1
|
Hu H, Li A, Zhang L, Liu C, Shi L, Peng X, Li T, Zhou Y, Xue G. Goal-directed attention transforms both working and long-term memory representations in the human parietal cortex. PLoS Biol 2024; 22:e3002721. [PMID: 39008524 PMCID: PMC11271952 DOI: 10.1371/journal.pbio.3002721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 07/25/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
The abundance of distractors in the world poses a major challenge to our brain's limited processing capacity, but little is known about how selective attention modulates stimulus representations in the brain to reduce interference and support durable target memory. Here, we collected functional magnetic resonance imaging (fMRI) data in a selective attention task in which target and distractor pictures of different visual categories were simultaneously presented. Participants were asked to selectively process the target according to the effective cue, either before the encoding period (i.e., perceptual attention) or the maintenance period (i.e., reflective attention). On the next day, participants were asked to perform a memory recognition task in the scanner in which the targets, distractors, and novel items were presented in a pseudorandom order. Behavioral results showed that perceptual attention was better at enhancing target memory and reducing distractor memory than reflective attention, although the overall memory capacity (memory for both target and distractor) was comparable. Using multiple-voxel pattern analysis of the neural data, we found more robust target representation and weaker distractor representation in working memory for perceptual attention than for reflective attention. Interestingly, perceptual attention partially shifted the regions involved in maintaining the target representation from the visual cortex to the parietal cortex. Furthermore, the targets and distractors simultaneously presented in the perceptual attention condition showed reduced pattern similarity in the parietal cortex during retrieval compared to items not presented together. This neural pattern repulsion positively correlated with individuals' recognition of both targets and distractors. These results emphasize the critical role of selective attention in transforming memory representations to reduce interference and improve long-term memory performance.
Collapse
Affiliation(s)
- Huinan Hu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
| | - Anqi Li
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, PR China
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, HKSAR, PR China
| | - Liang Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
| | - Chuqi Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
| | - Liang Shi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
| | - Xiaojing Peng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
| | - Tong Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
| | - Yu Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
- Chinese Institute for Brain Research, Beijing, PR China
| |
Collapse
|
2
|
Bein O, Davachi L. Event Integration and Temporal Differentiation: How Hierarchical Knowledge Emerges in Hippocampal Subfields through Learning. J Neurosci 2024; 44:e0627232023. [PMID: 38129134 PMCID: PMC10919070 DOI: 10.1523/jneurosci.0627-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Everyday life is composed of events organized by changes in contexts, with each event containing an unfolding sequence of occurrences. A major challenge facing our memory systems is how to integrate sequential occurrences within events while also maintaining their details and avoiding over-integration across different contexts. We asked if and how distinct hippocampal subfields come to hierarchically and, in parallel, represent both event context and subevent occurrences with learning. Female and male human participants viewed sequential events defined as sequences of objects superimposed on shared color frames while undergoing high-resolution fMRI. Importantly, these events were repeated to induce learning. Event segmentation, as indexed by increased reaction times at event boundaries, was observed in all repetitions. Temporal memory decisions were quicker for items from the same event compared to across different events, indicating that events shaped memory. With learning, hippocampal CA3 multivoxel activation patterns clustered to reflect the event context, with more clustering correlated with behavioral facilitation during event transitions. In contrast, in the dentate gyrus (DG), temporally proximal items that belonged to the same event became associated with more differentiated neural patterns. A computational model explained these results by dynamic inhibition in the DG. Additional similarity measures support the notion that CA3 clustered representations reflect shared voxel populations, while DG's distinct item representations reflect different voxel populations. These findings suggest an interplay between temporal differentiation in the DG and attractor dynamics in CA3. They advance our understanding of how knowledge is structured through integration and separation across time and context.
Collapse
Affiliation(s)
- Oded Bein
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08540
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, New York 10027
- Center for Clinical Research, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| |
Collapse
|
3
|
Zheng L, Gao Z, Doner S, Oyao A, Forloines M, Grilli MD, Barnes CA, Ekstrom AD. Hippocampal contributions to novel spatial learning are both age-related and age-invariant. Proc Natl Acad Sci U S A 2023; 120:e2307884120. [PMID: 38055735 PMCID: PMC10723126 DOI: 10.1073/pnas.2307884120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023] Open
Abstract
Older adults show declines in spatial memory, although the extent of these alterations is not uniform across the healthy older population. Here, we investigate the stability of neural representations for the same and different spatial environments in a sample of younger and older adults using high-resolution functional MRI of the medial temporal lobes. Older adults showed, on average, lower neural pattern similarity for retrieving the same environment and more variable neural patterns compared to young adults. We also found a positive association between spatial distance discrimination and the distinctiveness of neural patterns between environments. Our analyses suggested that one source for this association was the extent of informational connectivity to CA1 from other subfields, which was dependent on age, while another source was the fidelity of signals within CA1 itself, which was independent of age. Together, our findings suggest both age-dependent and independent neural contributions to spatial memory performance.
Collapse
Affiliation(s)
- Li Zheng
- Psychology Department, University of Arizona, Tucson, AZ85721
| | - Zhiyao Gao
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Stephanie Doner
- Psychology Department, University of Arizona, Tucson, AZ85721
| | - Alexis Oyao
- Psychology Department, University of Arizona, Tucson, AZ85721
| | - Martha Forloines
- Alzheimer’s Disease Center, Department of Neurology, University of California, Davis, Sacramento, CA95816
| | - Matthew D. Grilli
- Psychology Department, University of Arizona, Tucson, AZ85721
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ85721
| | - Carol A. Barnes
- Psychology Department, University of Arizona, Tucson, AZ85721
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ85721
| | - Arne D. Ekstrom
- Psychology Department, University of Arizona, Tucson, AZ85721
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ85721
| |
Collapse
|
4
|
Zheng L, Gao Z, Doner S, Oyao A, Forloines M, Grilli MD, Barnes CA, Ekstrom AD. Hippocampal contributions to novel spatial learning are both age-related and age-invariant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546918. [PMID: 37425879 PMCID: PMC10326977 DOI: 10.1101/2023.06.28.546918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Older adults show declines in spatial memory, although the extent of these alterations is not uniform across the healthy older population. Here, we investigate the stability of neural representations for the same and different spatial environments in a sample of younger and older adults using high-resolution functional magnetic resonance imaging (fMRI) of the medial temporal lobe. Older adults showed, on average, lower neural pattern similarity for retrieving the same environment and more variable neural patterns compared to young adults. We also found a positive association between spatial distance discrimination and the distinctiveness of neural patterns between environments. Our analyses suggested that one source for this association was the extent of informational connectivity to CA1 from other subfields, which was dependent on age, while another source was the fidelity of signals within CA1 itself, which was independent of age. Together, our findings suggest both age-dependent and independent neural contributions to spatial memory performance.
Collapse
Affiliation(s)
- Li Zheng
- Psychology Department, University of Arizona, Tucson, AZ 85719
| | - Zhiyao Gao
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Stephanie Doner
- Psychology Department, University of Arizona, Tucson, AZ 85719
| | - Alexis Oyao
- Psychology Department, University of Arizona, Tucson, AZ 85719
| | - Martha Forloines
- Alzheimer s Disease Center, Department of Neurology, University of California, Davis, Sacramento, CA 95816
| | - Matthew D Grilli
- Psychology Department, University of Arizona, Tucson, AZ 85719
- Evelyn McKnight Brain Institute, University of Arizona, Tucson, AZ 85719
| | - Carol A Barnes
- Psychology Department, University of Arizona, Tucson, AZ 85719
- Evelyn McKnight Brain Institute, University of Arizona, Tucson, AZ 85719
| | - Arne D Ekstrom
- Psychology Department, University of Arizona, Tucson, AZ 85719
- Evelyn McKnight Brain Institute, University of Arizona, Tucson, AZ 85719
| |
Collapse
|
5
|
Yang M, Singh A, McDougle M, Décarie-Spain L, Kanoski S, de Lartigue G. Separate orexigenic hippocampal ensembles shape dietary choice by enhancing contextual memory and motivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561580. [PMID: 37873148 PMCID: PMC10592764 DOI: 10.1101/2023.10.09.561580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The hippocampus (HPC), traditionally known for its role in learning and memory, has emerged as a controller of food intake. While prior studies primarily associated the HPC with food intake inhibition, recent research suggests a critical role in appetitive processes. We hypothesized that orexigenic HPC neurons differentially respond to fats and/or sugars, potent natural reinforcers that contribute to obesity development. Results uncover previously-unrecognized, spatially-distinct neuronal ensembles within the dorsal HPC (dHPC) that are responsive to separate nutrient signals originating from the gut. Using activity-dependent genetic capture of nutrient-responsive HPC neurons, we demonstrate a causal role of both populations in promoting nutrient-specific preference through different mechanisms. Sugar-responsive neurons encode an appetitive spatial memory engram for meal location, whereas fat-responsive neurons selectively enhance the preference and motivation for fat intake. Collectively, these findings uncover a neural basis for the exquisite specificity in processing macronutrient signals from a meal that shape dietary choices.
Collapse
|
6
|
Geva-Sagiv M, Dimsdale-Zucker HR, Williams AB, Ranganath C. Proximity to boundaries reveals spatial context representation in human hippocampal CA1. Neuropsychologia 2023; 189:108656. [PMID: 37541615 DOI: 10.1016/j.neuropsychologia.2023.108656] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Recollection of real-world events is often accompanied by a sense of being in the place where the event transpired. Convergent evidence suggests the hippocampus plays a key role in supporting episodic memory by associating information with the time and place it was originally encountered. This representation is reinstated during memory retrieval. However, little is known about the roles of different subfields of the human hippocampus in this process. Research in humans and non-human animal models has suggested that spatial environmental boundaries have a powerful influence on spatial and episodic memory, as well as hippocampal representations of contexts and events. Here, we used high-resolution fMRI to investigate how boundaries influence hippocampal activity patterns during the recollection of objects encountered in different spatial contexts. During the encoding phase, participants viewed objects once in a naturalistic virtual reality task in which they passively explored two rooms in one of two houses. Following the encoding phase, participants were scanned while they recollected items in the absence of any spatial contextual information. Our behavioral results demonstrated that spatial context memory was enhanced for objects encountered near a boundary. Activity patterns in CA1 carried information about the spatial context associated with each of these boundary items. Exploratory analyses revealed that recollection performance was correlated with the fidelity of retrieved spatial context representations in anterior parahippocampal cortex and subiculum. Our results highlight the privileged role of boundaries in CA1 and suggest more generally a close relationship between memory for spatial contexts and representations in the hippocampus and parahippocampal region.
