1
|
Tao L, Ayambem D, Barranca VJ, Bhandawat V. Neurons Underlying Aggression-Like Actions That Are Shared by Both Males and Females in Drosophila. J Neurosci 2024; 44:e0142242024. [PMID: 39317475 DOI: 10.1523/jneurosci.0142-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
Aggression involves both sexually monomorphic and dimorphic actions. How the brain implements these two types of actions is poorly understood. We found that in Drosophila melanogaster, a set of neurons, which we call CL062, previously shown to mediate male aggression also mediate female aggression. These neurons elicit aggression acutely and without the presence of a target. Although the same set of actions is elicited in males and females, the overall behavior is sexually dimorphic. The CL062 neurons do not express fruitless, a gene required for sexual dimorphism in flies, and expressed by most other neurons important for controlling fly aggression. Connectomic analysis in a female electron microscopy dataset suggests that these neurons have limited connections with fruitless expressing neurons that have been shown to be important for aggression and signal to different descending neurons. Thus, CL062 is part of a monomorphic circuit for aggression that functions parallel to the known dimorphic circuits.
Collapse
Affiliation(s)
- Liangyu Tao
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, Pennsylvania 19104
| | | | | | - Vikas Bhandawat
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, Pennsylvania 19104
| |
Collapse
|
2
|
Sengupta S, Edward KA. Decoding Sex Differences: How GABA Shapes Drosophila Behavior. CURRENT OPINION IN INSECT SCIENCE 2024:101293. [PMID: 39471909 DOI: 10.1016/j.cois.2024.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Sexually dimorphic behaviors are fundamental to the biology of many species, including fruit flies and humans. These behaviors are regulated primarily by sex-specific neural circuits or the sex-specific modulation of shared neuronal substrates. In fruit flies, GABAergic neurotransmission plays a critical role in governing sexually dimorphic behaviors such as courtship, copulation, and aggression. This review explores the intricate roles of GABAergic neurons in these behaviors, and focuses on how sex-specific differences in GABAergic circuits contribute to their modulation and execution. By examining these mechanisms in Drosophila, we reveal broader implications for understanding sexual dimorphism in more complex organisms.
Collapse
Affiliation(s)
- Saheli Sengupta
- Department of Biology, College of the Holy Cross, 1 College St, Worcester, MA 01610, USA.
| | - Kravitz A Edward
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Coleman RT, Morantte I, Koreman GT, Cheng ML, Ding Y, Ruta V. A modular circuit coordinates the diversification of courtship strategies. Nature 2024:10.1038/s41586-024-08028-1. [PMID: 39385031 DOI: 10.1038/s41586-024-08028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
Mate recognition systems evolve rapidly to reinforce the reproductive boundaries between species, but the underlying neural mechanisms remain enigmatic. Here we leveraged the rapid coevolution of female pheromone production and male pheromone perception in Drosophila1,2 to gain insight into how the architecture of mate recognition circuits facilitates their diversification. While in some Drosophila species females produce unique pheromones that act to arouse their conspecific males, the pheromones of most species are sexually monomorphic such that females possess no distinguishing chemosensory signatures that males can use for mate recognition3. We show that Drosophila yakuba males evolved the ability to use a sexually monomorphic pheromone, 7-tricosene, as an excitatory cue to promote courtship. By comparing key nodes in the pheromone circuits across multiple Drosophila species, we reveal that this sensory innovation arises from coordinated peripheral and central circuit adaptations: a distinct subpopulation of sensory neurons has acquired sensitivity to 7-tricosene and, in turn, selectively signals to a distinct subset of P1 neurons in the central brain to trigger courtship. Such a modular circuit organization, in which different sensory inputs can independently couple to parallel courtship control nodes, may facilitate the evolution of mate recognition systems by allowing novel sensory modalities to become linked to male arousal. Together, our findings suggest how peripheral and central circuit adaptations can be flexibly coordinated to underlie the rapid evolution of mate recognition strategies across species.
Collapse
Affiliation(s)
- Rory T Coleman
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Ianessa Morantte
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Gabriel T Koreman
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Megan L Cheng
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Yun Ding
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Vanessa Ruta
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
4
|
Cazalé-Debat L, Scheunemann L, Day M, Fernandez-D V Alquicira T, Dimtsi A, Zhang Y, Blackburn LA, Ballardini C, Greenin-Whitehead K, Reynolds E, Lin AC, Owald D, Rezaval C. Mating proximity blinds threat perception. Nature 2024; 634:635-643. [PMID: 39198656 PMCID: PMC11485238 DOI: 10.1038/s41586-024-07890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Romantic engagement can bias sensory perception. This 'love blindness' reflects a common behavioural principle across organisms: favouring pursuit of a coveted reward over potential risks1. In the case of animal courtship, such sensory biases may support reproductive success but can also expose individuals to danger, such as predation2,3. However, how neural networks balance the trade-off between risk and reward is unknown. Here we discover a dopamine-governed filter mechanism in male Drosophila that reduces threat perception as courtship progresses. We show that during early courtship stages, threat-activated visual neurons inhibit central courtship nodes via specific serotonergic neurons. This serotonergic inhibition prompts flies to abort courtship when they see imminent danger. However, as flies advance in the courtship process, the dopaminergic filter system reduces visual threat responses, shifting the balance from survival to mating. By recording neural activity from males as they approach mating, we demonstrate that progress in courtship is registered as dopaminergic activity levels ramping up. This dopamine signalling inhibits the visual threat detection pathway via Dop2R receptors, allowing male flies to focus on courtship when they are close to copulation. Thus, dopamine signalling biases sensory perception based on perceived goal proximity, to prioritize between competing behaviours.
Collapse
Affiliation(s)
- Laurie Cazalé-Debat
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
| | - Lisa Scheunemann
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Megan Day
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
| | - Tania Fernandez-D V Alquicira
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anna Dimtsi
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Youchong Zhang
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Lauren A Blackburn
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
- School of Science and the Environment, University of Worcester, Worcester, UK
| | - Charles Ballardini
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
| | - Katie Greenin-Whitehead
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Eric Reynolds
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrew C Lin
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - David Owald
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carolina Rezaval
- School of Biosciences, University of Birmingham, Birmingham, UK.
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK.
| |
Collapse
|
5
|
Li J, Ning C, Liu Y, Deng B, Wang B, Shi K, Wang R, Fang R, Zhou C. The function of juvenile-adult transition axis in female sexual receptivity of Drosophila melanogaster. eLife 2024; 12:RP92545. [PMID: 39240259 PMCID: PMC11379460 DOI: 10.7554/elife.92545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Female sexual receptivity is essential for reproduction of a species. Neuropeptides play the main role in regulating female receptivity. However, whether neuropeptides regulate female sexual receptivity during the neurodevelopment is unknown. Here, we found the peptide hormone prothoracicotropic hormone (PTTH), which belongs to the insect PG (prothoracic gland) axis, negatively regulated virgin female receptivity through ecdysone during neurodevelopment in Drosophila melanogaster. We identified PTTH neurons as doublesex-positive neurons, they regulated virgin female receptivity before the metamorphosis during the third-instar larval stage. PTTH deletion resulted in the increased EcR-A expression in the whole newly formed prepupae. Furthermore, the ecdysone receptor EcR-A in pC1 neurons positively regulated virgin female receptivity during metamorphosis. The decreased EcR-A in pC1 neurons induced abnormal morphological development of pC1 neurons without changing neural activity. Among all subtypes of pC1 neurons, the function of EcR-A in pC1b neurons was necessary for virgin female copulation rate. These suggested that the changes of synaptic connections between pC1b and other neurons decreased female copulation rate. Moreover, female receptivity significantly decreased when the expression of PTTH receptor Torso was reduced in pC1 neurons. This suggested that PTTH not only regulates female receptivity through ecdysone but also through affecting female receptivity associated neurons directly. The PG axis has similar functional strategy as the hypothalamic-pituitary-gonadal axis in mammals to trigger the juvenile-adult transition. Our work suggests a general mechanism underlying which the neurodevelopment during maturation regulates female sexual receptivity.
Collapse
Affiliation(s)
- Jing Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chao Ning
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yaohua Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Department of Plant Protection, Shanxi Agricultural University, Jinzhong, China
| | - Bowen Deng
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Zhongguancun Life Sciences Park, Beijing, China
| | - Bingcai Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rencong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruixin Fang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Chuan Zhou
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Cui X, Meiselman MR, Thornton SN, Yapici N. A gut-brain-gut interoceptive circuit loop gates sugar ingestion in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610892. [PMID: 39282336 PMCID: PMC11398398 DOI: 10.1101/2024.09.02.610892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The communication between the brain and digestive tract is critical for optimising nutrient preference and food intake, yet the underlying neural mechanisms remain poorly understood1-7. Here, we show that a gut-brain-gut circuit loop gates sugar ingestion in flies. We discovered that brain neurons regulating food ingestion, IN18, receive excitatory input from enteric sensory neurons, which innervate the oesophagus and express the sugar receptor Gr43a. These enteric sensory neurons monitor the sugar content of food within the oesophagus during ingestion and send positive feedback signals to IN1s, stimulating the consumption of high-sugar foods. Connectome analyses reveal that IN1s form a core ingestion circuit. This interoceptive circuit receives synaptic input from enteric afferents and provides synaptic output to enteric motor neurons, which modulate the activity of muscles at the entry segments of the crop, a stomach-like food storage organ. While IN1s are persistently activated upon ingestion of sugar-rich foods, enteric motor neurons are continuously inhibited, causing the crop muscles to relax and enabling flies to consume large volumes of sugar. Our findings reveal a key interoceptive mechanism that underlies the rapid sensory monitoring and motor control of sugar ingestion within the digestive tract, optimising the diet of flies across varying metabolic states.
