primarily nuclear localization in cancer cells and induced pluripotent stem cells (iPSCs), in stark contrast to the expectation that spliced mRNA should be predominantly cytoplasmic. These data reveal unappreciated heterogeneity, complexity, and unconventionality in TERT expression across human cancer cells.
Collapse
Affiliation(s)
- Teisha J Rowland
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303
| | - Gabrijela Dumbović
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
| | - Evan P Hass
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303;
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303
| |
Collapse
|
24
|
CSL controls telomere maintenance and genome stability in human dermal fibroblasts. Nat Commun 2019; 10:3884. [PMID: 31467287 PMCID: PMC6715699 DOI: 10.1038/s41467-019-11785-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022] Open
Abstract
Genomic instability is a hallmark of cancer. Whether it also occurs in Cancer Associated Fibroblasts (CAFs) remains to be carefully investigated. Loss of CSL/RBP-Jκ, the effector of canonical NOTCH signaling with intrinsic transcription repressive function, causes conversion of dermal fibroblasts into CAFs. Here, we find that CSL down-modulation triggers DNA damage, telomere loss and chromosome end fusions that also occur in skin Squamous Cell Carcinoma (SCC)-associated CAFs, in which CSL is decreased. Separately from its role in transcription, we show that CSL is part of a multiprotein telomere protective complex, binding directly and with high affinity to telomeric DNA as well as to UPF1 and Ku70/Ku80 proteins and being required for their telomere association. Taken together, the findings point to a central role of CSL in telomere homeostasis with important implications for genomic instability of cancer stromal cells and beyond. Conversion of dermal fibroblasts into Cancer Associated Fibroblasts (CAFs) can play an important role in keratinocyte tumour development. Here the authors reveal that CSL plays a role in maintenance of telomeres and genomic integrity in both dermal fibroblasts and CAFs.
Collapse
|
25
|
Lemon LD, Morris DK, Bertuch AA. Loss of Ku's DNA end binding activity affects telomere length via destabilizing telomere-bound Est1 rather than altering TLC1 homeostasis. Sci Rep 2019; 9:10607. [PMID: 31337791 PMCID: PMC6650470 DOI: 10.1038/s41598-019-46840-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/05/2019] [Indexed: 11/21/2022] Open
Abstract
Saccharomyces cerevisiae telomerase, which maintains telomere length, is comprised of an RNA component, TLC1, the reverse transcriptase, Est2, and regulatory subunits, including Est1. The Yku70/Yku80 (Ku) heterodimer, a DNA end binding (DEB) protein, also contributes to telomere length maintenance. Ku binds TLC1 and telomere ends in a mutually exclusive fashion, and is required to maintain levels and nuclear localization of TLC1. Ku also interacts with Sir4, which localizes to telomeres. Here we sought to determine the role of Ku's DEB activity in telomere length maintenance by utilizing yku70-R456E mutant strains, in which Ku has reduced DEB and telomere association but proficiency in TLC1 and Sir4 binding, and TLC1 nuclear retention. Telomere lengths in a yku70-R456E strain were nearly as short as those in yku∆ strains and shorter than in strains lacking either Sir4, Ku:Sir4 interaction, or Ku:TLC1 interaction. TLC1 levels were decreased in the yku70-R456E mutant, yet overexpression of TLC1 failed to restore telomere length. Reduced DEB activity did not impact Est1's ability to associate with telomerase but did result in decreased association of Est1 with the telomere. These findings suggest Ku's DEB activity maintains telomere length homeostasis by preserving Est1's interaction at the telomere rather than altering TLC1 levels.
Collapse
Affiliation(s)
- Laramie D Lemon
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Danna K Morris
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alison A Bertuch
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Nguyen THD, Collins K, Nogales E. Telomerase structures and regulation: shedding light on the chromosome end. Curr Opin Struct Biol 2019; 55:185-193. [PMID: 31202023 DOI: 10.1016/j.sbi.2019.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/28/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
During genome replication, telomerase adds repeats to the ends of chromosomes to balance the loss of telomeric DNA. The regulation of telomerase activity is of medical relevance, as it has been implicated in human diseases such as cancer, as well as in aging. Until recently, structural information on this enzyme that would facilitate its clinical manipulation had been lacking due to telomerase very low abundance in cells. Recent cryo-EM structures of both the human and Tetrahymena thermophila telomerases have provided a picture of both the shared catalytic core of telomerase and its interaction with species-specific factors that play different roles in telomerase RNP assembly and function. We discuss also progress toward an understanding of telomerase RNP biogenesis and telomere recruitment from recent studies.