Collapse
Affiliation(s)
- Maya Geva-Sagiv
- Center for Neuroscience, University of California, Davis, USA; Department of Psychology, University of California, Davis, CA, USA.
| | - Halle R Dimsdale-Zucker
- Center for Neuroscience, University of California, Davis, USA; Department of Psychology, Columbia University, USA
| | | | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, USA; Department of Psychology, University of California, Davis, CA, USA
| |
Collapse
|
7
|
Fang X, Alsbury-Nealy B, Wang Y, Frankland PW, Josselyn SA, Schlichting ML, Duncan KD. Time separating spatial memories does not influence their integration in humans. PLoS One 2023; 18:e0289649. [PMID: 37561677 PMCID: PMC10414573 DOI: 10.1371/journal.pone.0289649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 07/23/2023] [Indexed: 08/12/2023] Open
Abstract
Humans can navigate through similar environments-like grocery stores-by integrating across their memories to extract commonalities or by differentiating between each to find idiosyncratic locations. Here, we investigate one factor that might impact whether two related spatial memories are integrated or differentiated: Namely, the temporal delay between experiences. Rodents have been shown to integrate memories more often when they are formed within 6 hours of each other. To test if this effect influences how humans spontaneously integrate spatial memories, we had 131 participants search for rewards in two similar virtual environments. We separated these learning experiences by either 30 minutes, 3 hours, or 27 hours. Memory integration was assessed three days later. Participants were able to integrate and simultaneously differentiate related memories across experiences. However, neither memory integration nor differentiation was modulated by temporal delay, in contrast to previous work. We further showed that both the levels of initial memory reactivation during the second experience and memory generalization to novel environments were comparable across conditions. Moreover, perseveration toward the initial reward locations during the second experience was related positively to integration and negatively to differentiation-but again, these associations did not vary by delay. Our findings identify important boundary conditions on the translation of rodent memory mechanisms to humans, motivating more research to characterize how even fundamental memory mechanisms are conserved and diverge across species.
Collapse
Affiliation(s)
- Xiaoping Fang
- Department of Psychology, University of Toronto, Toronto, Canada
- School of Psychology, Beijing Language and Culture University, Beijing, China
| | | | - Ying Wang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Paul W. Frankland
- Department of Psychology, University of Toronto, Toronto, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada
| | - Sheena A. Josselyn
- Department of Psychology, University of Toronto, Toronto, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
8
|
Amer T, Davachi L. Extra-hippocampal contributions to pattern separation. eLife 2023; 12:e82250. [PMID: 36972123 PMCID: PMC10042541 DOI: 10.7554/elife.82250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Pattern separation, or the process by which highly similar stimuli or experiences in memory are represented by non-overlapping neural ensembles, has typically been ascribed to processes supported by the hippocampus. Converging evidence from a wide range of studies, however, suggests that pattern separation is a multistage process supported by a network of brain regions. Based on this evidence, considered together with related findings from the interference resolution literature, we propose the 'cortico-hippocampal pattern separation' (CHiPS) framework, which asserts that brain regions involved in cognitive control play a significant role in pattern separation. Particularly, these regions may contribute to pattern separation by (1) resolving interference in sensory regions that project to the hippocampus, thus regulating its cortical input, or (2) directly modulating hippocampal processes in accordance with task demands. Considering recent interest in how hippocampal operations are modulated by goal states likely represented and regulated by extra-hippocampal regions, we argue that pattern separation is similarly supported by neocortical-hippocampal interactions.
Collapse
Affiliation(s)
- Tarek Amer
- Department of Psychology, University of VictoriaVictoriaCanada
| | - Lila Davachi
- Department of Psychology, Columbia UniversityNew YorkUnited States
- Nathan Kline Research InstituteOrangeburgUnited States
| |
Collapse
|
9
|
Bouffard NR, Golestani A, Brunec IK, Bellana B, Park JY, Barense MD, Moscovitch M. Single voxel autocorrelation uncovers gradients of temporal dynamics in the hippocampus and entorhinal cortex during rest and navigation. Cereb Cortex 2023; 33:3265-3283. [PMID: 36573396 PMCID: PMC10388386 DOI: 10.1093/cercor/bhac480] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/28/2022] Open
Abstract
During navigation, information at multiple scales needs to be integrated. Single-unit recordings in rodents suggest that gradients of temporal dynamics in the hippocampus and entorhinal cortex support this integration. In humans, gradients of representation are observed, such that granularity of information represented increases along the long axis of the hippocampus. The neural underpinnings of this gradient in humans, however, are still unknown. Current research is limited by coarse fMRI analysis techniques that obscure the activity of individual voxels, preventing investigation of how moment-to-moment changes in brain signal are organized and how they are related to behavior. Here, we measured the signal stability of single voxels over time to uncover previously unappreciated gradients of temporal dynamics in the hippocampus and entorhinal cortex. Using our novel, single voxel autocorrelation technique, we show a medial-lateral hippocampal gradient, as well as a continuous autocorrelation gradient along the anterolateral-posteromedial entorhinal extent. Importantly, we show that autocorrelation in the anterior-medial hippocampus was modulated by navigational difficulty, providing the first evidence that changes in signal stability in single voxels are relevant for behavior. This work opens the door for future research on how temporal gradients within these structures support the integration of information for goal-directed behavior.
Collapse
Affiliation(s)
- Nichole R Bouffard
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada
- Rotman Research Institute, Baycrest Health Sciences, 3650 Baycrest Street, Toronto, ON M6A 2E1, Canada
| | - Ali Golestani
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada
| | - Iva K Brunec
- Department of Psychology, Temple University, 1701 North 13th Street, Philadelphia, PA 19122, USA
- Department of Psychology, University of Pennsylvania, 3720 Walnut Street, Philadelphia, PA 19104, USA
| | - Buddhika Bellana
- Department of Psychology, Glendon College—York University, 2275 Bayview Ave, North York, ON M4N 3M6, Canada
| | - Jun Young Park
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada
- Department of Statistical Sciences, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada
| | - Morgan D Barense
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada
- Rotman Research Institute, Baycrest Health Sciences, 3650 Baycrest Street, Toronto, ON M6A 2E1, Canada
| | - Morris Moscovitch
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada
- Rotman Research Institute, Baycrest Health Sciences, 3650 Baycrest Street, Toronto, ON M6A 2E1, Canada
| |
Collapse
|
10
|
Fernandez C, Jiang J, Wang SF, Choi HL, Wagner AD. Representational integration and differentiation in the human hippocampus following goal-directed navigation. eLife 2023; 12:e80281. [PMID: 36786678 PMCID: PMC9928422 DOI: 10.7554/elife.80281] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 01/29/2023] [Indexed: 02/15/2023] Open
Abstract
As we learn, dynamic memory processes build structured knowledge across our experiences. Such knowledge enables the formation of internal models of the world that we use to plan, make decisions, and act. Recent theorizing posits that mnemonic mechanisms of differentiation and integration - which at one level may seem to be at odds - both contribute to the emergence of structured knowledge. We tested this possibility using fMRI as human participants learned to navigate within local and global virtual environments over the course of 3 days. Pattern similarity analyses on entorhinal cortical and hippocampal patterns revealed evidence that differentiation and integration work concurrently to build local and global environmental representations, and that variability in integration relates to differences in navigation efficiency. These results offer new insights into the neural machinery and the underlying mechanisms that translate experiences into structured knowledge that allows us to navigate to achieve goals.
Collapse
Affiliation(s)
- Corey Fernandez
- Graduate Program in Neurosciences, Stanford UniversityStanfordUnited States
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordUnited States
| | - Jiefeng Jiang
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
| | - Shao-Fang Wang
- Department of Psychology, Stanford UniversityStanfordUnited States
| | - Hannah Lee Choi
- Department of Psychology, Stanford UniversityStanfordUnited States
| | - Anthony D Wagner
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordUnited States
- Department of Psychology, Stanford UniversityStanfordUnited States
| |
Collapse
|
11
|
Igarashi KM. Entorhinal cortex dysfunction in Alzheimer's disease. Trends Neurosci 2023; 46:124-136. [PMID: 36513524 PMCID: PMC9877178 DOI: 10.1016/j.tins.2022.11.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/31/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
The entorhinal cortex (EC) is the brain region that often exhibits the earliest histological alterations in Alzheimer's disease (AD), including the formation of neurofibrillary tangles and cell death. Recently, brain imaging studies from preclinical AD patients and electrophysiological recordings from AD animal models have shown that impaired neuronal activity in the EC precedes neurodegeneration. This implies that memory impairments and spatial navigation deficits at the initial stage of AD are likely caused by activity dysfunction rather than by cell death. This review focuses on recent findings on EC dysfunction in AD, and discusses the potential pathways for mitigating AD progression by protecting the EC.
