1
|
Alvarez YD, van der Spuy M, Wang JX, Noordstra I, Tan SZ, Carroll M, Yap AS, Serralbo O, White MD. A Lifeact-EGFP quail for studying actin dynamics in vivo. J Cell Biol 2024; 223:e202404066. [PMID: 38913324 PMCID: PMC11194674 DOI: 10.1083/jcb.202404066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Here, we report the generation of a transgenic Lifeact-EGFP quail line for the investigation of actin organization and dynamics during morphogenesis in vivo. This transgenic avian line allows for the high-resolution visualization of actin structures within the living embryo, from the subcellular filaments that guide cell shape to the supracellular assemblies that coordinate movements across tissues. The unique suitability of avian embryos to live imaging facilitates the investigation of previously intractable processes during embryogenesis. Using high-resolution live imaging approaches, we present the dynamic behaviors and morphologies of cellular protrusions in different tissue contexts. Furthermore, through the integration of live imaging with computational segmentation, we visualize cells undergoing apical constriction and large-scale actin structures such as multicellular rosettes within the neuroepithelium. These findings not only enhance our understanding of tissue morphogenesis but also demonstrate the utility of the Lifeact-EGFP transgenic quail as a new model system for live in vivo investigations of the actin cytoskeleton.
Collapse
Affiliation(s)
- Yanina D. Alvarez
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Marise van der Spuy
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jian Xiong Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Ivar Noordstra
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Siew Zhuan Tan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Murron Carroll
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Alpha S. Yap
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Olivier Serralbo
- Commonwealth Scientific and Industrial Research (CSIRO) Health and Biosecurity, Geelong, Australia
| | - Melanie D. White
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Ambekar YS, Caiaffa CD, Wlodarczyk BJ, Singh M, Schill AW, Steele JW, Zhang J, Aglyamov SR, Scarcelli G, Finnell RH, Larin KV. Optical coherence tomography-guided Brillouin microscopy highlights regional tissue stiffness differences during anterior neural tube closure in the Mthfd1l murine mutant. Development 2024; 151:dev202475. [PMID: 38682273 PMCID: PMC11165724 DOI: 10.1242/dev.202475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Neurulation is a highly synchronized biomechanical process leading to the formation of the brain and spinal cord, and its failure leads to neural tube defects (NTDs). Although we are rapidly learning the genetic mechanisms underlying NTDs, the biomechanical aspects are largely unknown. To understand the correlation between NTDs and tissue stiffness during neural tube closure (NTC), we imaged an NTD murine model using optical coherence tomography (OCT), Brillouin microscopy and confocal fluorescence microscopy. Here, we associate structural information from OCT with local stiffness from the Brillouin signal of embryos undergoing neurulation. The stiffness of neuroepithelial tissues in Mthfd1l null embryos was significantly lower than that of wild-type embryos. Additionally, exogenous formate supplementation improved tissue stiffness and gross embryonic morphology in nullizygous and heterozygous embryos. Our results demonstrate the significance of proper tissue stiffness in normal NTC and pave the way for future studies on the mechanobiology of normal and abnormal embryonic development.
Collapse
Affiliation(s)
| | - Carlo Donato Caiaffa
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School, University of Texas at Austin, Austin, TX 78723, USA
| | - Bogdan J. Wlodarczyk
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Alexander W. Schill
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - John W. Steele
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Richard H. Finnell
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Legere EA, Baumholtz AI, Lachance JFB, Archer M, Piontek J, Ryan AK. Claudin-3 in the non-neural ectoderm is essential for neural fold fusion in chicken embryos. Dev Biol 2024; 507:20-33. [PMID: 38154769 DOI: 10.1016/j.ydbio.2023.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
The neural tube, the embryonic precursor to the brain and spinal cord, begins as a flat sheet of epithelial cells, divided into non-neural and neural ectoderm. Proper neural tube closure requires that the edges of the neural ectoderm, the neural folds, to elevate upwards and fuse along the dorsal midline of the embryo. We have previously shown that members of the claudin protein family are required for the early phases of chick neural tube closure. Claudins are transmembrane proteins, localized in apical tight junctions within epithelial cells where they are essential for regulation of paracellular permeability, strongly involved in apical-basal polarity, cell-cell adhesion, and bridging the tight junction to cytoplasmic proteins. Here we explored the role of Claudin-3 (Cldn3), which is specifically expressed in the non-neural ectoderm. We discovered that depletion of Cldn3 causes folic acid-insensitive primarily spinal neural tube defects due to a failure in neural fold fusion. Apical cell surface morphology of Cldn3-depleted non-neural ectodermal cells exhibited increased membrane blebbing and smaller apical surfaces. Although apical-basal polarity was retained, we observed altered Par3 and Pals1 protein localization patterns within the apical domain of the non-neural ectodermal cells in Cldn3-depleted embryos. Furthermore, F-actin signal was reduced at apical junctions. Our data presents a model of spina bifida, and the role that Cldn3 is playing in regulating essential apical cell processes in the non-neural ectoderm required for neural fold fusion.
