1
|
Gomes DEB, Yang B, Vanella R, Nash MA, Bernardi RC. Integrating Dynamic Network Analysis with AI for Enhanced Epitope Prediction in PD-L1:Affibody Interactions. J Am Chem Soc 2024; 146:23842-23853. [PMID: 39146039 DOI: 10.1021/jacs.4c05869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Understanding binding epitopes involved in protein-protein interactions and accurately determining their structure are long-standing goals with broad applicability in industry and biomedicine. Although various experimental methods for binding epitope determination exist, these approaches are typically low throughput and cost-intensive. Computational methods have potential to accelerate epitope predictions; however, recently developed artificial intelligence (AI)-based methods frequently fail to predict epitopes of synthetic binding domains with few natural homologues. Here we have developed an integrated method employing generalized-correlation-based dynamic network analysis on multiple molecular dynamics (MD) trajectories, initiated from AlphaFold2Multimer structures, to unravel the structure and binding epitope of the therapeutic PD-L1:Affibody complex. Both AlphaFold2 and conventional molecular dynamics trajectory analysis were ineffective in distinguishing between two proposed binding models, parallel and perpendicular. However, our integrated approach, utilizing dynamic network analysis, demonstrated that the perpendicular mode was significantly more stable. These predictions were validated using a suite of experimental epitope mapping protocols, including cross-linking mass spectrometry and next-generation sequencing-based deep mutational scanning. Conversely, AlphaFold3 failed to predict a structure bound in the perpendicular pose, highlighting the necessity for exploratory research in the search for binding epitopes and challenging the notion that AI-generated protein structures can be accepted without scrutiny. Our research underscores the potential of employing dynamic network analysis to enhance AI-based structure predictions for more accurate identification of protein-protein interaction interfaces.
Collapse
Affiliation(s)
- Diego E B Gomes
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Byeongseon Yang
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, Basel 4058, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Rosario Vanella
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, Basel 4058, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, Basel 4058, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Rafael C Bernardi
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
2
|
Liu Z, Liu H, Vera AM, Yang B, Tinnefeld P, Nash MA. Engineering an artificial catch bond using mechanical anisotropy. Nat Commun 2024; 15:3019. [PMID: 38589360 PMCID: PMC11001878 DOI: 10.1038/s41467-024-46858-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Catch bonds are a rare class of protein-protein interactions where the bond lifetime increases under an external pulling force. Here, we report how modification of anchor geometry generates catch bonding behavior for the mechanostable Dockerin G:Cohesin E (DocG:CohE) adhesion complex found on human gut bacteria. Using AFM single-molecule force spectroscopy in combination with bioorthogonal click chemistry, we mechanically dissociate the complex using five precisely controlled anchor geometries. When tension is applied between residue #13 on CohE and the N-terminus of DocG, the complex behaves as a two-state catch bond, while in all other tested pulling geometries, including the native configuration, it behaves as a slip bond. We use a kinetic Monte Carlo model with experimentally derived parameters to simulate rupture force and lifetime distributions, achieving strong agreement with experiments. Single-molecule FRET measurements further demonstrate that the complex does not exhibit dual binding mode behavior at equilibrium but unbinds along multiple pathways under force. Together, these results show how mechanical anisotropy and anchor point selection can be used to engineer artificial catch bonds.
Collapse
Affiliation(s)
- Zhaowei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
- Department of Bionanoscience, Delft University of Technology, 2629HZ, Delft, the Netherlands
| | - Haipei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Andrés M Vera
- Faculty of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Byeongseon Yang
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
- Botnar Research Centre for Child Health, 4051, Basel, Switzerland
- National Center for Competence in Research (NCCR) Molecular Systems Engineering, 4058, Basel, Switzerland
| | - Philip Tinnefeld
- Faculty of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
- Botnar Research Centre for Child Health, 4051, Basel, Switzerland.
- National Center for Competence in Research (NCCR) Molecular Systems Engineering, 4058, Basel, Switzerland.
- Swiss Nanoscience Institute, 4056, Basel, Switzerland.
| |
Collapse
|
3
|
Gomes DEB, Yang B, Vanella R, Nash MA, Bernardi RC. Integrating Dynamic Network Analysis with AI for Enhanced Epitope Prediction in PD-L1:Affibody Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579577. [PMID: 38370725 PMCID: PMC10871313 DOI: 10.1101/2024.02.08.579577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Understanding binding epitopes involved in protein-protein interactions and accurately determining their structure is a long standing goal with broad applicability in industry and biomedicine. Although various experimental methods for binding epitope determination exist, these approaches are typically low throughput and cost intensive. Computational methods have potential to accelerate epitope predictions, however, recently developed artificial intelligence (AI)-based methods frequently fail to predict epitopes of synthetic binding domains with few natural homologs. Here we have developed an integrated method employing generalized-correlation-based dynamic network analysis on multiple molecular dynamics (MD) trajectories, initiated from AlphaFold2 Multimer structures, to unravel the structure and binding epitope of the therapeutic PD-L1:Affibody complex. Both AlphaFold2 and conventional molecular dynamics trajectory analysis alone each proved ineffectual in differentiating between two putative binding models referred to as parallel and perpendicular. However, our integrated approach based on dynamic network analysis showed that the perpendicular mode was significantly more stable. These predictions were validated using a suite of experimental epitope mapping protocols including cross linking mass spectrometry and next-generation sequencing-based deep mutational scanning. Our research highlights the potential of deploying dynamic network analysis to refine AI-based structure predictions for precise predictions of protein-protein interaction interfaces.
Collapse
|
4
|
Arbez B, Retourney C, Quilès F, Francius G, Fierobe HP, El-Kirat-Chatel S. Simultaneous enzyme grafting on bio-inspired scaffolds for antibacterial protection. MATERIALS ADVANCES 2024; 5:1171-1184. [DOI: 10.1039/d3ma00703k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Surface bacterial contamination represents a crucial health and industrial concern which requires new strategies to be continuously developed.
Collapse
Affiliation(s)
- Baptiste Arbez
- Université de Lorraine, CNRS, LCPME, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Chloé Retourney
- Université de Lorraine, CNRS, LCPME, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Fabienne Quilès
- Université de Lorraine, CNRS, LCPME, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Gregory Francius
- Université de Lorraine, CNRS, LCPME, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Henri-Pierre Fierobe
- Laboratoire de Chimie Bactérienne (LCB), CNRS, Université d'Aix-Marseille, UMR7283 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Sofiane El-Kirat-Chatel
- Université de Lorraine, CNRS, LCPME, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| |
Collapse
|
5
|
Acoustic force spectroscopy reveals subtle differences in cellulose unbinding behavior of carbohydrate-binding modules. Proc Natl Acad Sci U S A 2022; 119:e2117467119. [PMID: 36215467 PMCID: PMC9586272 DOI: 10.1073/pnas.2117467119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein adsorption to solid carbohydrate interfaces is critical to many biological processes, particularly in biomass deconstruction. To engineer more-efficient enzymes for biomass deconstruction into sugars, it is necessary to characterize the complex protein-carbohydrate interfacial interactions. A carbohydrate-binding module (CBM) is often associated with microbial surface-tethered cellulosomes or secreted cellulase enzymes to enhance substrate accessibility. However, it is not well known how CBMs recognize, bind, and dissociate from polysaccharides to facilitate efficient cellulolytic activity, due to the lack of mechanistic understanding and a suitable toolkit to study CBM-substrate interactions. Our work outlines a general approach to study the unbinding behavior of CBMs from polysaccharide surfaces using a highly multiplexed single-molecule force spectroscopy assay. Here, we apply acoustic force spectroscopy (AFS) to probe a Clostridium thermocellum cellulosomal scaffoldin protein (CBM3a) and measure its dissociation from nanocellulose surfaces at physiologically relevant, low force loading rates. An automated microfluidic setup and method for uniform deposition of insoluble polysaccharides on the AFS chip surfaces are demonstrated. The rupture forces of wild-type CBM3a, and its Y67A mutant, unbinding from nanocellulose surfaces suggests distinct multimodal CBM binding conformations, with structural mechanisms further explored using molecular dynamics simulations. Applying classical dynamic force spectroscopy theory, the single-molecule unbinding rate at zero force is extrapolated and found to agree with bulk equilibrium unbinding rates estimated independently using quartz crystal microbalance with dissipation monitoring. However, our results also highlight critical limitations of applying classical theory to explain the highly multivalent binding interactions for cellulose-CBM bond rupture forces exceeding 15 pN.