Collapse
Affiliation(s)
- Kei M Igarashi
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
12
|
Silva A, Martínez MC. Spatial memory deficits in Alzheimer's disease and their connection to cognitive maps' formation by place cells and grid cells. Front Behav Neurosci 2023; 16:1082158. [PMID: 36710956 PMCID: PMC9878455 DOI: 10.3389/fnbeh.2022.1082158] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Whenever we navigate through different contexts, we build a cognitive map: an internal representation of the territory. Spatial navigation is a complex skill that involves multiple types of information processing and integration. Place cells and grid cells, collectively with other hippocampal and medial entorhinal cortex neurons (MEC), form a neural network whose activity is critical for the representation of self-position and orientation along with spatial memory retrieval. Furthermore, this activity generates new representations adapting to changes in the environment. Though there is a normal decline in spatial memory related to aging, this is dramatically increased in pathological conditions such as Alzheimer's disease (AD). AD is a multi-factorial neurodegenerative disorder affecting mainly the hippocampus-entorhinal cortex (HP-EC) circuit. Consequently, the initial stages of the disease have disorientation and wandering behavior as two of its hallmarks. Recent electrophysiological studies have linked spatial memory deficits to difficulties in spatial information encoding. Here we will discuss map impairment and remapping disruption in the HP-EC network, as a possible circuit mechanism involved in the spatial memory and navigation deficits observed in AD, pointing out the benefits of virtual reality as a tool for early diagnosis and rehabilitation.
Collapse
Affiliation(s)
- Azul Silva
- Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología y Biofísica “Dr. Bernardo Houssay”- CONICET (IFIBIO), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Cecilia Martínez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología y Biofísica “Dr. Bernardo Houssay”- CONICET (IFIBIO), Universidad de Buenos Aires, Buenos Aires, Argentina,Facultad de Ciencias Exactas y Naturales, Departamento de Biología Molecular y Celular “Dr. Héctor Maldonado”, Universidad de Buenos Aires, Buenos Aires, Argentina,*Correspondence: María Cecilia Martínez,
| |
Collapse
|
13
|
Reggente N. VR for Cognition and Memory. Curr Top Behav Neurosci 2023; 65:189-232. [PMID: 37440126 DOI: 10.1007/7854_2023_425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
This chapter will provide a review of research into human cognition through the lens of VR-based paradigms for studying memory. Emphasis is placed on why VR increases the ecological validity of memory research and the implications of such enhancements.
Collapse
Affiliation(s)
- Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA.
| |
Collapse
|
14
|
Zhou R, Belge T, Wolbers T. Reaching the Goal: Superior Navigators in Late Adulthood Provide a Novel Perspective into Successful Cognitive Aging. Top Cogn Sci 2023; 15:15-45. [PMID: 35582831 DOI: 10.1111/tops.12608] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
Normal aging is typically associated with declines in navigation and spatial memory abilities. However, increased interindividual variability in performance across various navigation/spatial memory tasks is also evident with advancing age. In this review paper, we shed the spotlight on those older individuals who exhibit exceptional, sometimes even youth-like navigational/spatial memory abilities. Importantly, we (1) showcase observations from existing studies that demonstrate superior navigation/spatial memory performance in late adulthood, (2) explore possible cognitive correlates and neurophysiological mechanisms underlying these preserved spatial abilities, and (3) discuss the potential link between the superior navigators in late adulthood and SuperAgers (older adults with superior episodic memory). In the closing section, given the lack of studies that directly focus on this subpopulation, we highlight several important directions that future studies could look into to better understand the cognitive characteristics of older superior navigators and the factors enabling such successful cognitive aging.
Collapse
Affiliation(s)
- Ruojing Zhou
- Aging, Cognition and Technology Lab, German Center for Neurodegenerative Diseases
| | - Tuğçe Belge
- Aging, Cognition and Technology Lab, German Center for Neurodegenerative Diseases
| | - Thomas Wolbers
- Aging, Cognition and Technology Lab, German Center for Neurodegenerative Diseases.,Center for Behavioral Brain Sciences, Magdeburg
| |
Collapse
|
15
|
Martin CB, Hong B, Newsome RN, Savel K, Meade ME, Xia A, Honey CJ, Barense MD. A smartphone intervention that enhances real-world memory and promotes differentiation of hippocampal activity in older adults. Proc Natl Acad Sci U S A 2022; 119:e2214285119. [PMID: 36512503 PMCID: PMC9907156 DOI: 10.1073/pnas.2214285119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022] Open
Abstract
The act of remembering an everyday experience influences how we interpret the world, how we think about the future, and how we perceive ourselves. It also enhances long-term retention of the recalled content, increasing the likelihood that it will be recalled again. Unfortunately, the ability to recollect event-specific details and reexperience the past tends to decline with age. This decline in recollection may reflect a corresponding decrease in the distinctiveness of hippocampal memory representations. Despite these well-established changes, there are few effective cognitive behavioral interventions that target real-world episodic memory. We addressed this gap by developing a smartphone-based application called HippoCamera that allows participants to record labeled videos of everyday events and subsequently replay, high-fidelity autobiographical memory cues. In two experiments, we found that older adults were able to easily integrate this noninvasive intervention into their daily lives. Using HippoCamera to repeatedly reactivate memories for real-world events improved episodic recollection and it evoked more positive autobiographical sentiment at the time of retrieval. In both experiments, these benefits were observed shortly after the intervention and again after a 3-mo delay. Moreover, more detailed recollection was associated with more differentiated memory signals in the hippocampus. Thus, using this smartphone application to systematically reactivate memories for recent real-world experiences can help to maintain a bridge between the present and past in older adults.
Collapse
Affiliation(s)
- Chris B. Martin
- Department of Psychology, Florida State University, Tallahassee, FL, 32306
| | - Bryan Hong
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3Canada
| | - Rachel N. Newsome
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3Canada
| | - Katarina Savel
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3Canada
| | - Melissa E. Meade
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3Canada
| | - Andrew Xia
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3Canada
| | - Christopher J. Honey
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218
| | - Morgan D. Barense
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, ON, M6A 2X8Canada
| |
Collapse
|
16
|
Essoe JKY, Reggente N, Ohno AA, Baek YH, Dell'Italia J, Rissman J. Enhancing learning and retention with distinctive virtual reality environments and mental context reinstatement. NPJ SCIENCE OF LEARNING 2022; 7:31. [PMID: 36481776 PMCID: PMC9732332 DOI: 10.1038/s41539-022-00147-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Memory is inherently context-dependent: internal and environmental cues become bound to learnt information, and the later absence of these cues can impair recall. Here, we developed an approach to leverage context-dependence to optimise learning of challenging, interference-prone material. While navigating through desktop virtual reality (VR) contexts, participants learnt 80 foreign words in two phonetically similar languages. Those participants who learnt each language in its own unique context showed reduced interference and improved one-week retention (92%), relative to those who learnt the languages in the same context (76%)-however, this advantage was only apparent if participants subjectively experienced VR-based contexts as "real" environments. A follow-up fMRI experiment confirmed that reinstatement of brain activity patterns associated with the original encoding context during word retrieval was associated with improved recall performance. These findings establish that context-dependence can be harnessed with VR to optimise learning and showcase the important role of mental context reinstatement.
Collapse
Affiliation(s)
- Joey Ka-Yee Essoe
- Center for OCD, Anxiety, and Related Disorders for Children, Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Psychology, University of California, Los Angeles, CA, 90095, USA
| | - Nicco Reggente
- Department of Psychology, University of California, Los Angeles, CA, 90095, USA
- Institute for Advanced Consciousness Studies, Santa Monica, CA, 90403, USA
| | - Ai Aileen Ohno
- Department of Psychology, University of California, Los Angeles, CA, 90095, USA
- School of Medicine, California University of Science and Medicine, Colton, CA, 92324, USA
| | - Younji Hera Baek
- Department of Psychology, University of California, Los Angeles, CA, 90095, USA
- Division of Psychology, Communication, and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - John Dell'Italia
- Department of Psychology, University of California, Los Angeles, CA, 90095, USA
- Birmingham Veterans Affairs, Birmingham, AL, 35233, USA
| | - Jesse Rissman
- Department of Psychology, University of California, Los Angeles, CA, 90095, USA.
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA, 90095, USA.
- Brain Research Institute, University of California, Los Angeles, CA, 90095, USA.
- Integrative Center for Learning and Memory, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
17
|
Peer M, Epstein RA. The human brain uses spatial schemas to represent segmented environments. Curr Biol 2021; 31:4677-4688.e8. [PMID: 34473949 PMCID: PMC8578397 DOI: 10.1016/j.cub.2021.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/25/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Abstract
Humans and animals use cognitive maps to represent the spatial structure of the environment. Although these maps are typically conceptualized as extending in an equipotential manner across known space, psychological evidence suggests that people mentally segment complex environments into subspaces. To understand the neurocognitive mechanisms behind this operation, we familiarized participants with a virtual courtyard that was divided into two halves by a river; we then used behavioral testing and fMRI to understand how spatial locations were encoded within this environment. Participants' spatial judgments and multivoxel activation patterns were affected by the division of the courtyard, indicating that the presence of a boundary can induce mental segmentation even when all parts of the environment are co-visible. In the hippocampus and occipital place area (OPA), the segmented organization of the environment manifested in schematic spatial codes that represented geometrically equivalent locations in the two subspaces as similar. In the retrosplenial complex (RSC), responses were more consistent with an integrated spatial map. These results demonstrate that people use both local spatial schemas and integrated spatial maps to represent segmented environment. We hypothesize that schematization may serve as a general mechanism for organizing complex knowledge structures in terms of their component elements.