Collapse
Affiliation(s)
- Thi Hoang Duong Nguyen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Miller Institute for Basic Research in Science, University of California, Berkeley, CA 94720, USA.
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
27
|
Faure G, Jézéquel K, Roisné-Hamelin F, Bitard-Feildel T, Lamiable A, Marcand S, Callebaut I. Discovery and Evolution of New Domains in Yeast Heterochromatin Factor Sir4 and Its Partner Esc1. Genome Biol Evol 2019; 11:572-585. [PMID: 30668669 PMCID: PMC6394760 DOI: 10.1093/gbe/evz010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2019] [Indexed: 12/22/2022] Open
Abstract
Sir4 is a core component of heterochromatin found in yeasts of the Saccharomycetaceae family, whose general hallmark is to harbor a three-loci mating-type system with two silent loci. However, a large part of the Sir4 amino acid sequences has remained unexplored, belonging to the dark proteome. Here, we analyzed the phylogenetic profile of yet undescribed foldable regions present in Sir4 as well as in Esc1, an Sir4-interacting perinuclear anchoring protein. Within Sir4, we identified a new conserved motif (TOC) adjacent to the N-terminal KU-binding motif. We also found that the Esc1-interacting region of Sir4 is a Dbf4-related H-BRCT domain, only present in species possessing the HO endonuclease and in Kluveryomyces lactis. In addition, we found new motifs within Esc1 including a motif (Esc1-F) that is unique to species where Sir4 possesses an H-BRCT domain. Mutagenesis of conserved amino acids of the Sir4 H-BRCT domain, known to play a critical role in the Dbf4 function, shows that the function of this domain is separable from the essential role of Sir4 in transcriptional silencing and the protection from HO-induced cutting in Saccharomyces cerevisiae. In the more distant methylotrophic clade of yeasts, which often harbor a two-loci mating-type system with one silent locus, we also found a yet undescribed H-BRCT domain in a distinct protein, the ISWI2 chromatin-remodeling factor subunit Itc1. This study provides new insights on yeast heterochromatin evolution and emphasizes the interest of using sensitive methods of sequence analysis for identifying hitherto ignored functional regions within the dark proteome.
Collapse
Affiliation(s)
- Guilhem Faure
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France.,National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD
| | - Kévin Jézéquel
- Institut de Biologie François Jacob, IRCM/SIGRR/LTR, INSERM U1274, Université Paris-Saclay, CEA Paris-Saclay, Paris, France.,National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD
| | - Florian Roisné-Hamelin
- Institut de Biologie François Jacob, IRCM/SIGRR/LTR, INSERM U1274, Université Paris-Saclay, CEA Paris-Saclay, Paris, France.,National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD
| | - Tristan Bitard-Feildel
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Alexis Lamiable
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Stéphane Marcand
- Institut de Biologie François Jacob, IRCM/SIGRR/LTR, INSERM U1274, Université Paris-Saclay, CEA Paris-Saclay, Paris, France.,Sorbonne Université, UMR CNRS 7238, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France.,Sorbonne Université, UMR CNRS 7238, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, France
| |
Collapse
|
28
|
Towards the Mechanism of Yeast Telomere Dynamics. Trends Cell Biol 2019; 29:361-370. [PMID: 30765145 DOI: 10.1016/j.tcb.2019.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/04/2019] [Accepted: 01/11/2019] [Indexed: 12/31/2022]
Abstract
A mechanistic understanding of the yeast telomere requires an integrated understanding of telomere chromatin structure (telosomes), telomeric origins of replications, telomere length homeostasis, and telosome epigenetics. Recent molecular and genetic studies of the yeast telosomal components Rap1, Rif1, and Rif2, the Mre11 complex, and Tel1ATM promise to increase our insight into the coordination between these processes. Here, an intricate relationship is proposed between these multiple components that has resulted in increased appreciation of the multiple levels of telomere length control and their differentiation from double-strand repair. The mre11A470 motif (A470-A482) alleles have also opened new avenues to the exploration of telosome structure and function.
