1
|
Doroftei B, Ilie OD, Timofeiov S, Dabuleanu AM, Scripcariu IS, Micu R, Tataranu E. A scoping review regarding reproductive capacity modulation based on alpha-ketoglutarate supplementation. Reproduction 2024; 168:e240137. [PMID: 39189990 PMCID: PMC11558802 DOI: 10.1530/rep-24-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
In brief Alpha-ketoglutarate is a common metabolite in the tricarboxylic acid cycle and is central in modulating the reproductive potential in animal models. The present scoping review systematically covers the spectrum of a wide range of evidence from different viewpoints, focusing on the underlying processes and mechanisms of the developmental framework, aiming to fill the gaps within the existing literature. Abstract Alpha-ketoglutarate is an important intermediate molecule in the tricarboxylic acid cycle with a prominent role in distinct biological processes such as cellular energy metabolism, epigenetic regulation, and signaling pathways. We conducted a registered scoping review (OSF: osf.io/b8nyt) to explore the impact of exogenous supplementation on reproductive capabilities. Our strategy included evaluating the main research literature from different databases like PubMed-MEDLINE, Web of ScienceTM, Scopus, and Excerpta Medica dataBASE using a specific systematic layout to encompass all investigations based on experimental models and critically compare the results. Twenty-one studies were included in the main body of this manuscript, which revealed that exogenous supplementation induced dose- and sex-dependent modifications. This metabolite modulates the expression of pluripotency genes, thus controlling stem cells' self-renewal, differentiation, and reprogramming dynamics, while also alleviating structural transformations induced by exposure to heavy metals and other inhibitors. This significantly demonstrated a direct influence of alpha-ketoglutarate in mitigating oxidative stress and prolonging the lifespan, consequently supporting metabolic and endocrine adjustments. It influences oocyte quality and quantity, delays reproductive aging, and establishes an optimal competence framework for development with minimal risk of failure. Therefore, alpha-ketoglutarate is linked to improving reproductive performance, but further studies are needed due to a lack of studies on humans.
Collapse
Affiliation(s)
- Bogdan Doroftei
- Department of Mother and Child, Faculty of Medicine, University of Medicine and Pharmacy Grigore T. Popa, Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology Cuza Voda, Iasi, Romania
- Origyn Fertility Center, Iasi, Romania
| | - Ovidiu-Dumitru Ilie
- Department of Mother and Child, Faculty of Medicine, University of Medicine and Pharmacy Grigore T. Popa, Iasi, Romania
| | - Sergiu Timofeiov
- Department of Surgery, Faculty of Medicine, University of Medicine and Pharmacy Grigore T. Popa, Iasi, Romania
- 3rd Surgical Unit, St. Spiridon County Emergency Clinical Hospital, Iasi, Romania
| | - Ana-Maria Dabuleanu
- Clinical Hospital of Obstetrics and Gynecology Cuza Voda, Iasi, Romania
- Origyn Fertility Center, Iasi, Romania
| | - Ioana-Sadyie Scripcariu
- Department of Mother and Child, Faculty of Medicine, University of Medicine and Pharmacy Grigore T. Popa, Iasi, Romania
| | - Romeo Micu
- Department of Human Assisted Reproduction of 1st Gynecology Clinic, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Elena Tataranu
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
| |
Collapse
|
2
|
Marin H, Simental E, Allen C, Martin E, Panning B, Al-Sady B, Buchwalter A. The nuclear periphery confers repression on H3K9me2-marked genes and transposons to shape cell fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602542. [PMID: 39026839 PMCID: PMC11257442 DOI: 10.1101/2024.07.08.602542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Heterochromatic loci marked by histone H3 lysine 9 dimethylation (H3K9me2) are enriched at the nuclear periphery in metazoans, but the effect of spatial position on heterochromatin function has not been defined. Here, we remove three nuclear lamins and lamin B receptor (LBR) in mouse embryonic stem cells (mESCs) and show that heterochromatin detaches from the nuclear periphery. Mutant mESCs sustain naïve pluripotency and maintain H3K9me2 across the genome but cannot repress H3K9me2-marked genes or transposons. Further, mutant cells fail to differentiate into epiblast-like cells (EpiLCs), a transition that requires the expansion of H3K9me2 across the genome. Mutant EpiLCs can silence naïve pluripotency genes and activate epiblast-stage genes. However, H3K9me2 cannot repress markers of alternative fates, including primitive endoderm. We conclude that the nuclear periphery controls the spatial position, dynamic remodeling, and repressive capacity of H3K9me2-marked heterochromatin to shape cell fate decisions.
Collapse
Affiliation(s)
- Harold Marin
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Eric Simental
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Department of Biochemistry, University of California, San Francisco, CA, USA
| | - Charlie Allen
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Eric Martin
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Barbara Panning
- Department of Biochemistry, University of California, San Francisco, CA, USA
| | - Bassem Al-Sady
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
3
|
Policarpi C, Munafò M, Tsagkris S, Carlini V, Hackett JA. Systematic epigenome editing captures the context-dependent instructive function of chromatin modifications. Nat Genet 2024; 56:1168-1180. [PMID: 38724747 PMCID: PMC11176084 DOI: 10.1038/s41588-024-01706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/05/2024] [Indexed: 05/22/2024]
Abstract
Chromatin modifications are linked with regulating patterns of gene expression, but their causal role and context-dependent impact on transcription remains unresolved. Here we develop a modular epigenome editing platform that programs nine key chromatin modifications, or combinations thereof, to precise loci in living cells. We couple this with single-cell readouts to systematically quantitate the magnitude and heterogeneity of transcriptional responses elicited by each specific chromatin modification. Among these, we show that installing histone H3 lysine 4 trimethylation (H3K4me3) at promoters can causally instruct transcription by hierarchically remodeling the chromatin landscape. We further dissect how DNA sequence motifs influence the transcriptional impact of chromatin marks, identifying switch-like and attenuative effects within distinct cis contexts. Finally, we examine the interplay of combinatorial modifications, revealing that co-targeted H3K27 trimethylation (H3K27me3) and H2AK119 monoubiquitination (H2AK119ub) maximizes silencing penetrance across single cells. Our precision-perturbation strategy unveils the causal principles of how chromatin modification(s) influence transcription and dissects how quantitative responses are calibrated by contextual interactions.
Collapse
Affiliation(s)
- Cristina Policarpi
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Marzia Munafò
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Stylianos Tsagkris
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Valentina Carlini
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
- Faculty of Biosciences, EMBL and Heidelberg University, Heidelberg, Germany
| | - Jamie A Hackett
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy.
- Genome Biology Unit, EMBL, Heidelberg, Germany.
| |
Collapse
|
4
|
Li-Bao L, Díaz-Díaz C, Raiola M, Sierra R, Temiño S, Moya FJ, Rodriguez-Perales S, Santos E, Giovinazzo G, Bleckwehl T, Rada-Iglesias Á, Spitz F, Torres M. Regulation of Myc transcription by an enhancer cluster dedicated to pluripotency and early embryonic expression. Nat Commun 2024; 15:3931. [PMID: 38729993 PMCID: PMC11087473 DOI: 10.1038/s41467-024-48258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
MYC plays various roles in pluripotent stem cells, including the promotion of somatic cell reprogramming to pluripotency, the regulation of cell competition and the control of embryonic diapause. However, how Myc expression is regulated in this context remains unknown. The Myc gene lies within a ~ 3-megabase gene desert with multiple cis-regulatory elements. Here we use genomic rearrangements, transgenesis and targeted mutation to analyse Myc regulation in early mouse embryos and pluripotent stem cells. We identify a topologically-associated region that homes enhancers dedicated to Myc transcriptional regulation in stem cells of the pre-implantation and early post-implantation embryo. Within this region, we identify elements exclusively dedicated to Myc regulation in pluripotent cells, with distinct enhancers that sequentially activate during naive and formative pluripotency. Deletion of pluripotency-specific enhancers dampens embryonic stem cell competitive ability. These results identify a topologically defined enhancer cluster dedicated to early embryonic expression and uncover a modular mechanism for the regulation of Myc expression in different states of pluripotency.
Collapse
Affiliation(s)
- Lin Li-Bao
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Andaluz de Biología del Desarrollo (CABD), Sevilla, Spain
| | - Covadonga Díaz-Díaz
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Morena Raiola
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Rocío Sierra
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Susana Temiño
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco J Moya
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Elisa Santos
- Pluripotent Cell Technology Unit, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Giovanna Giovinazzo
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Pluripotent Cell Technology Unit, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Tore Bleckwehl
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Álvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/University of Cantabria, Santander, Spain
| | - Francois Spitz
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Miguel Torres
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
5
|
Xie J, Lin H, Zuo A, Shao J, Sun W, Wang S, Song J, Yao W, Luo Y, Sun J, Wang M. The JMJD family of histone demethylase and their intimate links to cardiovascular disease. Cell Signal 2024; 116:111046. [PMID: 38242266 DOI: 10.1016/j.cellsig.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The incidence rate and mortality rate of cardiovascular disease rank first in the world. It is associated with various high-risk factors, and there is no single cause. Epigenetic modifications, such as DNA methylation or histone modification, actively participate in the initiation and development of cardiovascular diseases. Histone lysine methylation is a type of histone post-translational modification. The human Jumonji C domain (JMJD) protein family consists of more than 30 members. JMJD proteins participate in many key nuclear processes and play a key role in the specific regulation of gene expression, DNA damage and repair, and DNA replication. Importantly, increasing evidence shows that JMJD proteins are abnormally expressed in cardiovascular diseases, which may be a potential mechanism for the occurrence and development of these diseases. Here, we discuss the key roles of JMJD proteins in various common cardiovascular diseases. This includes histone lysine demethylase, which has been studied in depth, and less-studied JMJD members. Furthermore, we focus on the epigenetic changes induced by each JMJD member, summarize recent research progress, and evaluate their relationship with cardiovascular diseases and therapeutic potential.