Collapse
|
6
|
Tian F, Tong B, Sun L, Shi S, Zheng B, Wang Z, Dong X, Zheng P. N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. eLife 2021; 10:e69091. [PMID: 34414884 PMCID: PMC8455130 DOI: 10.7554/elife.69091] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
SARS-CoV-2 has been spreading around the world for the past year. Recently, several variants such as B.1.1.7 (alpha), B.1.351 (beta), and P.1 (gamma), which share a key mutation N501Y on the receptor-binding domain (RBD), appear to be more infectious to humans. To understand the underlying mechanism, we used a cell surface-binding assay, a kinetics study, a single-molecule technique, and a computational method to investigate the interaction between these RBD (mutations) and ACE2. Remarkably, RBD with the N501Y mutation exhibited a considerably stronger interaction, with a faster association rate and a slower dissociation rate. Atomic force microscopy (AFM)-based single-molecule force microscopy (SMFS) consistently quantified the interaction strength of RBD with the mutation as having increased binding probability and requiring increased unbinding force. Molecular dynamics simulations of RBD-ACE2 complexes indicated that the N501Y mutation introduced additional π-π and π-cation interactions that could explain the changes observed by force microscopy. Taken together, these results suggest that the reinforced RBD-ACE2 interaction that results from the N501Y mutation in the RBD should play an essential role in the higher rate of transmission of SARS-CoV-2 variants, and that future mutations in the RBD of the virus should be under surveillance.
Collapse
Affiliation(s)
- Fang Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing UniversityNanjingChina
| | - Bei Tong
- Institute of Botany, Jiangsu Province and Chinese Academy of SciencesNanjingChina
| | - Liang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjingChina
| | - Shengchao Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing UniversityNanjingChina
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing UniversityNanjingChina
| | - Zibin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjingChina
| | - Xianchi Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjingChina
- Engineering Research Center of Protein and Peptide Medicine, Ministry of EducationNanjingChina
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing UniversityNanjingChina
| |
Collapse
|
7
|
Vera AM, Galera-Prat A, Wojciechowski M, Różycki B, Laurents DV, Carrión-Vázquez M, Cieplak M, Tinnefeld P. Cohesin-dockerin code in cellulosomal dual binding modes and its allosteric regulation by proline isomerization. Structure 2021; 29:587-597.e8. [PMID: 33561387 DOI: 10.1016/j.str.2021.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/25/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022]
Abstract
Cellulose is the most abundant organic molecule on Earth and represents a renewable and practically everlasting feedstock for the production of biofuels and chemicals. Self-assembled owing to the high-affinity cohesin-dockerin interaction, cellulosomes are huge multi-enzyme complexes with unmatched efficiency in the degradation of recalcitrant lignocellulosic substrates. The recruitment of diverse dockerin-borne enzymes into a multicohesin protein scaffold dictates the three-dimensional layout of the complex, and interestingly two alternative binding modes have been proposed. Using single-molecule fluorescence resonance energy transfer and molecular simulations on a range of cohesin-dockerin pairs, we directly detect varying distributions between these binding modes that follow a built-in cohesin-dockerin code. Surprisingly, we uncover a prolyl isomerase-modulated allosteric control mechanism, mediated by the isomerization state of a single proline residue, which regulates the distribution and kinetics of binding modes. Overall, our data provide a novel mechanistic understanding of the structural plasticity and dynamics of cellulosomes.
Collapse
Affiliation(s)
- Andrés Manuel Vera
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany.
| | - Albert Galera-Prat
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Michał Wojciechowski
- Institute of Physics, Polish Academy of Sciences, Al. Lotników, 32/46, 02-668 Warsaw, Poland
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotników, 32/46, 02-668 Warsaw, Poland
| | - Douglas V Laurents
- Instituto de Química Física "Rocasolano", CSIC, C/ Serrano 119, 28006 Madrid, Spain
| | | | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Al. Lotników, 32/46, 02-668 Warsaw, Poland
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany
| |
Collapse
|
8
|
Chundawat SPS, Nemmaru B, Hackl M, Brady SK, Hilton MA, Johnson MM, Chang S, Lang MJ, Huh H, Lee SH, Yarbrough JM, López CA, Gnanakaran S. Molecular origins of reduced activity and binding commitment of processive cellulases and associated carbohydrate-binding proteins to cellulose III. J Biol Chem 2021; 296:100431. [PMID: 33610545 PMCID: PMC8010709 DOI: 10.1016/j.jbc.2021.100431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 11/30/2022] Open
Abstract
Efficient enzymatic saccharification of cellulosic biomass into fermentable sugars can enable production of bioproducts like ethanol. Native crystalline cellulose, or cellulose I, is inefficiently processed via enzymatic hydrolysis but can be converted into the structurally distinct cellulose III allomorph that is processed via cellulase cocktails derived from Trichoderma reesei up to 20-fold faster. However, characterization of individual cellulases from T. reesei, like the processive exocellulase Cel7A, shows reduced binding and activity at low enzyme loadings toward cellulose III. To clarify this discrepancy, we monitored the single-molecule initial binding commitment and subsequent processive motility of Cel7A enzymes and associated carbohydrate-binding modules (CBMs) on cellulose using optical tweezers force spectroscopy. We confirmed a 48% lower initial binding commitment and 32% slower processive motility of Cel7A on cellulose III, which we hypothesized derives from reduced binding affinity of the Cel7A binding domain CBM1. Classical CBM-cellulose pull-down assays, depending on the adsorption model fitted, predicted between 1.2- and 7-fold reduction in CBM1 binding affinity for cellulose III. Force spectroscopy measurements of CBM1-cellulose interactions, along with molecular dynamics simulations, indicated that previous interpretations of classical binding assay results using multisite adsorption models may have complicated analysis, and instead suggest simpler single-site models should be used. These findings were corroborated by binding analysis of other type-A CBMs (CBM2a, CBM3a, CBM5, CBM10, and CBM64) on both cellulose allomorphs. Finally, we discuss how complementary analytical tools are critical to gain insight into the complex mechanisms of insoluble polysaccharides hydrolysis by cellulolytic enzymes and associated carbohydrate-binding proteins.