Collapse
Affiliation(s)
- Elizabeth-Ann Legere
- Department of Human Genetics, McGill University, Canada; The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.
| | - Amanda I Baumholtz
- Department of Human Genetics, McGill University, Canada; The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.
| | | | | | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Aimee K Ryan
- Department of Human Genetics, McGill University, Canada; The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Rees JM, Palmer MA, Gillis JA. Fgf signalling is required for gill slit formation in the skate, Leucoraja erinacea. Dev Biol 2024; 506:85-94. [PMID: 38040078 PMCID: PMC11195640 DOI: 10.1016/j.ydbio.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
The gill slits of fishes develop from an iterative series of pharyngeal endodermal pouches that contact and fuse with surface ectoderm on either side of the embryonic head. We find in the skate (Leucoraja erinacea) that all gill slits form via a stereotypical sequence of epithelial interactions: 1) endodermal pouches approach overlying surface ectoderm, with 2) focal degradation of ectodermal basement membranes preceding endoderm-ectoderm contact; 3) endodermal pouches contact and intercalate with overlying surface ectoderm, and finally 4) perforation of a gill slit occurs by epithelial remodelling, without programmed cell death, at the site of endoderm-ectoderm intercalation. Skate embryos express Fgf8 and Fgf3 within developing pharyngeal epithelia during gill slit formation. When we inhibit Fgf signalling by treating skate embryos with the Fgf receptor inhibitor SU5402 we find that endodermal pouch formation, basement membrane degradation and endodermal-ectodermal intercalation are unaffected, but that epithelial remodelling and gill slit perforation fail to occur. These findings point to a role for Fgf signalling in epithelial remodelling during gill slit formation in the skate and, more broadly, to an ancestral role for Fgf signalling during pharyngeal pouch epithelial morphogenesis in vertebrate embryos.
Collapse
Affiliation(s)
- Jenaid M Rees
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Michael A Palmer
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - J Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge, UK; Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
5
|
Frith TJR, Briscoe J, Boezio GLM. From signalling to form: the coordination of neural tube patterning. Curr Top Dev Biol 2023; 159:168-231. [PMID: 38729676 DOI: 10.1016/bs.ctdb.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.
Collapse
Affiliation(s)
| | - James Briscoe
- The Francis Crick Institute, London, United Kingdom.
| | | |
Collapse
|
6
|
Zhang L, Wei X. Stepwise modulation of apical orientational cell adhesions for vertebrate neurulation. Biol Rev Camb Philos Soc 2023; 98:2271-2283. [PMID: 37534608 DOI: 10.1111/brv.13006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Neurulation transforms the neuroectoderm into the neural tube. This transformation relies on reorganising the configurational relationships between the orientations of intrinsic polarities of neighbouring cells. These orientational intercellular relationships are established, maintained, and modulated by orientational cell adhesions (OCAs). Here, using zebrafish (Danio rerio) neurulation as a major model, we propose a new perspective on how OCAs contribute to the parallel, antiparallel, and opposing intercellular relationships that underlie the neural plate-keel-rod-tube transformation, a stepwise process of cell aggregation followed by cord hollowing. We also discuss how OCAs in neurulation may be regulated by various adhesion molecules, including cadherins, Eph/Ephrins, Claudins, Occludins, Crumbs, Na+ /K+ -ATPase, and integrins. By comparing neurulation among species, we reveal that antiparallel OCAs represent a conserved mechanism for the fusion of the neural tube. Throughout, we highlight some outstanding questions regarding OCAs in neurulation. Answers to these questions will help us understand better the mechanisms of tubulogenesis of many tissues.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Psychology, Dalian Medical University, 9 South LvShun Road, Dalian, 116044, China
| | - Xiangyun Wei
- Departments of Ophthalmology, Developmental Biology, and Microbiology & Molecular Genetics, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
7
|
Asmar AJ, Abrams SR, Hsin J, Collins JC, Yazejian RM, Wu Y, Cho J, Doyle AD, Cinthala S, Simon M, van Jaarsveld RH, Beck DB, Kerosuo L, Werner A. A ubiquitin-based effector-to-inhibitor switch coordinates early brain, craniofacial, and skin development. Nat Commun 2023; 14:4499. [PMID: 37495603 PMCID: PMC10371987 DOI: 10.1038/s41467-023-40223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
The molecular mechanisms that coordinate patterning of the embryonic ectoderm into spatially distinct lineages to form the nervous system, epidermis, and neural crest-derived craniofacial structures are unclear. Here, biochemical disease-variant profiling reveals a posttranslational pathway that drives early ectodermal differentiation in the vertebrate head. The anteriorly expressed ubiquitin ligase CRL3-KLHL4 restricts signaling of the ubiquitous cytoskeletal regulator CDC42. This regulation relies on the CDC42-activating complex GIT1-βPIX, which CRL3-KLHL4 exploits as a substrate-specific co-adaptor to recognize and monoubiquitylate PAK1. Surprisingly, we find that ubiquitylation converts the canonical CDC42 effector PAK1 into a CDC42 inhibitor. Loss of CRL3-KLHL4 or a disease-associated KLHL4 variant reduce PAK1 ubiquitylation causing overactivation of CDC42 signaling and defective ectodermal patterning and neurulation. Thus, tissue-specific restriction of CDC42 signaling by a ubiquitin-based effector-to-inhibitor is essential for early face, brain, and skin formation, revealing how cell-fate and morphometric changes are coordinated to ensure faithful organ development.
Collapse
Affiliation(s)
- Anthony J Asmar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shaun R Abrams
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
- Neural Crest Development & Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jenny Hsin
- Neural Crest Development & Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jason C Collins
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rita M Yazejian
- Neural Crest Development & Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Youmei Wu
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jean Cho
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew D Doyle
- NIDCR Imaging Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samhitha Cinthala
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marleen Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - David B Beck
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Laura Kerosuo
- Neural Crest Development & Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Marshall AR, Galea GL, Copp AJ, Greene NDE. The surface ectoderm exhibits spatially heterogenous tension that correlates with YAP localisation during spinal neural tube closure in mouse embryos. Cells Dev 2023; 174:203840. [PMID: 37068590 PMCID: PMC10618430 DOI: 10.1016/j.cdev.2023.203840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023]
Abstract
The single cell layer of surface ectoderm (SE) which overlies the closing neural tube (NT) plays a crucial biomechanical role during mammalian NT closure (NTC), challenging previous assumptions that it is only passive to the force-generating neuroepithelium (NE). Failure of NTC leads to congenital malformations known as NT defects (NTDs), including spina bifida (SB) and anencephaly in the spine and brain respectively. In several mouse NTD models, SB is caused by misexpression of SE-specific genes and is associated with disrupted SE mechanics, including loss of rostrocaudal cell elongation believed to be important for successful closure. In this study, we asked how SE mechanics affect NT morphology, and whether the characteristic rostrocaudal cell elongation at the progressing closure site is a response to tension anisotropy in the SE. We show that blocking SE-specific E-cadherin in ex utero mouse embryo culture influences NT morphology, as well as the F-actin cable. Cell border ablation shows that cell shape is not due to tension anisotropy, but that there are regional differences in SE tension. We also find that YAP nuclear translocation reflects regional tension heterogeneity, and that its expression is sensitive to pharmacological reduction of tension. In conclusion, our results confirm that the SE is a biomechanically important tissue for spinal NT morphogenesis and suggest a possible role of spatial regulation of cellular tension which could regulate downstream gene expression via mechanically-sensitive YAP activity.