Collapse
Affiliation(s)
- Jiarun Xie
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Haoyu Lin
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Anna Zuo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Junqiao Shao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wei Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shaoting Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianda Song
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wang Yao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yanyu Luo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jia Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
6
|
Liu Z, Zhang X, Xu M, Hong JJ, Ciardiello A, Lei H, Shern JF, Thiele CJ. MYCN drives oncogenesis by cooperating with the histone methyltransferase G9a and the WDR5 adaptor to orchestrate global gene transcription. PLoS Biol 2024; 22:e3002240. [PMID: 38547242 PMCID: PMC11003700 DOI: 10.1371/journal.pbio.3002240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/09/2024] [Accepted: 02/28/2024] [Indexed: 04/11/2024] Open
Abstract
MYCN activates canonical MYC targets involved in ribosome biogenesis, protein synthesis, and represses neuronal differentiation genes to drive oncogenesis in neuroblastoma (NB). How MYCN orchestrates global gene expression remains incompletely understood. Our study finds that MYCN binds promoters to up-regulate canonical MYC targets but binds to both enhancers and promoters to repress differentiation genes. MYCN binding also increases H3K4me3 and H3K27ac on canonical MYC target promoters and decreases H3K27ac on neuronal differentiation gene enhancers and promoters. WDR5 facilitates MYCN promoter binding to activate canonical MYC target genes, whereas MYCN recruits G9a to enhancers to repress neuronal differentiation genes. Targeting both MYCN's active and repressive transcriptional activities using both WDR5 and G9a inhibitors synergistically suppresses NB growth. We demonstrate that MYCN cooperates with WDR5 and G9a to orchestrate global gene transcription. The targeting of both these cofactors is a novel therapeutic strategy to indirectly target the oncogenic activity of MYCN.
Collapse
Affiliation(s)
- Zhihui Liu
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Xiyuan Zhang
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Man Xu
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jason J. Hong
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Amanda Ciardiello
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Haiyan Lei
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jack F. Shern
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Carol J. Thiele
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
7
|
Meulders B, Marei WFA, Xhonneux I, Bols PEJ, Leroy JLMR. Effect of lipotoxicity on mitochondrial function and epigenetic programming during bovine in vitro embryo production. Sci Rep 2023; 13:21664. [PMID: 38066095 PMCID: PMC10709407 DOI: 10.1038/s41598-023-49184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Maternal metabolic disorders may cause lipotoxic effects on the developing oocyte. Understanding the timing at which this might disrupt embryo epigenetic programming and how this is linked with mitochondrial dysfunction is crucial for improving assisted reproductive treatments, but has not been investigated before. Therefore, we used a bovine in vitro model to investigate if pathophysiological palmitic acid (PA) concentrations during in vitro oocyte maturation and in vitro embryo culture alter embryo epigenetic patterns (DNA methylation (5mC) and histone acetylation/methylation (H3K9ac/H3K9me2)) compared to control (CONT) and solvent control (SCONT), at the zygote and morula stage. Secondly, we investigated if these epigenetic alterations are associated with mitochondrial dysfunction and changes in ATP production rate, or altered expression of epigenetic regulatory genes. Compared to SCONT, H3K9ac and H3K9me2 levels were increased in PA-derived zygotes. Also, 5mC and H3K9me2 levels were increased in PA-exposed morulae compared to SCONT. This was associated with complete inhibition of glycolytic ATP production in oocytes, increased mitochondrial membrane potential and complete inhibition of glycolytic ATP production in 4-cell embryos and reduced SOD2 expression in PA-exposed zygotes and morulae. For the first time, epigenetic alterations in metabolically compromised zygotes and morulae have been observed in parallel with mitochondrial dysfunction in the same study.
Collapse
Affiliation(s)
- Ben Meulders
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium.
| | - Waleed F A Marei
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Inne Xhonneux
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Peter E J Bols
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Jo L M R Leroy
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
8
|
Abstract
Enhancers are cis-regulatory elements that can stimulate gene expression from distance, and drive precise spatiotemporal gene expression profiles during development. Functional enhancers display specific features including an open chromatin conformation, Histone H3 lysine 27 acetylation, Histone H3 lysine 4 mono-methylation enrichment, and enhancer RNAs production. These features are modified upon developmental cues which impacts their activity. In this review, we describe the current state of knowledge about enhancer functions and the diverse chromatin signatures found on enhancers. We also discuss the dynamic changes of enhancer chromatin signatures, and their impact on lineage specific gene expression profiles, during development or cellular differentiation.
Collapse
Affiliation(s)
- Amandine Barral
- Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,CONTACT Amandine Barral Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania. 3400 Civic Blvd, Philadelphia, Pennsylvania19104, USA
| | - Jérôme Déjardin
- Biology of repetitive sequences, Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, Montpellier, France,Jérôme Déjardin Biology of repetitive sequences, Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, 141 rue de la Cardonille, Montpellier34000, France
| |
Collapse
|
9
|
Liu Z, Zhang X, Xu M, Hong JJ, Ciardiello A, Lei H, Shern JF, Thiele CJ. MYCN driven oncogenesis involves cooperation with WDR5 to activate canonical MYC targets and G9a to repress differentiation genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548643. [PMID: 37781575 PMCID: PMC10541123 DOI: 10.1101/2023.07.11.548643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
MYCN activates canonical MYC targets involved in ribosome biogenesis, protein synthesis and represses neuronal differentiation genes to drive oncogenesis in neuroblastoma (NB). How MYCN orchestrates global gene expression remains incompletely understood. Our study finds that MYCN binds promoters to up-regulate canonical MYC targets but binds to both enhancers and promoters to repress differentiation genes. MYCN-binding also increases H3K4me3 and H3K27ac on canonical MYC target promoters and decreases H3K27ac on neuronal differentiation gene enhancers and promoters. WDR5 is needed to facilitate MYCN promoter binding to activate canonical MYC target genes, whereas MYCN recruits G9a to enhancers to repress neuronal differentiation genes. Targeting both MYCN's active and repressive transcriptional activities using both WDR5 and G9a inhibitors synergistically suppresses NB growth. We demonstrate that MYCN cooperates with WDR5 and G9a to orchestrate global gene transcription. The targeting of both these cofactors is a novel therapeutic strategy to indirectly target the oncogenic activity of MYCN.
Collapse
Affiliation(s)
- Zhihui Liu
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Xiyuan Zhang
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Man Xu
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Jason J. Hong
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Amanda Ciardiello
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Haiyan Lei
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Jack F. Shern
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Carol J. Thiele
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
10
|
Haws SA, Miller LJ, La Luz DR, Kuznetsov VI, Trievel RC, Craciun G, Denu JM. Intrinsic catalytic properties of histone H3 lysine-9 methyltransferases preserve monomethylation levels under low S-adenosylmethionine. J Biol Chem 2023; 299:104938. [PMID: 37331600 PMCID: PMC10404681 DOI: 10.1016/j.jbc.2023.104938] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023] Open
Abstract
S-adenosylmethionine (SAM) is the methyl donor for site-specific methylation reactions on histone proteins, imparting key epigenetic information. During SAM-depleted conditions that can arise from dietary methionine restriction, lysine di- and tri-methylation are reduced while sites such as Histone-3 lysine-9 (H3K9) are actively maintained, allowing cells to restore higher-state methylation upon metabolic recovery. Here, we investigated if the intrinsic catalytic properties of H3K9 histone methyltransferases (HMTs) contribute to this epigenetic persistence. We employed systematic kinetic analyses and substrate binding assays using four recombinant H3K9 HMTs (i.e., EHMT1, EHMT2, SUV39H1, and SUV39H2). At both high and low (i.e., sub-saturating) SAM, all HMTs displayed the highest catalytic efficiency (kcat/KM) for monomethylation compared to di- and trimethylation on H3 peptide substrates. The favored monomethylation reaction was also reflected in kcat values, apart from SUV39H2 which displayed a similar kcat regardless of substrate methylation state. Using differentially methylated nucleosomes as substrates, kinetic analyses of EHMT1 and EHMT2 revealed similar catalytic preferences. Orthogonal binding assays revealed only small differences in substrate affinity across methylation states, suggesting that catalytic steps dictate the monomethylation preferences of EHMT1, EHMT2, and SUV39H1. To link in vitro catalytic rates with nuclear methylation dynamics, we built a mathematical model incorporating measured kinetic parameters and a time course of mass spectrometry-based H3K9 methylation measurements following cellular SAM depletion. The model revealed that the intrinsic kinetic constants of the catalytic domains could recapitulate in vivo observations. Together, these results suggest catalytic discrimination by H3K9 HMTs maintains nuclear H3K9me1, ensuring epigenetic persistence after metabolic stress.
Collapse
Affiliation(s)
- Spencer A Haws
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lillian J Miller
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Diego Rojas La Luz
- Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vyacheslav I Kuznetsov
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Raymond C Trievel
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Gheorghe Craciun
- Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John M Denu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
11
|
Stamidis N, Żylicz JJ. RNA-mediated heterochromatin formation at repetitive elements in mammals. EMBO J 2023; 42:e111717. [PMID: 36847618 PMCID: PMC10106986 DOI: 10.15252/embj.2022111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/12/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
The failure to repress transcription of repetitive genomic elements can lead to catastrophic genome instability and is associated with various human diseases. As such, multiple parallel mechanisms cooperate to ensure repression and heterochromatinization of these elements, especially during germline development and early embryogenesis. A vital question in the field is how specificity in establishing heterochromatin at repetitive elements is achieved. Apart from trans-acting protein factors, recent evidence points to a role of different RNA species in targeting repressive histone marks and DNA methylation to these sites in mammals. Here, we review recent discoveries on this topic and predominantly focus on the role of RNA methylation, piRNAs, and other localized satellite RNAs.
Collapse
Affiliation(s)
- Nikolaos Stamidis
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | - Jan Jakub Żylicz
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Hou C, Ye Z, Yang S, Jiang Z, Wang J, Wang E. Lysine demethylase 1B (Kdm1b) enhances somatic reprogramming through inducing pluripotent gene expression and promoting cell proliferation. Exp Cell Res 2022; 420:113339. [PMID: 36075448 DOI: 10.1016/j.yexcr.2022.113339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Lysine demethylase 1B (Kdm1b) is known as an epigenetic modifier with demethylase activity against H3K4 and H3K9 histones and plays an important role in tumor progression and tumor stem cell enrichment. In this study, we attempted to elucidate the role of Kdm1b in somatic cell reprogramming. We found that exogenous expression of Kdm1b in human dermal fibroblasts (HDFs) can influence the epigenetic modifications of histones. Subsequent analysis further suggests that the overexpression of Kdm1b can promote cell proliferation, reprogram metabolism and inhibit cell apoptosis. In addition, a series of multipotent factors including Sox2 and Nanog, and several epigenetic factors that may reduce epigenetic barriers were upregulated to varying degrees. More importantly, HDFs transfected with the combination of Oct4 (POU5F1), Sox2, Klf4 and c-Myc and Kdm1b (OSKMK) achieved higher reprogramming efficiency. Therefore, we suggest that Kdm1b is an important epigenetic factor associated with pluripotency.
Collapse
Affiliation(s)
- Cuicui Hou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; College of Chemistry, Jilin University, Changchun, Jilin, 130021, PR China
| | - Zhikai Ye
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Songqin Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Zhenlong Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China.
| | - Jin Wang
- Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, United States.