Collapse
Affiliation(s)
- Shishir P S Chundawat
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.
| | - Bhargava Nemmaru
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Markus Hackl
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Sonia K Brady
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Mark A Hilton
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Madeline M Johnson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Sungrok Chang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Hyun Huh
- Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Sang-Hyuk Lee
- Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - John M Yarbrough
- Biosciences Center, National Renewable Energy Lab, Golden, Colorado, USA
| | - Cesar A López
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | |
Collapse
|
9
|
Yang B, Liu H, Liu Z, Doenen R, Nash MA. Influence of Fluorination on Single-Molecule Unfolding and Rupture Pathways of a Mechanostable Protein Adhesion Complex. NANO LETTERS 2020; 20:8940-8950. [PMID: 33191756 PMCID: PMC7729889 DOI: 10.1021/acs.nanolett.0c04178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/08/2020] [Indexed: 05/25/2023]
Abstract
We investigated the influence of fluorination on unfolding and unbinding reaction pathways of a mechanostable protein complex comprising the tandem dyad XModule-Dockerin bound to Cohesin. Using single-molecule atomic force spectroscopy, we mapped the energy landscapes governing the unfolding and unbinding reactions. We then used sense codon suppression to substitute trifluoroleucine in place of canonical leucine globally in XMod-Doc. Although TFL substitution thermally destabilized XMod-Doc, it had little effect on XMod-Doc:Coh binding affinity at equilibrium. When we mechanically dissociated global TFL-substituted XMod-Doc from Coh, we observed the emergence of a new unbinding pathway with a lower energy barrier. Counterintuitively, when fluorination was restricted to Doc, we observed mechano-stabilization of the non-fluorinated neighboring XMod domain. This suggests that intramolecular deformation is modulated by fluorination and highlights the differences between equilibrium thermostability and non-equilibrium mechanostability. Future work is poised to investigate fluorination as a means to modulate mechanical properties of synthetic proteins and hydrogels.
Collapse
Affiliation(s)
- Byeongseon Yang
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Haipei Liu
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Zhaowei Liu
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Regina Doenen
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Michael A. Nash
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| |
Collapse
|
10
|
Liu Z, Liu H, Vera AM, Bernardi RC, Tinnefeld P, Nash MA. High force catch bond mechanism of bacterial adhesion in the human gut. Nat Commun 2020; 11:4321. [PMID: 32859904 PMCID: PMC7456326 DOI: 10.1038/s41467-020-18063-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022] Open
Abstract
Bacterial colonization of the human intestine requires firm adhesion of bacteria to insoluble substrates under hydrodynamic flow. Here we report the molecular mechanism behind an ultrastable protein complex responsible for resisting shear forces and adhering bacteria to cellulose fibers in the human gut. Using single-molecule force spectroscopy (SMFS), single-molecule FRET (smFRET), and molecular dynamics (MD) simulations, we resolve two binding modes and three unbinding reaction pathways of a mechanically ultrastable R. champanellensis (Rc) Dockerin:Cohesin (Doc:Coh) complex. The complex assembles in two discrete binding modes with significantly different mechanical properties, with one breaking at ~500 pN and the other at ~200 pN at loading rates from 1-100 nN s-1. A neighboring X-module domain allosterically regulates the binding interaction and inhibits one of the low-force pathways at high loading rates, giving rise to a catch bonding mechanism that manifests under force ramp protocols. Multi-state Monte Carlo simulations show strong agreement with experimental results, validating the proposed kinetic scheme. These results explain mechanistically how gut microbes regulate cell adhesion strength at high shear stress through intricate molecular mechanisms including dual-binding modes, mechanical allostery and catch bonds.
Collapse
Affiliation(s)
- Zhaowei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Haipei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Andrés M Vera
- Faculty of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rafael C Bernardi
- NIH Center for Macromolecular Modeling and Bioinformatics, Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA
- Department of Physics, Auburn University, 36849, Auburn, AL, USA
| | - Philip Tinnefeld
- Faculty of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
| |
Collapse
|
11
|
Yang B, Liu Z, Liu H, Nash MA. Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes. Front Mol Biosci 2020; 7:85. [PMID: 32509800 PMCID: PMC7248566 DOI: 10.3389/fmolb.2020.00085] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Single-molecule force spectroscopy with the atomic force microscope provides molecular level insights into protein function, allowing researchers to reconstruct energy landscapes and understand functional mechanisms in biology. With steadily advancing methods, this technique has greatly accelerated our understanding of force transduction, mechanical deformation, and mechanostability within single- and multi-domain polyproteins, and receptor-ligand complexes. In this focused review, we summarize the state of the art in terms of methodology and highlight recent methodological improvements for AFM-SMFS experiments, including developments in surface chemistry, considerations for protein engineering, as well as theory and algorithms for data analysis. We hope that by condensing and disseminating these methods, they can assist the community in improving data yield, reliability, and throughput and thereby enhance the information that researchers can extract from such experiments. These leading edge methods for AFM-SMFS will serve as a groundwork for researchers cognizant of its current limitations who seek to improve the technique in the future for in-depth studies of molecular biomechanics.
Collapse
Affiliation(s)
- Byeongseon Yang
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Zhaowei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Haipei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Michael A. Nash
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
12
|
Viljoen A, Alsteens D, Dufrêne Y. Mechanical Forces between Mycobacterial Antigen 85 Complex and Fibronectin. Cells 2020; 9:cells9030716. [PMID: 32183296 PMCID: PMC7140604 DOI: 10.3390/cells9030716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 12/27/2022] Open
Abstract
Adhesion to extracellular matrix proteins is an important first step in host invasion, employed by many bacterial pathogens. In mycobacteria, the secreted Ag85 complex proteins, involved in the synthesis of the cell envelope, are known to bind to fibronectin (Fn) through molecular forces that are currently unknown. In this study, single-molecule force spectroscopy is used to study the strength, kinetics and thermodynamics of the Ag85-Fn interaction, focusing on the multidrug-resistant Mycobacterium abscessus species. Single Ag85 proteins bind Fn with a strength of ~75 pN under moderate tensile loading, which compares well with the forces reported for other Fn-binding proteins. The binding specificity is demonstrated by using free Ag85 and Fn peptides with active binding sequences. The Ag85-Fn rupture force increases with mechanical stress (i.e., loading rate) according to the Friddle–Noy–de Yoreo theory. From this model, we extract thermodynamic parameters that are in good agreement with previous affinity determinations by surface plasmon resonance. Strong bonds (up to ~500 pN) are observed under high tensile loading, which may favor strong mycobacterial attachment in the lung where cells are exposed to high shear stress or during hematogenous spread which leads to a disseminated infection. Our results provide new insight into the pleiotropic functions of an important mycobacterial virulence factor that acts as a stress-sensitive adhesin.
Collapse
Affiliation(s)
- Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium; (A.V.); (D.A.)
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium; (A.V.); (D.A.)
- Walloon Excellence in Life sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| | - Yves Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium; (A.V.); (D.A.)