Collapse
Affiliation(s)
- Michael Peer
- Department of Psychology, University of Pennsylvania, 3710 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Russell A Epstein
- Department of Psychology, University of Pennsylvania, 3710 Hamilton Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Zheng L, Gao Z, McAvan AS, Isham EA, Ekstrom AD. Partially overlapping spatial environments trigger reinstatement in hippocampus and schema representations in prefrontal cortex. Nat Commun 2021; 12:6231. [PMID: 34711830 PMCID: PMC8553856 DOI: 10.1038/s41467-021-26560-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 10/11/2021] [Indexed: 01/17/2023] Open
Abstract
When we remember a city that we have visited, we retrieve places related to finding our goal but also non-target locations within this environment. Yet, understanding how the human brain implements the neural computations underlying holistic retrieval remains unsolved, particularly for shared aspects of environments. Here, human participants learned and retrieved details from three partially overlapping environments while undergoing high-resolution functional magnetic resonance imaging (fMRI). Our findings show reinstatement of stores even when they are not related to a specific trial probe, providing evidence for holistic environmental retrieval. For stores shared between cities, we find evidence for pattern separation (representational orthogonalization) in hippocampal subfield CA2/3/DG and repulsion in CA1 (differentiation beyond orthogonalization). Additionally, our findings demonstrate that medial prefrontal cortex (mPFC) stores representations of the common spatial structure, termed schema, across environments. Together, our findings suggest how unique and common elements of multiple spatial environments are accessed computationally and neurally.
Collapse
Affiliation(s)
- Li Zheng
- grid.134563.60000 0001 2168 186XDepartment of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XEvelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA
| | - Zhiyao Gao
- grid.5685.e0000 0004 1936 9668Department of Psychology, University of York, Heslington, York YO10 5DD UK
| | - Andrew S. McAvan
- grid.134563.60000 0001 2168 186XDepartment of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XEvelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA
| | - Eve A. Isham
- grid.134563.60000 0001 2168 186XDepartment of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XEvelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA
| | - Arne D. Ekstrom
- grid.134563.60000 0001 2168 186XDepartment of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XEvelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA
| |
Collapse
|
19
|
Wanjia G, Favila SE, Kim G, Molitor RJ, Kuhl BA. Abrupt hippocampal remapping signals resolution of memory interference. Nat Commun 2021; 12:4816. [PMID: 34376652 PMCID: PMC8355182 DOI: 10.1038/s41467-021-25126-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022] Open
Abstract
Remapping refers to a decorrelation of hippocampal representations of similar spatial environments. While it has been speculated that remapping may contribute to the resolution of episodic memory interference in humans, direct evidence is surprisingly limited. We tested this idea using high-resolution, pattern-based fMRI analyses. Here we show that activity patterns in human CA3/dentate gyrus exhibit an abrupt, temporally-specific decorrelation of highly similar memory representations that is precisely coupled with behavioral expressions of successful learning. The magnitude of this learning-related decorrelation was predicted by the amount of pattern overlap during initial stages of learning, with greater initial overlap leading to stronger decorrelation. Finally, we show that remapped activity patterns carry relatively more information about learned episodic associations compared to competing associations, further validating the learning-related significance of remapping. Collectively, these findings establish a critical link between hippocampal remapping and episodic memory interference and provide insight into why remapping occurs.
Collapse
Affiliation(s)
- Guo Wanjia
- Department of Psychology, University of Oregon, Eugene, OR, USA.
| | - Serra E Favila
- Department of Psychology, Columbia University, New York, NY, USA
| | - Ghootae Kim
- Korea Brain Research Institute, Dong-gu, Daegu, Republic of Korea
| | | | - Brice A Kuhl
- Department of Psychology, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
20
|
Rechnitz O, Slutsky I, Morris G, Derdikman D. Hippocampal sub-networks exhibit distinct spatial representation deficits in Alzheimer's disease model mice. Curr Biol 2021; 31:3292-3302.e6. [PMID: 34146487 DOI: 10.1016/j.cub.2021.05.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 01/03/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022]
Abstract
Not much is known about how the dentate gyrus (DG) and hippocampal CA3 networks, critical for memory and spatial processing, malfunction in Alzheimer's disease (AD). While studies of associative memory deficits in AD have focused mainly on behavior, here, we directly measured neurophysiological network dysfunction. We asked what the pattern of deterioration of different networks is during disease progression. We investigated how the associative memory-processing capabilities in different hippocampal subfields are affected by familial AD (fAD) mutations leading to amyloid-β dyshomeostasis. Specifically, we focused on the DG and CA3, which are known to be involved in pattern completion and separation and are susceptible to pathological alterations in AD. To identify AD-related deficits in neural-ensemble dynamics, we recorded single-unit activity in wild-type (WT) and fAD model mice (APPSwe+PSEN1/ΔE9) in a novel tactile morph task, which utilizes the extremely developed somatosensory modality of mice. As expected from the sub-network regional specialization, we found that tactile changes induced lower rate map correlations in the DG than in CA3 of WT mice. This reflects DG pattern separation and CA3 pattern completion. In contrast, in fAD model mice, we observed pattern separation deficits in the DG and pattern completion deficits in CA3. This demonstration of region-dependent impairments in fAD model mice contributes to understanding of brain networks deterioration during fAD progression. Furthermore, it implies that the deterioration cannot be studied generally throughout the hippocampus but must be researched at a finer resolution of microcircuits. This opens novel systems-level approaches for analyzing AD-related neural network deficits.
Collapse
Affiliation(s)
- Ohad Rechnitz
- Department of Neuroscience, Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, 31096 Haifa, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Genela Morris
- Department of Neuroscience, Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, 31096 Haifa, Israel
| | - Dori Derdikman
- Department of Neuroscience, Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, 31096 Haifa, Israel.
| |
Collapse
|
21
|
Remapping and realignment in the human hippocampal formation predict context-dependent spatial behavior. Nat Neurosci 2021; 24:863-872. [PMID: 33859438 DOI: 10.1038/s41593-021-00835-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/08/2021] [Indexed: 02/02/2023]
Abstract
To guide spatial behavior, the brain must retrieve memories that are appropriately associated with different navigational contexts. Contextual memory might be mediated by cell ensembles in the hippocampal formation that alter their responses to changes in context, processes known as remapping and realignment in the hippocampus and entorhinal cortex, respectively. However, whether remapping and realignment guide context-dependent spatial behavior is unclear. To address this issue, human participants learned object-location associations within two distinct virtual reality environments and subsequently had their memory tested during functional MRI (fMRI) scanning. Entorhinal grid-like representations showed realignment between the two contexts, and coincident changes in fMRI activity patterns consistent with remapping were observed in the hippocampus. Critically, in a third ambiguous context, trial-by-trial remapping and realignment in the hippocampal-entorhinal network predicted context-dependent behavior. These results reveal the hippocampal-entorhinal mechanisms mediating human contextual memory and suggest that the hippocampal formation plays a key role in spatial behavior under uncertainty.
Collapse
|
22
|
Méndez-Couz M, Krenzek B, Manahan-Vaughan D. Genetic Depletion of BDNF Impairs Extinction Learning of a Spatial Appetitive Task in the Presence or Absence of the Acquisition Context. Front Behav Neurosci 2021; 15:658686. [PMID: 33994970 PMCID: PMC8119774 DOI: 10.3389/fnbeh.2021.658686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Brain derived neurotropic factor (BDNF) supports neuronal survival, growth, and differentiation and is involved in forms of hippocampus-dependent and independent learning, as well as hippocampus-dependent learning. Extinction learning comprises active inhibition of no-longer relevant learned information, in conjunction with a decreased response of a previously learned behavior. It is highly dependent on context, and evidence exists that it requires hippocampal activation. The participation of BDNF in memory processing is experience-dependent. For example, BDNF has been associated with synaptic plasticity needed for spatial learning, and it is involved in acquisition and extinction learning of fear conditioning. However, little is known about its role in spatial appetitive extinction learning. In this study, we evaluated to what extent BDNF contributes to spatial appetitive extinction learning in the presence (ABA) or absence (AAA) of exposure to the acquisition context. Daily training, of BDNF+/--mice or their wildtype (WT) littermates, to reach acquisition criterion in a T-maze, resulted in a similar performance outcome. However, extinction learning was delayed in the AAA, and impaired in the ABA-paradigm compared to performance in WT littermates. Trial-by-trial learning analysis indicated differences in the integration of the context into extinction learning by BDNF+/--mice compared to WT littermates. Taken together, these results support an important role for BDNF in processes that relate to information updating and retrieval that in turn are crucial for effective extinction learning.
Collapse
Affiliation(s)
- Marta Méndez-Couz
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Beate Krenzek
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
23
|
Li Q, Tavakol S, Royer J, Larivière S, Vos De Wael R, Park BY, Paquola C, Zeng D, Caldairou B, Bassett DS, Bernasconi A, Bernasconi N, Frauscher B, Smallwood J, Caciagli L, Li S, Bernhardt BC. Atypical neural topographies underpin dysfunctional pattern separation in temporal lobe epilepsy. Brain 2021; 144:2486-2498. [PMID: 33730163 DOI: 10.1093/brain/awab121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/26/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Episodic memory is the ability to accurately remember events from our past. The process of pattern separation is hypothesized to underpin this ability and is defined as the ability to orthogonalize memory traces, to maximize the features that make them unique. Contemporary cognitive neuroscience suggests that pattern separation entails complex interactions between the hippocampus and the neocortex, where specific hippocampal subregions shape neural reinstatement in the neocortex. To test this hypothesis, the current work studied both healthy controls and patients with temporal lobe epilepsy (TLE) who present with hippocampal structural anomalies. In all participants, we measured neural activity using functional magnetic resonance imaging (fMRI) while they retrieved memorized items compared to lure items which share features with the target. Behaviorally, TLE patients were less able to exclude lures than controls, and showed a reduction in pattern separation. To assess the hypothesized relationship between neural patterns in the hippocampus and the neocortex, we identified topographic gradients of intrinsic connectivity along neocortical and hippocampal subfield surfaces and identified the topographic profile of the neural activity accompanying pattern separation. In healthy controls, pattern separation followed a graded pattern of neural activity, both along the hippocampal long axis (and peaked in anterior segments that are more heavily engaged in transmodal processing) and along the neocortical hierarchy running from unimodal to transmodal regions (peaking in transmodal default mode regions). In TLE patients, however, this concordance between task-based functional activations and topographic gradients was markedly reduced. Furthermore, person specific measures of concordance between task-related activity and connectivity gradients in patients and controls related to inter-individual differences in behavioral measures of pattern separation and episodic memory, highlighting the functional relevance of the observed topographic motifs. Our work is consistent with an emerging understanding that successful discrimination between memories with similar features entails a shift in the locus of neural activity away from sensory systems, a pattern that is mirrored along the hippocampal long axis and with respect to neocortical hierarchies. More broadly, our study establishes topographic profiling using intrinsic connectivity gradients captures the functional underpinnings of episodic memory processes in manner that is sensitive to their reorganization in pathology.