Collapse
Affiliation(s)
- Xinyue Cui
- Department of Neurobiology and Behaviour, Cornell University, 14853, Ithaca, NY, USA
| | - Matthew R. Meiselman
- Department of Neurobiology and Behaviour, Cornell University, 14853, Ithaca, NY, USA
- Current address: School of Life Sciences, University of Nevada, 89154, Las Vegas, NV, US
| | - Staci N. Thornton
- Department of Neurobiology and Behaviour, Cornell University, 14853, Ithaca, NY, USA
- Current address: the Department of Kinesiology, University of Connecticut, 06269, Storrs, CT
| | - Nilay Yapici
- Department of Neurobiology and Behaviour, Cornell University, 14853, Ithaca, NY, USA
| |
Collapse
|
7
|
Watanabe K, Chiu H, Anderson DJ. HI-FISH: WHOLE BRAIN IN SITU MAPPING OF NEURONAL ACTIVATION IN DROSOPHILA DURING SOCIAL BEHAVIORS AND OPTOGENETIC STIMULATION. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.28.560045. [PMID: 37808781 PMCID: PMC10557720 DOI: 10.1101/2023.09.28.560045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Monitoring neuronal activity at single-cell resolution in freely moving Drosophila engaged in social behaviors is challenging because of their small size and lack of transparency. Extant methods, such as Flyception, are highly invasive. Whole-brain calcium imaging in head-fixed, walking flies is feasible but the animals cannot perform the consummatory phases of social behaviors like aggression or mating under these conditions. This has left open the fundamental question of whether neurons identified as functionally important for such behaviors using loss- or gain-of-function screens are actually active during the natural performance of such behaviors, and if so during which phase(s). Here we perform brain-wide mapping of active cells expressing the Immediate Early Gene hr38 using a high-sensitivity/low background FISH amplification method called HCR-3.0. Using double-labeling for hr38 mRNA and for GFP, we describe the activity of several classes of aggression-promoting neurons during courtship and aggression, including P1a cells, an intensively studied population of male-specific interneurons. Using HI-FISH in combination with optogenetic activation of aggression-promoting neurons (opto-HI-FISH) we identify candidate downstream functional targets of these cells in a brain-wide, unbiased manner. Finally we compare the activity of P1a neurons during sequential performance of courtship and aggression, using intronic vs. exonic hr38 probes to differentiate newly synthesized nuclear transcripts from cytoplasmic transcripts synthesized at an earlier time. These data provide evidence suggesting that different subsets of P1a neurons may be active during courtship vs. aggression. HI-FISH and associated methods may help to fill an important lacuna in the armamentarium of tools for neural circuit analysis in Drosophila.
Collapse
Affiliation(s)
- Kiichi Watanabe
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA USA
- Present address: International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
- Present address: Department of Medical Research for Intractable Disease, Fujita Health University, Toyoake, Japan
| | - Hui Chiu
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA USA
- Present address: Department of Immunobiology, Yale University School of Medicine, New Haven, CT USA
| | - David J. Anderson
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA USA
- Howard Hughes Medical Institute
| |
Collapse
|
8
|
Gautham AK, Miner LE, Franco MN, Thornquist SC, Crickmore MA. Dopamine biases decisions by limiting temporal integration. Nature 2024; 632:850-857. [PMID: 39085606 DOI: 10.1038/s41586-024-07749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
Motivations bias our responses to stimuli, producing behavioural outcomes that match our needs and goals. Here we describe a mechanism behind this phenomenon: adjusting the time over which stimulus-derived information is permitted to accumulate towards a decision. As a Drosophila copulation progresses, the male becomes less likely to continue mating through challenges1-3. We show that a set of copulation decision neurons (CDNs) flexibly integrates information about competing drives to mediate this decision. Early in mating, dopamine signalling restricts CDN integration time by potentiating Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation in response to stimulatory inputs, imposing a high threshold for changing behaviours. Later into mating, the timescale over which the CDNs integrate termination-promoting information expands, increasing the likelihood of switching behaviours. We suggest scalable windows of temporal integration at dedicated circuit nodes as a key but underappreciated variable in state-based decision-making.
Collapse
Affiliation(s)
- Aditya K Gautham
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren E Miner
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco N Franco
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen C Thornquist
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Laboratory of Integrative Brain Function, The Rockefeller University, New York, NY, USA.
| | - Michael A Crickmore
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Stürner T, Brooks P, Capdevila LS, Morris BJ, Javier A, Fang S, Gkantia M, Cachero S, Beckett IR, Champion AS, Moitra I, Richards A, Klemm F, Kugel L, Namiki S, Cheong HS, Kovalyak J, Tenshaw E, Parekh R, Schlegel P, Phelps JS, Mark B, Dorkenwald S, Bates AS, Matsliah A, Yu SC, McKellar CE, Sterling A, Seung S, Murthy M, Tuthill J, Lee WCA, Card GM, Costa M, Jefferis GS, Eichler K. Comparative connectomics of the descending and ascending neurons of the Drosophila nervous system: stereotypy and sexual dimorphism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.596633. [PMID: 38895426 PMCID: PMC11185702 DOI: 10.1101/2024.06.04.596633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In most complex nervous systems there is a clear anatomical separation between the nerve cord, which contains most of the final motor outputs necessary for behaviour, and the brain. In insects, the neck connective is both a physical and information bottleneck connecting the brain and the ventral nerve cord (VNC, spinal cord analogue) and comprises diverse populations of descending (DN), ascending (AN) and sensory ascending neurons, which are crucial for sensorimotor signalling and control. Integrating three separate EM datasets, we now provide a complete connectomic description of the ascending and descending neurons of the female nervous system of Drosophila and compare them with neurons of the male nerve cord. Proofread neuronal reconstructions have been matched across hemispheres, datasets and sexes. Crucially, we have also matched 51% of DN cell types to light level data defining specific driver lines as well as classifying all ascending populations. We use these results to reveal the general architecture, tracts, neuropil innervation and connectivity of neck connective neurons. We observe connected chains of descending and ascending neurons spanning the neck, which may subserve motor sequences. We provide a complete description of sexually dimorphic DN and AN populations, with detailed analysis of circuits implicated in sex-related behaviours, including female ovipositor extrusion (DNp13), male courtship (DNa12/aSP22) and song production (AN hemilineage 08B). Our work represents the first EM-level circuit analyses spanning the entire central nervous system of an adult animal.
Collapse
Affiliation(s)
- Tomke Stürner
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Paul Brooks
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Billy J. Morris
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alexandre Javier
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Siqi Fang
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marina Gkantia
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Sebastian Cachero
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Andrew S. Champion
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ilina Moitra
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alana Richards
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Finja Klemm
- Genetics Department, Leipzig University, Leipzig, Germany
| | - Leonie Kugel
- Genetics Department, Leipzig University, Leipzig, Germany
| | - Shigehiro Namiki
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Han S.J. Cheong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Zuckerman Institute, Columbia University, New York, United States
| | - Julie Kovalyak
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Emily Tenshaw
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Jasper S. Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Brain Mind Institute & Institute of Bioengineering, EPFL, 1015 Lausanne, Switzerland
| | - Brandon Mark
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, USA
| | - Alexander S. Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Szi-chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | | | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, USA
| | - Mala Murthy
- Computer Science Department, Princeton University, USA
| | - John Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Wei-Chung A. Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
| | - Gwyneth M. Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Zuckerman Institute, Columbia University, New York, United States
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Gregory S.X.E. Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Genetics Department, Leipzig University, Leipzig, Germany
| |
Collapse
|
10
|
Nishiike Y, Okubo K. The decision of male medaka to mate or fight depends on two complementary androgen signaling pathways. Proc Natl Acad Sci U S A 2024; 121:e2316459121. [PMID: 38781215 PMCID: PMC11145247 DOI: 10.1073/pnas.2316459121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Adult male animals typically court and attempt to mate with females, while attacking other males. Emerging evidence from mice indicates that neurons expressing the estrogen receptor ESR1 in behaviorally relevant brain regions play a central role in mediating these mutually exclusive behavioral responses to conspecifics. However, the findings in mice are unlikely to apply to vertebrates in general because, in many species other than rodents and some birds, androgens-rather than estrogens-have been implicated in male behaviors. Here, we report that male medaka (Oryzias latipes) lacking one of the two androgen receptor subtypes (Ara) are less aggressive toward other males and instead actively court them, while those lacking the other subtype (Arb) are less motivated to mate with females and conversely attack them. These findings indicate that, in male medaka, the Ara- and Arb-mediated androgen signaling pathways facilitate appropriate behavioral responses, while simultaneously suppressing inappropriate responses, to males and females, respectively. Notably, males lacking either receptor retain the ability to discriminate the sex of conspecifics, suggesting a defect in the subsequent decision-making process to mate or fight. We further show that Ara and Arb are expressed in intermingled but largely distinct populations of neurons, and stimulate the expression of different behaviorally relevant genes including galanin and vasotocin, respectively. Collectively, our results demonstrate that male teleosts make adaptive decisions to mate or fight as a result of the activation of one of two complementary androgen signaling pathways, depending on the sex of the conspecific that they encounter.
Collapse
Affiliation(s)
- Yuji Nishiike
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo113-8657, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo113-8657, Japan
| |
Collapse
|
11
|
Weiss JT, Blundell MZ, Singh P, Donlea JM. Sleep deprivation drives brain-wide changes in cholinergic presynapse abundance in Drosophila melanogaster. Proc Natl Acad Sci U S A 2024; 121:e2312664121. [PMID: 38498719 PMCID: PMC10990117 DOI: 10.1073/pnas.2312664121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Sleep is an evolutionarily conserved state that supports brain functions, including synaptic plasticity, in species across the animal kingdom. Here, we examine the neuroanatomical and cell-type distribution of presynaptic scaling in the fly brain after sleep loss. We previously found that sleep loss drives accumulation of the active zone scaffolding protein Bruchpilot (BRP) within cholinergic Kenyon cells of the Drosophila melanogaster mushroom body (MB), but not in other classes of MB neurons. To test whether similar cell type-specific trends in plasticity occur broadly across the brain, we used a flp-based genetic reporter to label presynaptic BRP in cholinergic, dopaminergic, GABAergic, or glutamatergic neurons. We then collected whole-brain confocal image stacks of BRP intensity to systematically quantify BRP, a marker of presynapse abundance, across 37 neuropil regions of the central fly brain. Our results indicate that sleep loss, either by overnight (12-h) mechanical stimulation or chronic sleep disruption in insomniac mutants, broadly elevates cholinergic synapse abundance across the brain, while synapse abundance in neurons that produce other neurotransmitters undergoes weaker, if any, changes. Extending sleep deprivation to 24 h drives brain-wide upscaling in glutamatergic, but not other, synapses. Finally, overnight male-male social pairings induce increased BRP in excitatory synapses despite male-female pairings eliciting more waking activity, suggesting experience-specific plasticity. Within neurotransmitter class and waking context, BRP changes are similar across the 37 neuropil domains, indicating that similar synaptic scaling rules may apply across the brain during acute sleep loss and that sleep need may broadly alter excitatory-inhibitory balance in the central brain.