- Walloon Excellence in Life sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
- Correspondence:
| |
Collapse
|
13
|
Borne R, Dao Ti MU, Fierobe HP, Vita N, Tardif C, Pagès S. Catalytic subunit exchanges in the cellulosomes produced by Ruminiclostridium cellulolyticum suggest unexpected dynamics and adaptability of their enzymatic composition. FEBS J 2019; 287:2544-2559. [PMID: 31769922 DOI: 10.1111/febs.15155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/22/2019] [Accepted: 11/22/2019] [Indexed: 11/29/2022]
Abstract
Cellulosomes are complex nanomachines produced by cellulolytic anaerobic bacteria such as Ruminiclostridium cellulolyticum (formerly known as Clostridium cellulolyticum). Cellulosomes are composed of a scaffoldin protein displaying several cohesin modules on which enzymatic components can bind to through their dockerin module. Although cellulosomes have been studied for decades, very little is known about the dynamics of complex assembly. We have investigated the ability of some dockerin-bearing enzymes to chase the catalytic subunits already bound onto a miniscaffoldin displaying a single cohesin. The stability of the preassembled enzyme-scaffoldin complex appears to depend on the nature of the dockerin, and we have identified a key position in the dockerin sequence that is involved in the stability of the complex with the cohesin. Depending on the residue occupying this position, the dockerin can establish with the cohesin partner either a nearly irreversible or a reversible interaction, independently of the catalytic domain associated with the dockerin. Site-directed mutagenesis of this residue can convert a dockerin able to form a highly stable complex with the miniscaffoldin into a reversible complex forming one and vice versa. We also show that refunctionalization can occur with natural purified cellulosomes. Altogether, our results shed light on the dynamics of cellulosomes, especially their capacity to be remodeled even after their assembly is 'achieved', suggesting an unforeseen adaptability of their enzymatic composition over time.
Collapse
|
14
|
Bernardi RC, Durner E, Schoeler C, Malinowska KH, Carvalho BG, Bayer EA, Luthey-Schulten Z, Gaub HE, Nash MA. Mechanisms of Nanonewton Mechanostability in a Protein Complex Revealed by Molecular Dynamics Simulations and Single-Molecule Force Spectroscopy. J Am Chem Soc 2019; 141:14752-14763. [PMID: 31464132 PMCID: PMC6939381 DOI: 10.1021/jacs.9b06776] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Can molecular dynamics
simulations predict the mechanical behavior of protein complexes?
Can simulations decipher the role of protein domains of unknown function
in large macromolecular complexes? Here, we employ a wide-sampling
computational approach to demonstrate that molecular dynamics simulations,
when carefully performed and combined with single-molecule atomic
force spectroscopy experiments, can predict and explain the behavior
of highly mechanostable protein complexes. As a test case, we studied
a previously unreported homologue from Ruminococcus flavefaciens called X-module-Dockerin (XDoc) bound to its partner Cohesin (Coh).
By performing dozens of short simulation replicas near the rupture
event, and analyzing dynamic network fluctuations, we were able to
generate large simulation statistics and directly compare them with
experiments to uncover the mechanisms involved in mechanical stabilization.
Our single-molecule force spectroscopy experiments show that the XDoc-Coh
homologue complex withstands forces up to 1 nN at loading rates of
105 pN/s. Our simulation results reveal that this remarkable
mechanical stability is achieved by a protein architecture that directs
molecular deformation along paths that run perpendicular to the pulling
axis. The X-module was found to play a crucial role in shielding the
adjacent protein complex from mechanical rupture. These mechanisms
of protein mechanical stabilization have potential applications in
biotechnology for the development of systems exhibiting shear enhanced
adhesion or tunable mechanics.
Collapse
Affiliation(s)
- Rafael C Bernardi
- Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Ellis Durner
- Lehrstuhl für Angewandte Physik and Center for Nanoscience , Ludwig-Maximilians-Universität , 80799 Munich , Germany
| | - Constantin Schoeler
- Lehrstuhl für Angewandte Physik and Center for Nanoscience , Ludwig-Maximilians-Universität , 80799 Munich , Germany
| | - Klara H Malinowska
- Lehrstuhl für Angewandte Physik and Center for Nanoscience , Ludwig-Maximilians-Universität , 80799 Munich , Germany
| | - Bruna G Carvalho
- School of Chemical Engineering , University of Campinas , 13083-852 Campinas , Brazil
| | - Edward A Bayer
- Department of Biomolecular Sciences , Weizmann Institute of Science , 76100 Rehovot , Israel
| | - Zaida Luthey-Schulten
- Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Hermann E Gaub
- Lehrstuhl für Angewandte Physik and Center for Nanoscience , Ludwig-Maximilians-Universität , 80799 Munich , Germany
| | - Michael A Nash
- Department of Chemistry , University of Basel , 4058 Basel , Switzerland.,Department of Biosystems Science and Engineering , ETH Zurich , 4058 Basel , Switzerland
| |
Collapse
|
15
|
Gunnoo M, Cazade PA, Orlowski A, Chwastyk M, Liu H, Ta DT, Cieplak M, Nash M, Thompson D. Steered molecular dynamics simulations reveal the role of Ca 2+ in regulating mechanostability of cellulose-binding proteins. Phys Chem Chem Phys 2019; 20:22674-22680. [PMID: 30132772 DOI: 10.1039/c8cp00925b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The conversion of cellulosic biomass into biofuels requires degradation of the biomass into fermentable sugars. The most efficient natural cellulase system for carrying out this conversion is an extracellular multi-enzymatic complex named the cellulosome. In addition to temperature and pH stability, mechanical stability is important for functioning of cellulosome domains, and experimental techniques such as Single Molecule Force Spectroscopy (SMFS) have been used to measure the mechanical strength of several cellulosomal proteins. Molecular dynamics computer simulations provide complementary atomic-resolution quantitative maps of domain mechanical stability for identification of experimental leads for protein stabilization. In this study, we used multi-scale steered molecular dynamics computer simulations, benchmarked against new SMFS measurements, to measure the intermolecular contacts that confer high mechanical stability to a family 3 Carbohydrate Binding Module protein (CBM3) derived from the archetypal Clostridium thermocellum cellulosome. Our data predicts that electrostatic interactions in the calcium binding pocket modulate the mechanostability of the cellulose-binding module, which provides an additional design rule for the rational re-engineering of designer cellulosomes for biotechnology. Our data offers new molecular insights into the origins of mechanostability in cellulose binding domains and gives leads for synthesis of more robust cellulose-binding protein modules. On the other hand, simulations predict that insertion of a flexible strand can promote alternative unfolding pathways and dramatically reduce the mechanostability of the carbohydrate binding module, which gives routes to rational design of tailormade fingerprint complexes for force spectroscopy experiments.
Collapse
Affiliation(s)
- Melissabye Gunnoo
- Department of Physics, Bernal Institute, University of Limerick, V94 T9PX, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fierro F, Giorgetti A, Carloni P, Meyerhof W, Alfonso-Prieto M. Dual binding mode of "bitter sugars" to their human bitter taste receptor target. Sci Rep 2019; 9:8437. [PMID: 31186454 PMCID: PMC6560132 DOI: 10.1038/s41598-019-44805-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
The 25 human bitter taste receptors (hTAS2Rs) are responsible for detecting bitter molecules present in food, and they also play several physiological and pathological roles in extraoral compartments. Therefore, understanding their ligand specificity is important both for food research and for pharmacological applications. Here we provide a molecular insight into the exquisite molecular recognition of bitter β-glycopyranosides by one of the members of this receptor subclass, hTAS2R16. Most of its agonists have in common the presence of a β-glycopyranose unit along with an extremely structurally diverse aglycon moiety. This poses the question of how hTAS2R16 can recognize such a large number of "bitter sugars". By means of hybrid molecular mechanics/coarse grained molecular dynamics simulations, here we show that the three hTAS2R16 agonists salicin, arbutin and phenyl-β-D-glucopyranoside interact with the receptor through a previously unrecognized dual binding mode. Such mechanism may offer a seamless way to fit different aglycons inside the binding cavity, while maintaining the sugar bound, similar to the strategy used by several carbohydrate-binding lectins. Our prediction is validated a posteriori by comparison with mutagenesis data and also rationalizes a wealth of structure-activity relationship data. Therefore, our findings not only provide a deeper molecular characterization of the binding determinants for the three ligands studied here, but also give insights applicable to other hTAS2R16 agonists. Together with our results for other hTAS2Rs, this study paves the way to improve our overall understanding of the structural determinants of ligand specificity in bitter taste receptors.