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; College of Chemistry, Jilin University, Changchun, Jilin, 130021, PR China.
| |
Collapse
|
13
|
Pladevall-Morera D, Zylicz JJ. Chromatin as a sensor of metabolic changes during early development. Front Cell Dev Biol 2022; 10:1014498. [PMID: 36299478 PMCID: PMC9588933 DOI: 10.3389/fcell.2022.1014498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular metabolism is a complex network of biochemical reactions fueling development with energy and biomass; however, it can also shape the cellular epigenome. Indeed, some intermediates of metabolic reactions exert a non-canonical function by acting as co-factors, substrates or inhibitors of chromatin modifying enzymes. Therefore, fluctuating availability of such molecules has the potential to regulate the epigenetic landscape. Thanks to this functional coupling, chromatin can act as a sensor of metabolic changes and thus impact cell fate. Growing evidence suggest that both metabolic and epigenetic reprogramming are crucial for ensuring a successful embryo development from the zygote until gastrulation. In this review, we provide an overview of the complex relationship between metabolism and epigenetics in regulating the early stages of mammalian embryo development. We report on recent breakthroughs in uncovering the non-canonical functions of metabolism especially when re-localized to the nucleus. In addition, we identify the challenges and outline future perspectives to advance the novel field of epi-metabolomics especially in the context of early development.
Collapse
Affiliation(s)
| | - Jan J. Zylicz
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Liu Y, Cui DX, Pan Y, Yu SH, Zheng LW, Wan M. Metabolic-epigenetic nexus in regulation of stem cell fate. World J Stem Cells 2022; 14:490-502. [PMID: 36157525 PMCID: PMC9350619 DOI: 10.4252/wjsc.v14.i7.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
Stem cell fate determination is one of the central questions in stem cell biology, and although its regulation has been studied at genomic and proteomic levels, a variety of biological activities in cells occur at the metabolic level. Metabolomics studies have established the metabolome during stem cell differentiation and have revealed the role of metabolites in stem cell fate determination. While metabolism is considered to play a biological regulatory role as an energy source, recent studies have suggested the nexus between metabolism and epigenetics because several metabolites function as cofactors and substrates in epigenetic mechanisms, including histone modification, DNA methylation, and microRNAs. Additionally, the epigenetic modification is sensitive to the dynamic metabolites and consequently leads to changes in transcription. The nexus between metabolism and epigenetics proposes a novel stem cell-based therapeutic strategy through manipulating metabolites. In the present review, we summarize the possible nexus between metabolic and epigenetic regulation in stem cell fate determination, and discuss the potential preventive and therapeutic strategies via targeting metabolites.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Di-Xin Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yue Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Si-Han Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Wei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mian Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
15
|
Tischler J, Swank Z, Hsiung HA, Vianello S, Lutolf MP, Maerkl SJ. An automated do-it-yourself system for dynamic stem cell and organoid culture in standard multi-well plates. CELL REPORTS METHODS 2022; 2:100244. [PMID: 35880022 PMCID: PMC9308133 DOI: 10.1016/j.crmeth.2022.100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022]
Abstract
We present a low-cost, do-it-yourself system for complex mammalian cell culture under dynamically changing medium formulations by integrating conventional multi-well tissue culture plates with simple microfluidic control and system automation. We demonstrate the generation of complex concentration profiles, enabling the investigation of sophisticated input-response relations. We further apply our automated cell-culturing platform to the dynamic stimulation of two widely employed stem-cell-based in vitro models for early mammalian development: the conversion of naive mouse embryonic stem cells into epiblast-like cells and mouse 3D gastruloids. Performing automated medium-switch experiments, we systematically investigate cell fate commitment along the developmental trajectory toward mouse epiblast fate and examine symmetry-breaking, germ layer formation, and cardiac differentiation in mouse 3D gastruloids as a function of time-varying Wnt pathway activation. With these proof-of-principle examples, we demonstrate a highly versatile and scalable tool that can be adapted to specific research questions, experimental demands, and model systems.
Collapse
Affiliation(s)
- Julia Tischler
- Laboratory of Biological Network Characterization, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Vaud, Switzerland
| | - Zoe Swank
- Laboratory of Biological Network Characterization, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Vaud, Switzerland
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hao-An Hsiung
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Vaud, Switzerland
| | - Stefano Vianello
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Vaud, Switzerland
| | - Matthias P. Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Vaud, Switzerland
- Roche Institute for Translational Bioengineering (TB), Pharma Research and Early Development (pRED), F. Hoffman-La Roche Ltd, Basel, Switzerland
| | - Sebastian J. Maerkl
- Laboratory of Biological Network Characterization, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Vaud, Switzerland
| |
Collapse
|
16
|
Greenstein RA, Ng H, Barrales RR, Tan C, Braun S, Al-Sady B. Local chromatin context regulates the genetic requirements of the heterochromatin spreading reaction. PLoS Genet 2022; 18:e1010201. [PMID: 35584134 PMCID: PMC9154106 DOI: 10.1371/journal.pgen.1010201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/31/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Heterochromatin spreading, the expansion of repressive chromatin structure from sequence-specific nucleation sites, is critical for stable gene silencing. Spreading re-establishes gene-poor constitutive heterochromatin across cell cycles but can also invade gene-rich euchromatin de novo to steer cell fate decisions. How chromatin context (i.e. euchromatic, heterochromatic) or different nucleation pathways influence heterochromatin spreading remains poorly understood. Previously, we developed a single-cell sensor in fission yeast that can separately record heterochromatic gene silencing at nucleation sequences and distal sites. Here we couple our quantitative assay to a genetic screen to identify genes encoding nuclear factors linked to the regulation of heterochromatin nucleation and the distal spreading of gene silencing. We find that mechanisms underlying gene silencing distal to a nucleation site differ by chromatin context. For example, Clr6 histone deacetylase complexes containing the Fkh2 transcription factor are specifically required for heterochromatin spreading at constitutive sites. Fkh2 recruits Clr6 to nucleation-distal chromatin sites in such contexts. In addition, we find that a number of chromatin remodeling complexes antagonize nucleation-distal gene silencing. Our results separate the regulation of heterochromatic gene silencing at nucleation versus distal sites and show that it is controlled by context-dependent mechanisms. The results of our genetic analysis constitute a broad community resource that will support further analysis of the mechanisms underlying the spread of epigenetic silencing along chromatin. Repressive structures, or heterochromatin, are seeded at specific genome sequences and then “spread” to silence nearby chromosomal regions. While much is known about the factors that seed heterochromatin, the genetic requirements for spreading are less clear. We devised a fission yeast single-cell method to examine how gene silencing is propagated by the heterochromatin spreading process specifically. Here we use this platform to ask if specific genes are required for the spreading process and whether the same or different genes direct spreading from different chromosomal seeding sites. We find a significant number of genes that specifically promote or antagonize the heterochromatin spreading process. However, different genes are required to enact spreading from different seeding sites. These results have potential implications for cell fate specification, where genes are newly silenced by heterochromatin spreading from diverse chromosomal sites. In a central finding, we show that the Clr6 protein complex, which removes chromatin marks linked to active genes, associates with the Forkhead 2 transcription factor to promote spreading of silencing structures from seeding sites at numerous chromosomal loci. In contrast, we show that proteins that remodel chromatin antagonize the spreading of gene silencing.
Collapse
Affiliation(s)
- R. A. Greenstein
- Department of Microbiology &Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, United States of America
- TETRAD graduate program, University of California San Francisco, San Francisco, California, United States of America
| | - Henry Ng
- Department of Microbiology &Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, United States of America
- TETRAD graduate program, University of California San Francisco, San Francisco, California, United States of America
| | - Ramon R. Barrales
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität of Munich, Planegg-Martinsried, Germany
| | - Catherine Tan
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Biomedical Sciences graduate program, University of California San Francisco, San Francisco, California, United States of America
| | - Sigurd Braun
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität of Munich, Planegg-Martinsried, Germany
- Institute for Genetics, Justus-Liebig University Giessen, Giessen, Germany
| | - Bassem Al-Sady
- Department of Microbiology &Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Bonefas KM, Iwase S. Soma-to-germline transformation in chromatin-linked neurodevelopmental disorders? FEBS J 2022; 289:2301-2317. [PMID: 34514717 PMCID: PMC8918023 DOI: 10.1111/febs.16196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/16/2021] [Accepted: 09/10/2021] [Indexed: 01/22/2023]
Abstract
Mutations in numerous chromatin regulators cause neurodevelopmental disorders (NDDs) with unknown mechanisms. Understandably, most research has focused on how chromatin regulators control gene expression that is directly relevant to brain development and function, such as synaptic genes. However, some NDD models surprisingly show ectopic expression of germline genes in the brain. These germline genes are usually expressed only in the primordial germ cells, testis, and ovaries for germ cell development and sexual reproduction. Such ectopic germline gene expression has been reported in several NDDs, including immunodeficiency, centromeric instability, facial anomalies syndrome 1; Kleefstra syndrome 1; MeCP2 duplication syndrome; and mental retardation, X-linked syndromic, Claes-Jensen type. The responsible genes, DNMT3B, G9A/GLP, MECP2, and KDM5C, all encode chromatin regulators for gene silencing. These mutations may therefore lead to germline gene derepression and, in turn, a severe identity crisis of brain cells-potentially interfering with normal brain development. Thus, the ectopic expression of germline genes is a unique hallmark defining this NDD subset and further implicates the importance of germline gene silencing during brain development. The functional impact of germline gene expression on brain development, however, remains undetermined. This perspective article explores how this apparent soma-to-germline transformation arises and how it may interfere with neurodevelopment through genomic instability and impaired sensory cilium formation. Furthermore, we also discuss how to test these hypotheses experimentally to ultimately determine the contribution of ectopic germline transcripts to chromatin-linked NDDs.
Collapse
Affiliation(s)
- Katherine M. Bonefas
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109,The University of Michigan Neuroscience Graduate Program,Corresponding authors: Please address correspondence to: , and
| | - Shigeki Iwase
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109,The University of Michigan Neuroscience Graduate Program,Corresponding authors: Please address correspondence to: , and
| |
Collapse
|
18
|
Borsuk E, Michalkiewicz J, Kubiak JZ, Kloc M. Histone Modifications in Mouse Pronuclei and Consequences for Embryo Development. Results Probl Cell Differ 2022; 70:397-415. [PMID: 36348116 DOI: 10.1007/978-3-031-06573-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Epigenetic marks, such as DNA methylation and posttranslational modifications of core histones, are the key regulators of gene expression. In the mouse, many of these marks are erased during gamete formation and must be introduced de novo after fertilization. Some of them appear synchronously, but the others are deposited asynchronously and/or remain differently distributed on maternal and paternal chromatin. Although the mechanisms regulating these processes are not entirely understandable, it is commonly accepted that epigenetic reprogramming occurring during the first cell cycle of a mouse embryo is crucial for its further development. This chapter focuses on selected epigenetic modifications, such as DNA methylation, the introduction of histone variants, histones acetylation, phosphorylation, and methylation. Properly depositing these marks on maternal and paternal chromatin is crucial for normal embryonic development.