Collapse
Affiliation(s)
- Abigail R Marshall
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK.
| | - Gabriel L Galea
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Andrew J Copp
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK
| |
Collapse
|
9
|
Emig AA, Williams MLK. Gastrulation morphogenesis in synthetic systems. Semin Cell Dev Biol 2023; 141:3-13. [PMID: 35817656 PMCID: PMC9825685 DOI: 10.1016/j.semcdb.2022.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/19/2022] [Accepted: 07/04/2022] [Indexed: 01/11/2023]
Abstract
Recent advances in pluripotent stem cell culture allow researchers to generate not only most embryonic cell types, but also morphologies of many embryonic structures, entirely in vitro. This recreation of embryonic form from naïve cells, known as synthetic morphogenesis, has important implications for both developmental biology and regenerative medicine. However, the capacity of stem cell-based models to recapitulate the morphogenetic cell behaviors that shape natural embryos remains unclear. In this review, we explore several examples of synthetic morphogenesis, with a focus on models of gastrulation and surrounding stages. By varying cell types, source species, and culture conditions, researchers have recreated aspects of primitive streak formation, emergence and elongation of the primary embryonic axis, neural tube closure, and more. Here, we describe cell behaviors within in vitro/ex vivo systems that mimic in vivo morphogenesis and highlight opportunities for more complete models of early development.
Collapse
Affiliation(s)
- Alyssa A Emig
- Center for Precision Environmental Health & Department of Molecular and Cellular Biology, Baylor College of Medicine, USA
| | - Margot L K Williams
- Center for Precision Environmental Health & Department of Molecular and Cellular Biology, Baylor College of Medicine, USA.
| |
Collapse
|
10
|
The cellular dynamics of neural tube formation. Biochem Soc Trans 2023; 51:343-352. [PMID: 36794768 PMCID: PMC9987952 DOI: 10.1042/bst20220871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023]
Abstract
The vertebrate brain and spinal cord arise from a common precursor, the neural tube, which forms very early during embryonic development. To shape the forming neural tube, changes in cellular architecture must be tightly co-ordinated in space and time. Live imaging of different animal models has provided valuable insights into the cellular dynamics driving neural tube formation. The most well-characterised morphogenetic processes underlying this transformation are convergent extension and apical constriction, which elongate and bend the neural plate. Recent work has focused on understanding how these two processes are spatiotemporally integrated from the tissue- to the subcellular scale. Various mechanisms of neural tube closure have also been visualised, yielding a growing understanding of how cellular movements, junctional remodelling and interactions with the extracellular matrix promote fusion and zippering of the neural tube. Additionally, live imaging has also now revealed a mechanical role for apoptosis in neural plate bending, and how cell intercalation forms the lumen of the secondary neural tube. Here, we highlight the latest research on the cellular dynamics underlying neural tube formation and provide some perspectives for the future.
Collapse
|
11
|
Molè MA, Galea GL, Copp AJ. Live-Imaging Analysis of Epithelial Zippering During Mouse Neural Tube Closure. Methods Mol Biol 2023; 2608:147-162. [PMID: 36653707 PMCID: PMC7614165 DOI: 10.1007/978-1-0716-2887-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Zippering is a phenomenon of tissue morphogenesis whereby fusion between opposing epithelia progresses unidirectionally over significant distances, similar to the travel of a zip fastener, to ultimately ensure closure of an opening. A comparable process can be observed during Drosophila dorsal closure and mammalian wound healing, while zippering is employed by numerous organs such as the optic fissure, palatal shelves, tracheoesophageal foregut, and presumptive genitalia to mediate tissue sealing during normal embryonic development. Particularly striking is zippering propagation during neural tube morphogenesis, where the fusion point travels extensively along the embryonic axis to ensure closure of the neural tube. Advances in time-lapse microscopy and culture conditions have opened the opportunity for successful imaging of whole-mouse embryo development over time, providing insights into the precise cellular behavior underlying zippering propagation. Studies in mouse and the ascidian Ciona have revealed the fine-tuned cell shape changes and junction remodeling which occur at the site of zippering during neural tube morphogenesis. Here, we describe a step-by-step method for imaging at single-cell resolution the process of zippering and tissue remodeling which occurs during closure of the spinal neural tube in mouse. We also provide instructions and suggestions for quantitative morphometric analysis of cell behavior during zippering progression. This procedure can be further combined with genetic mutant models (e.g., knockouts), offering the possibility of studying the dynamics of tissue fusion and zippering propagation, which underlie a wide range of open neural tube defects.