Collapse
Affiliation(s)
- Qiongling Li
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.,School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Reinder Vos De Wael
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Bo-Yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Debin Zeng
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, USA.,Department of Psychiatry, University of Pennsylvania, Philadelphia, USA.,Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| | - Shuyu Li
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| |
Collapse
|
24
|
Evensmoen HR, Rimol LM, Winkler AM, Betzel R, Hansen TI, Nili H, Håberg A. Allocentric representation in the human amygdala and ventral visual stream. Cell Rep 2021; 34:108658. [PMID: 33472067 DOI: 10.1016/j.celrep.2020.108658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/01/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
The hippocampus and the entorhinal cortex are considered the main brain structures for allocentric representation of the external environment. Here, we show that the amygdala and the ventral visual stream are involved in allocentric representation. Thirty-one young men explored 35 virtual environments during high-resolution functional magnetic resonance imaging (fMRI) of the medial temporal lobe (MTL) and were subsequently tested on recall of the allocentric pattern of the objects in each environment-in other words, the positions of the objects relative to each other and to the outer perimeter. We find increasingly unique brain activation patterns associated with increasing allocentric accuracy in distinct neural populations in the perirhinal cortex, parahippocampal cortex, fusiform cortex, amygdala, hippocampus, and entorhinal cortex. In contrast to the traditional view of a hierarchical MTL network with the hippocampus at the top, we demonstrate, using recently developed graph analyses, a hierarchical allocentric MTL network without a main connector hub.
Collapse
Affiliation(s)
- Hallvard Røe Evensmoen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), 7489 Trondheim, Norway; Department of Medical Imaging, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Lars M Rimol
- Department of Psychology, NTNU, 7489 Trondheim, Norway
| | - Anderson M Winkler
- National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Tor Ivar Hansen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), 7489 Trondheim, Norway
| | - Hamed Nili
- Department of Experimental Psychology, University of Oxford, South Parks Road, OX1 3UD Oxford, UK
| | - Asta Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), 7489 Trondheim, Norway; Department of Medical Imaging, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
| |
Collapse
|
25
|
Kern KL, Storer TW, Schon K. Cardiorespiratory fitness, hippocampal subfield volumes, and mnemonic discrimination task performance in aging. Hum Brain Mapp 2020; 42:871-892. [PMID: 33325614 PMCID: PMC7856657 DOI: 10.1002/hbm.25259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Aging and exercise have opposing effects on mnemonic discrimination task performance, which putatively taxes pattern separation mechanisms reliant on the dentate gyrus (DG) subfield of the hippocampus. In young adults, increasing cardiorespiratory fitness (CRF) has been shown to improve mnemonic discrimination task performance and increase left anterior DG/CA3 volume. It is unknown how these variables interact in cognitive aging, yet this knowledge is critical, given the established effects of aging on hippocampal plasticity. To investigate these relationships, 65 older adults (aged 55–85 years) completed a submaximal treadmill test to estimate CRF, a mnemonic discrimination task, and a high‐resolution MRI scan to determine hippocampal subfield volumes. Our older adult sample demonstrated the lowest task accuracy in the condition with the greatest stimuli similarity and left DG/CA3 body volume significantly predicted accuracy in this condition. Our results did not provide support for relationships between CRF and task accuracy or CRF and DG/CA3 volume as evidenced in studies of young adults. Instead, CRF predicted bilateral subiculum volume in older adult women, not men. Altogether, these findings provide further support for a role of the DG in behavioral pattern separation in humans and suggest that CRF may have differential effects on hippocampal subfield integrity in older adult men and women. ClinicalTrials.gov identifiers: (a) Neuroimaging Study of Exercise and Memory Function, NCT02057354; (b) The Entorhinal Cortex and Aerobic Exercise in Aging, NCT02775760; (c) Physical Activity and Cognition Study, NCT02773121.
Collapse
Affiliation(s)
- Kathryn L Kern
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Thomas W Storer
- Men's Health, Aging, and Metabolism Unit, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Karin Schon
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.,Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA.,Center for Memory and Brain, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Quian Quiroga R. No Pattern Separation in the Human Hippocampus. Trends Cogn Sci 2020; 24:994-1007. [DOI: 10.1016/j.tics.2020.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 11/26/2022]
|
27
|
Genetic Alzheimer’s Disease Risk Affects the Neural Mechanisms of Pattern Separation in Hippocampal Subfields. Curr Biol 2020; 30:4201-4212.e3. [DOI: 10.1016/j.cub.2020.08.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 08/11/2020] [Indexed: 01/13/2023]
|
28
|
Integration and differentiation of hippocampal memory traces. Neurosci Biobehav Rev 2020; 118:196-208. [DOI: 10.1016/j.neubiorev.2020.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022]
|
29
|
Disrupted Place Cell Remapping and Impaired Grid Cells in a Knockin Model of Alzheimer's Disease. Neuron 2020; 107:1095-1112.e6. [PMID: 32697942 DOI: 10.1016/j.neuron.2020.06.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/13/2020] [Accepted: 06/22/2020] [Indexed: 11/24/2022]
Abstract
Patients with Alzheimer's disease (AD) suffer from spatial memory impairment and wandering behavior, but the brain circuit mechanisms causing such symptoms remain largely unclear. In healthy brains, spatially tuned hippocampal place cells and entorhinal grid cells exhibit distinct spike patterns in different environments, a circuit function called "remapping." We tested remapping in amyloid precursor protein knockin (APP-KI) mice with impaired spatial memory. CA1 neurons, including place cells, showed disrupted remapping, although their spatial tuning was only mildly diminished. Medial entorhinal cortex (MEC) neurons severely lost their spatial tuning and grid cells were almost absent. Fast gamma oscillatory coupling between the MEC and CA1 was also impaired. Mild disruption of MEC grid cells emerged in younger APP-KI mice, although the spatial memory and CA1 remapping of the animals remained intact. These results point to remapping impairment in the hippocampus, possibly linked to grid cell disruption, as circuit mechanisms underlying spatial memory impairment in AD.
Collapse
|
30
|
Zotow E, Bisby JA, Burgess N. Behavioral evidence for pattern separation in human episodic memory. ACTA ACUST UNITED AC 2020; 27:301-309. [PMID: 32669385 PMCID: PMC7365015 DOI: 10.1101/lm.051821.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/03/2020] [Indexed: 01/02/2023]
Abstract
An essential feature of episodic memory is the ability to recall the multiple elements relating to one event from the multitude of elements relating to other, potentially similar events. Hippocampal pattern separation is thought to play a fundamental role in this process, by orthogonalizing the representations of overlapping events during encoding, to reduce interference between them during the process of pattern completion by which one or other is recalled. We introduce a new paradigm to test the hypothesis that similar memories, but not unrelated memories, are actively separated at encoding. Participants memorized events which were either unique or shared a common element with another event (paired “overlapping” events). We used a measure of dependency, originally devised to measure pattern completion, to quantify how much the probability of successfully retrieving associations from one event depends on successful retrieval of associations from the same event, an unrelated event or the overlapping event. In two experiments, we saw that within event retrievals were highly dependent, indicating pattern completion; retrievals from unrelated events were independent; and retrievals from overlapping events were antidependent (i.e., less than independent), indicating pattern separation. This suggests that representations of similar (overlapping) memories are actively separated, resulting in lowered dependency of retrieval performance between them, as would be predicted by the pattern separation account.