Collapse
|
29
|
Liu J, Wang L, Wang Z, Liu JP. Roles of Telomere Biology in Cell Senescence, Replicative and Chronological Ageing. Cells 2019; 8:E54. [PMID: 30650660 PMCID: PMC6356700 DOI: 10.3390/cells8010054] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/07/2023] Open
Abstract
Telomeres with G-rich repetitive DNA and particular proteins as special heterochromatin structures at the termini of eukaryotic chromosomes are tightly maintained to safeguard genetic integrity and functionality. Telomerase as a specialized reverse transcriptase uses its intrinsic RNA template to lengthen telomeric G-rich strand in yeast and human cells. Cells sense telomere length shortening and respond with cell cycle arrest at a certain size of telomeres referring to the "Hayflick limit." In addition to regulating the cell replicative senescence, telomere biology plays a fundamental role in regulating the chronological post-mitotic cell ageing. In this review, we summarize the current understandings of telomere regulation of cell replicative and chronological ageing in the pioneer model system Saccharomyces cerevisiae and provide an overview on telomere regulation of animal lifespans. We focus on the mechanisms of survivals by telomere elongation, DNA damage response and environmental factors in the absence of telomerase maintenance of telomeres in the yeast and mammals.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| | - Lihui Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| | - Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
- Department of Immunology, Monash University Faculty of Medicine, Melbourne, Vitoria 3004, Australia.
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
30
|
Kedziora S, Gali VK, Wilson RHC, Clark KRM, Nieduszynski CA, Hiraga SI, Donaldson AD. Rif1 acts through Protein Phosphatase 1 but independent of replication timing to suppress telomere extension in budding yeast. Nucleic Acids Res 2018; 46:3993-4003. [PMID: 29529242 PMCID: PMC5934629 DOI: 10.1093/nar/gky132] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 02/09/2018] [Accepted: 02/23/2018] [Indexed: 12/24/2022] Open
Abstract
The Rif1 protein negatively regulates telomeric TG repeat length in the budding yeast Saccharomyces cerevisiae, but how it prevents telomere over-extension is unknown. Rif1 was recently shown to control DNA replication by acting as a Protein Phosphatase 1 (PP1)-targeting subunit. Therefore, we investigated whether Rif1 controls telomere length by targeting PP1 activity. We find that a Rif1 mutant defective for PP1 interaction causes a long-telomere phenotype, similar to that of rif1Δ cells. Tethering PP1 at a specific telomere partially substitutes for Rif1 in limiting TG repeat length, confirming the importance of PP1 in telomere length control. Ablating Rif1-PP1 interaction is known to cause precocious activation of telomere-proximal replication origins and aberrantly early telomere replication. However, we find that Rif1 still limits telomere length even if late replication is forced through deletion of nearby replication origins, indicating that Rif1 can control telomere length independent of replication timing. Moreover we find that, even at a de novo telomere created after DNA synthesis during a mitotic block, Rif1-PP1 interaction is required to suppress telomere lengthening and prevent inappropriate recruitment of Tel1 kinase. Overall, our results show that Rif1 controls telomere length by recruiting PP1 to directly suppress telomerase-mediated TG repeat lengthening.
Collapse
Affiliation(s)
- Sylwia Kedziora
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Vamsi K Gali
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Rosemary HC Wilson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Kate RM Clark
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Conrad A Nieduszynski
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Shin-ichiro Hiraga
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Anne D Donaldson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
31
|
Chen H, Xue J, Churikov D, Hass EP, Shi S, Lemon LD, Luciano P, Bertuch AA, Zappulla DC, Géli V, Wu J, Lei M. Structural Insights into Yeast Telomerase Recruitment to Telomeres. Cell 2017; 172:331-343.e13. [PMID: 29290466 DOI: 10.1016/j.cell.2017.12.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/27/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
Telomerase maintains chromosome ends from humans to yeasts. Recruitment of yeast telomerase to telomeres occurs through its Ku and Est1 subunits via independent interactions with telomerase RNA (TLC1) and telomeric proteins Sir4 and Cdc13, respectively. However, the structures of the molecules comprising these telomerase-recruiting pathways remain unknown. Here, we report crystal structures of the Ku heterodimer and Est1 complexed with their key binding partners. Two major findings are as follows: (1) Ku specifically binds to telomerase RNA in a distinct, yet related, manner to how it binds DNA; and (2) Est1 employs two separate pockets to bind distinct motifs of Cdc13. The N-terminal Cdc13-binding site of Est1 cooperates with the TLC1-Ku-Sir4 pathway for telomerase recruitment, whereas the C-terminal interface is dispensable for binding Est1 in vitro yet is nevertheless essential for telomere maintenance in vivo. Overall, our results integrate previous models and provide fundamentally valuable structural information regarding telomere biology.