Collapse
Affiliation(s)
- Jacqueline T. Weiss
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, CA90095
- Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Mei Z. Blundell
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, CA90095
| | - Prabhjit Singh
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, CA90095
| | - Jeffrey M. Donlea
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, CA90095
| |
Collapse
|
12
|
Schretter CE, Sten TH, Klapoetke N, Shao M, Nern A, Dreher M, Bushey D, Robie AA, Taylor AL, Branson KM, Otopalik A, Ruta V, Rubin GM. Social state gates vision using three circuit mechanisms in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585289. [PMID: 38559111 PMCID: PMC10979952 DOI: 10.1101/2024.03.15.585289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Animals are often bombarded with visual information and must prioritize specific visual features based on their current needs. The neuronal circuits that detect and relay visual features have been well-studied. Yet, much less is known about how an animal adjusts its visual attention as its goals or environmental conditions change. During social behaviors, flies need to focus on nearby flies. Here, we study how the flow of visual information is altered when female Drosophila enter an aggressive state. From the connectome, we identified three state-dependent circuit motifs poised to selectively amplify the response of an aggressive female to fly-sized visual objects: convergence of excitatory inputs from neurons conveying select visual features and internal state; dendritic disinhibition of select visual feature detectors; and a switch that toggles between two visual feature detectors. Using cell-type-specific genetic tools, together with behavioral and neurophysiological analyses, we show that each of these circuit motifs function during female aggression. We reveal that features of this same switch operate in males during courtship pursuit, suggesting that disparate social behaviors may share circuit mechanisms. Our work provides a compelling example of using the connectome to infer circuit mechanisms that underlie dynamic processing of sensory signals.
Collapse
Affiliation(s)
| | - Tom Hindmarsh Sten
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
| | - Nathan Klapoetke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Mei Shao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Daniel Bushey
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Alice A Robie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Adam L Taylor
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kristin M Branson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Adriane Otopalik
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Vanessa Ruta
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| |
Collapse
|
13
|
Tao L, Ayembem D, Barranca VJ, Bhandawat V. Neurons underlying aggressive actions that are shared by both males and females in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582148. [PMID: 38464020 PMCID: PMC10925114 DOI: 10.1101/2024.02.26.582148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Aggression involves both sexually monomorphic and dimorphic actions. How the brain implements these two types of actions is poorly understood. We found that a set of neurons, which we call CL062, previously shown to mediate male aggression also mediate female aggression. These neurons elicit aggression acutely and without the presence of a target. Although the same set of actions is elicited in males and females, the overall behavior is sexually dimorphic. The CL062 neurons do not express fruitless , a gene required for sexual dimorphism in flies, and expressed by most other neurons important for controlling fly aggression. Connectomic analysis suggests that these neurons have limited connections with fruitless expressing neurons that have been shown to be important for aggression, and signal to different descending neurons. Thus, CL062 is part of a monomorphic circuit for aggression that functions parallel to the known dimorphic circuits.
Collapse
|
14
|
Zhao H, Jiang X, Ma M, Xing L, Ji X, Pan Y. A neural pathway for social modulation of spontaneous locomotor activity (SoMo-SLA) in Drosophila. Proc Natl Acad Sci U S A 2024; 121:e2314393121. [PMID: 38394240 PMCID: PMC10907233 DOI: 10.1073/pnas.2314393121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Social enrichment or social isolation affects a range of innate behaviors, such as sex, aggression, and sleep, but whether there is a shared mechanism is not clear. Here, we report a neural mechanism underlying social modulation of spontaneous locomotor activity (SoMo-SLA), an internal-driven behavior indicative of internal states. We find that social enrichment specifically reduces spontaneous locomotor activity in male flies. We identify neuropeptides Diuretic hormone 44 (DH44) and Tachykinin (TK) to be up- and down-regulated by social enrichment and necessary for SoMo-SLA. We further demonstrate a sexually dimorphic neural circuit, in which the male-specific P1 neurons encoding internal states form positive feedback with interneurons coexpressing doublesex (dsx) and Tk to promote locomotion, while P1 neurons also form negative feedback with interneurons coexpressing dsx and DH44 to inhibit locomotion. These two opposing neuromodulatory recurrent circuits represent a potentially common mechanism that underlies the social regulation of multiple innate behaviors.
Collapse
Affiliation(s)
- Huan Zhao
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Xinyu Jiang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Mingze Ma
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Limin Xing
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Xiaoxiao Ji
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong226019, China
| |
Collapse
|
15
|
Jiang X, Sun M, Chen J, Pan Y. Sex-Specific and State-Dependent Neuromodulation Regulates Male and Female Locomotion and Sexual Behaviors. RESEARCH (WASHINGTON, D.C.) 2024; 7:0321. [PMID: 38390306 PMCID: PMC10882504 DOI: 10.34133/research.0321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Males and females display dimorphic behaviors that often involve sex-specific locomotor patterns. How the sexually dimorphic locomotion is mediated is poorly understood. In this study, we identify a neuropeptide that oppositely regulates locomotion for efficient sexual behaviors in Drosophila males and females. We find that males are less active than females if isolated. However, when sexually aroused through activating homologous but sexually dimorphic pC1 neurons, males exhibit higher activity levels than females. We discover diuretic hormone 44 (DH44) that functions in pC1 neurons in a sex-specific way to inhibit male locomotion and promote female locomotion. Surprisingly, DH44 exerts opposite effects in sexually aroused flies to promote male locomotion and suppress female locomotion, which is crucial for successful male courtship and female receptivity. These findings demonstrate sexually dimorphic and state-dependent control of locomotor activity by pC1 neuronal activity and DH44 modulation.
Collapse
Affiliation(s)
- Xinyu Jiang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Mengshi Sun
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Jie Chen
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| |
Collapse
|
16
|
Yadav RSP, Ansari F, Bera N, Kent C, Agrawal P. Lessons from lonely flies: Molecular and neuronal mechanisms underlying social isolation. Neurosci Biobehav Rev 2024; 156:105504. [PMID: 38061597 DOI: 10.1016/j.neubiorev.2023.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Animals respond to changes in the environment which affect their internal state by adapting their behaviors. Social isolation is a form of passive environmental stressor that alters behaviors across animal kingdom, including humans, rodents, and fruit flies. Social isolation is known to increase violence, disrupt sleep and increase depression leading to poor mental and physical health. Recent evidences from several model organisms suggest that social isolation leads to remodeling of the transcriptional and epigenetic landscape which alters behavioral outcomes. In this review, we explore how manipulating social experience of fruit fly Drosophila melanogaster can shed light on molecular and neuronal mechanisms underlying isolation driven behaviors. We discuss the recent advances made using the powerful genetic toolkit and behavioral assays in Drosophila to uncover role of neuromodulators, sensory modalities, pheromones, neuronal circuits and molecular mechanisms in mediating social isolation. The insights gained from these studies could be crucial for developing effective therapeutic interventions in future.
Collapse
Affiliation(s)
- R Sai Prathap Yadav
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Faizah Ansari
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Neha Bera
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Clement Kent
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Pavan Agrawal
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India.
| |
Collapse
|
17
|
Ahmed OM, Crocker A, Murthy M. Transcriptional profiling of Drosophila male-specific P1 (pC1) neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566045. [PMID: 37986870 PMCID: PMC10659367 DOI: 10.1101/2023.11.07.566045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In Drosophila melanogaster, the P1 (pC1) cluster of male-specific neurons both integrates sensory cues and drives or modulates behavioral programs such as courtship, in addition to contributing to a social arousal state. The behavioral function of these neurons is linked to the genes they express, which underpin their capacity for synaptic signaling, neuromodulation, and physiology. Yet, P1 (pC1) neurons have not been fully characterized at the transcriptome level. Moreover, it is unknown how the molecular landscape of P1 (pC1) neurons acutely changes after flies engage in social behaviors, where baseline P1 (pC1) neural activity is expected to increase. To address these two gaps, we use single cell-type RNA sequencing to profile and compare the transcriptomes of P1 (pC1) neurons harvested from socially paired versus solitary male flies. Compared to control transcriptome datasets, we find that P1 (pC1) neurons are enriched in 2,665 genes, including those encoding receptors, neuropeptides, and cell-adhesion molecules (dprs/DIPs). Furthermore, courtship is characterized by changes in ~300 genes, including those previously implicated in regulating behavior (e.g. DopEcR, Octβ3R, Fife, kairos, rad). Finally, we identify a suite of genes that link conspecific courtship with the innate immune system. Together, these data serve as a molecular map for future studies of an important set of higher-order and sexually-dimorphic neurons.
Collapse
Affiliation(s)
- Osama M Ahmed
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
- Department of Psychology, University of Washington, Seattle, WA 98105, USA
| | - Amanda Crocker
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
18
|
Sten TH, Li R, Hollunder F, Eleazer S, Ruta V. Male-male interactions shape mate selection in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565582. [PMID: 37961193 PMCID: PMC10635267 DOI: 10.1101/2023.11.03.565582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Males of many species have evolved behavioral traits to both attract females and repel rivals. Here, we explore mate selection in Drosophila from both the male and female perspective to shed light on how these key components of sexual selection - female choice and male-male competition - work in concert to guide reproductive strategies. We find that male flies fend off competing suitors by interleaving their courtship of a female with aggressive wing flicks, which both repel competitors and generate a 'song' that obscures the female's auditory perception of other potential mates. Two higher-order circuit nodes - P1a and pC1x neurons - are coordinately recruited to allow males to flexibly interleave these agonistic actions with courtship displays, assuring they persistently pursue females until their rival falters. Together, our results suggest that female mating decisions are shaped by male-male interactions, underscoring how a male's ability to subvert his rivals is central to his reproductive success.