Collapse
Affiliation(s)
- Ewa Zotow
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - James A Bisby
- Division of Psychiatry, University College London, London W1T 7BN, United Kingdom
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom.,Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| |
Collapse
|
31
|
Mnemonic discrimination in patients with unilateral mesial temporal lobe epilepsy relates to similarity and number of events stored in memory. Neurobiol Learn Mem 2020; 169:107177. [DOI: 10.1016/j.nlm.2020.107177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 01/24/2020] [Accepted: 02/05/2020] [Indexed: 01/15/2023]
|
32
|
Broadhouse KM, Singh MF, Suo C, Gates N, Wen W, Brodaty H, Jain N, Wilson GC, Meiklejohn J, Singh N, Baune BT, Baker M, Foroughi N, Wang Y, Kochan N, Ashton K, Brown M, Li Z, Mavros Y, Sachdev PS, Valenzuela MJ. Hippocampal plasticity underpins long-term cognitive gains from resistance exercise in MCI. Neuroimage Clin 2020; 25:102182. [PMID: 31978826 PMCID: PMC6974789 DOI: 10.1016/j.nicl.2020.102182] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 01/15/2023]
Abstract
Dementia affects 47 million individuals worldwide, and assuming the status quo is projected to rise to 150 million by 2050. Prevention of age-related cognitive impairment in older persons with lifestyle interventions continues to garner evidence but whether this can combat underlying neurodegeneration is unknown. The Study of Mental Activity and Resistance Training (SMART) trial has previously reported within-training findings; the aim of this study was to investigate the long-term neurostructural and cognitive impact of resistance exercise in Mild Cognitive Impairment (MCI). For the first time we show that hippocampal subareas particularly susceptible to volume loss in Alzheimer's disease (AD) are protected by resistance exercise for up to one year after training. One hundred MCI participants were randomised to one of four training groups: (1) Combined high intensity progressive resistance and computerised cognitive training (PRT+CCT), (2) PRT+Sham CCT, (3) CCT+Sham PRT, (4) Sham physical+sham cognitive training (SHAM+SHAM). Physical, neuropsychological and MRI assessments were carried out at baseline, 6 months (directly after training) and 18 months from baseline (12 months after intervention cessation). Here we report neuro-structural and functional changes over the 18-month trial period and the association with global cognitive and executive function measures. PRT but not CCT or PRT+CCT led to global long-term cognitive improvements above SHAM intervention at 18-month follow-up. Furthermore, hippocampal subfields susceptible to atrophy in AD were protected by PRT revealing an elimination of long-term atrophy in the left subiculum, and attenuation of atrophy in left CA1 and dentate gyrus when compared to SHAM+SHAM (p = 0.023, p = 0.020 and p = 0.027). These neuroprotective effects mediated a significant portion of long-term cognitive benefits. By contrast, within-training posterior cingulate plasticity decayed after training cessation and was unrelated to long term cognitive benefits. Neither general physical activity levels nor fitness change over the 18-month period mediated hippocampal trajectory, demonstrating that enduring hippocampal subfield plasticity is not a simple reflection of post-training changes in fitness or physical activity participation. Notably, resting-state fMRI analysis revealed that both the hippocampus and posterior cingulate participate in a functional network that continued to be upregulated following intervention cessation. Multiple structural mechanisms may contribute to the long-term global cognitive benefit of resistance exercise, developing along different time courses but functionally linked. For the first time we show that 6 months of high intensity resistance exercise is capable of not only promoting better cognition in those with MCI, but also protecting AD-vulnerable hippocampal subfields from degeneration for at least 12 months post-intervention. These findings emphasise the therapeutic potential of resistance exercise; however, future work will need to establish just how long-lived these outcomes are and whether they are sufficient to delay dementia.
Collapse
Affiliation(s)
- Kathryn M Broadhouse
- Nola Thompson Centre for Advanced Imaging, Sunshine Coast Mind and Neuroscience Thompson Institute, University of the Sunshine Coast, QLD, Australia; Regenerative Neuroscience Group, Brain and Mind Centre and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.
| | - Maria Fiatarone Singh
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, Faculty of Health Sciences and Sydney Medical School, The University of Sydney, Lidcombe, NSW, Australia; Hebrew SeniorLife and Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Chao Suo
- Regenerative Neuroscience Group, Brain and Mind Centre and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Nicola Gates
- Regenerative Neuroscience Group, Brain and Mind Centre and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW, Australia; Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Wei Wen
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia; Dementia Collaborative Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Nidhi Jain
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, Australia
| | - Guy C Wilson
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, Australia
| | - Jacinda Meiklejohn
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, Australia
| | - Nalin Singh
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, Australia
| | - Bernhard T Baune
- Department of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Michael Baker
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, Faculty of Health Sciences and Sydney Medical School, The University of Sydney, Lidcombe, NSW, Australia; School of Exercise Science, Australian Catholic University, Strathfield, NSW, Australia
| | - Nasim Foroughi
- Clinical and Rehabilitation Research Group, Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, Australia
| | - Yi Wang
- Clinical and Rehabilitation Research Group, Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, Australia; Department of Medicine and the Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Nicole Kochan
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Kevin Ashton
- Biomedical Sciences, Faculty of Health Sciences and Medicine, Bond University, QLD, Australia
| | - Matt Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, QLD, Australia; King's College London National Institutes of Health Biomedical Research Centre, UK
| | - Zhixiu Li
- Institute of Health and Biomedical Innovation, Queensland University of Technology, QLD, Australia
| | - Yorgi Mavros
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, Faculty of Health Sciences and Sydney Medical School, The University of Sydney, Lidcombe, NSW, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Michael J Valenzuela
- Regenerative Neuroscience Group, Brain and Mind Centre and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
33
|
Abstract
People often recognize and remember faces of individuals within their own race more easily than those of other races. While behavioral research has long suggested that the Other-Race Effect (ORE) is due to extensive experience with one’s own race group, the neural mechanisms underlying the effect have remained elusive. Predominant theories of the ORE have argued that the effect is mainly caused by processing disparities between same and other-race faces during early stages of perceptual encoding. Our findings support an alternative view that the ORE is additionally shaped by mnemonic processing mechanisms beyond perception and attention. Using a “pattern separation” paradigm based on computational models of episodic memory, we report evidence that the ORE may be driven by differences in successful memory discrimination across races as a function of degree of interference or overlap between face stimuli. In contrast, there were no ORE-related differences on a comparable match-to-sample task with no long-term memory load, suggesting that the effect is not simply attributable to visual and attentional processes. These findings suggest that the ORE may emerge in part due to “tuned” memory mechanisms that may enhance same-race, at the expense of other-race face detection.
Collapse
|
34
|
Méndez-Couz M, Becker JM, Manahan-Vaughan D. Functional Compartmentalization of the Contribution of Hippocampal Subfields to Context-Dependent Extinction Learning. Front Behav Neurosci 2019; 13:256. [PMID: 31798429 PMCID: PMC6868086 DOI: 10.3389/fnbeh.2019.00256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
During extinction learning (EL), an individual learns that a previously learned behavior no longer fulfills its original purpose, or is no longer relevant. Recent studies have contradicted earlier theories that EL comprises forgetting, or the inhibition of the previously learned behavior, and indicate that EL comprises new associative learning. This suggests that the hippocampus is involved in this process. Empirical evidence is lacking however. Here, we used fluorescence in situ hybridization of somatic immediate early gene (IEG) expression to scrutinize if the hippocampus processes EL. Rodents engaged in context-dependent EL and were also tested for renewal of (the original behavioral response to) a spatial appetitive task in a T-maze. Whereas distal and proximal CA1 subfields processed both EL and renewal, effects in the proximal CA1 were more robust consistent with a role of this subfield in processing context. The lower blade of the dentate gyrus (DG) and the proximal CA3 subfields were particularly involved in renewal. Responses in the distal and proximal CA3 subfields suggest that this hippocampal subregion may also contribute to the evaluation of the reward outcome. Taken together, our findings provide novel and direct evidence for the involvement of distinct hippocampal subfields in context-dependent EL and renewal.
Collapse
Affiliation(s)
- Marta Méndez-Couz
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Jana M Becker
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
35
|
de Flores R, Berron D, Ding SL, Ittyerah R, Pluta JB, Xie L, Adler DH, Robinson JL, Schuck T, Trojanowski JQ, Grossman M, Liu W, Pickup S, Das SR, Wolk DA, Yushkevich PA, Wisse LEM. Characterization of hippocampal subfields using ex vivo MRI and histology data: Lessons for in vivo segmentation. Hippocampus 2019; 30:545-564. [PMID: 31675165 DOI: 10.1002/hipo.23172] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 11/07/2022]
Abstract
Hippocampal subfield segmentation on in vivo MRI is of great interest for cognition, aging, and disease research. Extant subfield segmentation protocols have been based on neuroanatomical references, but these references often give limited information on anatomical variability. Moreover, there is generally a mismatch between the orientation of the histological sections and the often anisotropic coronal sections on in vivo MRI. To address these issues, we provide a detailed description of hippocampal anatomy using a postmortem dataset containing nine specimens of subjects with and without dementia, which underwent a 9.4 T MRI and histological processing. Postmortem MRI matched the typical orientation of in vivo images and segmentations were generated in MRI space, based on the registered annotated histological sections. We focus on the following topics: the order of appearance of subfields, the location of subfields relative to macroanatomical features, the location of subfields in the uncus and tail and the composition of the dark band, a hypointense layer visible in T2-weighted MRI. Our main findings are that: (a) there is a consistent order of appearance of subfields in the hippocampal head, (b) the composition of subfields is not consistent in the anterior uncus, but more consistent in the posterior uncus, (c) the dark band consists only of the CA-stratum lacunosum moleculare, not the strata moleculare of the dentate gyrus, (d) the subiculum/CA1 border is located at the middle of the width of the hippocampus in the body in coronal plane, but moves in a medial direction from anterior to posterior, and (e) the variable location and composition of subfields in the hippocampal tail can be brought back to a body-like appearance when reslicing the MRI scan following the curvature of the tail. Our findings and this publicly available dataset will hopefully improve anatomical accuracy of future hippocampal subfield segmentation protocols.