Collapse
Affiliation(s)
- Hongwen Chen
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201210 Shanghai, China
| | - Jing Xue
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201210 Shanghai, China
| | - Dmitri Churikov
- Marseille Cancer Research Center (CRCM), U1068 INSERM, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes (Equipe labellisée Ligue), 13009 Marseille, France
| | - Evan P Hass
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Shaohua Shi
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201210 Shanghai, China
| | - Laramie D Lemon
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM225, Houston, TX 77030, USA
| | - Pierre Luciano
- Marseille Cancer Research Center (CRCM), U1068 INSERM, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes (Equipe labellisée Ligue), 13009 Marseille, France
| | - Alison A Bertuch
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM225, Houston, TX 77030, USA
| | - David C Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vincent Géli
- Marseille Cancer Research Center (CRCM), U1068 INSERM, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes (Equipe labellisée Ligue), 13009 Marseille, France
| | - Jian Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201210 Shanghai, China.
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| |
Collapse
|
32
|
Guintini L, Tremblay M, Toussaint M, D'Amours A, Wellinger RE, Wellinger RJ, Conconi A. Repair of UV-induced DNA lesions in natural Saccharomyces cerevisiae telomeres is moderated by Sir2 and Sir3, and inhibited by yKu-Sir4 interaction. Nucleic Acids Res 2017; 45:4577-4589. [PMID: 28334768 PMCID: PMC5416773 DOI: 10.1093/nar/gkx123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 02/10/2017] [Indexed: 01/28/2023] Open
Abstract
Ultraviolet light (UV) causes DNA damage that is removed by nucleotide excision repair (NER). UV-induced DNA lesions must be recognized and repaired in nucleosomal DNA, higher order structures of chromatin and within different nuclear sub-compartments. Telomeric DNA is made of short tandem repeats located at the ends of chromosomes and their maintenance is critical to prevent genome instability. In Saccharomyces cerevisiae the chromatin structure of natural telomeres is distinctive and contingent to telomeric DNA sequences. Namely, nucleosomes and Sir proteins form the heterochromatin like structure of X-type telomeres, whereas a more open conformation is present at Y’-type telomeres. It is proposed that there are no nucleosomes on the most distal telomeric repeat DNA, which is bound by a complex of proteins and folded into higher order structure. How these structures affect NER is poorly understood. Our data indicate that the X-type, but not the Y’-type, sub-telomeric chromatin modulates NER, a consequence of Sir protein-dependent nucleosome stability. The telomere terminal complex also prevents NER, however, this effect is largely dependent on the yKu–Sir4 interaction, but Sir2 and Sir3 independent.
Collapse
Affiliation(s)
- Laetitia Guintini
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke J1E 4K8, Canada
| | - Maxime Tremblay
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke J1E 4K8, Canada
| | - Martin Toussaint
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke J1E 4K8, Canada
| | - Annie D'Amours
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke J1E 4K8, Canada
| | - Ralf E Wellinger
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, CSIC, Avda Américo Vespucio s/n, Sevilla 41092, Spain
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke J1E 4K8, Canada
| | - Antonio Conconi
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke J1E 4K8, Canada
| |
Collapse
|
33
|
Valuchova S, Fulnecek J, Prokop Z, Stolt-Bergner P, Janouskova E, Hofr C, Riha K. Protection of Arabidopsis Blunt-Ended Telomeres Is Mediated by a Physical Association with the Ku Heterodimer. THE PLANT CELL 2017; 29:1533-1545. [PMID: 28584163 PMCID: PMC5502450 DOI: 10.1105/tpc.17.00064] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/01/2017] [Accepted: 06/02/2017] [Indexed: 05/15/2023]
Abstract
Telomeres form specialized chromatin that protects natural chromosome termini from being recognized as DNA double-strand breaks. Plants possess unusual blunt-ended telomeres that are unable to form t-loops or complex with single-strand DNA binding proteins, raising the question of the mechanism behind their protection. We have previously suggested that blunt-ended telomeres in Arabidopsis thaliana are protected by Ku, a DNA repair factor with a high affinity for DNA ends. In nonhomologous end joining, Ku loads onto broken DNA via a channel consisting of positively charged amino acids. Here, we demonstrate that while association of Ku with plant telomeres also depends on this channel, Ku's requirements for DNA binding differ between DNA repair and telomere protection. We show that a Ku complex proficient in DNA loading but impaired in translocation along DNA is able to protect blunt-ended telomeres but is deficient in DNA repair. This suggests that Ku physically sequesters blunt-ended telomeres within its DNA binding channel, shielding them from other DNA repair machineries.