Collapse
Affiliation(s)
- Fabrizio Fierro
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
- Department of Biology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Alejandro Giorgetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
- Department of Biotechnology, University of Verona, Verona, Italy
- JARA-HPC, IAS-5/INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
- JARA-HPC, IAS-5/INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
- Department of Physics, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
- VNU Key Laboratory "Multiscale Simulation of Complex Systems", VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Mercedes Alfonso-Prieto
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany.
- JARA-HPC, IAS-5/INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
17
|
Sumbul F, Rico F. Single-Molecule Force Spectroscopy: Experiments, Analysis, and Simulations. Methods Mol Biol 2019; 1886:163-189. [PMID: 30374867 DOI: 10.1007/978-1-4939-8894-5_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanical properties of cells and of subcellular components are important to obtain a mechanistic molecular understanding of biological processes. The quantification of mechanical resistance of cells and biomolecules using biophysical methods matured thanks to the development of nanotechnologies such as optical and magnetic tweezers, the biomembrane force probe, and atomic force microscopy (AFM). The quantitative nature of force spectroscopy measurements has converted AFM into a valuable tool in biophysics. Force spectroscopy allows the determination of the forces required to unfold protein domains and to disrupt individual receptor/ligand bonds. Molecular simulations as a computational microscope allow investigation of similar biological processes with an atomistic detail. In this chapter, we first provide a step-by-step protocol of force spectroscopy experiments using AFM, including sample preparation, measurements, and analysis and interpretation of the resulting dynamic force spectrum in terms of available theories. Next, we present the background for molecular dynamics (MD) simulations focusing on steered molecular dynamics (SMD) and the importance of bridging computational tools with experimental techniques.
Collapse
Affiliation(s)
- Fidan Sumbul
- LAI, Aix-Marseille Université, INSERM UMR_S 1067, CNRS UMR 7333, 163 Avenue de Luminy, Marseille, 13009, France
| | - Felix Rico
- LAI, Aix-Marseille Université, INSERM UMR_S 1067, CNRS UMR 7333, 163 Avenue de Luminy, Marseille, 13009, France.
| |
Collapse
|
18
|
Engineered Stochastic Adhesion Between Microbes as a Protection Mechanism Against Environmental Stress. Cell Mol Bioeng 2018; 11:367-382. [PMID: 31719890 DOI: 10.1007/s12195-018-0552-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/29/2018] [Indexed: 01/14/2023] Open
Abstract
Introduction Microbes aggregate when they display adhesive proteins on their outer membrane surfaces, which then form bridges between microbes. Aggregation protects the inner microbes from harsh environmental conditions such as high concentrations of antibiotics, high salt conditions, and fluctuations in pH. The protective effects of microbial aggregation make it an attractive target for improving the ability of probiotic strains to persist in the gut environment. However, it remains challenging to achieve synthetic microbial aggregation using natural adhesive proteins because these proteins frequently mediate microbial virulence. Objectives Construction of synthetic proteins that mediate aggregation between microbes to enhance the survival of cells delivered to stressful environments. Methods We construct synthetic adhesins by fusing adhesive protein domains to surface display peptides. The resulting aggregated populations of bacteria are characterized using immunofluorescence, microscopy, flow cytometry, and quantification of colony forming units. Results We assemble a series of synthetic adhesins, demonstrate their display on the outer membrane of Escherichia coli, and show that they mediate bacterial aggregation. Further engineering of the size and motif composition of the adhesive domain shows that principles from natural adhesins can be applied to our synthetic adhesins. Finally, we show that aggregation allows E. coli cells to resist treatment with antimicrobial peptides and survive inside the gut of Caenorhabditis elegans. Conclusions Our results demonstrate that synthetic aggregation can allow bacteria to resist biocidal environmental conditions. Synthetic adhesins may be used to facilitate microbial colonization of previously inaccessible environmental niches, either in remote natural environments or inside living organisms.
Collapse
|
19
|
Engel MC, Smith DM, Jobst MA, Sajfutdinow M, Liedl T, Romano F, Rovigatti L, Louis AA, Doye JPK. Force-Induced Unravelling of DNA Origami. ACS NANO 2018; 12:6734-6747. [PMID: 29851456 DOI: 10.1021/acsnano.8b01844] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The mechanical properties of DNA nanostructures are of widespread interest as applications that exploit their stability under constant or intermittent external forces become increasingly common. We explore the force response of DNA origami in comprehensive detail by combining AFM single molecule force spectroscopy experiments with simulations using oxDNA, a coarse-grained model of DNA at the nucleotide level, to study the unravelling of an iconic origami system: the Rothemund tile. We contrast the force-induced melting of the tile with simulations of an origami 10-helix bundle. Finally, we simulate a recently proposed origami biosensor, whose function takes advantage of origami behavior under tension. We observe characteristic stick-slip unfolding dynamics in our force-extension curves for both the Rothemund tile and the helix bundle and reasonable agreement with experimentally observed rupture forces for these systems. Our results highlight the effect of design on force response: we observe regular, modular unfolding for the Rothemund tile that contrasts with strain-softening of the 10-helix bundle which leads to catastropic failure under monotonically increasing force. Further, unravelling occurs straightforwardly from the scaffold ends inward for the Rothemund tile, while the helix bundle unfolds more nonlinearly. The detailed visualization of the yielding events provided by simulation allows preferred pathways through the complex unfolding free-energy landscape to be mapped, as a key factor in determining relative barrier heights is the extensional release per base pair broken. We shed light on two important questions: how stable DNA nanostructures are under external forces and what design principles can be applied to enhance stability.