Collapse
Affiliation(s)
- Ewa Borsuk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Julia Michalkiewicz
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jacek Z Kubiak
- Dynamics and Mechanics of Epithelia Group, Institute of Genetics and Development of Rennes, UMR 6290, CNRS, Faculty of Medicine, University of Rennes, Rennes, France
- Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
- Department of Genetics, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| |
Collapse
|
19
|
Ramakrishna NB, Murison K, Miska EA, Leitch HG. Epigenetic Regulation during Primordial Germ Cell Development and Differentiation. Sex Dev 2021; 15:411-431. [PMID: 34847550 DOI: 10.1159/000520412] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/10/2021] [Indexed: 11/19/2022] Open
Abstract
Germline development varies significantly across metazoans. However, mammalian primordial germ cell (PGC) development has key conserved landmarks, including a critical period of epigenetic reprogramming that precedes sex-specific differentiation and gametogenesis. Epigenetic alterations in the germline are of unique importance due to their potential to impact the next generation. Therefore, regulation of, and by, the non-coding genome is of utmost importance during these epigenomic events. Here, we detail the key chromatin changes that occur during mammalian PGC development and how these interact with the expression of non-coding RNAs alongside broader epitranscriptomic changes. We identify gaps in our current knowledge, in particular regarding epigenetic regulation in the human germline, and we highlight important areas of future research.
Collapse
Affiliation(s)
- Navin B Ramakrishna
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Genome Institute of Singapore, A*STAR, Biopolis, Singapore, Singapore
| | - Keir Murison
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Eric A Miska
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Harry G Leitch
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
20
|
Zeng TB, Pierce N, Liao J, Singh P, Lau K, Zhou W, Szabó PE. EHMT2 suppresses the variation of transcriptional switches in the mouse embryo. PLoS Genet 2021; 17:e1009908. [PMID: 34793451 PMCID: PMC8601470 DOI: 10.1371/journal.pgen.1009908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022] Open
Abstract
EHMT2 is the main euchromatic H3K9 methyltransferase. Embryos with zygotic, or maternal mutation in the Ehmt2 gene exhibit variable developmental delay. To understand how EHMT2 prevents variable developmental delay we performed RNA sequencing of mutant and somite stage-matched normal embryos at 8.5–9.5 days of gestation. Using four-way comparisons between delayed and normal embryos we clarified what it takes to be normal and what it takes to develop. We identified differentially expressed genes, for example Hox genes that simply reflected the difference in developmental progression of wild type and the delayed mutant uterus-mate embryos. By comparing wild type and zygotic mutant embryos along the same developmental window we detected a role of EHMT2 in suppressing variation in the transcriptional switches. We identified transcription changes where precise switching during development occurred only in the normal but not in the mutant embryo. At the 6-somite stage, gastrulation-specific genes were not precisely switched off in the Ehmt2−/− zygotic mutant embryos, while genes involved in organ growth, connective tissue development, striated muscle development, muscle differentiation, and cartilage development were not precisely switched on. The Ehmt2mat−/+ maternal mutant embryos displayed high transcriptional variation consistent with their variable survival. Variable derepression of transcripts occurred dominantly in the maternally inherited allele. Transcription was normal in the parental haploinsufficient wild type embryos despite their delay, consistent with their good prospects. Global profiling of transposable elements revealed EHMT2 targeted DNA methylation and suppression at LTR repeats, mostly ERVKs. In Ehmt2−/− embryos, transcription over very long distances initiated from such misregulated ‘driver’ ERVK repeats, encompassing a multitude of misexpressed ‘passenger’ repeats. In summary, EHMT2 reduced transcriptional variation of developmental switch genes and developmentally switching repeat elements at the six-somite stage embryos. These findings establish EHMT2 as a suppressor of transcriptional and developmental variation at the transition between gastrulation and organ specification. Developmental variation is the property of normal development, and its regulation is poorly understood. Variable developmental delay is found in embryos that carry mutations of epigenetic modifiers, suggesting a role of chromatin in controlling developmental delay and its variable nature. We analyzed a genetic series of mutations and found that EHMT2 suppresses variation of developmental delay and also suppresses the variation of transcriptional switches at the transition between gastrulation and organ specification.
Collapse
Affiliation(s)
- Tie-Bo Zeng
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - Nicholas Pierce
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - Ji Liao
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - Purnima Singh
- Division of Molecular and Cellular Biology, City of Hope Cancer Center, Duarte, California, United States of America
| | - Kin Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - Wanding Zhou
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - Piroska E. Szabó
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, United States of America
- * E-mail:
| |
Collapse
|
21
|
Emerging role of G9a in cancer stemness and promises as a therapeutic target. Oncogenesis 2021; 10:76. [PMID: 34775469 PMCID: PMC8590690 DOI: 10.1038/s41389-021-00370-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
The histone methyltransferase G9a is well-documented for its implication in neoplastic growth. However, recent investigations have demonstrated a key involvement of this chromatin writer in maintaining the self-renewal and tumor-initiating capacities of cancer stem cells (CSCs). Direct inhibition of G9a’s catalytic activity was reported as a promising therapeutic target in multiple preclinical studies. Yet, none of the available pharmacological inhibitors of G9a activity have shown success at the early stages of clinical testing. Here, we discuss central findings of oncogenic expression and activation of G9a in CSCs from different origins, as well as the impact of the suppression of G9a histone methyltransferase activity in such contexts. We will explore the challenges posed by direct and systemic inhibition of G9a activity in the perspective of clinical translation of documented small molecules. Finally, we will discuss recent advances in drug discovery as viable strategies to develop context-specific drugs, selectively targeting G9a in CSC populations.
Collapse
|
22
|
Andergassen D, Smith ZD, Kretzmer H, Rinn JL, Meissner A. Diverse epigenetic mechanisms maintain parental imprints within the embryonic and extraembryonic lineages. Dev Cell 2021; 56:2995-3005.e4. [PMID: 34752748 DOI: 10.1016/j.devcel.2021.10.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/06/2021] [Accepted: 10/12/2021] [Indexed: 11/20/2022]
Abstract
Genomic imprinting and X chromosome inactivation (XCI) require epigenetic mechanisms to encode allele-specific expression, but how these specific tasks are accomplished at single loci or across chromosomal scales remains incompletely understood. Here, we systematically disrupt essential epigenetic pathways within polymorphic embryos in order to examine canonical and non-canonical genomic imprinting as well as XCI. We find that DNA methylation and Polycomb group repressors are indispensable for autosomal imprinting, albeit at distinct gene sets. Moreover, the extraembryonic ectoderm relies on a broader spectrum of imprinting mechanisms, including non-canonical targeting of maternal endogenous retrovirus (ERV)-driven promoters by the H3K9 methyltransferase G9a. We further identify Polycomb-dependent and -independent gene clusters on the imprinted X chromosome, which appear to reflect distinct domains of Xist-mediated suppression. From our data, we assemble a comprehensive inventory of the epigenetic pathways that maintain parent-specific imprinting in eutherian mammals, including an expanded view of the placental lineage.
Collapse
Affiliation(s)
- Daniel Andergassen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Institute of Pharmacology and Toxicology, Technical University Munich (TUM), Munich 80802, Germany
| | - Zachary D Smith
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Yale Stem Cell Center, Department of Genetics, Yale School of Medicine, New Haven, CT 06519, USA
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder 80303, USA
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany.
| |
Collapse
|
23
|
Sanchez NA, Kallweit LM, Trnka MJ, Clemmer CL, Al-Sady B. Heterodimerization of H3K9 histone methyltransferases G9a and GLP activates methyl reading and writing capabilities. J Biol Chem 2021; 297:101276. [PMID: 34619147 PMCID: PMC8564726 DOI: 10.1016/j.jbc.2021.101276] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022] Open
Abstract
Unique among metazoan repressive histone methyltransferases, G9a and GLP, which chiefly target histone 3 lysine 9 (H3K9), require dimerization for productive H3K9 mono (me1)- and dimethylation (me2) in vivo. Intriguingly, even though each enzyme can independently methylate H3K9, the predominant active form in vivo is a heterodimer of G9a and GLP. How dimerization influences the central H3K9 methyl binding ("reading") and deposition ("writing") activity of G9a and GLP and why heterodimerization is essential in vivo remains opaque. Here, we examine the H3K9me "reading" and "writing" activities of defined, recombinantly produced homo- and heterodimers of G9a and GLP. We find that both reading and writing are significantly enhanced in the heterodimer. Compared with the homodimers, the heterodimer has higher recognition of H3K9me2, and a striking ∼10-fold increased turnover rate for nucleosomal substrates under multiple turnover conditions, which is not evident on histone tail peptide substrates. Cross-linking Mass Spectrometry suggests that differences between the homodimers and the unique activity of the heterodimer may be encoded in altered ground state conformations, as each dimer displays different domain contacts. Our results indicate that heterodimerization may be required to relieve autoinhibition of H3K9me reading and chromatin methylation evident in G9a and GLP homodimers. Relieving this inhibition may be particularly important in early differentiation when large tracts of H3K9me2 are typically deposited by G9a-GLP, which may require a more active form of the enzyme.
Collapse
Affiliation(s)
- Nicholas A Sanchez
- Department of Microbiology & Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, USA; TETRAD Graduate Program, University of California San Francisco, San Francisco, California, USA
| | - Lena M Kallweit
- Department of Microbiology & Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, USA
| | - Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Charles L Clemmer
- Department of Microbiology & Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, USA
| | - Bassem Al-Sady
- Department of Microbiology & Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
24
|
Enhancer-associated H3K4 methylation safeguards in vitro germline competence. Nat Commun 2021; 12:5771. [PMID: 34599190 PMCID: PMC8486853 DOI: 10.1038/s41467-021-26065-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/16/2021] [Indexed: 01/27/2023] Open
Abstract
Germline specification in mammals occurs through an inductive process whereby competent cells in the post-implantation epiblast differentiate into primordial germ cells (PGC). The intrinsic factors that endow epiblast cells with the competence to respond to germline inductive signals remain unknown. Single-cell RNA sequencing across multiple stages of an in vitro PGC-like cells (PGCLC) differentiation system shows that PGCLC genes initially expressed in the naïve pluripotent stage become homogeneously dismantled in germline competent epiblast like-cells (EpiLC). In contrast, the decommissioning of enhancers associated with these germline genes is incomplete. Namely, a subset of these enhancers partly retain H3K4me1, accumulate less heterochromatic marks and remain accessible and responsive to transcriptional activators. Subsequently, as in vitro germline competence is lost, these enhancers get further decommissioned and lose their responsiveness to transcriptional activators. Importantly, using H3K4me1-deficient cells, we show that the loss of this histone modification reduces the germline competence of EpiLC and decreases PGCLC differentiation efficiency. Our work suggests that, although H3K4me1 might not be essential for enhancer function, it can facilitate the (re)activation of enhancers and the establishment of gene expression programs during specific developmental transitions.