Collapse
Affiliation(s)
- Sona Valuchova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- Gregor Mendel Institute, Austrian Academy of Sciences (OEAW), Vienna Biocenter, 1030 Vienna, Austria
| | - Jaroslav Fulnecek
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | | | - Eliska Janouskova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Ctirad Hofr
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Karel Riha
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
34
|
The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae. Genetics 2017; 203:1563-99. [PMID: 27516616 DOI: 10.1534/genetics.112.145243] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/30/2016] [Indexed: 12/31/2022] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae occurs at several genomic sites including the silent mating-type loci, telomeres, and the ribosomal DNA (rDNA) tandem array. Epigenetic silencing at each of these domains is characterized by the absence of nearly all histone modifications, including most prominently the lack of histone H4 lysine 16 acetylation. In all cases, silencing requires Sir2, a highly-conserved NAD(+)-dependent histone deacetylase. At locations other than the rDNA, silencing also requires additional Sir proteins, Sir1, Sir3, and Sir4 that together form a repressive heterochromatin-like structure termed silent chromatin. The mechanisms of silent chromatin establishment, maintenance, and inheritance have been investigated extensively over the last 25 years, and these studies have revealed numerous paradigms for transcriptional repression, chromatin organization, and epigenetic gene regulation. Studies of Sir2-dependent silencing at the rDNA have also contributed to understanding the mechanisms for maintaining the stability of repetitive DNA and regulating replicative cell aging. The goal of this comprehensive review is to distill a wide array of biochemical, molecular genetic, cell biological, and genomics studies down to the "nuts and bolts" of silent chromatin and the processes that yield transcriptional silencing.
Collapse
|
35
|
Hall AC, Ostrowski LA, Pietrobon V, Mekhail K. Repetitive DNA loci and their modulation by the non-canonical nucleic acid structures R-loops and G-quadruplexes. Nucleus 2017; 8:162-181. [PMID: 28406751 DOI: 10.1080/19491034.2017.1292193] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cells have evolved intricate mechanisms to maintain genome stability despite allowing mutational changes to drive evolutionary adaptation. Repetitive DNA sequences, which represent the bulk of most genomes, are a major threat to genome stability often driving chromosome rearrangements and disease. The major source of repetitive DNA sequences and thus the most vulnerable constituents of the genome are the rDNA (rDNA) repeats, telomeres, and transposable elements. Maintaining the stability of these loci is critical to overall cellular fitness and lifespan. Therefore, cells have evolved mechanisms to regulate rDNA copy number, telomere length and transposon activity, as well as DNA repair at these loci. In addition, non-canonical structure-forming DNA motifs can also modulate the function of these repetitive DNA loci by impacting their transcription, replication, and stability. Here, we discuss key mechanisms that maintain rDNA repeats, telomeres, and transposons in yeast and human before highlighting emerging roles for non-canonical DNA structures at these repetitive loci.