Collapse
Affiliation(s)
- Tom Hindmarsh Sten
- Laboratory of Neurophysiology and Behavior, The Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA
- Present address: Department of Biology, Stanford University, Stanford, CA
| | - Rufei Li
- Laboratory of Neurophysiology and Behavior, The Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA
| | - Florian Hollunder
- Laboratory of Neurophysiology and Behavior, The Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA
| | - Shadé Eleazer
- Laboratory of Neurophysiology and Behavior, The Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA
| | - Vanessa Ruta
- Laboratory of Neurophysiology and Behavior, The Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
19
|
Tee LF, Young JJ, Maruyama K, Kimura S, Suzuki R, Endo Y, Kimura KD. Electric shock causes a fleeing-like persistent behavioral response in the nematode Caenorhabditis elegans. Genetics 2023; 225:iyad148. [PMID: 37595066 PMCID: PMC10550322 DOI: 10.1093/genetics/iyad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/27/2023] [Indexed: 08/20/2023] Open
Abstract
Behavioral persistency reflects internal brain states, which are the foundations of multiple brain functions. However, experimental paradigms enabling genetic analyses of behavioral persistency and its associated brain functions have been limited. Here, we report novel persistent behavioral responses caused by electric stimuli in the nematode Caenorhabditis elegans. When the animals on bacterial food are stimulated by alternating current, their movement speed suddenly increases 2- to 3-fold, persisting for more than 1 minute even after a 5-second stimulation. Genetic analyses reveal that voltage-gated channels in the neurons are required for the response, possibly as the sensors, and neuropeptide signaling regulates the duration of the persistent response. Additional behavioral analyses implicate that the animal's response to electric shock is scalable and has a negative valence. These properties, along with persistence, have been recently regarded as essential features of emotion, suggesting that C. elegans response to electric shock may reflect a form of emotion, akin to fear.
Collapse
Affiliation(s)
- Ling Fei Tee
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Jared J Young
- Mills College at Northeastern University, Oakland, CA 94613, USA
| | - Keisuke Maruyama
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Sota Kimura
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Ryoga Suzuki
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Yuto Endo
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Koutarou D Kimura
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
20
|
Roemschied FA, Pacheco DA, Aragon MJ, Ireland EC, Li X, Thieringer K, Pang R, Murthy M. Flexible circuit mechanisms for context-dependent song sequencing. Nature 2023; 622:794-801. [PMID: 37821705 PMCID: PMC10600009 DOI: 10.1038/s41586-023-06632-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Sequenced behaviours, including locomotion, reaching and vocalization, are patterned differently in different contexts, enabling animals to adjust to their environments. How contextual information shapes neural activity to flexibly alter the patterning of actions is not fully understood. Previous work has indicated that this could be achieved via parallel motor circuits, with differing sensitivities to context1,2. Here we demonstrate that a single pathway operates in two regimes dependent on recent sensory history. We leverage the Drosophila song production system3 to investigate the role of several neuron types4-7 in song patterning near versus far from the female fly. Male flies sing 'simple' trains of only one mode far from the female fly but complex song sequences comprising alternations between modes when near her. We find that ventral nerve cord (VNC) circuits are shaped by mutual inhibition and rebound excitability8 between nodes driving the two song modes. Brief sensory input to a direct brain-to-VNC excitatory pathway drives simple song far from the female, whereas prolonged input enables complex song production via simultaneous recruitment of functional disinhibition of VNC circuitry. Thus, female proximity unlocks motor circuit dynamics in the correct context. We construct a compact circuit model to demonstrate that the identified mechanisms suffice to replicate natural song dynamics. These results highlight how canonical circuit motifs8,9 can be combined to enable circuit flexibility required for dynamic communication.
Collapse
Affiliation(s)
- Frederic A Roemschied
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- European Neuroscience Institute, Göttingen, Germany
| | - Diego A Pacheco
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Harvard Medical School, Boston, MA, USA
| | - Max J Aragon
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Elise C Ireland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Xinping Li
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Kyle Thieringer
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Rich Pang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
21
|
Schaffer ES, Mishra N, Whiteway MR, Li W, Vancura MB, Freedman J, Patel KB, Voleti V, Paninski L, Hillman EMC, Abbott LF, Axel R. The spatial and temporal structure of neural activity across the fly brain. Nat Commun 2023; 14:5572. [PMID: 37696814 PMCID: PMC10495430 DOI: 10.1038/s41467-023-41261-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/29/2023] [Indexed: 09/13/2023] Open
Abstract
What are the spatial and temporal scales of brainwide neuronal activity? We used swept, confocally-aligned planar excitation (SCAPE) microscopy to image all cells in a large volume of the brain of adult Drosophila with high spatiotemporal resolution while flies engaged in a variety of spontaneous behaviors. This revealed neural representations of behavior on multiple spatial and temporal scales. The activity of most neurons correlated (or anticorrelated) with running and flailing over timescales that ranged from seconds to a minute. Grooming elicited a weaker global response. Significant residual activity not directly correlated with behavior was high dimensional and reflected the activity of small clusters of spatially organized neurons that may correspond to genetically defined cell types. These clusters participate in the global dynamics, indicating that neural activity reflects a combination of local and broadly distributed components. This suggests that microcircuits with highly specified functions are provided with knowledge of the larger context in which they operate.
Collapse
Affiliation(s)
- Evan S Schaffer
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Neuroscience, Columbia University, New York, NY, 10027, USA.
| | - Neeli Mishra
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Neuroscience, Columbia University, New York, NY, 10027, USA
| | - Matthew R Whiteway
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Neuroscience, Columbia University, New York, NY, 10027, USA
- Department of Statistics and the Grossman Center for the Statistics of Mind, Columbia University, New York, NY, 10027, USA
| | - Wenze Li
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Neuroscience, Columbia University, New York, NY, 10027, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Michelle B Vancura
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Neuroscience, Columbia University, New York, NY, 10027, USA
| | - Jason Freedman
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Neuroscience, Columbia University, New York, NY, 10027, USA
| | - Kripa B Patel
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Neuroscience, Columbia University, New York, NY, 10027, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Venkatakaushik Voleti
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Neuroscience, Columbia University, New York, NY, 10027, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Liam Paninski
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Neuroscience, Columbia University, New York, NY, 10027, USA
- Department of Statistics and the Grossman Center for the Statistics of Mind, Columbia University, New York, NY, 10027, USA
| | - Elizabeth M C Hillman
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Neuroscience, Columbia University, New York, NY, 10027, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Radiology, Columbia University, New York, NY, 10027, USA
| | - L F Abbott
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Neuroscience, Columbia University, New York, NY, 10027, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Richard Axel
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Neuroscience, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
- Howard Hughes Medical Institute, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
22
|
Legan AW, Vogt CC, Sheehan MJ. Postural analysis reveals persistent changes in paper wasp foundress behavioral state after conspecific challenge. Ecol Evol 2023; 13:e10436. [PMID: 37664514 PMCID: PMC10469045 DOI: 10.1002/ece3.10436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Vigilant animals detect and respond to threats in the environment, often changing posture and movement patterns. Vigilance is modulated not only by predators but also by conspecific threats. In social animals, precisely how conspecific threats alter vigilance behavior over time is relevant to long-standing hypotheses about social plasticity. We report persistent effects of a simulated conspecific challenge on behavior of wild northern paper wasp foundresses, Polistes fuscatus. During the founding phase of the colony cycle, conspecific wasps can usurp nests from the resident foundress, representing a severe threat. We used automated tracking to monitor the movement and posture of P. fuscatus foundresses in response to simulated intrusions. Wasps displayed increased movement, greater bilateral wing extension, and reduced antennal separation after the threat was removed. These changes were not observed after presentation with a wooden dowel. By rapidly adjusting individual behavior after fending off an intruder, paper wasp foundresses might invest in surveillance of potential threats, even when such threats are no longer immediately present. The prolonged vigilance-like behavioral state observed here is relevant to plasticity of social recognition processes in paper wasps.
Collapse
Affiliation(s)
- Andrew W. Legan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and BehaviorCornell UniversityIthacaNew YorkUSA
- Department of EntomologyUniversity of ArizonaTucsonArizonaUSA
| | - Caleb C. Vogt
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and BehaviorCornell UniversityIthacaNew YorkUSA
| | - Michael J. Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and BehaviorCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
23
|
Fernandez MP, Trannoy S, Certel SJ. Fighting Flies: Quantifying and Analyzing Drosophila Aggression. Cold Spring Harb Protoc 2023; 2023:618-627. [PMID: 37019610 DOI: 10.1101/pdb.top107985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Aggression is an innate behavior that likely evolved in the framework of defending or obtaining resources. This complex social behavior is influenced by genetic, environmental, and internal factors. Drosophila melanogaster remains an effective and exciting model organism with which to unravel the mechanistic basis of aggression due to its small but sophisticated brain, an impressive array of neurogenetic tools, and robust stereotypical behavioral patterns. The investigations of many laboratories have led to the identification of external and internal state factors that promote aggression, sex differences in the patterns and outcome of aggression, and neurotransmitters that regulate aggression.
Collapse
Affiliation(s)
- Maria P Fernandez
- Department of Neuroscience and Behavior, Barnard College, New York City, New York 10027, USA
| | - Severine Trannoy
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Sarah J Certel
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| |
Collapse
|
24
|
Takayanagi-Kiya S, Shioya N, Nishiuchi T, Iwami M, Kiya T. Cell assembly analysis of neural circuits for innate behavior in Drosophila melanogaster using an immediate early gene stripe/ egr-1. Proc Natl Acad Sci U S A 2023; 120:e2303318120. [PMID: 37549285 PMCID: PMC10438382 DOI: 10.1073/pnas.2303318120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023] Open
Abstract
Innate behavior, such as courtship behavior, is controlled by a genetically defined set of neurons. To date, it remains challenging to visualize and artificially control the neural population that is active during innate behavior in a whole-brain scale. Immediate early genes (IEGs), whose expression is induced by neural activity, can serve as powerful tools to map neural activity in the animal brain. We screened for IEGs in vinegar fly Drosophila melanogaster and identified stripe/egr-1 as a potent neural activity marker. Focusing on male courtship as a model of innate behavior, we demonstrate that stripe-GAL4-mediated reporter expression can label fruitless (fru)-expressing neurons involved in courtship in an activity (experience)-dependent manner. Optogenetic reactivation of the labeled neurons elicited sexual behavior in males, whereas silencing of the labeled neurons suppressed courtship and copulation. Further, by combining stripe-GAL4-mediated reporter expression and detection of endogenous Stripe expression, we established methods that can label neurons activated under different contexts in separate time windows in the same animal. The cell assembly analysis of fru neural population in males revealed that distinct groups of neurons are activated during interactions with a female or another male. These methods will contribute to building a deeper understanding of neural circuit mechanisms underlying innate insect behavior.