Collapse
|
25
|
Verdikt R, Allard P. Metabolo-epigenetics: the interplay of metabolism and epigenetics during early germ cells development. Biol Reprod 2021; 105:616-624. [PMID: 34132770 PMCID: PMC8444669 DOI: 10.1093/biolre/ioab118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022] Open
Abstract
Metabolites control epigenetic mechanisms, and conversly, cell metabolism is regulated at the epigenetic level in response to changes in the cellular environment. In recent years, this metabolo-epigenetic control of gene expression has been implicated in the regulation of multiple stages of embryonic development. The developmental potency of stem cells and their embryonic counterparts is directly determined by metabolic rewiring. Here, we review the current knowledge on the interplay between epigenetics and metabolism in the specific context of early germ cell development. We explore the implications of metabolic rewiring in primordial germ cells in light of their epigenetic remodeling during cell fate determination. Finally, we discuss the relevance of concerted metabolic and epigenetic regulation of primordial germ cells in the context of mammalian transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Roxane Verdikt
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Patrick Allard
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
26
|
Building Pluripotency Identity in the Early Embryo and Derived Stem Cells. Cells 2021; 10:cells10082049. [PMID: 34440818 PMCID: PMC8391114 DOI: 10.3390/cells10082049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The fusion of two highly differentiated cells, an oocyte with a spermatozoon, gives rise to the zygote, a single totipotent cell, which has the capability to develop into a complete, fully functional organism. Then, as development proceeds, a series of programmed cell divisions occur whereby the arising cells progressively acquire their own cellular and molecular identity, and totipotency narrows until when pluripotency is achieved. The path towards pluripotency involves transcriptome modulation, remodeling of the chromatin epigenetic landscape to which external modulators contribute. Both human and mouse embryos are a source of different types of pluripotent stem cells whose characteristics can be captured and maintained in vitro. The main aim of this review is to address the cellular properties and the molecular signature of the emerging cells during mouse and human early development, highlighting similarities and differences between the two species and between the embryos and their cognate stem cells.
Collapse
|
27
|
Crispatzu G, Rehimi R, Pachano T, Bleckwehl T, Cruz-Molina S, Xiao C, Mahabir E, Bazzi H, Rada-Iglesias A. The chromatin, topological and regulatory properties of pluripotency-associated poised enhancers are conserved in vivo. Nat Commun 2021; 12:4344. [PMID: 34272393 PMCID: PMC8285398 DOI: 10.1038/s41467-021-24641-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Poised enhancers (PEs) represent a genetically distinct set of distal regulatory elements that control the expression of major developmental genes. Before becoming activated in differentiating cells, PEs are already bookmarked in pluripotent cells with unique chromatin and topological features that could contribute to their privileged regulatory properties. However, since PEs were originally characterized in embryonic stem cells (ESC), it is currently unknown whether PEs are functionally conserved in vivo. Here, we show that the chromatin and 3D structural features of PEs are conserved among mouse pluripotent cells both in vitro and in vivo. We also uncovered that the interactions between PEs and their target genes are globally controlled by the combined action of Polycomb, Trithorax and architectural proteins. Moreover, distal regulatory sequences located close to developmental genes and displaying the typical genetic (i.e. CpG islands) and chromatin (i.e. high accessibility and H3K27me3 levels) features of PEs are commonly found across vertebrates. These putative PEs show high sequence conservation within specific vertebrate clades, with only a few being evolutionary conserved across all vertebrates. Lastly, by genetically disrupting PEs in mouse and chicken embryos, we demonstrate that these regulatory elements play essential roles during the induction of major developmental genes in vivo.
Collapse
Affiliation(s)
- Giuliano Crispatzu
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Department of Internal Medicine II, University Hospital Cologne, Cologne, Germany.
- Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany.
| | - Rizwan Rehimi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Tomas Pachano
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Tore Bleckwehl
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sara Cruz-Molina
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Cally Xiao
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany
- Department of Dermatology and Venereology, University Hospital Cologne, Cologne, Germany
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Esther Mahabir
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hisham Bazzi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany
- Department of Dermatology and Venereology, University Hospital Cologne, Cologne, Germany
| | - Alvaro Rada-Iglesias
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany.
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN, Santander, Spain.
| |
Collapse
|
28
|
Pachano T, Sánchez-Gaya V, Ealo T, Mariner-Faulí M, Bleckwehl T, Asenjo HG, Respuela P, Cruz-Molina S, Muñoz-San Martín M, Haro E, van IJcken WFJ, Landeira D, Rada-Iglesias A. Orphan CpG islands amplify poised enhancer regulatory activity and determine target gene responsiveness. Nat Genet 2021; 53:1036-1049. [PMID: 34183853 PMCID: PMC7611182 DOI: 10.1038/s41588-021-00888-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
CpG islands (CGIs) represent a widespread feature of vertebrate genomes, being associated with ~70% of all gene promoters. CGIs control transcription initiation by conferring nearby promoters with unique chromatin properties. In addition, there are thousands of distal or orphan CGIs (oCGIs) whose functional relevance is barely known. Here we show that oCGIs are an essential component of poised enhancers that augment their long-range regulatory activity and control the responsiveness of their target genes. Using a knock-in strategy in mouse embryonic stem cells, we introduced poised enhancers with or without oCGIs within topologically associating domains harboring genes with different types of promoters. Analysis of the resulting cell lines revealed that oCGIs act as tethering elements that promote the physical and functional communication between poised enhancers and distally located genes, particularly those with large CGI clusters in their promoters. Therefore, by acting as genetic determinants of gene-enhancer compatibility, CGIs can contribute to gene expression control under both physiological and potentially pathological conditions.
Collapse
Affiliation(s)
- Tomas Pachano
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Víctor Sánchez-Gaya
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Thais Ealo
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Maria Mariner-Faulí
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Tore Bleckwehl
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Helena G Asenjo
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Hospital Virgen de las Nieves, Granada, Spain
| | - Patricia Respuela
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Sara Cruz-Molina
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - María Muñoz-San Martín
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | - Endika Haro
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain
| | | | - David Landeira
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Hospital Virgen de las Nieves, Granada, Spain
| | - Alvaro Rada-Iglesias
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Santander, Spain.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
29
|
Avgustinova A, Laudanna C, Pascual-García M, Rovira Q, Djurec M, Castellanos A, Urdiroz-Urricelqui U, Marchese D, Prats N, Van Keymeulen A, Heyn H, Vaquerizas JM, Benitah SA. Repression of endogenous retroviruses prevents antiviral immune response and is required for mammary gland development. Cell Stem Cell 2021; 28:1790-1804.e8. [PMID: 34010627 DOI: 10.1016/j.stem.2021.04.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 01/18/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
The role of heterochromatin in cell fate specification during development is unclear. We demonstrate that loss of the lysine 9 of histone H3 (H3K9) methyltransferase G9a in the mammary epithelium results in de novo chromatin opening, aberrant formation of the mammary ductal tree, impaired stem cell potential, disrupted intraductal polarity, and loss of tissue function. G9a loss derepresses long terminal repeat (LTR) retroviral sequences (predominantly the ERVK family). Transcriptionally activated endogenous retroviruses generate double-stranded DNA (dsDNA) that triggers an antiviral innate immune response, and knockdown of the cytosolic dsDNA sensor Aim2 in G9a knockout (G9acKO) mammary epithelium rescues mammary ductal invasion. Mammary stem cell transplantation into immunocompromised or G9acKO-conditioned hosts shows partial dependence of the G9acKO mammary morphological defects on the inflammatory milieu of the host mammary fat pad. Thus, altering the chromatin accessibility of retroviral elements disrupts mammary gland development and stem cell activity through both cell-autonomous and non-autonomous mechanisms.
Collapse
Affiliation(s)
- Alexandra Avgustinova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Carmelo Laudanna
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Mónica Pascual-García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Quirze Rovira
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Magdolna Djurec
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Andres Castellanos
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Uxue Urdiroz-Urricelqui
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Domenica Marchese
- CNAG-CRG, Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Holger Heyn
- CNAG-CRG, Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
30
|
Cai S, Quan S, Yang G, Chen M, Ye Q, Wang G, Yu H, Wang Y, Qiao S, Zeng X. Nutritional Status Impacts Epigenetic Regulation in Early Embryo Development: A Scoping Review. Adv Nutr 2021; 12:1877-1892. [PMID: 33873200 PMCID: PMC8483970 DOI: 10.1093/advances/nmab038] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/03/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
With the increasing maternal age and the use of assisted reproductive technology in various countries worldwide, the influence of epigenetic modification on embryonic development is increasingly notable and prominent. Epigenetic modification disorders caused by various nutritional imbalance would cause embryonic development abnormalities and even have an indelible impact on health in adulthood. In this scoping review, we summarize the main epigenetic modifications in mammals and the synergies among different epigenetic modifications, especially DNA methylation, histone acetylation, and histone methylation. We performed an in-depth analysis of the regulation of various epigenetic modifications on mammals from zygote formation to cleavage stage and blastocyst stage, and reviewed the modifications of key sites and their potential molecular mechanisms. In addition, we discuss the effects of nutrition (protein, lipids, and one-carbon metabolism) on epigenetic modification in embryos and emphasize the importance of various nutrients in embryonic development and epigenetics during pregnancy. Failures in epigenetic regulation have been implicated in mammalian and human early embryo loss and disease. With the use of reproductive technologies, it is becoming even more important to establish developmentally competent embryos. Therefore, it is essential to evaluate the extent to which embryos are sensitive to these epigenetic modifications and nutrition status. Understanding the epigenetic regulation of early embryo development will help us make better use of reproductive technologies and nutrition regulation to improve reproductive health in mammals.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shuang Quan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Guangxin Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Qianhong Ye
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Gang Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Yuming Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | | |
Collapse
|
31
|
Kinoshita M, Barber M, Mansfield W, Cui Y, Spindlow D, Stirparo GG, Dietmann S, Nichols J, Smith A. Capture of Mouse and Human Stem Cells with Features of Formative Pluripotency. Cell Stem Cell 2021; 28:453-471.e8. [PMID: 33271069 PMCID: PMC7939546 DOI: 10.1016/j.stem.2020.11.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/03/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Pluripotent cells emerge as a naive founder population in the blastocyst, acquire capacity for germline and soma formation, and then undergo lineage priming. Mouse embryonic stem cells (ESCs) and epiblast-derived stem cells (EpiSCs) represent the initial naive and final primed phases of pluripotency, respectively. Here, we investigate the intermediate formative stage. Using minimal exposure to specification cues, we derive stem cells from formative mouse epiblast. Unlike ESCs or EpiSCs, formative stem (FS) cells respond directly to germ cell induction. They colonize somatic tissues and germline in chimeras. Whole-transcriptome analyses show similarity to pre-gastrulation formative epiblast. Signal responsiveness and chromatin accessibility features reflect lineage capacitation. Furthermore, FS cells show distinct transcription factor dependencies, relying critically on Otx2. Finally, FS cell culture conditions applied to human naive cells or embryos support expansion of similar stem cells, consistent with a conserved staging post on the trajectory of mammalian pluripotency.