Collapse
Affiliation(s)
- Amanda C Hall
- a Department of Laboratory Medicine and Pathobiology , Faculty of Medicine, University of Toronto , Toronto, Ontario , Canada
| | - Lauren A Ostrowski
- a Department of Laboratory Medicine and Pathobiology , Faculty of Medicine, University of Toronto , Toronto, Ontario , Canada
| | - Violena Pietrobon
- a Department of Laboratory Medicine and Pathobiology , Faculty of Medicine, University of Toronto , Toronto, Ontario , Canada
| | - Karim Mekhail
- a Department of Laboratory Medicine and Pathobiology , Faculty of Medicine, University of Toronto , Toronto, Ontario , Canada.,b Canada Research Chairs Program ; Faculty of Medicine, University of Toronto , Toronto, Ontario , Canada
| |
Collapse
|
36
|
Kyriakou D, Stavrou E, Demosthenous P, Angelidou G, San Luis BJ, Boone C, Promponas VJ, Kirmizis A. Functional characterisation of long intergenic non-coding RNAs through genetic interaction profiling in Saccharomyces cerevisiae. BMC Biol 2016; 14:106. [PMID: 27927215 PMCID: PMC5142380 DOI: 10.1186/s12915-016-0325-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/09/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Transcriptome studies have revealed that many eukaryotic genomes are pervasively transcribed producing numerous long non-coding RNAs (lncRNAs). However, only a few lncRNAs have been ascribed a cellular role thus far, with most regulating the expression of adjacent genes. Even less lncRNAs have been annotated as essential hence implying that the majority may be functionally redundant. Therefore, the function of lncRNAs could be illuminated through systematic analysis of their synthetic genetic interactions (GIs). RESULTS Here, we employ synthetic genetic array (SGA) in Saccharomyces cerevisiae to identify GIs between long intergenic non-coding RNAs (lincRNAs) and protein-coding genes. We first validate this approach by demonstrating that the telomerase RNA TLC1 displays a GI network that corresponds to its well-described function in telomere length maintenance. We subsequently performed SGA screens on a set of uncharacterised lincRNAs and uncover their connection to diverse cellular processes. One of these lincRNAs, SUT457, exhibits a GI profile associating it to telomere organisation and we consistently demonstrate that SUT457 is required for telomeric overhang homeostasis through an Exo1-dependent pathway. Furthermore, the GI profile of SUT457 is distinct from that of its neighbouring genes suggesting a function independent to its genomic location. Accordingly, we show that ectopic expression of this lincRNA suppresses telomeric overhang accumulation in sut457Δ cells assigning a trans-acting role for SUT457 in telomere biology. CONCLUSIONS Overall, our work proposes that systematic application of this genetic approach could determine the functional significance of individual lncRNAs in yeast and other complex organisms.
Collapse
Affiliation(s)
- Dimitris Kyriakou
- Department of Biological Sciences, University of Cyprus, Nicosia, CY-1678, Cyprus
| | - Emmanouil Stavrou
- Department of Biological Sciences, University of Cyprus, Nicosia, CY-1678, Cyprus
| | | | - Georgia Angelidou
- Department of Biological Sciences, University of Cyprus, Nicosia, CY-1678, Cyprus
| | - Bryan-Joseph San Luis
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Charles Boone
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Vasilis J Promponas
- Department of Biological Sciences, University of Cyprus, Nicosia, CY-1678, Cyprus
| | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, Nicosia, CY-1678, Cyprus.
| |
Collapse
|
37
|
Karademir Andersson A, Cohn M. Naumovozyma castellii: an alternative model for budding yeast molecular biology. Yeast 2016; 34:95-109. [PMID: 27794167 DOI: 10.1002/yea.3218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/18/2016] [Indexed: 11/11/2022] Open
Abstract
Naumovozyma castellii (Saccharomyces castellii) is a member of the budding yeast family Saccharomycetaceae. It has been extensively used as a model organism for telomere biology research and has gained increasing interest as a budding yeast model for functional analyses owing to its amenability to genetic modifications. Owing to the suitable phylogenetic distance to S. cerevisiae, the whole genome sequence of N. castellii has provided unique data for comparative genomic studies, and it played a key role in the establishment of the timing of the whole genome duplication and the evolutionary events that took place in the subsequent genomic evolution of the Saccharomyces lineage. Here we summarize the historical background of its establishment as a laboratory yeast species, and the development of genetic and molecular tools and strains. We review the research performed on N. castellii, focusing on areas where it has significantly contributed to the discovery of new features of molecular biology and to the advancement of our understanding of molecular evolution. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Marita Cohn
- Department of Biology, Genetics group, Lund University, Lund, Sweden
| |
Collapse
|