Collapse
Affiliation(s)
- Megan C Engel
- Rudolf Peierls Centre for Theoretical Physics , University of Oxford , 1 Keble Road , Oxford OX1 3NP , United Kingdom
| | - David M Smith
- Fraunhofer Institute for Cell Therapy and Immunology IZI , Perlickstraβe 1 , 04103 Leipzig , Germany
| | - Markus A Jobst
- Department für Physik , Ludwig-Maximilians-Universität Amalienstrasse 54 80799 München , Germany
| | - Martin Sajfutdinow
- Fraunhofer Institute for Cell Therapy and Immunology IZI , Perlickstraβe 1 , 04103 Leipzig , Germany
| | - Tim Liedl
- Department für Physik , Ludwig-Maximilians-Universität Amalienstrasse 54 80799 München , Germany
| | - Flavio Romano
- Dipartimento di Scienze Molecolari e Nanosistemi , Università Ca' Foscari di Venezia , Via Torino 155 , 30172 Venezia Mestre , Italy
| | - Lorenzo Rovigatti
- Rudolf Peierls Centre for Theoretical Physics , University of Oxford , 1 Keble Road , Oxford OX1 3NP , United Kingdom
- CNR-ISC , Uos Sapienza, Piazzale A. Moro 2 , 00185 Roma , Italy
- Dipartimento di Fisica , Sapienza Università di Roma , Piazzale A. Moro 2 , 00185 Roma , Italy
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics , University of Oxford , 1 Keble Road , Oxford OX1 3NP , United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , United Kingdom
| |
Collapse
|
20
|
Verdorfer T, Gaub HE. Ligand Binding Stabilizes Cellulosomal Cohesins as Revealed by AFM-based Single-Molecule Force Spectroscopy. Sci Rep 2018; 8:9634. [PMID: 29941985 PMCID: PMC6018229 DOI: 10.1038/s41598-018-27085-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/25/2018] [Indexed: 11/22/2022] Open
Abstract
The cohesin-dockerin receptor-ligand family is the key element in the formation of multi-enzyme lignocellulose-digesting extracellular complexes called cellulosomes. Changes in a receptor protein upon binding of a ligand - commonly referred to as allostery - are not just essential for signalling, but may also alter the overall mechanical stability of a protein receptor. Here, we measured the change in mechanical stability of a library of cohesin receptor domains upon binding of their dockerin ligands in a multiplexed atomic force microscopy-based single-molecule force spectroscopy experiment. A parallelized, cell-free protein expression and immobilization protocol enables rapid mechanical phenotyping of an entire library of constructs with a single cantilever and thus ensures high throughput and precision. Our results show that dockerin binding increases the mechanical stability of every probed cohesin independently of its original folding strength. Furthermore, our results indicate that certain cohesins undergo a transition from a multitude of different folds or unfolding pathways to a single stable fold upon binding their ligand.
Collapse
Affiliation(s)
- Tobias Verdorfer
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799, Munich, Germany.
| | - Hermann E Gaub
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799, Munich, Germany
| |
Collapse
|
21
|
Cellulosome assembly: paradigms are meant to be broken! Curr Opin Struct Biol 2018; 49:154-161. [DOI: 10.1016/j.sbi.2018.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 12/23/2022]
|
22
|
Sumbul F, Marchesi A, Rico F. History, rare, and multiple events of mechanical unfolding of repeat proteins. J Chem Phys 2018; 148:123335. [PMID: 29604819 DOI: 10.1063/1.5013259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mechanical unfolding of proteins consisting of repeat domains is an excellent tool to obtain large statistics. Force spectroscopy experiments using atomic force microscopy on proteins presenting multiple domains have revealed that unfolding forces depend on the number of folded domains (history) and have reported intermediate states and rare events. However, the common use of unspecific attachment approaches to pull the protein of interest holds important limitations to study unfolding history and may lead to discarding rare and multiple probing events due to the presence of unspecific adhesion and uncertainty on the pulling site. Site-specific methods that have recently emerged minimize this uncertainty and would be excellent tools to probe unfolding history and rare events. However, detailed characterization of these approaches is required to identify their advantages and limitations. Here, we characterize a site-specific binding approach based on the ultrastable complex dockerin/cohesin III revealing its advantages and limitations to assess the unfolding history and to investigate rare and multiple events during the unfolding of repeated domains. We show that this approach is more robust, reproducible, and provides larger statistics than conventional unspecific methods. We show that the method is optimal to reveal the history of unfolding from the very first domain and to detect rare events, while being more limited to assess intermediate states. Finally, we quantify the forces required to unfold two molecules pulled in parallel, difficult when using unspecific approaches. The proposed method represents a step forward toward more reproducible measurements to probe protein unfolding history and opens the door to systematic probing of rare and multiple molecule unfolding mechanisms.
Collapse
Affiliation(s)
- Fidan Sumbul
- U1006, Aix-Marseille Université and INSERM, 163 Avenue de Luminy, 13009 Marseille, France
| | - Arin Marchesi
- U1006, Aix-Marseille Université and INSERM, 163 Avenue de Luminy, 13009 Marseille, France
| | - Felix Rico
- U1006, Aix-Marseille Université and INSERM, 163 Avenue de Luminy, 13009 Marseille, France
| |
Collapse
|
23
|
Wojciechowski M, Różycki B, Huy PDQ, Li MS, Bayer EA, Cieplak M. Dual binding in cohesin-dockerin complexes: the energy landscape and the role of short, terminal segments of the dockerin module. Sci Rep 2018; 8:5051. [PMID: 29568013 PMCID: PMC5864761 DOI: 10.1038/s41598-018-23380-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/05/2018] [Indexed: 01/09/2023] Open
Abstract
The assembly of the polysaccharide degradating cellulosome machinery is mediated by tight binding between cohesin and dockerin domains. We have used an empirical model known as FoldX as well as molecular mechanics methods to determine the free energy of binding between a cohesin and a dockerin from Clostridium thermocellum in two possible modes that differ by an approximately 180° rotation. Our studies suggest that the full-length wild-type complex exhibits dual binding at room temperature, i.e., the two modes of binding have comparable probabilities at equilibrium. The ability to bind in the two modes persists at elevated temperatures. However, single-point mutations or truncations of terminal segments in the dockerin result in shifting the equilibrium towards one of the binding modes. Our molecular dynamics simulations of mechanical stretching of the full-length wild-type cohesin-dockerin complex indicate that each mode of binding leads to two kinds of stretching pathways, which may be mistakenly taken as evidence of dual binding.
Collapse
Affiliation(s)
- Michał Wojciechowski
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, PL-02668, Warsaw, Poland
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, PL-02668, Warsaw, Poland
| | - Pham Dinh Quoc Huy
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, PL-02668, Warsaw, Poland
- Institute for Computational Sciences and Technology, SBI building, Quang Trung Software city, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, PL-02668, Warsaw, Poland
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001, Israel
| | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, PL-02668, Warsaw, Poland.
| |
Collapse
|
24
|
Różycki B, Cazade PA, O'Mahony S, Thompson D, Cieplak M. The length but not the sequence of peptide linker modules exerts the primary influence on the conformations of protein domains in cellulosome multi-enzyme complexes. Phys Chem Chem Phys 2018; 19:21414-21425. [PMID: 28758665 DOI: 10.1039/c7cp04114d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cellulosomes are large multi-protein catalysts produced by various anaerobic microorganisms to efficiently degrade plant cell-wall polysaccharides down into simple sugars. X-ray and physicochemical structural characterisations show that cellulosomes are composed of numerous protein domains that are connected by unstructured polypeptide segments, yet the properties and possible roles of these 'linker' peptides are largely unknown. We have performed coarse-grained and all-atom molecular dynamics computer simulations of a number of cellulosomal linkers of different lengths and compositions. Our data demonstrates that the effective stiffness of the linker peptides, as quantified by the equilibrium fluctuations in the end-to-end distances, depends primarily on the length of the linker and less so on the specific amino acid sequence. The presence of excluded volume - provided by the domains that are connected - dampens the motion of the linker residues and reduces the effective stiffness of the linkers. Simultaneously, the presence of the linkers alters the conformations of the protein domains that are connected. We demonstrate that short, stiff linkers induce significant rearrangements in the folded domains of the mini-cellulosome composed of endoglucanase Cel8A in complex with scaffoldin ScafT (Cel8A-ScafT) of Clostridium thermocellum as well as in a two-cohesin system derived from the scaffoldin ScaB of Acetivibrio cellulolyticus. We give experimentally testable predictions on structural changes in protein domains that depend on the length of linkers.