Collapse
Affiliation(s)
- Masaki Kinoshita
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK.
| | - Michael Barber
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - William Mansfield
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Yingzhi Cui
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Daniel Spindlow
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Giuliano Giuseppe Stirparo
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Sabine Dietmann
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Jennifer Nichols
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Austin Smith
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
32
|
Tjalsma SJD, Hori M, Sato Y, Bousard A, Ohi A, Raposo AC, Roensch J, Le Saux A, Nogami J, Maehara K, Kujirai T, Handa T, Bagés‐Arnal S, Ohkawa Y, Kurumizaka H, da Rocha ST, Żylicz JJ, Kimura H, Heard E. H4K20me1 and H3K27me3 are concurrently loaded onto the inactive X chromosome but dispensable for inducing gene silencing. EMBO Rep 2021; 22:e51989. [PMID: 33605056 PMCID: PMC7926250 DOI: 10.15252/embr.202051989] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
During X chromosome inactivation (XCI), in female placental mammals, gene silencing is initiated by the Xist long non-coding RNA. Xist accumulation at the X leads to enrichment of specific chromatin marks, including PRC2-dependent H3K27me3 and SETD8-dependent H4K20me1. However, the dynamics of this process in relation to Xist RNA accumulation remains unknown as is the involvement of H4K20me1 in initiating gene silencing. To follow XCI dynamics in living cells, we developed a genetically encoded, H3K27me3-specific intracellular antibody or H3K27me3-mintbody. By combining live-cell imaging of H3K27me3, H4K20me1, the X chromosome and Xist RNA, with ChIP-seq analysis we uncover concurrent accumulation of both marks during XCI, albeit with distinct genomic distributions. Furthermore, using a Xist B and C repeat mutant, which still shows gene silencing on the X but not H3K27me3 deposition, we also find a complete lack of H4K20me1 enrichment. This demonstrates that H4K20me1 is dispensable for the initiation of gene silencing, although it may have a role in the chromatin compaction that characterises facultative heterochromatin.
Collapse
Affiliation(s)
- Sjoerd J D Tjalsma
- Mammalian Developmental Epigenetics GroupInstitut CurieCNRS UMR3215, INSERM U934PSL UniversityParisFrance
| | - Mayako Hori
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Yuko Sato
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Aurelie Bousard
- Mammalian Developmental Epigenetics GroupInstitut CurieCNRS UMR3215, INSERM U934PSL UniversityParisFrance
| | - Akito Ohi
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Ana Cláudia Raposo
- Faculdade de MedicinaInstituto de Medicina MolecularJoão Lobo AntunesUniversidade de LisboaLisboaPortugal
| | - Julia Roensch
- Mammalian Developmental Epigenetics GroupInstitut CurieCNRS UMR3215, INSERM U934PSL UniversityParisFrance
| | - Agnes Le Saux
- Mammalian Developmental Epigenetics GroupInstitut CurieCNRS UMR3215, INSERM U934PSL UniversityParisFrance
| | - Jumpei Nogami
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Kazumitsu Maehara
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Tomoya Kujirai
- Institute for Quantitative BiosciencesThe University of TokyoTokyoJapan
| | - Tetsuya Handa
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Sandra Bagés‐Arnal
- The Novo Nordisk Foundation Center for Stem Cell BiologyCopenhagenDenmark
| | - Yasuyuki Ohkawa
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | | | - Simão Teixeira da Rocha
- Faculdade de MedicinaInstituto de Medicina MolecularJoão Lobo AntunesUniversidade de LisboaLisboaPortugal
| | - Jan J Żylicz
- Mammalian Developmental Epigenetics GroupInstitut CurieCNRS UMR3215, INSERM U934PSL UniversityParisFrance
- The Novo Nordisk Foundation Center for Stem Cell BiologyCopenhagenDenmark
- Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Hiroshi Kimura
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Edith Heard
- EMBL HeidelbergHeidelbergGermany
- Collège de FranceParisFrance
| |
Collapse
|
33
|
Li G, Deng L, Huang N, Sun F. The Biological Roles of lncRNAs and Future Prospects in Clinical Application. Diseases 2021; 9:diseases9010008. [PMID: 33450825 PMCID: PMC7838801 DOI: 10.3390/diseases9010008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Chemo and radiation therapies are the most commonly used therapies for cancer, but they can induce DNA damage, resulting in the apoptosis of host cells. DNA double-stranded breaks (DSBs) are the most lethal form of DNA damage in cells, which are constantly caused by a wide variety of genotoxic agents, both environmentally and endogenously. To maintain genomic integrity, eukaryotic organisms have developed a complex mechanism for the repair of DNA damage. Researches reported that many cellular long noncoding RNAs (lncRNAs) were involved in the response of DNA damage. The roles of lncRNAs in DNA damage response can be regulated by the dynamic modification of N6-adenosine methylation (m6A). The cellular accumulation of DNA damage can result in various diseases, including cancers. Additionally, lncRNAs also play roles in controlling the gene expression and regulation of autophagy, which are indirectly involved with individual development. The dysregulation of these functions can facilitate human tumorigenesis. In this review, we summarized the origin and overview function of lncRNAs and highlighted the roles of lncRNAs involved in the repair of DNA damage.
Collapse
Affiliation(s)
- Guohui Li
- School of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China; (G.L.); (L.D.)
| | - Liang Deng
- School of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China; (G.L.); (L.D.)
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China;
| | - Nan Huang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China;
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China;
- Correspondence: ; Tel.: +86-021-6630-6909
| |
Collapse
|
34
|
Jan S, Dar MI, Wani R, Sandey J, Mushtaq I, Lateef S, Syed SH. Targeting EHMT2/ G9a for cancer therapy: Progress and perspective. Eur J Pharmacol 2020; 893:173827. [PMID: 33347828 DOI: 10.1016/j.ejphar.2020.173827] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Euchromatic histone lysine methyltransferase-2, also known as G9a, is a ubiquitously expressed SET domain-containing histone lysine methyltransferase linked with both facultative and constitutive heterochromatin formation and transcriptional repression. It is an essential developmental gene and reported to play role in embryonic development, establishment of proviral silencing in ES cells, tumor cell growth, metastasis, T-cell immune response, cocaine induced neural plasticity and cognition and adaptive behavior. It is mainly responsible for carrying out mono, di and tri methylation of histone H3K9 in euchromatin. G9a levels are elevated in many cancers and its selective inhibition is known to reduce the cell growth and induce autophagy, apoptosis and senescence. We carried out a thorough search of online literature databases including Pubmed, Scopus, Journal websites, Clinical trials etc to gather the maximum possible information related to the G9a. The main messages from the cited papers are presented in a systematic manner. Chemical structures were drawn by Chemdraw software. In this review, we shed light on current understanding of structure and biological activity of G9a, the molecular events directing its targeting to genomic regions and its post-translational modification. Finally, we discuss the current strategies to target G9a in different cancers and evaluate the available compounds and agents used to inhibit G9a functions. The review provides the present status and future directions of research in targeting G9a and provides the basis to persuade the development of novel strategies to target G9a -related effects in cancer cells.
Collapse
Affiliation(s)
- Suraya Jan
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohd Ishaq Dar
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rubiada Wani
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jagjeet Sandey
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Iqra Mushtaq
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sammar Lateef
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sajad Hussain Syed
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
35
|
Lysine demethylase 7a regulates murine anterior-posterior development by modulating the transcription of Hox gene cluster. Commun Biol 2020; 3:725. [PMID: 33257809 PMCID: PMC7704666 DOI: 10.1038/s42003-020-01456-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/28/2020] [Indexed: 11/21/2022] Open
Abstract
Temporal and spatial colinear expression of the Hox genes determines the specification of positional identities during vertebrate development. Post-translational modifications of histones contribute to transcriptional regulation. Lysine demethylase 7A (Kdm7a) demethylates lysine 9 or 27 di-methylation of histone H3 (H3K9me2, H3K27me2) and participates in the transcriptional activation of developmental genes. However, the role of Kdm7a during mouse embryonic development remains to be elucidated. Herein, we show that Kdm7a−/− mouse exhibits an anterior homeotic transformation of the axial skeleton, including an increased number of presacral elements. Importantly, posterior Hox genes (caudally from Hox9) are specifically downregulated in the Kdm7a−/− embryo, which correlates with increased levels of H3K9me2, not H3K27me2. These observations suggest that Kdm7a controls the transcription of posterior Hox genes, likely via its demethylating activity, and thereby regulating the murine anterior-posterior development. Such epigenetic regulatory mechanisms may be harnessed for proper control of coordinate body patterning in vertebrates. Higashijima et al show that mice lacking the Kdm7a demethylase exhibits anterior homeotic transformation of the axial skeleton and downregulation of posterior Hox gene transcription and these changes are associated with increased H3K9me2 at posterior Hox loci. These findings provide insights into the epigenetic control of Hox-mediated patterning in embryogenesis.
Collapse
|
36
|
Jiang Q, Ang JYJ, Lee AY, Cao Q, Li KY, Yip KY, Leung DCY. G9a Plays Distinct Roles in Maintaining DNA Methylation, Retrotransposon Silencing, and Chromatin Looping. Cell Rep 2020; 33:108315. [PMID: 33113380 DOI: 10.1016/j.celrep.2020.108315] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
G9a is a lysine methyltransferase that regulates epigenetic modifications, transcription, and genome organization. However, whether these properties are dependent on one another or represent distinct functions of G9a remains unclear. In this study, we observe widespread DNA methylation loss in G9a depleted and catalytic mutant embryonic stem cells. Furthermore, we define how G9a regulates chromatin accessibility, epigenetic modifications, and transcriptional silencing in both catalytic-dependent and -independent manners. Reactivated retrotransposons provide alternative promoters and splice sites leading to the upregulation of neighboring genes and the production of chimeric transcripts. Moreover, while topologically associated domains and compartment A/B definitions are largely unaffected, the loss of G9a leads to altered chromatin states, aberrant CTCF and cohesin binding, and differential chromatin looping, especially at retrotransposons. Taken together, our findings reveal how G9a regulates the epigenome, transcriptome, and higher-order chromatin structures in distinct mechanisms.