Collapse
Affiliation(s)
- Seika Takayanagi-Kiya
- Division of Life Sciences, Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa, Ishikawa920-1192, Japan
| | - Natsumi Shioya
- Division of Life Sciences, Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa, Ishikawa920-1192, Japan
| | - Takumi Nishiuchi
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa920-8640, Japan
| | - Masafumi Iwami
- Division of Life Sciences, Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa, Ishikawa920-1192, Japan
| | - Taketoshi Kiya
- Division of Life Sciences, Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa, Ishikawa920-1192, Japan
| |
Collapse
|
25
|
Bonheur M, Swartz KJ, Metcalf MG, Wen X, Zhukovskaya A, Mehta A, Connors KE, Barasch JG, Jamieson AR, Martin KC, Axel R, Hattori D. A rapid and bidirectional reporter of neural activity reveals neural correlates of social behaviors in Drosophila. Nat Neurosci 2023; 26:1295-1307. [PMID: 37308660 PMCID: PMC10866131 DOI: 10.1038/s41593-023-01357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
Neural activity is modulated over different timescales encompassing subseconds to hours, reflecting changes in external environment, internal state and behavior. Using Drosophila as a model, we developed a rapid and bidirectional reporter that provides a cellular readout of recent neural activity. This reporter uses nuclear versus cytoplasmic distribution of CREB-regulated transcriptional co-activator (CRTC). Subcellular distribution of GFP-tagged CRTC (CRTC::GFP) bidirectionally changes on the order of minutes and reflects both increases and decreases in neural activity. We established an automated machine-learning-based routine for efficient quantification of reporter signal. Using this reporter, we demonstrate mating-evoked activation and inactivation of modulatory neurons. We further investigated the functional role of the master courtship regulator gene fruitless (fru) and show that fru is necessary to ensure activation of male arousal neurons by female cues. Together, our results establish CRTC::GFP as a bidirectional reporter of recent neural activity suitable for examining neural correlates in behavioral contexts.
Collapse
Affiliation(s)
- Moise Bonheur
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kurtis J Swartz
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Melissa G Metcalf
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Xinke Wen
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Anna Zhukovskaya
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Avirut Mehta
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kristin E Connors
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Julia G Barasch
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Andrew R Jamieson
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kelsey C Martin
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Simons Foundation, New York, NY, USA
| | - Richard Axel
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Daisuke Hattori
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
26
|
Taisz I, Donà E, Münch D, Bailey SN, Morris BJ, Meechan KI, Stevens KM, Varela-Martínez I, Gkantia M, Schlegel P, Ribeiro C, Jefferis GSXE, Galili DS. Generating parallel representations of position and identity in the olfactory system. Cell 2023; 186:2556-2573.e22. [PMID: 37236194 PMCID: PMC10403364 DOI: 10.1016/j.cell.2023.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/07/2022] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
In Drosophila, a dedicated olfactory channel senses a male pheromone, cis-vaccenyl acetate (cVA), promoting female courtship while repelling males. Here, we show that separate cVA-processing streams extract qualitative and positional information. cVA sensory neurons respond to concentration differences in a 5-mm range around a male. Second-order projection neurons encode the angular position of a male by detecting inter-antennal differences in cVA concentration, which are amplified through contralateral inhibition. At the third circuit layer, we identify 47 cell types with diverse input-output connectivity. One population responds tonically to male flies, a second is tuned to olfactory looming, while a third integrates cVA and taste to coincidentally promote female mating. The separation of olfactory features resembles the mammalian what and where visual streams; together with multisensory integration, this enables behavioral responses appropriate to specific ethological contexts.
Collapse
Affiliation(s)
- István Taisz
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Erika Donà
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Billy J Morris
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Katie M Stevens
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Marina Gkantia
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Dana S Galili
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
27
|
Shen P, Wan X, Wu F, Shi K, Li J, Gao H, Zhao L, Zhou C. Neural circuit mechanisms linking courtship and reward in Drosophila males. Curr Biol 2023; 33:2034-2050.e8. [PMID: 37160122 DOI: 10.1016/j.cub.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023]
Abstract
Courtship has evolved to achieve reproductive success in animal species. However, whether courtship itself has a positive value remains unclear. In the present work, we report that courtship is innately rewarding and can induce the expression of appetitive short-term memory (STM) and long-term memory (LTM) in Drosophila melanogaster males. Activation of male-specific P1 neurons is sufficient to mimic courtship-induced preference and memory performance. Surprisingly, P1 neurons functionally connect to a large proportion of dopaminergic neurons (DANs) in the protocerebral anterior medial (PAM) cluster. The acquisition of STM and LTM depends on two distinct subsets of PAM DANs that convey the courtship-reward signal to the restricted regions of the mushroom body (MB) γ and α/β lobes through two dopamine receptors, D1-like Dop1R1 and D2-like Dop2R. Furthermore, the retrieval of STM stored in the MB α'/β' lobes and LTM stored in the MB α/β lobe relies on two distinct MB output neurons. Finally, LTM consolidation requires two subsets of PAM DANs projecting to the MB α/β lobe and corresponding MB output neurons. Taken together, our findings demonstrate that courtship is a potent rewarding stimulus and reveal the underlying neural circuit mechanisms linking courtship and reward in Drosophila males.
Collapse
Affiliation(s)
- Peng Shen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaolu Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengming Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Hongjiang Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
28
|
Petrović M, Meštrović A, Andretić Waldowski R, Filošević Vujnović A. A network-based analysis detects cocaine-induced changes in social interactions in Drosophila melanogaster. PLoS One 2023; 18:e0275795. [PMID: 36952449 PMCID: PMC10035901 DOI: 10.1371/journal.pone.0275795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/19/2022] [Indexed: 03/25/2023] Open
Abstract
Addiction is a multifactorial biological and behavioral disorder that is studied using animal models, based on simple behavioral responses in isolated individuals. A couple of decades ago it was shown that Drosophila melanogaster can serve as a model organism for behaviors related to alcohol, nicotine and cocaine (COC) addiction. Scoring of COC-induced behaviors in a large group of flies has been technologically challenging, so we have applied a local, middle and global level of network-based analyses to study social interaction networks (SINs) among a group of 30 untreated males compared to those that have been orally administered with 0.50 mg/mL of COC for 24 hours. In this study, we have confirmed the previously described increase in locomotion upon COC feeding. We have isolated new network-based measures associated with COC, and influenced by group on the individual behavior. COC fed flies showed a longer duration of interactions on the local level, and formed larger, more densely populated and compact, communities at the middle level. Untreated flies have a higher number of interactions with other flies in a group at the local level, and at the middle level, these interactions led to the formation of separated communities. Although the network density at the global level is higher in COC fed flies, at the middle level the modularity is higher in untreated flies. One COC specific behavior that we have isolated was an increase in the proportion of individuals that do not interact with the rest of the group, considered as the individual difference in COC induced behavior and/or consequence of group influence on individual behavior. Our approach can be expanded on different classes of drugs with the same acute response as COC to determine drug specific network-based measures and could serve as a tool to determinate genetic and environmental factors that influence both drug addiction and social interaction.
Collapse
Affiliation(s)
- Milan Petrović
- Department of Informatics, University of Rijeka, Rijeka, Croatia
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, Rijeka, Croatia
| | - Ana Meštrović
- Department of Informatics, University of Rijeka, Rijeka, Croatia
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, Rijeka, Croatia
| | - Rozi Andretić Waldowski
- Department of Biotechnology, Laboratory for behavioral genetics, University of Rijeka, Rijeka, Croatia
| | - Ana Filošević Vujnović
- Department of Biotechnology, Laboratory for behavioral genetics, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
29
|
Karigo T, Deutsch D. Flexibility of neural circuits regulating mating behaviors in mice and flies. Front Neural Circuits 2022; 16:949781. [PMID: 36426135 PMCID: PMC9679785 DOI: 10.3389/fncir.2022.949781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022] Open
Abstract
Mating is essential for the reproduction of animal species. As mating behaviors are high-risk and energy-consuming processes, it is critical for animals to make adaptive mating decisions. This includes not only finding a suitable mate, but also adapting mating behaviors to the animal's needs and environmental conditions. Internal needs include physical states (e.g., hunger) and emotional states (e.g., fear), while external conditions include both social cues (e.g., the existence of predators or rivals) and non-social factors (e.g., food availability). With recent advances in behavioral neuroscience, we are now beginning to understand the neural basis of mating behaviors, particularly in genetic model organisms such as mice and flies. However, how internal and external factors are integrated by the nervous system to enable adaptive mating-related decision-making in a state- and context-dependent manner is less well understood. In this article, we review recent knowledge regarding the neural basis of flexible mating behaviors from studies of flies and mice. By contrasting the knowledge derived from these two evolutionarily distant model organisms, we discuss potential conserved and divergent neural mechanisms involved in the control of flexible mating behaviors in invertebrate and vertebrate brains.