Collapse
Affiliation(s)
- Matteo A Molè
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
- Babraham Institute, Cambridge, UK
| | - Gabriel L Galea
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London, UK.
| |
Collapse
|
12
|
Gheasuddin Y, Galea GL. Cannabidiol impairs neural tube closure in mouse whole embryo culture. Birth Defects Res 2022; 114:1186-1193. [PMID: 35416425 PMCID: PMC9790336 DOI: 10.1002/bdr2.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/24/2022] [Accepted: 03/30/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cannabidiol (CBD) is a nonpsychoactive constituent of cannabis widely available as a dietary supplement. Previous reports that it impairs the retinoid, sonic hedgehog, and folate metabolism pathways raise concern that it may impair closure of the embryonic neural tube (NT), producing NT defects including spina bifida and exencephaly. METHODS We undertook teratogenicity testing of CBD in mouse whole embryo culture. RESULTS At concentrations that do not diminish embryo viability, growth, or axial rotation, CBD dose-dependently impairs cranial NT closure, increasing the proportion of embryos that develop exencephaly. It concomitantly diminishes closure of the spinal NT, the posterior neuropore (PNP), producing longer neuropores at the end of culture which is a hallmark of spina bifida risk. Exposure to CBD does not disrupt the formation of long F-actin cables in surface ectoderm cells flanking the PNP or folding of the neuroepithelium at predictable hinge points. At the cellular level, CBD exposure does not alter proliferation or apoptosis of the spinal neuroepithelium. DISCUSSION Thus, CBD acts selectively as a neuroteratogen predisposing to spina bifida and exencephaly in mouse whole embryo culture at exposure levels not associated with overt toxicity. Large-scale testing of CBD's effects on NT closure, particularly in at-risk groups, is warranted to inform its marketing to women of childbearing age.
Collapse
Affiliation(s)
- Yosuf Gheasuddin
- Developmental Biology and CancerUCL GOS Institute of Child HealthLondonUK
| | - Gabriel L. Galea
- Developmental Biology and CancerUCL GOS Institute of Child HealthLondonUK
| |
Collapse
|
13
|
Engelhardt DM, Martyr CA, Niswander L. Pathogenesis of neural tube defects: The regulation and disruption of cellular processes underlying neural tube closure. WIREs Mech Dis 2022; 14:e1559. [PMID: 35504597 PMCID: PMC9605354 DOI: 10.1002/wsbm.1559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/08/2022]
Abstract
Neural tube closure (NTC) is crucial for proper development of the brain and spinal cord and requires precise morphogenesis from a sheet of cells to an intact three-dimensional structure. NTC is dependent on successful regulation of hundreds of genes, a myriad of signaling pathways, concentration gradients, and is influenced by epigenetic and environmental cues. Failure of NTC is termed a neural tube defect (NTD) and is a leading class of congenital defects in the United States and worldwide. Though NTDs are all defined as incomplete closure of the neural tube, the pathogenesis of an NTD determines the type, severity, positioning, and accompanying phenotypes. In this review, we survey pathogenesis of NTDs relating to disruption of cellular processes arising from genetic mutations, altered epigenetic regulation, and environmental influences by micronutrients and maternal condition. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Engelhardt
- Molecular Cellular Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Cara A Martyr
- Molecular Cellular Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Lee Niswander
- Molecular Cellular Developmental Biology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
14
|
Cote LE, Feldman JL. Won't You be My Neighbor: How Epithelial Cells Connect Together to Build Global Tissue Polarity. Front Cell Dev Biol 2022; 10:887107. [PMID: 35800889 PMCID: PMC9253303 DOI: 10.3389/fcell.2022.887107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial tissues form continuous barriers to protect against external environments. Within these tissues, epithelial cells build environment-facing apical membranes, junction complexes that anchor neighbors together, and basolateral surfaces that face other cells. Critically, to form a continuous apical barrier, neighboring epithelial cells must align their apico-basolateral axes to create global polarity along the entire tissue. Here, we will review mechanisms of global tissue-level polarity establishment, with a focus on how neighboring epithelial cells of different origins align their apical surfaces. Epithelial cells with different developmental origins and/or that polarize at different times and places must align their respective apico-basolateral axes. Connecting different epithelial tissues into continuous sheets or tubes, termed epithelial fusion, has been most extensively studied in cases where neighboring cells initially dock at an apical-to-apical interface. However, epithelial cells can also meet basal-to-basal, posing several challenges for apical continuity. Pre-existing basement membrane between the tissues must be remodeled and/or removed, the cells involved in docking are specialized, and new cell-cell adhesions are formed. Each of these challenges can involve changes to apico-basolateral polarity of epithelial cells. This minireview highlights several in vivo examples of basal docking and how apico-basolateral polarity changes during epithelial fusion. Understanding the specific molecular mechanisms of basal docking is an area ripe for further exploration that will shed light on complex morphogenetic events that sculpt developing organisms and on the cellular mechanisms that can go awry during diseases involving the formation of cysts, fistulas, atresias, and metastases.
Collapse
|
15
|
Heilig AK, Nakamura R, Shimada A, Hashimoto Y, Nakamura Y, Wittbrodt J, Takeda H, Kawanishi T. Wnt11 acts on dermomyotome cells to guide epaxial myotome morphogenesis. eLife 2022; 11:71845. [PMID: 35522214 PMCID: PMC9075960 DOI: 10.7554/elife.71845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 04/19/2022] [Indexed: 12/30/2022] Open
Abstract
The dorsal axial muscles, or epaxial muscles, are a fundamental structure covering the spinal cord and vertebrae, as well as mobilizing the vertebrate trunk. To date, mechanisms underlying the morphogenetic process shaping the epaxial myotome are largely unknown. To address this, we used the medaka zic1/zic4-enhancer mutant Double anal fin (Da), which exhibits ventralized dorsal trunk structures resulting in impaired epaxial myotome morphology and incomplete coverage over the neural tube. In wild type, dorsal dermomyotome (DM) cells reduce their proliferative activity after somitogenesis. Subsequently, a subset of DM cells, which does not differentiate into the myotome population, begins to form unique large protrusions extending dorsally to guide the epaxial myotome dorsally. In Da, by contrast, DM cells maintain the high proliferative activity and mainly form small protrusions. By combining RNA- and ChIP-sequencing analyses, we revealed direct targets of Zic1, which are specifically expressed in dorsal somites and involved in various aspects of development, such as cell migration, extracellular matrix organization, and cell-cell communication. Among these, we identified wnt11 as a crucial factor regulating both cell proliferation and protrusive activity of DM cells. We propose that dorsal extension of the epaxial myotome is guided by a non-myogenic subpopulation of DM cells and that wnt11 empowers the DM cells to drive the coverage of the neural tube by the epaxial myotome.