Collapse
Affiliation(s)
- Qinghong Jiang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Julie Y J Ang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ah Young Lee
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qin Cao
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Kelly Y Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Y Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Danny C Y Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
37
|
Wajda A, Łapczuk-Romańska J, Paradowska-Gorycka A. Epigenetic Regulations of AhR in the Aspect of Immunomodulation. Int J Mol Sci 2020; 21:E6404. [PMID: 32899152 PMCID: PMC7504141 DOI: 10.3390/ijms21176404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Environmental factors contribute to autoimmune disease manifestation, and as regarded today, AhR has become an important factor in studies of immunomodulation. Besides immunological aspects, AhR also plays a role in pharmacological, toxicological and many other physiological processes such as adaptive metabolism. In recent years, epigenetic mechanisms have provided new insight into gene regulation and reveal a new contribution to autoimmune disease pathogenesis. DNA methylation, histone modifications, chromatin alterations, microRNA and consequently non-genetic changes in phenotypes connect with environmental factors. Increasing data reveals AhR cross-roads with the most significant in immunology pathways. Although study on epigenetic modulations in autoimmune diseases is still not well understood, therefore future research will help us understand their pathophysiology and help to find new therapeutic strategies. Present literature review sheds the light on the common ground between remodeling chromatin compounds and autoimmune antibodies used in diagnostics. In the proposed review we summarize recent findings that describe epigenetic factors which regulate AhR activity and impact diverse immunological responses and pathological changes.
Collapse
Affiliation(s)
- Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| | - Joanna Łapczuk-Romańska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| |
Collapse
|
38
|
Żylicz JJ, Heard E. Molecular Mechanisms of Facultative Heterochromatin Formation: An X-Chromosome Perspective. Annu Rev Biochem 2020; 89:255-282. [PMID: 32259458 DOI: 10.1146/annurev-biochem-062917-012655] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Facultative heterochromatin (fHC) concerns the developmentally regulated heterochromatinization of different regions of the genome and, in the case of the mammalian X chromosome and imprinted loci, of only one allele of a homologous pair. The formation of fHC participates in the timely repression of genes, by resisting strong trans activators. In this review, we discuss the molecular mechanisms underlying the establishment and maintenance of fHC in mammals using a mouse model. We focus on X-chromosome inactivation (XCI) as a paradigm for fHC but also relate it to genomic imprinting and homeobox (Hox) gene cluster repression. A vital role for noncoding transcription and/or transcripts emerges as the general principle of triggering XCI and canonical imprinting. However, other types of fHC are established through an unknown mechanism, independent of noncoding transcription (Hox clusters and noncanonical imprinting). We also extensively discuss polycomb-group repressive complexes (PRCs), which frequently play a vital role in fHC maintenance.
Collapse
Affiliation(s)
- Jan J Żylicz
- Mammalian Developmental Epigenetics Group, Institut Curie, CNRS UMR 3215, INSERM U934, PSL University, 75248 Paris Cedex 05, France.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, United Kingdom
| | - Edith Heard
- Directors' Research, EMBL Heidelberg, 69117 Heidelberg, Germany;
| |
Collapse
|
39
|
G9a Is SETting the Stage for Colorectal Oncogenesis. Genes (Basel) 2020; 11:genes11060616. [PMID: 32512705 PMCID: PMC7349591 DOI: 10.3390/genes11060616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/28/2022] Open
Abstract
Recently, Kato et al. reported recurrent activating mutations in the SET domain of histone methyltransferase G9a, driving an oncogenic cascade in melanoma. The authors also reported correlations between G9a expression and the regulation of the canonical WNT pathway. Although we could not observe such mutations in human colorectal adenocarcinoma, newly reported findings are of high relevance to colorectal cancer, as WNT target gene signatures were closely associated with G9a expression. Here, we put into perspective such new results on G9a expression in colorectal cancers and the potential relationship with tumor heterogeneity and acquisition of neoplastic stemness.
Collapse
|
40
|
Histone H3K9 Methyltransferase G9a in Oocytes Is Essential for Preimplantation Development but Dispensable for CG Methylation Protection. Cell Rep 2020; 27:282-293.e4. [PMID: 30943408 DOI: 10.1016/j.celrep.2019.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/07/2019] [Accepted: 02/27/2019] [Indexed: 01/02/2023] Open
Abstract
Mammalian histone methyltransferase G9a (also called EHMT2) deposits H3K9me2 on chromatin and is essential for postimplantation development. However, its role in oogenesis and preimplantation development remains poorly understood. We show that H3K9me2-enriched chromatin domains in mouse oocytes are generally depleted of CG methylation, contrasting with their association in embryonic stem and somatic cells. Oocyte-specific disruption of G9a results in reduced H3K9me2 enrichment and impaired reorganization of heterochromatin in oocytes, but only a modest reduction in CG methylation is detected. Furthermore, in both oocytes and 2-cell embryos, G9a depletion has limited impact on the expression of genes and retrotransposons. Although their CG methylation is minimally affected, preimplantation embryos derived from such oocytes show abnormal chromosome segregation and frequent developmental arrest. Our findings illuminate the functional importance of G9a independent of CG methylation in preimplantation development and call into question the proposed role for H3K9me2 in CG methylation protection in zygotes.
Collapse
|
41
|
Higashijima Y, Matsui Y, Shimamura T, Nakaki R, Nagai N, Tsutsumi S, Abe Y, Link VM, Osaka M, Yoshida M, Watanabe R, Tanaka T, Taguchi A, Miura M, Ruan X, Li G, Inoue T, Nangaku M, Kimura H, Furukawa T, Aburatani H, Wada Y, Ruan Y, Glass CK, Kanki Y. Coordinated demethylation of H3K9 and H3K27 is required for rapid inflammatory responses of endothelial cells. EMBO J 2020; 39:e103949. [PMID: 32125007 DOI: 10.15252/embj.2019103949] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Histone H3 lysine-9 di-methylation (H3K9me2) and lysine-27 tri-methylation (H3K27me3) are linked to repression of gene expression, but the functions of repressive histone methylation dynamics during inflammatory responses remain enigmatic. Here, we report that lysine demethylases 7A (KDM7A) and 6A (UTX) play crucial roles in tumor necrosis factor (TNF)-α signaling in endothelial cells (ECs), where they are regulated by a novel TNF-α-responsive microRNA, miR-3679-5p. TNF-α rapidly induces co-occupancy of KDM7A and UTX at nuclear factor kappa-B (NF-κB)-associated elements in human ECs. KDM7A and UTX demethylate H3K9me2 and H3K27me3, respectively, and are both required for activation of NF-κB-dependent inflammatory genes. Chromosome conformation capture-based methods furthermore uncover increased interactions between TNF-α-induced super enhancers at NF-κB-relevant loci, coinciding with KDM7A and UTX recruitments. Simultaneous pharmacological inhibition of KDM7A and UTX significantly reduces leukocyte adhesion in mice, establishing the biological and potential translational relevance of this mechanism. Collectively, these findings suggest that rapid erasure of repressive histone marks by KDM7A and UTX is essential for NF-κB-dependent regulation of genes that control inflammatory responses of ECs.
Collapse
Affiliation(s)
- Yoshiki Higashijima
- Department of Bioinformational Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yusuke Matsui
- Division of Biomedical and Health Informatics, Graduate school of medicine, Nagoya university, Nagoya, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Nao Nagai
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Shuichi Tsutsumi
- Division of Genome Sciences, RCAST, The University of Tokyo, Tokyo, Japan
| | - Yohei Abe
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Verena M Link
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Faculty of Biology, Division of Evolutionary Biology, Ludwig-Maximilian University of Munich, Munich, Germany.,Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mizuko Osaka
- Department of Nutrition in Cardiovascular Disease, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Life Sciences and Bioethics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masayuki Yoshida
- Department of Life Sciences and Bioethics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Watanabe
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akashi Taguchi
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Mai Miura
- Isotope Science Center, The University of Tokyo, Tokyo, Japan.,Laboratory for Systems Biology and Medicine, RCAST, The University of Tokyo, Tokyo, Japan
| | - Xiaoan Ruan
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Guoliang Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Tsuyoshi Inoue
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsushi Furukawa
- Department of Bioinformational Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Aburatani
- Division of Genome Sciences, RCAST, The University of Tokyo, Tokyo, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yijun Ruan
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yasuharu Kanki
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
42
|
Dynamic CpG methylation delineates subregions within super-enhancers selectively decommissioned at the exit from naive pluripotency. Nat Commun 2020; 11:1112. [PMID: 32111830 PMCID: PMC7048827 DOI: 10.1038/s41467-020-14916-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/08/2020] [Indexed: 12/29/2022] Open
Abstract
Clusters of enhancers, referred as to super-enhancers (SEs), control the expression of cell identity genes. The organisation of these clusters, and how they are remodelled upon developmental transitions remain poorly understood. Here, we report the existence of two types of enhancer units within SEs typified by distinctive CpG methylation dynamics in embryonic stem cells (ESCs). We find that these units are either prone for decommissioning or remain constitutively active in epiblast stem cells (EpiSCs), as further established in the peri-implantation epiblast in vivo. Mechanistically, we show a pivotal role for ESRRB in regulating the activity of ESC-specific enhancer units and propose that the developmentally regulated silencing of ESRRB triggers the selective inactivation of these units within SEs. Our study provides insights into the molecular events that follow the loss of ESRRB binding, and offers a mechanism by which the naive pluripotency transcriptional programme can be partially reset upon embryo implantation.
Collapse
|
43
|
A combination strategy targeting enhancer plasticity exerts synergistic lethality against BETi-resistant leukemia cells. Nat Commun 2020; 11:740. [PMID: 32029739 PMCID: PMC7005144 DOI: 10.1038/s41467-020-14604-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/20/2020] [Indexed: 12/22/2022] Open
Abstract
Primary and acquired drug resistance imposes a major threat to achieving optimized clinical outcomes during cancer treatment. Aberrant changes in epigenetic modifications are closely involved in drug resistance of tumor cells. Using BET inhibitor (BETi) resistant leukemia cells as a model system, we demonstrated herein that genome-wide enhancer remodeling played a pivotal role in driving therapeutic resistance via compensational re-expression of pro-survival genes. Capitalizing on the CRISPR interference technology, we identified the second intron of IncRNA, PVT1, as a unique bona fide gained enhancer that restored MYC transcription independent of BRD4 recruitment in leukemia. A combined BETi and CDK7 inhibitor treatment abolished MYC transcription by impeding RNAPII loading without affecting PVT1-mediated chromatin looping at the MYC locus in BETi-resistant leukemia cells. Together, our findings have established the feasibility of targeting enhancer plasticity to overcome drug resistance associated with epigenetic therapies.