Collapse
Affiliation(s)
- Tomomi Karigo
- Kennedy Krieger Institute, Baltimore, MD, United States,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Tomomi Karigo,
| | - David Deutsch
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel,David Deutsch,
| |
Collapse
|
30
|
The doublesex gene regulates dimorphic sexual and aggressive behaviors in Drosophila. Proc Natl Acad Sci U S A 2022; 119:e2201513119. [PMID: 36067320 PMCID: PMC9477402 DOI: 10.1073/pnas.2201513119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most animal species display dimorphic sexual behaviors and male-biased aggressiveness. Current models have focused on the male-specific product from the fruitless (fruM) gene, which controls male courtship and male-specific aggression patterns in fruit flies, and describe a male-specific mechanism underlying sexually dimorphic behaviors. Here we show that the doublesex (dsx) gene, which expresses male-specific DsxM and female-specific DsxF transcription factors, functions in the nervous system to control both male and female sexual and aggressive behaviors. We find that Dsx is not only required in central brain neurons for male and female sexual behaviors, but also functions in approximately eight pairs of male-specific neurons to promote male aggressiveness and approximately two pairs of female-specific neurons to inhibit female aggressiveness. DsxF knockdown females fight more frequently, even with males. Our findings reveal crucial roles of dsx, which is broadly conserved from worms to humans, in a small number of neurons in both sexes to establish dimorphic sexual and aggressive behaviors.
Collapse
|
31
|
McLachlan IG, Kramer TS, Dua M, DiLoreto EM, Gomes MA, Dag U, Srinivasan J, Flavell SW. Diverse states and stimuli tune olfactory receptor expression levels to modulate food-seeking behavior. eLife 2022; 11:e79557. [PMID: 36044259 PMCID: PMC9433090 DOI: 10.7554/elife.79557] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022] Open
Abstract
Animals must weigh competing needs and states to generate adaptive behavioral responses to the environment. Sensorimotor circuits are thus tasked with integrating diverse external and internal cues relevant to these needs to generate context-appropriate behaviors. However, the mechanisms that underlie this integration are largely unknown. Here, we show that a wide range of states and stimuli converge upon a single Caenorhabditis elegans olfactory neuron to modulate food-seeking behavior. Using an unbiased ribotagging approach, we find that the expression of olfactory receptor genes in the AWA olfactory neuron is influenced by a wide array of states and stimuli, including feeding state, physiological stress, and recent sensory cues. We identify odorants that activate these state-dependent olfactory receptors and show that altered expression of these receptors influences food-seeking and foraging. Further, we dissect the molecular and neural circuit pathways through which external sensory information and internal nutritional state are integrated by AWA. This reveals a modular organization in which sensory and state-related signals arising from different cell types in the body converge on AWA and independently control chemoreceptor expression. The synthesis of these signals by AWA allows animals to generate sensorimotor responses that reflect the animal's overall state. Our findings suggest a general model in which sensory- and state-dependent transcriptional changes at the sensory periphery modulate animals' sensorimotor responses to meet their ongoing needs and states.
Collapse
Affiliation(s)
- Ian G McLachlan
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Talya S Kramer
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- MIT Biology Graduate Program, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Malvika Dua
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Elizabeth M DiLoreto
- Department of Biology and Biotechnology, Worcester Polytechnic InstituteWorcesterUnited States
| | - Matthew A Gomes
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Ugur Dag
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic InstituteWorcesterUnited States
| | - Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
32
|
Hermans L, Kaynak M, Braun J, Ríos VL, Chen CL, Friedberg A, Günel S, Aymanns F, Sakar MS, Ramdya P. Microengineered devices enable long-term imaging of the ventral nerve cord in behaving adult Drosophila. Nat Commun 2022; 13:5006. [PMID: 36008386 PMCID: PMC9411199 DOI: 10.1038/s41467-022-32571-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 08/04/2022] [Indexed: 11/09/2022] Open
Abstract
The dynamics and connectivity of neural circuits continuously change on timescales ranging from milliseconds to an animal's lifetime. Therefore, to understand biological networks, minimally invasive methods are required to repeatedly record them in behaving animals. Here we describe a suite of devices that enable long-term optical recordings of the adult Drosophila melanogaster ventral nerve cord (VNC). These consist of transparent, numbered windows to replace thoracic exoskeleton, compliant implants to displace internal organs, a precision arm to assist implantation, and a hinged stage to repeatedly tether flies. To validate and illustrate our toolkit we (i) show minimal impact on animal behavior and survival, (ii) follow the degradation of chordotonal organ mechanosensory nerve terminals over weeks after leg amputation, and (iii) uncover waves of neural activity caffeine ingestion. Thus, our long-term imaging toolkit opens up the investigation of premotor and motor circuit adaptations in response to injury, drug ingestion, aging, learning, and disease.
Collapse
Affiliation(s)
- Laura Hermans
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland
- Microbiorobotic Systems Laboratory, Institute of Mechanical Engineering & Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Murat Kaynak
- Microbiorobotic Systems Laboratory, Institute of Mechanical Engineering & Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Jonas Braun
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Victor Lobato Ríos
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Chin-Lin Chen
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Adam Friedberg
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Semih Günel
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland
- Computer Vision Laboratory, EPFL, Lausanne, Switzerland
| | - Florian Aymanns
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Mahmut Selman Sakar
- Microbiorobotic Systems Laboratory, Institute of Mechanical Engineering & Institute of Bioengineering, EPFL, Lausanne, Switzerland.
| | - Pavan Ramdya
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland.
| |
Collapse
|
33
|
Huang G, Dierick HA. The need for unbiased genetic screens to dissect aggression in Drosophila melanogaster. Front Behav Neurosci 2022; 16:901453. [PMID: 35979224 PMCID: PMC9377312 DOI: 10.3389/fnbeh.2022.901453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Aggression is an evolutionarily conserved behavior present in most animals and is necessary for survival when competing for limited resources and mating partners. Studies have shown that aggression is modulated both genetically and epigenetically, but details of how the molecular and cellular mechanisms interact to determine aggressive behavior remain to be elucidated. In recent decades, Drosophila melanogaster has emerged as a powerful model system to understand the mechanisms that regulate aggression. Surprisingly most of the findings discovered to date have not come from genetic screens despite the fly's long and successful history of using screens to unravel its biology. Here, we highlight the tools and techniques used to successfully screen for aggression-linked behavioral elements in Drosophila and discuss the potential impact future screens have in advancing our knowledge of the underlying genetic and neural circuits governing aggression.
Collapse
Affiliation(s)
- Gary Huang
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Herman A Dierick
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
34
|
Flavell SW, Gogolla N, Lovett-Barron M, Zelikowsky M. The emergence and influence of internal states. Neuron 2022; 110:2545-2570. [PMID: 35643077 PMCID: PMC9391310 DOI: 10.1016/j.neuron.2022.04.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/11/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023]
Abstract
Animal behavior is shaped by a variety of "internal states"-partially hidden variables that profoundly shape perception, cognition, and action. The neural basis of internal states, such as fear, arousal, hunger, motivation, aggression, and many others, is a prominent focus of research efforts across animal phyla. Internal states can be inferred from changes in behavior, physiology, and neural dynamics and are characterized by properties such as pleiotropy, persistence, scalability, generalizability, and valence. To date, it remains unclear how internal states and their properties are generated by nervous systems. Here, we review recent progress, which has been driven by advances in behavioral quantification, cellular manipulations, and neural population recordings. We synthesize research implicating defined subsets of state-inducing cell types, widespread changes in neural activity, and neuromodulation in the formation and updating of internal states. In addition to highlighting the significance of these findings, our review advocates for new approaches to clarify the underpinnings of internal brain states across the animal kingdom.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Nadine Gogolla
- Emotion Research Department, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany.
| | - Matthew Lovett-Barron
- Division of Biological Sciences-Neurobiology Section, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Moriel Zelikowsky
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
35
|
Neural Control of Action Selection Among Innate Behaviors. Neurosci Bull 2022; 38:1541-1558. [PMID: 35633465 DOI: 10.1007/s12264-022-00886-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022] Open
Abstract
Nervous systems must not only generate specific adaptive behaviors, such as reproduction, aggression, feeding, and sleep, but also select a single behavior for execution at any given time, depending on both internal states and external environmental conditions. Despite their tremendous biological importance, the neural mechanisms of action selection remain poorly understood. In the past decade, studies in the model animal Drosophila melanogaster have demonstrated valuable neural mechanisms underlying action selection of innate behaviors. In this review, we summarize circuit mechanisms with a particular focus on a small number of sexually dimorphic neurons in controlling action selection among sex, fight, feeding, and sleep behaviors in both sexes of flies. We also discuss potentially conserved circuit configurations and neuromodulation of action selection in both the fly and mouse models, aiming to provide insights into action selection and the sexually dimorphic prioritization of innate behaviors.
Collapse
|
36
|
Palavicino-Maggio CB, Sengupta S. The Neuromodulatory Basis of Aggression: Lessons From the Humble Fruit Fly. Front Behav Neurosci 2022; 16:836666. [PMID: 35517573 PMCID: PMC9062135 DOI: 10.3389/fnbeh.2022.836666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 11/22/2022] Open
Abstract
Aggression is an intrinsic trait that organisms of almost all species, humans included, use to get access to food, shelter, and mating partners. To maximize fitness in the wild, an organism must vary the intensity of aggression toward the same or different stimuli. How much of this variation is genetic and how much is externally induced, is largely unknown but is likely to be a combination of both. Irrespective of the source, one of the principal physiological mechanisms altering the aggression intensity involves neuromodulation. Any change or variation in aggression intensity is most likely governed by a complex interaction of several neuromodulators acting via a meshwork of neural circuits. Resolving aggression-specific neural circuits in a mammalian model has proven challenging due to the highly complex nature of the mammalian brain. In that regard, the fruit fly model Drosophila melanogaster has provided insights into the circuit-driven mechanisms of aggression regulation and its underlying neuromodulatory basis. Despite morphological dissimilarities, the fly brain shares striking similarities with the mammalian brain in genes, neuromodulatory systems, and circuit-organization, making the findings from the fly model extremely valuable for understanding the fundamental circuit logic of human aggression. This review discusses our current understanding of how neuromodulators regulate aggression based on findings from the fruit fly model. We specifically focus on the roles of Serotonin (5-HT), Dopamine (DA), Octopamine (OA), Acetylcholine (ACTH), Sex Peptides (SP), Tachykinin (TK), Neuropeptide F (NPF), and Drosulfakinin (Dsk) in fruit fly male and female aggression.