Collapse
Affiliation(s)
- Ann Kathrin Heilig
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan.,Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.,Heidelberg Biosciences International Graduate School, Heidelberg, Germany
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Atsuko Shimada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Yuka Hashimoto
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Yuta Nakamura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Toru Kawanishi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
The Tbx6 Transcription Factor Dorsocross Mediates Dpp Signaling to Regulate Drosophila Thorax Closure. Int J Mol Sci 2022; 23:ijms23094543. [PMID: 35562934 PMCID: PMC9104307 DOI: 10.3390/ijms23094543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 11/23/2022] Open
Abstract
Movement and fusion of separate cell populations are critical for several developmental processes, such as neural tube closure in vertebrates or embryonic dorsal closure and pupal thorax closure in Drosophila. Fusion failure results in an opening or groove on the body surface. Drosophila pupal thorax closure is an established model to investigate the mechanism of tissue closure. Here, we report the identification of T-box transcription factor genes Dorsocross (Doc) as Decapentaplegic (Dpp) targets in the leading edge cells of the notum in the late third instar larval and early pupal stages. Reduction of Doc in the notum region results in a thorax closure defect, similar to that in dpp loss-of-function flies. Nine genes are identified as potential downstream targets of Doc in regulating thorax closure by molecular and genetic screens. Our results reveal a novel function of Doc in Drosophila development. The candidate target genes provide new clues for unravelling the mechanism of collective cell movement.
Collapse
|
17
|
Human neural tube morphogenesis in vitro by geometric constraints. Nature 2021; 599:268-272. [PMID: 34707290 PMCID: PMC8828633 DOI: 10.1038/s41586-021-04026-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 09/13/2021] [Indexed: 01/21/2023]
Abstract
Understanding human organ formation is a scientific challenge with far-reaching medical implications1,2. Three-dimensional stem-cell cultures have provided insights into human cell differentiation3,4. However, current approaches use scaffold-free stem-cell aggregates, which develop non-reproducible tissue shapes and variable cell-fate patterns. This limits their capacity to recapitulate organ formation. Here we present a chip-based culture system that enables self-organization of micropatterned stem cells into precise three-dimensional cell-fate patterns and organ shapes. We use this system to recreate neural tube folding from human stem cells in a dish. Upon neural induction5,6, neural ectoderm folds into a millimetre-long neural tube covered with non-neural ectoderm. Folding occurs at 90% fidelity, and anatomically resembles the developing human neural tube. We find that neural and non-neural ectoderm are necessary and sufficient for folding morphogenesis. We identify two mechanisms drive folding: (1) apical contraction of neural ectoderm, and (2) basal adhesion mediated via extracellular matrix synthesis by non-neural ectoderm. Targeting these two mechanisms using drugs leads to morphological defects similar to neural tube defects. Finally, we show that neural tissue width determines neural tube shape, suggesting that morphology along the anterior-posterior axis depends on neural ectoderm geometry in addition to molecular gradients7. Our approach provides a new route to the study of human organ morphogenesis in health and disease.
Collapse
|
18
|
Mechanics of neural tube morphogenesis. Semin Cell Dev Biol 2021; 130:56-69. [PMID: 34561169 DOI: 10.1016/j.semcdb.2021.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 01/07/2023]
Abstract
The neural tube is an important model system of morphogenesis representing the developmental module of out-of-plane epithelial deformation. As the embryonic precursor of the central nervous system, the neural tube also holds keys to many defects and diseases. Recent advances begin to reveal how genetic, cellular and environmental mechanisms work in concert to ensure correct neural tube shape. A physical model is emerging where these factors converge at the regulation of the mechanical forces and properties within and around the tissue that drive tube formation towards completion. Here we review the dynamics and mechanics of neural tube morphogenesis and discuss the underlying cellular behaviours from the viewpoint of tissue mechanics. We will also highlight some of the conceptual and technical next steps.
Collapse
|
19
|
Bellchambers HM, Ware SM. Loss of Zic3 impairs planar cell polarity leading to abnormal left-right signaling, heart defects and neural tube defects. Hum Mol Genet 2021; 30:2402-2415. [PMID: 34274973 DOI: 10.1093/hmg/ddab195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
Loss of function of ZIC3 causes heterotaxy (OMIM #306955), a disorder characterized by organ laterality defects including complex heart defects. Studies using Zic3 mutant mice have demonstrated that loss of Zic3 causes heterotaxy due to defects in establishment of left-right (LR) signaling, but the mechanistic basis for these defects remains unknown. Here, we demonstrate Zic3 null mice undergo cilia positioning defects at the embryonic node consistent with impaired planar cell polarity (PCP). Cell-based assays demonstrate that ZIC3 must enter the nucleus to regulate PCP and identify multiple critical ZIC3 domains required for regulation of PCP signaling. Furthermore, we show that Zic3 displays a genetic interaction with the PCP membrane protein Vangl2 and the PCP effector genes Rac1 and Daam1 resulting in increased frequency and severity of neural tube and heart defects. Gene and protein expression analyses indicate that Zic3 null embryos display disrupted expression of PCP components and reduced phosphorylation of the core PCP protein DVL2 at the time of LR axis determination. These results demonstrate that ZIC3 interacts with PCP signaling during early development, identifying a novel role for this transcription factor, and adding additional evidence about the importance of PCP function for normal LR patterning and subsequent heart development.