Collapse
Affiliation(s)
- Robin de Flores
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Memory Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Berron
- Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Song-Lin Ding
- Allen Institute for Brain Science, Seattle, Washington.,Institute of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ranjit Ittyerah
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John B Pluta
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Long Xie
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel H Adler
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John L Robinson
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Theresa Schuck
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Weixia Liu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen Pickup
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sandhitsu R Das
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Memory Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Memory Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paul A Yushkevich
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Laura E M Wisse
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Memory Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Huffman DJ, Ekstrom AD. A Modality-Independent Network Underlies the Retrieval of Large-Scale Spatial Environments in the Human Brain. Neuron 2019; 104:611-622.e7. [PMID: 31540825 DOI: 10.1016/j.neuron.2019.08.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/15/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022]
Abstract
In humans, the extent to which body-based cues, such as vestibular, somatosensory, and motoric cues, are necessary for normal expression of spatial representations remains unclear. Recent breakthroughs in immersive virtual reality technology allowed us to test how body-based cues influence spatial representations of large-scale environments in humans. Specifically, we manipulated the availability of body-based cues during navigation using an omnidirectional treadmill and a head-mounted display, investigating brain differences in levels of activation (i.e., univariate analysis), patterns of activity (i.e., multivariate pattern analysis), and putative network interactions between spatial retrieval tasks using fMRI. Our behavioral and neuroimaging results support the idea that there is a core, modality-independent network supporting spatial memory retrieval in the human brain. Thus, for well-learned spatial environments, at least in humans, primarily visual input may be sufficient for expression of complex representations of spatial environments. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Derek J Huffman
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Arne D Ekstrom
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA; Psychology Department, University of Arizona, Tucson, AZ 85719, USA.
| |
Collapse
|
37
|
Ngo CT, Lin Y, Newcombe NS, Olson IR. Building up and wearing down episodic memory: Mnemonic discrimination and relational binding. J Exp Psychol Gen 2019; 148:1463-1479. [PMID: 30896199 PMCID: PMC6715497 DOI: 10.1037/xge0000583] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Our capacity to form and retrieve episodic memories improves over childhood but declines in old age. Understanding these changes requires decomposing episodic memory into its components. Two such components are (a) mnemonic discrimination of similar people, objects, and contexts, and (b) relational binding of these elements. We designed novel memory tasks to assess these component processes using animations that are appropriate across the life span (ages 4-80 in our sample). In Experiment 1, we assessed mnemonic discrimination of objects as well as relational binding, in a common task format. Both components follow an inverted U-shaped curve across age but were positively correlated only in the aging group. In Experiment 2, we examined mnemonic discrimination of context and its effect on relational binding. Relational memory in low-similarity contexts showed robust gains between the ages of 4 and 6, whereas 6-year-olds performed similarly to adults. In contrast, relational memory in high-similarity contexts showed more protracted development, with 4- and 6-year-olds both performing worse than young adults and not differing from each other. Relational memory in both context conditions declined in aging. This multiprocess approach provides important theoretical insights into life span changes in episodic memory. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Chi T. Ngo
- Department of Psychology, Temple University
| | - Ying Lin
- Brain and Cognitive Sciences, University of Rochester
| | | | | |
Collapse
|
38
|
Kunz L, Maidenbaum S, Chen D, Wang L, Jacobs J, Axmacher N. Mesoscopic Neural Representations in Spatial Navigation. Trends Cogn Sci 2019; 23:615-630. [PMID: 31130396 PMCID: PMC6601347 DOI: 10.1016/j.tics.2019.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 01/21/2023]
Abstract
Recent evidence suggests that mesoscopic neural oscillations measured via intracranial electroencephalography exhibit spatial representations, which were previously only observed at the micro- and macroscopic level of brain organization. Specifically, theta (and gamma) oscillations correlate with movement, speed, distance, specific locations, and goal proximity to boundaries. In entorhinal cortex (EC), they exhibit hexadirectional modulation, which is putatively linked to grid cell activity. Understanding this mesoscopic neural code is crucial because information represented by oscillatory power and phase may complement the information content at other levels of brain organization. Mesoscopic neural oscillations help bridge the gap between single-neuron and macroscopic brain signals of spatial navigation and may provide a mechanistic basis for novel biomarkers and therapeutic targets to treat diseases causing spatial disorientation.
Collapse
Affiliation(s)
- Lukas Kunz
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.
| | - Shachar Maidenbaum
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
| | - Dong Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
39
|
Baraduc P, Duhamel JR, Wirth S. Schema cells in the macaque hippocampus. Science 2019; 363:635-639. [DOI: 10.1126/science.aav5404] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/09/2019] [Indexed: 02/03/2023]
Abstract
Concept cells in the human hippocampus encode the meaning conveyed by stimuli over their perceptual aspects. Here we investigate whether analogous cells in the macaque can form conceptual schemas of spatial environments. Each day, monkeys were presented with a familiar and a novel virtual maze, sharing a common schema but differing by surface features (landmarks). In both environments, animals searched for a hidden reward goal only defined in relation to landmarks. With learning, many neurons developed a firing map integrating goal-centered and task-related information of the novel maze that matched that for the familiar maze. Thus, these hippocampal cells abstract the spatial concepts from the superficial details of the environment and encode space into a schema-like representation.
Collapse
|
40
|
Parato J, Shen H, Smith SS. α4βδ GABA A Receptors Trigger Synaptic Pruning and Reduce Dendritic Length of Female Mouse CA3 Hippocampal Pyramidal Cells at Puberty. Neuroscience 2019; 398:23-36. [PMID: 30496825 PMCID: PMC6411036 DOI: 10.1016/j.neuroscience.2018.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 01/24/2023]
Abstract
Synaptic pruning during adolescence is critical for optimal cognition. The CA3 hippocampus contains unique spine types and plays a pivotal role in pattern separation and seizure generation, where sex differences exist, but adolescent pruning has only been studied in the male. Thus, for the present study we assessed pruning of specific spine types in the CA3 hippocampus during adolescence and investigated a possible mechanism in the female mouse. To this end, we used Golgi-impregnated brains from pubertal (∼PND 35, assessed by vaginal opening) and post-pubertal (PND 56) mice. Spine density was assessed from z-stack (0.1-μm steps) images taken using a Nikon DS-U3 camera through a Nikon Eclipse Ci-L microscope and analyzed with NIS Elements. Spine density decreased significantly (P < 0.05) during adolescence, with 50-60% decreases in mushroom and stubby spine-types (P < 0.05, ∼PND35 vs. PND56) in non-proestrous mice. This was associated with decreases in kalirin-7, a spine protein which stabilizes the cytoskeleton and is required for spine maintenance. Because our previous findings suggest that pubertal increases in α4βδ GABAA receptors (GABARs) trigger pruning in CA1, we investigated their role in CA3. α4 expression in CA3 hippocampus increased 4-fold at puberty (P < 0.05), assessed by immunostaining and verified electrophysiologically by an increased response to gaboxadol (100 nM), which is selective for α4βδ. Knock-out of α4 prevented the pubertal decrease in kalirin-7 and synaptic pruning and also increased the dendritic length, demonstrating a functional link. These data suggest that pubertal α4βδ GABARs alter dendritic morphology and trigger pruning in female CA3 hippocampus.
Collapse
Affiliation(s)
- Julie Parato
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA; Program in Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - Hui Shen
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA; School of Biomedical Engineering, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA; The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| |
Collapse
|
41
|
Buzsáki G, Tingley D. Space and Time: The Hippocampus as a Sequence Generator. Trends Cogn Sci 2018; 22:853-869. [PMID: 30266146 PMCID: PMC6166479 DOI: 10.1016/j.tics.2018.07.006] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 01/27/2023]
Abstract
Neural computations are often compared to instrument-measured distance or duration, and such relationships are interpreted by a human observer. However, neural circuits do not depend on human-made instruments but perform computations relative to an internally defined rate-of-change. While neuronal correlations with external measures, such as distance or duration, can be observed in spike rates or other measures of neuronal activity, what matters for the brain is how such activity patterns are utilized by downstream neural observers. We suggest that hippocampal operations can be described by the sequential activity of neuronal assemblies and their internally defined rate of change without resorting to the concept of space or time.
Collapse
Affiliation(s)
- György Buzsáki
- Neuroscience Institute, 435 East 30th Street, Langone Medical Center, New York University, New York, NY 10016, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| | - David Tingley
- Neuroscience Institute, 435 East 30th Street, Langone Medical Center, New York University, New York, NY 10016, USA
| |
Collapse
|
42
|
Zhao M. Human spatial representation: what we cannot learn from the studies of rodent navigation. J Neurophysiol 2018; 120:2453-2465. [PMID: 30133384 DOI: 10.1152/jn.00781.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Studies of human and rodent navigation often reveal a remarkable cross-species similarity between the cognitive and neural mechanisms of navigation. Such cross-species resemblance often overshadows some critical differences between how humans and nonhuman animals navigate. In this review, I propose that a navigation system requires both a storage system (i.e., representing spatial information) and a positioning system (i.e., sensing spatial information) to operate. I then argue that the way humans represent spatial information is different from that inferred from the cellular activity observed during rodent navigation. Such difference spans the whole hierarchy of spatial representation, from representing the structure of an environment to the representation of subregions of an environment, routes and paths, and the distance and direction relative to a goal location. These cross-species inconsistencies suggest that what we learn from rodent navigation does not always transfer to human navigation. Finally, I argue for closing the loop for the dominant, unidirectional animal-to-human approach in navigation research so that insights from behavioral studies of human navigation may also flow back to shed light on the cellular mechanisms of navigation for both humans and other mammals (i.e., a human-to-animal approach).
Collapse
Affiliation(s)
- Mintao Zhao
- School of Psychology, University of East Anglia , Norwich , United Kingdom.,Department of Human Perception, Cognition, and Action, Max Planck Institute for Biological Cybernetics , Tübingen , Germany
| |
Collapse
|
43
|
Reggente N, Essoe JKY, Aghajan ZM, Tavakoli AV, McGuire JF, Suthana NA, Rissman J. Enhancing the Ecological Validity of fMRI Memory Research Using Virtual Reality. Front Neurosci 2018; 12:408. [PMID: 29962932 PMCID: PMC6013717 DOI: 10.3389/fnins.2018.00408] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/25/2018] [Indexed: 12/23/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a powerful research tool to understand the neural underpinnings of human memory. However, as memory is known to be context-dependent, differences in contexts between naturalistic settings and the MRI scanner environment may potentially confound neuroimaging findings. Virtual reality (VR) provides a unique opportunity to mitigate this issue by allowing memories to be formed and/or retrieved within immersive, navigable, visuospatial contexts. This can enhance the ecological validity of task paradigms, while still ensuring that researchers maintain experimental control over critical aspects of the learning and testing experience. This mini-review surveys the growing body of fMRI studies that have incorporated VR to address critical questions about human memory. These studies have adopted a variety of approaches, including presenting research participants with VR experiences in the scanner, asking participants to retrieve information that they had previously acquired in a VR environment, or identifying neural correlates of behavioral metrics obtained through VR-based tasks performed outside the scanner. Although most such studies to date have focused on spatial or navigational memory, we also discuss the promise of VR in aiding other areas of memory research and facilitating research into clinical disorders.