Collapse
Affiliation(s)
- Caroline B Palavicino-Maggio
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Saheli Sengupta
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, United States
| |
Collapse
|
37
|
Context-dependent control of behavior in Drosophila. Curr Opin Neurobiol 2022; 73:102523. [DOI: 10.1016/j.conb.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 12/16/2022]
|
38
|
Zhang L, Guo X, Zhang W. Nutrients and pheromones promote insulin release to inhibit courtship drive. SCIENCE ADVANCES 2022; 8:eabl6121. [PMID: 35263128 PMCID: PMC8906733 DOI: 10.1126/sciadv.abl6121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Food and reproduction are the fundamental needs for all animals. However, the neural mechanisms that orchestrate nutrient intake and sexual behaviors are not well understood. Here, we find that sugar feeding immediately suppresses sexual drive of male Drosophila, a regulation mediated by insulin that acts on insulin receptors on the courtship-promoting P1 neurons. The same pathway was co-opted by anaphrodisiac pheromones to suppress sexual hyperactivity to suboptimal mates. Activated by repulsive pheromones, male-specific PPK23 neurons on the leg tarsus release crustacean cardioactive peptide (CCAP) that acts on CCAP receptor on the insulin-producing cells in the brain to trigger insulin release, which then inhibits P1 neurons. Our results reveal how male flies avoid promiscuity by balancing the weight between aphrodisiac and anaphrodisiac inputs from multiple peripheral sensory pathways and nutritional states. Such a regulation enables male animals to make an appropriate mating decision under fluctuating feeding conditions.
Collapse
Affiliation(s)
- Liwei Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- Corresponding author. (W.Z.); (L.Z.)
| | - Xuan Guo
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wei Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- Corresponding author. (W.Z.); (L.Z.)
| |
Collapse
|
39
|
GABA transmission from mAL interneurons regulates aggression in Drosophila males. Proc Natl Acad Sci U S A 2022; 119:2117101119. [PMID: 35082150 PMCID: PMC8812560 DOI: 10.1073/pnas.2117101119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/04/2022] Open
Abstract
Aggression is dependent on the sex of the conspecific in almost all animal species. But the neuronal basis of how sex-specific chemosensory signals regulate aggression is poorly understood. Using the fruit fly model of Drosophila melanogaster, we demonstrate that activation of a group of GABAergic central brain neurons, known to respond to sex-specific pheromonal stimuli, enhances aggression in dyadic male encounters. Inactivation of this neuronal group decreases aggression and increases the reciprocal social behavior of courtship. Our results can help trace the neural circuit from pheromone processing in the sensory neurons to behavior integration in the central brain and ultimately help understand how neurons encode the behavior of aggression. Aggression is known to be regulated by pheromonal information in many species. But how central brain neurons processing this information modulate aggression is poorly understood. Using the fruit fly model of Drosophila melanogaster, we systematically characterize the role of a group of sexually dimorphic GABAergic central brain neurons, popularly known as mAL, in aggression regulation. The mAL neurons are known to be activated by male and female pheromones. In this report, we show that mAL activation robustly increases aggression, whereas its inactivation decreases aggression and increases intermale courtship, a behavior considered reciprocal to aggression. GABA neurotransmission from mAL is crucial for this behavior regulation. Exploiting the genetic toolkit of the fruit fly model, we also find a small group of approximately three to five GABA+ central brain neurons with anatomical similarities to mAL. Activation of the mAL resembling group of neurons is necessary for increasing intermale aggression. Overall, our findings demonstrate how changes in activity of GABA+ central brain neurons processing pheromonal information, such as mAL in Drosophila melanogaster, directly modulate the social behavior of aggression in male–male pairings.
Collapse
|
40
|
Devineni AV, Scaplen KM. Neural Circuits Underlying Behavioral Flexibility: Insights From Drosophila. Front Behav Neurosci 2022; 15:821680. [PMID: 35069145 PMCID: PMC8770416 DOI: 10.3389/fnbeh.2021.821680] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Behavioral flexibility is critical to survival. Animals must adapt their behavioral responses based on changes in the environmental context, internal state, or experience. Studies in Drosophila melanogaster have provided insight into the neural circuit mechanisms underlying behavioral flexibility. Here we discuss how Drosophila behavior is modulated by internal and behavioral state, environmental context, and learning. We describe general principles of neural circuit organization and modulation that underlie behavioral flexibility, principles that are likely to extend to other species.
Collapse
Affiliation(s)
- Anita V. Devineni
- Department of Biology, Emory University, Atlanta, GA, United States
- Zuckerman Mind Brain Institute, Columbia University, New York, NY, United States
| | - Kristin M. Scaplen
- Department of Psychology, Bryant University, Smithfield, RI, United States
- Center for Health and Behavioral Studies, Bryant University, Smithfield, RI, United States
- Department of Neuroscience, Brown University, Providence, RI, United States
| |
Collapse
|
41
|
Brintnell E, Gupta M, Anderson DW. Phylogenetic and Ancestral Sequence Reconstruction of SARS-CoV-2 Reveals Latent Capacity to Bind Human ACE2 Receptor. J Mol Evol 2021; 89:656-664. [PMID: 34739551 PMCID: PMC8570237 DOI: 10.1007/s00239-021-10034-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/26/2021] [Indexed: 01/05/2023]
Abstract
SARS-CoV-2 is a unique event, having emerged suddenly as a highly infectious viral pathogen for human populations. Previous phylogenetic analyses show its closest known evolutionary relative to be a virus detected in bats (RaTG13), with a common assumption that SARS-CoV-2 evolved from a zoonotic ancestor via recent genetic changes (likely in the Spike protein receptor-binding domain or RBD) that enabled it to infect humans. We used detailed phylogenetic analysis, ancestral sequence reconstruction, and in situ molecular dynamics simulations to examine the Spike-RBD's functional evolution, finding that the common ancestral virus with RaTG13, dating to no later than 2013, possessed high binding affinity to the human ACE2 receptor. This suggests that SARS-CoV-2 likely possessed a latent capacity to bind to human cellular targets (though this may not have been sufficient for successful infection) and emphasizes the importance of expanding efforts to catalog and monitor viruses circulating in both human and non-human populations.
Collapse
Affiliation(s)
- Erin Brintnell
- Bachelor of Health Sciences Program, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Mehul Gupta
- Bachelor of Health Sciences Program, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Dave W Anderson
- Bachelor of Health Sciences Program, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.
| |
Collapse
|
42
|
Vrontou E, Groschner LN, Szydlowski S, Brain R, Krebbers A, Miesenböck G. Response competition between neurons and antineurons in the mushroom body. Curr Biol 2021; 31:4911-4922.e4. [PMID: 34610272 PMCID: PMC8612741 DOI: 10.1016/j.cub.2021.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/03/2021] [Accepted: 09/03/2021] [Indexed: 11/04/2022]
Abstract
The mushroom bodies of Drosophila contain circuitry compatible with race models of perceptual choice. When flies discriminate odor intensity differences, opponent pools of αβ core Kenyon cells (on and off αβc KCs) accumulate evidence for increases or decreases in odor concentration. These sensory neurons and “antineurons” connect to a layer of mushroom body output neurons (MBONs) which bias behavioral intent in opposite ways. All-to-all connectivity between the competing integrators and their MBON partners allows for correct and erroneous decisions; dopaminergic reinforcement sets choice probabilities via reciprocal changes to the efficacies of on and off KC synapses; and pooled inhibition between αβc KCs can establish equivalence with the drift-diffusion formalism known to describe behavioral performance. The response competition network gives tangible form to many features envisioned in theoretical models of mammalian decision making, but it differs from these models in one respect: the principal variables—the fill levels of the integrators and the strength of inhibition between them—are represented by graded potentials rather than spikes. In pursuit of similar computational goals, a small brain may thus prioritize the large information capacity of analog signals over the robustness and temporal processing span of pulsatile codes. Mushroom body output neurons respond with excitation to odor on- and offset On and off responses reflect the convergence of oppositely tuned Kenyon cells (KCs) Opponent KCs compete by eliciting inhibitory feedback from a common interneuron pool KCs and interneurons communicate through graded potentials rather than spikes
Collapse
Affiliation(s)
- Eleftheria Vrontou
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Lukas N Groschner
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Susanne Szydlowski
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Ruth Brain
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Alina Krebbers
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Gero Miesenböck
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK.
| |
Collapse
|
43
|
Ji N, Madan GK, Fabre GI, Dayan A, Baker CM, Kramer TS, Nwabudike I, Flavell SW. A neural circuit for flexible control of persistent behavioral states. eLife 2021; 10:e62889. [PMID: 34792019 PMCID: PMC8660023 DOI: 10.7554/elife.62889] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/17/2021] [Indexed: 11/29/2022] Open
Abstract
To adapt to their environments, animals must generate behaviors that are closely aligned to a rapidly changing sensory world. However, behavioral states such as foraging or courtship typically persist over long time scales to ensure proper execution. It remains unclear how neural circuits generate persistent behavioral states while maintaining the flexibility to select among alternative states when the sensory context changes. Here, we elucidate the functional architecture of a neural circuit controlling the choice between roaming and dwelling states, which underlie exploration and exploitation during foraging in C. elegans. By imaging ensemble-level neural activity in freely moving animals, we identify stereotyped changes in circuit activity corresponding to each behavioral state. Combining circuit-wide imaging with genetic analysis, we find that mutual inhibition between two antagonistic neuromodulatory systems underlies the persistence and mutual exclusivity of the neural activity patterns observed in each state. Through machine learning analysis and circuit perturbations, we identify a sensory processing neuron that can transmit information about food odors to both the roaming and dwelling circuits and bias the animal towards different states in different sensory contexts, giving rise to context-appropriate state transitions. Our findings reveal a potentially general circuit architecture that enables flexible, sensory-driven control of persistent behavioral states.