Collapse
Affiliation(s)
- Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
25
|
Ott W, Jobst MA, Bauer MS, Durner E, Milles LF, Nash MA, Gaub HE. Elastin-like Polypeptide Linkers for Single-Molecule Force Spectroscopy. ACS NANO 2017; 11:6346-6354. [PMID: 28591514 DOI: 10.1021/acsnano.7b02694] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Single-molecule force spectroscopy (SMFS) is by now well established as a standard technique in biophysics and mechanobiology. In recent years, the technique has benefitted greatly from new approaches to bioconjugation of proteins to surfaces. Indeed, optimized immobilization strategies for biomolecules and refined purification schemes are being steadily adapted and improved, which in turn has enhanced data quality. In many previously reported SMFS studies, poly(ethylene glycol) (PEG) was used to anchor molecules of interest to surfaces and/or cantilever tips. The limitation, however, is that PEG exhibits a well-known trans-trans-gauche to all-trans transition, which results in marked deviation from standard polymer elasticity models such as the worm-like chain, particularly at elevated forces. As a result, the assignment of unfolding events to protein domains based on their corresponding amino acid chain lengths is significantly obscured. Here, we provide a solution to this problem by implementing unstructured elastin-like polypeptides as linkers to replace PEG. We investigate the suitability of tailored elastin-like polypeptides linkers and perform direct comparisons to PEG, focusing on attributes that are critical for single-molecule force experiments such as linker length, monodispersity, and bioorthogonal conjugation tags. Our results demonstrate that by avoiding the ambiguous elastic response of mixed PEG/peptide systems and instead building the molecular mechanical systems with only a single bond type with uniform elastic properties, we improve data quality and facilitate data analysis and interpretation in force spectroscopy experiments. The use of all-peptide linkers allows alternative approaches for precisely defining elastic properties of proteins linked to surfaces.
Collapse
Affiliation(s)
- Wolfgang Ott
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München , 80799 Munich, Germany
- Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Markus A Jobst
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München , 80799 Munich, Germany
| | - Magnus S Bauer
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München , 80799 Munich, Germany
| | - Ellis Durner
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München , 80799 Munich, Germany
| | - Lukas F Milles
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München , 80799 Munich, Germany
| | - Michael A Nash
- Department of Chemistry, University of Basel , 4056 Basel, Switzerland
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH Zurich) , 4058 Basel, Switzerland
| | - Hermann E Gaub
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München , 80799 Munich, Germany
| |
Collapse
|
26
|
Manteca A, Alonso-Caballero Á, Fertin M, Poly S, De Sancho D, Perez-Jimenez R. The influence of disulfide bonds on the mechanical stability of proteins is context dependent. J Biol Chem 2017. [PMID: 28642368 DOI: 10.1074/jbc.m117.784934] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Disulfide bonds play a crucial role in proteins, modulating their stability and constraining their conformational dynamics. A particularly important case is that of proteins that need to withstand forces arising from their normal biological function and that are often disulfide bonded. However, the influence of disulfides on the overall mechanical stability of proteins is poorly understood. Here, we used single-molecule force spectroscopy (smFS) to study the role of disulfide bonds in different mechanical proteins in terms of their unfolding forces. For this purpose, we chose the pilus protein FimG from Gram-negative bacteria and a disulfide-bonded variant of the I91 human cardiac titin polyprotein. Our results show that disulfide bonds can alter the mechanical stability of proteins in different ways depending on the properties of the system. Specifically, disulfide-bonded FimG undergoes a 30% increase in its mechanical stability compared with its reduced counterpart, whereas the unfolding force of I91 domains experiences a decrease of 15% relative to the WT form. Using a coarse-grained simulation model, we rationalized that the increase in mechanical stability of FimG is due to a shift in the mechanical unfolding pathway. The simple topology-based explanation suggests a neutral effect in the case of titin. In summary, our results indicate that disulfide bonds in proteins act in a context-dependent manner rather than simply as mechanical lockers, underscoring the importance of considering disulfide bonds both computationally and experimentally when studying the mechanical properties of proteins.
Collapse
Affiliation(s)
- Aitor Manteca
- From the Nanobiomechanics Laboratory, CIC nanoGUNE, 20018 Donostia-San Sebastián, Spain
| | | | - Marie Fertin
- From the Nanobiomechanics Laboratory, CIC nanoGUNE, 20018 Donostia-San Sebastián, Spain
| | - Simon Poly
- the Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany, and
| | - David De Sancho
- From the Nanobiomechanics Laboratory, CIC nanoGUNE, 20018 Donostia-San Sebastián, Spain, .,the IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Raul Perez-Jimenez
- From the Nanobiomechanics Laboratory, CIC nanoGUNE, 20018 Donostia-San Sebastián, Spain, .,the IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
27
|
Global Distribution Patterns and Pangenomic Diversity of the Candidate Phylum "Latescibacteria" (WS3). Appl Environ Microbiol 2017; 83:AEM.00521-17. [PMID: 28314726 DOI: 10.1128/aem.00521-17] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/11/2017] [Indexed: 01/01/2023] Open
Abstract
We investigated the global distribution patterns and pangenomic diversity of the candidate phylum "Latescibacteria" (WS3) in 16S rRNA gene as well as metagenomic data sets. We document distinct distribution patterns for various "Latescibacteria" orders in 16S rRNA gene data sets, with prevalence of orders sediment_1 in terrestrial, PBSIII_9 in groundwater and temperate freshwater, and GN03 in pelagic marine, saline-hypersaline, and wastewater habitats. Using a fragment recruitment approach, we identified 68.9 Mb of "Latescibacteria"-affiliated contigs in publicly available metagenomic data sets comprising 73,079 proteins. Metabolic reconstruction suggests a prevalent saprophytic lifestyle in all "Latescibacteria" orders, with marked capacities for the degradation of proteins, lipids, and polysaccharides predominant in plant, bacterial, fungal/crustacean, and eukaryotic algal cell walls. As well, extensive transport and central metabolic pathways for the metabolism of imported monomers were identified. Interestingly, genes and domains suggestive of the production of a cellulosome-e.g., protein-coding genes harboring dockerin I domains attached to a glycosyl hydrolase and scaffoldin-encoding genes harboring cohesin I and CBM37 domains-were identified in order PBSIII_9, GN03, and MSB-4E2 fragments recovered from four anoxic aquatic habitats; hence extending the cellulosomal production capabilities in Bacteria beyond the Gram-positive Firmicutes In addition to fermentative pathways, a complete electron transport chain with terminal cytochrome c oxidases Caa3 (for operation under high oxygen tension) and Cbb3 (for operation under low oxygen tension) were identified in PBSIII_9 and GN03 fragments recovered from oxygenated and partially/seasonally oxygenated aquatic habitats. Our metagenomic recruitment effort hence represents a comprehensive pangenomic view of this yet-uncultured phylum and provides insights broader than and complementary to those gained from genome recovery initiatives focusing on a single or few sampled environments.IMPORTANCE Our understanding of the phylogenetic diversity, metabolic capabilities, and ecological roles of yet-uncultured microorganisms is rapidly expanding. However, recent efforts mainly have been focused on recovering genomes of novel microbial lineages from a specific sampling site, rather than from a wide range of environmental habitats. To comprehensively evaluate the genomic landscape, putative metabolic capabilities, and ecological roles of yet-uncultured candidate phyla, efforts that focus on the recovery of genomic fragments from a wide range of habitats and that adequately sample the intraphylum diversity within a specific target lineage are needed. Here, we investigated the global distribution patterns and pangenomic diversity of the candidate phylum "Latescibacteria" Our results document the preference of specific "Latescibacteria" orders to specific habitats, the prevalence of plant polysaccharide degradation abilities within all "Latescibacteria" orders, the occurrence of all genes/domains necessary for the production of cellulosomes within three "Latescibacteria" orders (GN03, PBSIII_9, and MSB-4E2) in data sets recovered from anaerobic locations, and the identification of the components of an aerobic respiratory chain, as well as occurrence of multiple O2-dependent metabolic reactions in "Latescibacteria" orders GN03 and PBSIII_9 recovered from oxygenated habitats. The results demonstrate the value of phylocentric pangenomic surveys for understanding the global ecological distribution and panmetabolic abilities of yet-uncultured microbial lineages since they provide broader and more complementary insights than those gained from single-cell genomic and/or metagenomic-enabled genome recovery efforts focusing on a single sampling site.