Collapse
Affiliation(s)
- Nicco Reggente
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joey K-Y Essoe
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Zahra M Aghajan
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Amir V Tavakoli
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.,Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joseph F McGuire
- Division of Child and Adolescent Psychiatry, Johns Hopkins Children's Center, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Nanthia A Suthana
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jesse Rissman
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
44
|
Xue G. The Neural Representations Underlying Human Episodic Memory. Trends Cogn Sci 2018; 22:544-561. [DOI: 10.1016/j.tics.2018.03.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/23/2018] [Accepted: 03/08/2018] [Indexed: 11/16/2022]
|
45
|
Mondragón-Rodríguez S, Gu N, Manseau F, Williams S. Alzheimer's Transgenic Model Is Characterized by Very Early Brain Network Alterations and β-CTF Fragment Accumulation: Reversal by β-Secretase Inhibition. Front Cell Neurosci 2018; 12:121. [PMID: 29867356 PMCID: PMC5952042 DOI: 10.3389/fncel.2018.00121] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/13/2018] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is defined by the presence of amyloid-β (Aβ) and tau protein aggregates. However, increasing data is suggesting that brain network alterations rather than protein deposition could account for the early pathogenesis of the disease. In the present study, we performed in vitro extracellular field recordings in the CA1/subiculum area of the hippocampus from 30 days old J20-TG-AD mice. Here, we found that theta oscillations were significantly less rhythmic than those recorded from control group. In addition, J20 mice displayed significantly less theta-gamma cross-frequency coupling (CFC) as peak modulation indexes for slow (25-45 Hz) and fast (150-250 Hz) gamma frequency oscillations were reduced. Because inhibitory parvalbumin (PV) cells play a vital role in coordinating hippocampal theta and gamma oscillations, whole-cell patch-clamp recordings and extracellular stimulation were performed to access their intrinsic and synaptic properties. Whereas neither the inhibitory output of local interneurons to pyramidal cells (PCs) (inhibitory→PC) nor the excitatory output of PCs to PV cells (PC→PV) differed between control and J20 animals, the intrinsic excitability of PV cells was reduced in J20 mice compared to controls. Interestingly, optogenetic activation of PV interneurons which can directly drive theta oscillations in the hippocampus, did not rescue CFC impairments, suggesting the latter did not simply result from alteration of the underlying theta rhythm. Altered young J20 mice was characterized by the presence of β-CTF, but not with Aβ accumulation, in the hippocampus. Importantly, the β secretase inhibitor AZD3839-AstraZeneca significantly rescued the abnormal early electrophysiological phenotype of J20 mice. In conclusion, our data show that brain network alterations precede the canonical Aβ protein deposition and that, such alterations can be related to β-CTF fragment.
Collapse
Affiliation(s)
- Siddhartha Mondragón-Rodríguez
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- CONACYT National Council for Science and Technology, Mexico City, Mexico
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of Mexico, Querétaro, Mexico
| | - Ning Gu
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Translational Neuroscience, The Royal Mental Health Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Frederic Manseau
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Sylvain Williams
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
46
|
The Primacy of Spatial Context in the Neural Representation of Events. J Neurosci 2018; 38:2755-2765. [PMID: 29440386 DOI: 10.1523/jneurosci.1638-17.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 02/08/2023] Open
Abstract
Some theories of episodic memory hypothesize that spatial context plays a fundamental role in episodic memory, acting as a scaffold on which episodes are constructed. A prediction based on this hypothesis is that spatial context should play a primary role in the neural representation of an event. To test this hypothesis in humans, male and female participants imagined events, composed of familiar locations, people, and objects, during an fMRI scan. We used multivoxel pattern analysis to determine the neural areas in which events could be discriminated based on each feature. We found that events could be discriminated according to their location in areas throughout the autobiographical memory network, including the parahippocampal cortex and posterior hippocampus, retrosplenial cortex, posterior cingulate cortex, precuneus, and medial prefrontal cortex. Events were also discriminable based on person and object features, but in fewer regions. Comparing classifier performance in regions involved in memory for scenes and events demonstrated that the location of an event was more accurately classified than the person or object involved. These results support theories that suggest that spatial context is a prominent defining feature of episodic memory.SIGNIFICANCE STATEMENT Remembered and imagined events are complex, consisting of many elements, including people, objects, and locations. In this study, we sought to determine how these types of elements differentially contribute to how the brain represents an event. Participants imagined events consisting of familiar locations, people, and objects (e.g., kitchen, mom, umbrella) while their brain activity was recorded with fMRI. We found that the neural patterns of activity in brain regions associated with spatial and episodic memory could distinguish events based on their location, and to some extent, based on the people and objects involved. These results suggest that the spatial context of an event plays an important role in how an event is represented in the brain.
Collapse
|
47
|
Leal SL, Yassa MA. Integrating new findings and examining clinical applications of pattern separation. Nat Neurosci 2018; 21:163-173. [PMID: 29371654 PMCID: PMC5898810 DOI: 10.1038/s41593-017-0065-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 10/28/2017] [Indexed: 11/09/2022]
Abstract
Pattern separation, the ability to independently represent and store similar experiences, is a crucial facet of episodic memory. Growing evidence suggests that the hippocampus possesses unique circuitry that is computationally capable of resolving mnemonic interference by using pattern separation. In this Review, we discuss recent advances in the understanding of this process and evaluate the caveats and limitations of linking across animal and human studies. We summarize clinical and translational studies using methods that are sensitive to pattern separation impairments, an approach that stems from the fact that the hippocampus is a major site of disruption in many brain disorders. We critically evaluate the assumptions that guide fundamental and translational studies in this area. Finally, we suggest guidelines for future research and offer ways to overcome potential interpretational challenges to increase the utility of pattern separation as a construct that can further understanding of both memory processes and brain disease.
Collapse
Affiliation(s)
- Stephanie L Leal
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Michael A Yassa
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
48
|
Dimsdale-Zucker HR, Ritchey M, Ekstrom AD, Yonelinas AP, Ranganath C. CA1 and CA3 differentially support spontaneous retrieval of episodic contexts within human hippocampal subfields. Nat Commun 2018; 9:294. [PMID: 29348512 PMCID: PMC5773497 DOI: 10.1038/s41467-017-02752-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/20/2017] [Indexed: 02/03/2023] Open
Abstract
The hippocampus plays a critical role in spatial and episodic memory. Mechanistic models predict that hippocampal subfields have computational specializations that differentially support memory. However, there is little empirical evidence suggesting differences between the subfields, particularly in humans. To clarify how hippocampal subfields support human spatial and episodic memory, we developed a virtual reality paradigm where participants passively navigated through houses (spatial contexts) across a series of videos (episodic contexts). We then used multivariate analyses of high-resolution fMRI data to identify neural representations of contextual information during recollection. Multi-voxel pattern similarity analyses revealed that CA1 represented objects that shared an episodic context as more similar than those from different episodic contexts. CA23DG showed the opposite pattern, differentiating between objects encountered in the same episodic context. The complementary characteristics of these subfields explain how we can parse our experiences into cohesive episodes while retaining the specific details that support vivid recollection. Computational studies have hinted that hippocampal subfields represent information differently. Here, the authors show that when retrieving items that share an episodic context, subfield CA1 represent similarities between items whereas CA2/3/dentate gyrus represents item-unique features.
Collapse
Affiliation(s)
- Halle R Dimsdale-Zucker
- Center for Neuroscience, University of California, Davis, CA, 95618, USA. .,Department of Psychology, University of California, Davis, CA, 95618, USA.
| | - Maureen Ritchey
- Department of Psychology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Arne D Ekstrom
- Center for Neuroscience, University of California, Davis, CA, 95618, USA.,Department of Psychology, University of California, Davis, CA, 95618, USA
| | - Andrew P Yonelinas
- Center for Neuroscience, University of California, Davis, CA, 95618, USA.,Department of Psychology, University of California, Davis, CA, 95618, USA.,Center for Mind and Brain, University of California, Davis, CA, 95618, USA
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, CA, 95618, USA.,Department of Psychology, University of California, Davis, CA, 95618, USA
| |
Collapse
|
49
|
Epstein RA, Patai EZ, Julian JB, Spiers HJ. The cognitive map in humans: spatial navigation and beyond. Nat Neurosci 2017; 20:1504-1513. [PMID: 29073650 PMCID: PMC6028313 DOI: 10.1038/nn.4656] [Citation(s) in RCA: 363] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
The 'cognitive map' hypothesis proposes that brain builds a unified representation of the spatial environment to support memory and guide future action. Forty years of electrophysiological research in rodents suggest that cognitive maps are neurally instantiated by place, grid, border and head direction cells in the hippocampal formation and related structures. Here we review recent work that suggests a similar functional organization in the human brain and yields insights into how cognitive maps are used during spatial navigation. Specifically, these studies indicate that (i) the human hippocampus and entorhinal cortex support map-like spatial codes, (ii) posterior brain regions such as parahippocampal and retrosplenial cortices provide critical inputs that allow cognitive maps to be anchored to fixed environmental landmarks, and (iii) hippocampal and entorhinal spatial codes are used in conjunction with frontal lobe mechanisms to plan routes during navigation. We also discuss how these three basic elements of cognitive map based navigation-spatial coding, landmark anchoring and route planning-might be applied to nonspatial domains to provide the building blocks for many core elements of human thought.
Collapse
Affiliation(s)
- Russell A. Epstein
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eva Zita Patai
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London
| | - Joshua B. Julian
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hugo J. Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London
| |
Collapse
|
50
|
Robin J, Moscovitch M. Details, gist and schema: hippocampal–neocortical interactions underlying recent and remote episodic and spatial memory. Curr Opin Behav Sci 2017. [DOI: 10.1016/j.cobeha.2017.07.016] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|