Collapse
Affiliation(s)
| | - Stephanie M Ware
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics.,Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
20
|
Composite morphogenesis during embryo development. Semin Cell Dev Biol 2021; 120:119-132. [PMID: 34172395 DOI: 10.1016/j.semcdb.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/23/2021] [Accepted: 06/13/2021] [Indexed: 11/21/2022]
Abstract
Morphogenesis drives the formation of functional living shapes. Gene expression patterns and signaling pathways define the body plans of the animal and control the morphogenetic processes shaping the embryonic tissues. During embryogenesis, a tissue can undergo composite morphogenesis resulting from multiple concomitant shape changes. While previous studies have unraveled the mechanisms that drive simple morphogenetic processes, how a tissue can undergo multiple and simultaneous changes in shape is still not known and not much explored. In this chapter, we focus on the process of concomitant tissue folding and extension that is vital for the animal since it is key for embryo gastrulation and neurulation. Recent pioneering studies focus on this problem highlighting the roles of different spatially coordinated cell mechanisms or of the synergy between different patterns of gene expression to drive composite morphogenesis.
Collapse
|
21
|
Maniou E, Staddon MF, Marshall AR, Greene NDE, Copp AJ, Banerjee S, Galea GL. Hindbrain neuropore tissue geometry determines asymmetric cell-mediated closure dynamics in mouse embryos. Proc Natl Acad Sci U S A 2021; 118:e2023163118. [PMID: 33941697 PMCID: PMC8126771 DOI: 10.1073/pnas.2023163118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gap closure is a common morphogenetic process. In mammals, failure to close the embryonic hindbrain neuropore (HNP) gap causes fatal anencephaly. We observed that surface ectoderm cells surrounding the mouse HNP assemble high-tension actomyosin purse strings at their leading edge and establish the initial contacts across the embryonic midline. Fibronectin and laminin are present, and tensin 1 accumulates in focal adhesion-like puncta at this leading edge. The HNP gap closes asymmetrically, faster from its rostral than caudal end, while maintaining an elongated aspect ratio. Cell-based physical modeling identifies two closure mechanisms sufficient to account for tissue-level HNP closure dynamics: purse-string contraction and directional cell motion implemented through active crawling. Combining both closure mechanisms hastens gap closure and produces a constant rate of gap shortening. Purse-string contraction reduces, whereas crawling increases gap aspect ratio, and their combination maintains it. Closure rate asymmetry can be explained by asymmetric embryo tissue geometry, namely a narrower rostral gap apex, whereas biomechanical tension inferred from laser ablation is equivalent at the gaps' rostral and caudal closure points. At the cellular level, the physical model predicts rearrangements of cells at the HNP rostral and caudal extremes as the gap shortens. These behaviors are reproducibly live imaged in mouse embryos. Thus, mammalian embryos coordinate cellular- and tissue-level mechanics to achieve this critical gap closure event.
Collapse
Affiliation(s)
- Eirini Maniou
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | - Michael F Staddon
- Department of Physics and Astronomy, University College London, WC1E 6BT London, United Kingdom
| | - Abigail R Marshall
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | - Nicholas D E Greene
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | - Andrew J Copp
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | | | - Gabriel L Galea
- Department of Developmental Biology and Cancer Researching and Teaching, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom;
- Department of Comparative Bioveterinary Sciences, Royal Veterinary College, NW1 0TU London, United Kingdom
| |
Collapse
|
22
|
Jaffe E, Niswander L. Loss of Grhl3 is correlated with altered cellular protrusions in the non-neural ectoderm during neural tube closure. Dev Dyn 2021; 250:732-744. [PMID: 33378081 DOI: 10.1002/dvdy.292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The transcription factor Grainyhead-like 3 (GRHL3) has multiple roles in a variety of tissues during development including epithelial patterning and actin cytoskeletal regulation. During neural tube closure (NTC) in the mouse embryo, GRHL3 is expressed and functions in the non-neural ectoderm (NNE). Two important functions of GRHL3 are regulating the actin cytoskeleton during NTC and regulating the boundary between the NNE and neural ectoderm. However, an open question that remains is whether these functions explain the caudally restricted neural tube defect (NTD) of spina bifida observed in Grhl3 mutants. RESULTS Using scanning electron microscopy and immunofluorescence based imaging on Grhl3 mutants and wildtype controls, we show that GRHL3 is dispensable for NNE identity or epithelial maintenance in the caudal NNE but is needed for regulation of cellular protrusions during NTC. Grhl3 mutants have decreased lamellipodia relative to wildtype embryos during caudal NTC, first observed at the onset of delays when lamellipodia become prominent in wildtype embryos. At the axial level of NTD, half of the mutants show increased and disorganized filopodia and half lack cellular protrusions. CONCLUSION These data suggest that altered cellular protrusions during NTC contribute to the etiology of NTD in Grhl3 mutants.