Collapse
|
28
|
Single-molecule force spectroscopy on polyproteins and receptor–ligand complexes: The current toolbox. J Struct Biol 2017; 197:3-12. [DOI: 10.1016/j.jsb.2016.02.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 11/21/2022]
|
29
|
Milles LF, Bayer EA, Nash MA, Gaub HE. Mechanical Stability of a High-Affinity Toxin Anchor from the Pathogen Clostridium perfringens. J Phys Chem B 2016; 121:3620-3625. [PMID: 27991799 DOI: 10.1021/acs.jpcb.6b09593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The opportunistic pathogen Clostridium perfringens assembles its toxins and carbohydrate-active enzymes by the high-affinity cohesin-dockerin (Coh-Doc) interaction. Coh-Doc interactions characterized previously have shown considerable resilience toward mechanical stress. Here, we aimed to determine the mechanics of this interaction from C. perfringens in the context of a pathogen. Using atomic force microscopy based single-molecule force spectroscopy (AFM-SMFS) we probed the mechanical properties of the interaction of a dockerin from the μ-toxin with the GH84C X82 cohesin domain of C. perfringens. Most probable complex rupture forces were found to be approximately 60 pN and an estimate of the binding potential width was performed. The dockerin was expressed with its adjacent FIVAR (found in various architectures) domain, whose mechanostability we determined to be very similar to the complex. Additionally, fast refolding of this domain was observed. The Coh-Doc interaction from C. perfringens is the mechanically weakest observed to date. Our results establish the relevant force range of toxin assembly mechanics in pathogenic Clostridia.
Collapse
Affiliation(s)
- Lukas F Milles
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University , Amalienstr. 54, 80799 Munich, Germany
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science , Rehovot 76100, Israel
| | - Michael A Nash
- Department of Chemistry, University of Basel , Klingelbergstr. 80, 4056 Basel, Switzerland.,Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich (ETH-Zürich) , Mattenstr. 26, 4058 Basel, Switzerland
| | - Hermann E Gaub
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University , Amalienstr. 54, 80799 Munich, Germany
| |
Collapse
|
30
|
Schoeler C, Verdorfer T, Gaub HE, Nash MA. Biasing effects of receptor-ligand complexes on protein-unfolding statistics. Phys Rev E 2016; 94:042412. [PMID: 27841541 DOI: 10.1103/physreve.94.042412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Indexed: 11/07/2022]
Abstract
Protein receptor-ligand pairs are increasingly used as specific molecular handles in single-molecule protein-unfolding experiments. Further, known marker domains, also referred to as fingerprints, provide unique unfolding signatures to identify specific single-molecule interactions, when receptor-ligand pairs themselves are investigated. We show here that in cases where there is an overlap between the probability distribution associated with fingerprint domain unfolding and that associated with receptor-ligand dissociation, the experimentally measured force distributions are mutually biased. This biasing effect masks the true parameters of the underlying free energy landscape. To address this, we present a model-free theoretical framework that corrects for the biasing effect caused by such overlapping distributions.
Collapse
Affiliation(s)
- Constantin Schoeler
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799 Munich, Germany
| | - Tobias Verdorfer
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799 Munich, Germany
| | - Hermann E Gaub
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799 Munich, Germany
| | - Michael A Nash
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799 Munich, Germany.,Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland.,Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich (ETH-Zürich), 4058 Basel, Switzerland
| |
Collapse
|
31
|
Wojciechowski M, Cieplak M. Dual binding mode in cohesin-dockerin complexes as assessed through stretching studies. J Chem Phys 2016; 145:134102. [PMID: 27782410 DOI: 10.1063/1.4963693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A recent experimental study by Jobst et al. of stretching of a wild-type (WT) cohesin-dockerin complex has identified two kinds of the force-displacement patterns, with a single or double-peaked final rupture, which are termed "short" and "long" here. This duality has been interpreted as arising from the existence of two kinds of binding. Here, we analyze the separation of two cohesin-dockerin complexes of C. thermocellum theoretically. We use a coarse-grained structure-based model and the values of the pulling speeds are nearly experimental. In their native states, the two systems differ in the mutual binding orientations of the molecules in the complex. We demonstrate that the WT complex (PDB:1OHZ) unravels along two possible pathways that are qualitatively consistent with the presence of the short and long patterns observed experimentally. On the other hand, the mutated complex (PDB:2CCL) leads only to short trajectories. The short and long stretching pathways also appear in the cohesin-dockerin-Xmodule complex (PDB:4IU3, WT) of R. flavefaciens. Thus the duality in the stretching patterns need not be necessarily due to the duality in binding.
Collapse
Affiliation(s)
- Michał Wojciechowski
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
32
|
Nash MA, Smith SP, Fontes CM, Bayer EA. Single versus dual-binding conformations in cellulosomal cohesin-dockerin complexes. Curr Opin Struct Biol 2016; 40:89-96. [PMID: 27579515 DOI: 10.1016/j.sbi.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/22/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Abstract
Cohesins and dockerins are complementary interacting protein modules that form stable and highly specific receptor-ligand complexes. They play a crucial role in the assembly of cellulose-degrading multi-enzyme complexes called cellulosomes and have potential applicability in several technology areas, including biomass conversion processes. Here, we describe several exceptional properties of cohesin-dockerin complexes, including their tenacious biochemical affinity, remarkably high mechanostability and a dual-binding mode of recognition that is contrary to the conventional lock-and-key model of receptor-ligand interactions. We focus on structural aspects of the dual mode of cohesin-dockerin binding, highlighting recent single-molecule analysis techniques for its explicit characterization.
Collapse
Affiliation(s)
- Michael A Nash
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany; Department of Chemistry, University of Basel, 4056 Basel, Switzerland; Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH-Zürich), 4058 Basel, Switzerland.
| | - Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Carlos Mga Fontes
- CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Edward A Bayer
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|