Collapse
Affiliation(s)
- Ni Ji
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Gurrein K Madan
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Guadalupe I Fabre
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Alyssa Dayan
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Casey M Baker
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Talya S Kramer
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
- MIT Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, United States
| | - Ijeoma Nwabudike
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Steven W Flavell
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
44
|
Cheriyamkunnel SJ, Rose S, Jacob PF, Blackburn LA, Glasgow S, Moorse J, Winstanley M, Moynihan PJ, Waddell S, Rezaval C. A neuronal mechanism controlling the choice between feeding and sexual behaviors in Drosophila. Curr Biol 2021; 31:4231-4245.e4. [PMID: 34358444 PMCID: PMC8538064 DOI: 10.1016/j.cub.2021.07.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 01/28/2023]
Abstract
Animals must express the appropriate behavior that meets their most pressing physiological needs and their environmental context. However, it is currently unclear how alternative behavioral options are evaluated and appropriate actions are prioritized. Here, we describe how fruit flies choose between feeding and courtship; two behaviors necessary for survival and reproduction. We show that sex- and food-deprived male flies prioritize feeding over courtship initiation, and manipulation of food quality or the animal's internal state fine-tunes this decision. We identify the tyramine signaling pathway as an essential mediator of this decision. Tyramine biosynthesis is regulated by the fly's nutritional state and acts as a satiety signal, favoring courtship over feeding. Tyramine inhibits a subset of feeding-promoting tyramine receptor (TyrR)-expressing neurons and activates P1 neurons, a known command center for courtship. Conversely, the perception of a nutritious food source activates TyrR neurons and inhibits P1 neurons. Therefore, TyrR and P1 neurons are oppositely modulated by starvation, via tyramine levels, and food availability. We propose that antagonistic co-regulation of neurons controlling alternative actions is key to prioritizing competing drives in a context- dependent manner.
Collapse
Affiliation(s)
| | - Saloni Rose
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Pedro F Jacob
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | | | - Shaleen Glasgow
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jacob Moorse
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Mike Winstanley
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Carolina Rezaval
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
45
|
Eddison M. A genetic screen for Drosophila social isolation mutants and analysis of sex pistol. Sci Rep 2021; 11:17395. [PMID: 34462500 PMCID: PMC8405609 DOI: 10.1038/s41598-021-96871-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Prolonged periods of forced social isolation is detrimental to well-being, yet we know little about which genes regulate susceptibility to its effects. In the fruit fly, Drosophila melanogaster, social isolation induces stark changes in behavior including increased aggression, locomotor activity, and resistance to ethanol sedation. To identify genes regulating sensitivity to isolation, I screened a collection of sixteen hundred P-element insertion lines for mutants with abnormal levels of all three isolation-induced behaviors. The screen identified three mutants whose affected genes are likely central to regulating the effects of isolation in flies. One mutant, sex pistol (sxp), became extremely aggressive and resistant to ethanol sedation when socially isolated. sxp also had a high level of male–male courtship. The mutation in sxp reduced the expression of two minor isoforms of the actin regulator hts (adducin), as well as mildly reducing expression of CalpA, a calcium-dependent protease. As a consequence, sxp also had increased expression of the insulin-like peptide, dILP5. Analysis of the social behavior of sxp suggests that these minor hts isoforms function to limit isolation-induced aggression, while chronically high levels of dILP5 increase male–male courtship.
Collapse
Affiliation(s)
- Mark Eddison
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA.
| |
Collapse
|
46
|
Redolfi N, García-Casas P, Fornetto C, Sonda S, Pizzo P, Pendin D. Lighting Up Ca 2+ Dynamics in Animal Models. Cells 2021; 10:2133. [PMID: 34440902 PMCID: PMC8392631 DOI: 10.3390/cells10082133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/08/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Calcium (Ca2+) signaling coordinates are crucial processes in brain physiology. Particularly, fundamental aspects of neuronal function such as synaptic transmission and neuronal plasticity are regulated by Ca2+, and neuronal survival itself relies on Ca2+-dependent cascades. Indeed, impaired Ca2+ homeostasis has been reported in aging as well as in the onset and progression of neurodegeneration. Understanding the physiology of brain function and the key processes leading to its derangement is a core challenge for neuroscience. In this context, Ca2+ imaging represents a powerful tool, effectively fostered by the continuous amelioration of Ca2+ sensors in parallel with the improvement of imaging instrumentation. In this review, we explore the potentiality of the most used animal models employed for Ca2+ imaging, highlighting their application in brain research to explore the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
| | - Paloma García-Casas
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
| | - Chiara Fornetto
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
| | - Sonia Sonda
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| | - Diana Pendin
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| |
Collapse
|
47
|
Mobbs D, Wise T, Suthana N, Guzmán N, Kriegeskorte N, Leibo JZ. Promises and challenges of human computational ethology. Neuron 2021; 109:2224-2238. [PMID: 34143951 PMCID: PMC8769712 DOI: 10.1016/j.neuron.2021.05.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022]
Abstract
The movements an organism makes provide insights into its internal states and motives. This principle is the foundation of the new field of computational ethology, which links rich automatic measurements of natural behaviors to motivational states and neural activity. Computational ethology has proven transformative for animal behavioral neuroscience. This success raises the question of whether rich automatic measurements of behavior can similarly drive progress in human neuroscience and psychology. New technologies for capturing and analyzing complex behaviors in real and virtual environments enable us to probe the human brain during naturalistic dynamic interactions with the environment that so far were beyond experimental investigation. Inspired by nonhuman computational ethology, we explore how these new tools can be used to test important questions in human neuroscience. We argue that application of this methodology will help human neuroscience and psychology extend limited behavioral measurements such as reaction time and accuracy, permit novel insights into how the human brain produces behavior, and ultimately reduce the growing measurement gap between human and animal neuroscience.
Collapse
Affiliation(s)
- Dean Mobbs
- Department of Humanities and Social Sciences, 1200 E. California Blvd., HSS 228-77, Pasadena, CA 91125, USA; Computation and Neural Systems Program at the California Institute of Technology, 1200 E. California Blvd., HSS 228-77, Pasadena, CA 91125, USA.
| | - Toby Wise
- Department of Humanities and Social Sciences, 1200 E. California Blvd., HSS 228-77, Pasadena, CA 91125, USA; Wellcome Centre for Human Neuroimaging, University College London, London, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Nanthia Suthana
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Departments of Neurosurgery, Psychology, and Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Noah Guzmán
- Computation and Neural Systems Program at the California Institute of Technology, 1200 E. California Blvd., HSS 228-77, Pasadena, CA 91125, USA
| | - Nikolaus Kriegeskorte
- Department of Psychology, Columbia University, New York, NY, USA; Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | | |
Collapse
|
48
|
|
49
|
Sexual arousal gates visual processing during Drosophila courtship. Nature 2021; 595:549-553. [PMID: 34234348 DOI: 10.1038/s41586-021-03714-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/09/2021] [Indexed: 12/14/2022]
Abstract
Long-lasting internal arousal states motivate and pattern ongoing behaviour, enabling the temporary emergence of innate behavioural programs that serve the needs of an animal, such as fighting, feeding, and mating. However, how internal states shape sensory processing or behaviour remains unclear. In Drosophila, male flies perform a lengthy and elaborate courtship ritual that is triggered by the activation of sexually dimorphic P1 neurons1-5, during which they faithfully follow and sing to a female6,7. Here, by recording from males as they court a virtual 'female', we gain insight into how the salience of visual cues is transformed by a male's internal arousal state to give rise to persistent courtship pursuit. The gain of LC10a visual projection neurons is selectively increased during courtship, enhancing their sensitivity to moving targets. A concise network model indicates that visual signalling through the LC10a circuit, once amplified by P1-mediated arousal, almost fully specifies a male's tracking of a female. Furthermore, P1 neuron activity correlates with ongoing fluctuations in the intensity of a male's pursuit to continuously tune the gain of the LC10a pathway. Together, these results reveal how a male's internal state can dynamically modulate the propagation of visual signals through a high-fidelity visuomotor circuit to guide his moment-to-moment performance of courtship.
Collapse
|
50
|
Transcriptome Analyses Provide Insights into the Aggressive Behavior toward Conspecific and Heterospecific in Thitarodes xiaojinensis (Lepidoptera: Hepialidae). INSECTS 2021; 12:insects12070577. [PMID: 34201917 PMCID: PMC8306418 DOI: 10.3390/insects12070577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary Aggression is an evolutionarily conserved, complex behavior, essential for survival, reproduction, and the organization of social hierarchies. It is well studied in adult insects, such as flies, ants, honey bees, and crickets. However, the study of aggressive behavior in the larval stage is still lacking. T. xiaojinensis is a common species found in mountainous regions of the Tibetan Plateau, the larvae of which are highly aggressive toward conspecifics. High-throughput RNA-seq with a reference genome provides opportunities for in-depth analysis when T. xiaojinensis is aggressive toward conspecifics and heterospecifics. This study provided a set of important pathways and DEGs associated with aggressive behavior. We also constructed the weighted gene co-expression network for traits, and the central and hub genes involved in aggressive behavior were obtained. The results revealed the molecular responses when T. xiaojinensis showed aggressiveness toward conspecifics and heterospecifics. These data are important for better understanding the aggressive behavior of Lepidopteran larvae at the transcriptional level and provide a theoretical basis for the further analysis of the genetic mechanism of the insect’s aggression. Abstract Aggressive behavior in animals is important for survival and reproduction. It is well studied in adult insects, such as flies, ants, honey bees, and crickets. However, the larvae of Lepidopteran insects are also aggressive, studies of which are still lacking. Here, RNA-seq was used to generate a high-quality database for the aggressive behavior of Thitarodes xiaojinensis toward conspecifics and heterospecifics. Although there was similar aggressive behavior between the conspecific group and heterospecific group, significant differences were identified at the transcriptional level. When there was aggressive behavior toward conspecifics, T. xiaojinensis trended toward higher expression at the respiratory chain, while cuticle development and metabolism may have interfered. On the other hand, when there was aggressive behavior toward H. armigera, genes related to neuron and cuticle development, cellular processes, and its regulated signaling pathways were significantly upregulated, while the genes associated with oxidation-reduction and metabolism were downregulated. Weighted gene co-expression networks analysis (WGCNA) was performed, and two modules with properties correlating to the aggressive behavior of T. xiaojinensis were identified. Several hub genes were predicted and confirmed by qRT-PCR, such as CLTC, MYH, IGF2BP1, and EMC. This study provides a global view and potential key genes for the aggressive behavior of T. xiaojinensis toward conspecifics and heterospecifics. Further investigation of the hub genes would help us to better understand the aggressive behavior of insects.
Collapse
|