Collapse
Affiliation(s)
- Eric Jaffe
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Lee Niswander
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
23
|
Chaturvedi V, Murray MJ. Netrins: Evolutionarily Conserved Regulators of Epithelial Fusion and Closure in Development and Wound Healing. Cells Tissues Organs 2021; 211:193-211. [PMID: 33691313 DOI: 10.1159/000513880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/18/2020] [Indexed: 11/19/2022] Open
Abstract
Epithelial remodelling plays a crucial role during development. The ability of epithelial sheets to temporarily lose their integrity as they fuse with other epithelial sheets underpins events such as the closure of the neural tube and palate. During fusion, epithelial cells undergo some degree of epithelial-mesenchymal transition (EMT), whereby cells from opposing sheets dissolve existing cell-cell junctions, degrade the basement membrane, extend motile processes to contact each other, and then re-establish cell-cell junctions as they fuse. Similar events occur when an epithelium is wounded. Cells at the edge of the wound undergo a partial EMT and migrate towards each other to close the gap. In this review, we highlight the emerging role of Netrins in these processes, and provide insights into the possible signalling pathways involved. Netrins are secreted, laminin-like proteins that are evolutionarily conserved throughout the animal kingdom. Although best known as axonal chemotropic guidance molecules, Netrins also regulate epithelial cells. For example, Netrins regulate branching morphogenesis of the lung and mammary gland, and promote EMT during Drosophila wing eversion. Netrins also control epithelial fusion during optic fissure closure and inner ear formation, and are strongly implicated in neural tube closure and secondary palate closure. Netrins are also upregulated in response to organ damage and epithelial wounding, and can protect against ischemia-reperfusion injury and speed wound healing in cornea and skin. Since Netrins also have immunomodulatory properties, and can promote angiogenesis and re-innervation, they hold great promise as potential factors in future wound healing therapies.
Collapse
Affiliation(s)
- Vishal Chaturvedi
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael J Murray
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia,
| |
Collapse
|
24
|
Galea GL, Maniou E, Edwards TJ, Marshall AR, Ampartzidis I, Greene NDE, Copp AJ. Cell non-autonomy amplifies disruption of neurulation by mosaic Vangl2 deletion in mice. Nat Commun 2021; 12:1159. [PMID: 33608529 PMCID: PMC7895924 DOI: 10.1038/s41467-021-21372-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Post-zygotic mutations that generate tissue mosaicism are increasingly associated with severe congenital defects, including those arising from failed neural tube closure. Here we report that neural fold elevation during mouse spinal neurulation is vulnerable to deletion of the VANGL planar cell polarity protein 2 (Vangl2) gene in as few as 16% of neuroepithelial cells. Vangl2-deleted cells are typically dispersed throughout the neuroepithelium, and each non-autonomously prevents apical constriction by an average of five Vangl2-replete neighbours. This inhibition of apical constriction involves diminished myosin-II localisation on neighbour cell borders and shortening of basally-extending microtubule tails, which are known to facilitate apical constriction. Vangl2-deleted neuroepithelial cells themselves continue to apically constrict and preferentially recruit myosin-II to their apical cell cortex rather than to apical cap localisations. Such non-autonomous effects can explain how post-zygotic mutations affecting a minority of cells can cause catastrophic failure of morphogenesis leading to clinically important birth defects.
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK.
| | - Eirini Maniou
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Timothy J Edwards
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Abigail R Marshall
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Ioakeim Ampartzidis
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Andrew J Copp
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
25
|
Werner JM, Negesse MY, Brooks DL, Caldwell AR, Johnson JM, Brewster RM. Hallmarks of primary neurulation are conserved in the zebrafish forebrain. Commun Biol 2021; 4:147. [PMID: 33514864 PMCID: PMC7846805 DOI: 10.1038/s42003-021-01655-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/23/2020] [Indexed: 11/25/2022] Open
Abstract
Primary neurulation is the process by which the neural tube, the central nervous system precursor, is formed from the neural plate. Incomplete neural tube closure occurs frequently, yet underlying causes remain poorly understood. Developmental studies in amniotes and amphibians have identified hingepoint and neural fold formation as key morphogenetic events and hallmarks of primary neurulation, the disruption of which causes neural tube defects. In contrast, the mode of neurulation in teleosts has remained highly debated. Teleosts are thought to have evolved a unique mode of neurulation, whereby the neural plate infolds in absence of hingepoints and neural folds, at least in the hindbrain/trunk where it has been studied. Using high-resolution imaging and time-lapse microscopy, we show here the presence of these morphological landmarks in the zebrafish anterior neural plate. These results reveal similarities between neurulation in teleosts and other vertebrates and hence the suitability of zebrafish to understand human neurulation. Jonathan Werner, Maraki Negesse et al. visualize zebrafish neurulation during development to determine whether hallmarks of neural tube formation in other vertebrates also apply to zebrafish. They find that neural tube formation in the forebrain shares features such as hingepoints and neural folds with other vertebrates, demonstrating the strength of the zebrafish model for understanding human neurulation.
Collapse
Affiliation(s)
- Jonathan M Werner
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Maraki Y Negesse
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Dominique L Brooks
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Allyson R Caldwell
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Jafira M Johnson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Rachel M Brewster
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
26
|
Chan BHC, Moosajee M, Rainger J. Closing the Gap: Mechanisms of Epithelial Fusion During Optic Fissure Closure. Front Cell Dev Biol 2021; 8:620774. [PMID: 33505973 PMCID: PMC7829581 DOI: 10.3389/fcell.2020.620774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
A key embryonic process that occurs early in ocular development is optic fissure closure (OFC). This fusion process closes the ventral optic fissure and completes the circumferential continuity of the 3-dimensional eye. It is defined by the coming together and fusion of opposing neuroepithelia along the entire proximal-distal axis of the ventral optic cup, involving future neural retina, retinal pigment epithelium (RPE), optic nerve, ciliary body, and iris. Once these have occurred, cells within the fused seam differentiate into components of the functioning visual system. Correct development and progression of OFC, and the continued integrity of the fused margin along this axis, are important for the overall structure of the eye. Failure of OFC results in ocular coloboma-a significant cause of childhood visual impairment that can be associated with several complex ocular phenotypes including microphthalmia and anterior segment dysgenesis. Despite a large number of genes identified, the exact pathways that definitively mediate fusion have not yet been found, reflecting both the biological complexity and genetic heterogeneity of the process. This review will highlight how recent developmental studies have become focused specifically on the epithelial fusion aspects of OFC, applying a range of model organisms (spanning fish, avian, and mammalian species) and utilizing emerging high-resolution live-imaging technologies, transgenic fluorescent models, and unbiased transcriptomic analyses of segmentally-dissected fissure tissue. Key aspects of the fusion process are discussed, including basement membrane dynamics, unique cell behaviors, and the identities and fates of the cells that mediate fusion. These will be set in the context of what is now known, and how these point the way to new avenues of research.