Collapse
|
44
|
Mayer D, Stadler MB, Rittirsch M, Hess D, Lukonin I, Winzi M, Smith A, Buchholz F, Betschinger J. Zfp281 orchestrates interconversion of pluripotent states by engaging Ehmt1 and Zic2. EMBO J 2020; 39:e102591. [PMID: 31782544 PMCID: PMC6960450 DOI: 10.15252/embj.2019102591] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Developmental cell fate specification is a unidirectional process that can be reverted in response to injury or experimental reprogramming. Whether differentiation and de-differentiation trajectories intersect mechanistically is unclear. Here, we performed comparative screening in lineage-related mouse naïve embryonic stem cells (ESCs) and primed epiblast stem cells (EpiSCs), and identified the constitutively expressed zinc finger transcription factor (TF) Zfp281 as a bidirectional regulator of cell state interconversion. We showed that subtle chromatin binding changes in differentiated cells translate into activation of the histone H3 lysine 9 (H3K9) methyltransferase Ehmt1 and stabilization of the zinc finger TF Zic2 at enhancers and promoters. Genetic gain-of-function and loss-of-function experiments confirmed a critical role of Ehmt1 and Zic2 downstream of Zfp281 both in driving exit from the ESC state and in restricting reprogramming of EpiSCs. Our study reveals that cell type-invariant chromatin association of Zfp281 provides an interaction platform for remodeling the cis-regulatory network underlying cellular plasticity.
Collapse
Affiliation(s)
- Daniela Mayer
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of SciencesUniversity of BaselBaselSwitzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| | - Melanie Rittirsch
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Ilya Lukonin
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of SciencesUniversity of BaselBaselSwitzerland
| | - Maria Winzi
- Medical Systems BiologyUCC, Medical Faculty Carl Gustav CarusTU DresdenDresdenGermany
| | - Austin Smith
- Wellcome‐MRC Cambridge Stem Cell Institute and Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Frank Buchholz
- Medical Systems BiologyUCC, Medical Faculty Carl Gustav CarusTU DresdenDresdenGermany
| | - Joerg Betschinger
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| |
Collapse
|
45
|
Bleckwehl T, Rada-Iglesias A. Transcriptional and epigenetic control of germline competence and specification. Curr Opin Cell Biol 2019; 61:1-8. [DOI: 10.1016/j.ceb.2019.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 12/11/2022]
|
46
|
Petri T, Dankert D, Demond H, Wennemuth G, Horsthemke B, Grümmer R. In vitro postovulatory oocyte aging affects H3K9 trimethylation in two-cell embryos after IVF. Ann Anat 2019; 227:151424. [PMID: 31610252 DOI: 10.1016/j.aanat.2019.151424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The physiological time axis of oocyte maturation comprises highly sensitive processes. A prolonged time span between ovulation and fertilization may impair oocyte developmental competence and subsequent embryo development, possibly due to epigenetic modifications. Since post-translational histone modifications can modify chromatin activity, and trimethylation of H3K9 (H3K9me3) has been shown to increase in the murine oocyte during maturation, here the effect of postovulatory oocyte aging on H3K9me3 was analyzed. METHODS The competence of murine oocytes which were aged for 2, 4, 6 and 8 h in vitro after oocyte retrieval to develop to the two-cell and blastocyst stage was determined. Degree of H3K9me3 was analyzed in the postovulatory aged oocytes as well as in the resulting two-cell embryos after IVF. RESULTS The current study shows that postovulatory aging of oocytes for up to eight hours after oocyte retrieval exhibited no effect on two-cell embryo and blastocyst rate; however, changes in H3K9me3 in the resulting two-cell embryos were observed. CONCLUSION Prolonged postovulatory oocyte aging leads to epigenetic modifications of H3K9. Such modifications may affect the developmental capacity of embryos at post-implantation developmental stages.
Collapse
Affiliation(s)
- Theresa Petri
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Debora Dankert
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hannah Demond
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Gunther Wennemuth
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ruth Grümmer
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
47
|
Yang X, Hu B, Liao J, Qiao Y, Chen Y, Qian Y, Feng S, Yu F, Dong J, Hou Y, Xu H, Wang R, Peng G, Li J, Tang F, Jing N. Distinct enhancer signatures in the mouse gastrula delineate progressive cell fate continuum during embryo development. Cell Res 2019; 29:911-926. [PMID: 31591447 DOI: 10.1038/s41422-019-0234-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 08/29/2019] [Indexed: 01/05/2023] Open
Abstract
Primary germ layers have the potential to form all tissues in the mature organism, and their formation during gastrulation requires precise epigenetic modulation of both proximal and distal regulatory elements. Previous studies indicated that spatial and temporal patterns of gene expression in the gastrula predispose individual regions to distinct cell fates. However, the underlying epigenetic mechanisms remain largely unexplored. Here, we profile the spatiotemporal landscape of the epigenome and transcriptome of the mouse gastrula. We reveal the asynchronous dynamics of proximal chromatin states during germ layer formation as well as unique gastrula-specific epigenomic features of regulatory elements, which have strong usage turnover dynamics and clear germ layer-specific signatures. Importantly, we also find that enhancers around organogenetic genes, which are weakly expressed at the gastrulation stage, are frequently pre-marked by histone H3 lysine 27 acetylation (H3K27ac) in the gastrula. By using the transgenic mice and genome editing system, we demonstrate that a pre-marked enhancer, which is located in the intron of a brain-specific gene 2510009E07Rik, exhibits specific enhancer activity in the ectoderm and future brain tissue, and also executes important function during mouse neural differentiation. Taken together, our study provides the comprehensive epigenetic information for embryonic patterning during mouse gastrulation, demonstrates the importance of gastrula pre-marked enhancers in regulating the correct development of the mouse embryo, and thus broadens the current understanding of mammalian embryonic development and related diseases.
Collapse
Affiliation(s)
- Xianfa Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Boqiang Hu
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Jiaoyang Liao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yunbo Qiao
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, Guangdong, China.
| | - Yingying Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yun Qian
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Su Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Fang Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ji Dong
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Yu Hou
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Peking University, 100871, Beijing, China
| | - He Xu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ran Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Guangdun Peng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China.,CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, 510005, Guangdong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Peking University, 100871, Beijing, China. .,Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, 100871, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
| | - Naihe Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
48
|
Rada-Iglesias A. Pioneering of Enhancer Landscapes during Pluripotent State Transitions. Cell Stem Cell 2019; 23:149-151. [PMID: 30075122 DOI: 10.1016/j.stem.2018.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The transitions between different pluripotency states are regulated by large changes in enhancer landscapes. Two publications in this issue of Cell Stem Cell suggest that the pioneering and subsequent activation of silent enhancers by transcription factors (i.e., ESRRB and GRHL2) is a crucial event during these transitions (Adachi et al., 2018; Chen et al., 2018).
Collapse
Affiliation(s)
- Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria, Albert Einstein 22, 39011 Santander, Spain; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.
| |
Collapse
|
49
|
Abstract
Genome-wide DNA "demethylation" in the zygote involves global TET3-mediated oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) in the paternal pronucleus. Asymmetrically enriched histone H3K9 methylation in the maternal pronucleus was suggested to protect the underlying DNA from 5mC conversion. We hypothesized that an H3K9 methyltransferase enzyme, either EHMT2 or SETDB1, must be expressed in the oocyte to specify the asymmetry of 5mC oxidation. To test these possibilities, we genetically deleted the catalytic domain of either EHMT2 or SETDB1 in growing oocytes and achieved significant reduction of global H3K9me2 or H3K9me3 levels, respectively, in the maternal pronucleus. We found that the asymmetry of global 5mC oxidation was significantly reduced in the zygotes that carried maternal mutation of either the Ehmt2 or Setdb1 genes. Whereas the levels of 5hmC, 5fC, and 5caC increased, 5mC levels decreased in the mutant maternal pronuclei. H3K9me3-rich rings around the nucleolar-like bodies retained 5mC in the maternal mutant zygotes, suggesting that the pericentromeric heterochromatin regions are protected from DNA demethylation independently of EHMT2 and SETDB1. We observed that the maternal pronuclei expanded in size in the mutant zygotes and contained a significantly increased number of nucleolar-like bodies compared with normal zygotes. These findings suggest that oocyte-derived EHMT2 and SETDB1 enzymes have roles in regulating 5mC oxidation and in the structural aspects of zygote development.
Collapse
|
50
|
Deneault E, Faheem M, White SH, Rodrigues DC, Sun S, Wei W, Piekna A, Thompson T, Howe JL, Chalil L, Kwan V, Walker S, Pasceri P, Roth FP, Yuen RK, Singh KK, Ellis J, Scherer SW. CNTN5-/+or EHMT2-/+human iPSC-derived neurons from individuals with autism develop hyperactive neuronal networks. eLife 2019; 8:40092. [PMID: 30747104 PMCID: PMC6372285 DOI: 10.7554/elife.40092] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived neurons are increasingly used to model Autism Spectrum Disorder (ASD), which is clinically and genetically heterogeneous. To study the complex relationship of penetrant and weaker polygenic risk variants to ASD, 'isogenic' iPSC-derived neurons are critical. We developed a set of procedures to control for heterogeneity in reprogramming and differentiation, and generated 53 different iPSC-derived glutamatergic neuronal lines from 25 participants from 12 unrelated families with ASD. Heterozygous de novo and rare-inherited presumed-damaging variants were characterized in ASD risk genes/loci. Combinations of putative etiologic variants (GLI3/KIF21A or EHMT2/UBE2I) in separate families were modeled. We used a multi-electrode array, with patch-clamp recordings, to determine a reproducible synaptic phenotype in 25% of the individuals with ASD (other relevant data on the remaining lines was collected). Our most compelling new results revealed a consistent spontaneous network hyperactivity in neurons deficient for CNTN5 or EHMT2. The biobank of iPSC-derived neurons and accompanying genomic data are available to accelerate ASD research. Editorial note This article has been through an editorial process in which authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Eric Deneault
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Muhammad Faheem
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Sean H White
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Canada
| | - Deivid C Rodrigues
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Song Sun
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,The Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Wei Wei
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Alina Piekna
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Tadeo Thompson
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Jennifer L Howe
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Leon Chalil
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Canada
| | - Vickie Kwan
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Canada
| | - Susan Walker
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Peter Pasceri
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Frederick P Roth
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,The Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Computer Science, University of Toronto, Toronto, Canada.,Canadian Institute for Advanced Research (CIFAR), Toronto, Canada
| | - Ryan Kc Yuen
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Karun K Singh
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Canada
| | - James Ellis
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Stephen W Scherer
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,McLaughlin Centre, University of Toronto, Toronto, Canada
| |
Collapse
|