Collapse
Affiliation(s)
- Brian Ho Ching Chan
- The Division of Functional Genetics and Development, The Royal Dick School of Veterinary Sciences, The Roslin Institute, The University of Edinburgh, Scotland, United Kingdom
| | - Mariya Moosajee
- University College London Institute of Ophthalmology, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Joe Rainger
- The Division of Functional Genetics and Development, The Royal Dick School of Veterinary Sciences, The Roslin Institute, The University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
27
|
Patel A, Anderson G, Galea GL, Balys M, Sowden JC. A molecular and cellular analysis of human embryonic optic fissure closure related to the eye malformation coloboma. Development 2020; 147:dev193649. [PMID: 33158926 DOI: 10.1242/dev.193649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
Ocular coloboma is a congenital eye malformation, resulting from a failure in optic fissure closure (OFC) and causing visual impairment. There has been little study of the epithelial fusion process underlying closure in the human embryo and coloboma aetiology remains poorly understood. We performed RNAseq of cell populations isolated using laser capture microdissection to identify novel human OFC signature genes and probe the expression profile of known coloboma genes, along with a comparative murine analysis. Gene set enrichment patterns showed conservation between species. Expression of genes involved in epithelial-to-mesenchymal transition was transiently enriched in the human fissure margins during OFC at days 41-44. Electron microscopy and histological analyses showed that cells transiently delaminate at the point of closure, and produce cytoplasmic protrusions, before rearranging to form two continuous epithelial layers. Apoptosis was not observed in the human fissure margins. These analyses support a model of human OFC in which epithelial cells at the fissure margins undergo a transient epithelial-to-mesenchymal-like transition, facilitating cell rearrangement to form a complete optic cup.
Collapse
Affiliation(s)
- Aara Patel
- UCL Great Ormond Street Institute of Child Health, and NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Glenn Anderson
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Gabriel L Galea
- UCL Great Ormond Street Institute of Child Health, and NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Monika Balys
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Jane C Sowden
- UCL Great Ormond Street Institute of Child Health, and NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| |
Collapse
|
28
|
Bakulski KM, Dou JF, Feinberg JI, Brieger KK, Croen LA, Hertz-Picciotto I, Newschaffer CJ, Schmidt RJ, Fallin MD. Prenatal Multivitamin Use and MTHFR Genotype Are Associated with Newborn Cord Blood DNA Methylation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249190. [PMID: 33317014 PMCID: PMC7764679 DOI: 10.3390/ijerph17249190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 12/20/2022]
Abstract
Background: Fetal development involves cellular differentiation and epigenetic changes—complex processes that are sensitive to environmental factors. Maternal nutrient levels during pregnancy affect development, and methylene tetrahydrofolate reductase (MTHFR) is important for processing the nutrient folate. Hypothesis: We hypothesize that supplement intake before pregnancy and maternal genotype are associated with DNA methylation in newborns. Methods: In the pregnancy cohort, Early Autism Risk Longitudinal Investigation (EARLI), health history, and genotype information was obtained (n = 249 families). Cord blood DNA methylation (n = 130) was measured using the Illumina HumanMethylation450k array and global DNA methylation levels were computed over 455,698 sites. Supplement use preconception and during pregnancy were surveyed at visits during pregnancy. We evaluated associations between maternal preconception supplement intake and global DNA methylation or DNA methylation density distributions of newborn cord blood, stratified by the presence of a variant maternal MTHFR C677T allele. Results: Maternal preconceptional multivitamin intake was associated with cord blood methylation, dependent on maternal MTHFR genotype (interaction term p = 0.013). For mothers without the MTHFR variant allele, multivitamin intake was associated with 0.96% (95% CI: 0.09, 1.83) higher global cord blood methylation (p = 0.04) and was also associated with the cumulative density distribution of methylation (p = 0.03). For mothers with at least one variant allele, multivitamin intake had a null −0.06% (95% CI: −0.45, 0.33) association with global cord blood DNA methylation, and was not associated with the cumulative density distribution (p = 0.37). Conclusions: We observed that cord blood DNA methylation was associated with maternal supplement exposure preconception and maternal genotype. Genetic context should be considered when assessing DNA methylation effects of modifiable risk factors around the time of pregnancy.
Collapse
Affiliation(s)
- Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (K.M.B.); (J.F.D.); (K.K.B.)
| | - John F. Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (K.M.B.); (J.F.D.); (K.K.B.)
| | - Jason I. Feinberg
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Katharine K. Brieger
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (K.M.B.); (J.F.D.); (K.K.B.)
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente, Oakland, CA 94612, USA;
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA 95616, USA; (I.H.-P.); (R.J.S.)
| | - Craig J. Newschaffer
- College of Health and Human Development, Penn State University, State College, PA 16802, USA;
| | - Rebecca J. Schmidt
- Department of Public Health Sciences and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA 95616, USA; (I.H.-P.); (R.J.S.)
| | - M. Daniele Fallin
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
- Correspondence: ; Tel.: +1-(410)-955-3463
| |
Collapse
|
29
|
Rho GTPases Signaling in Zebrafish Development and Disease. Cells 2020; 9:cells9122634. [PMID: 33302361 PMCID: PMC7762611 DOI: 10.3390/cells9122634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023] Open
Abstract
Cells encounter countless external cues and the specificity of their responses is translated through a myriad of tightly regulated intracellular signals. For this, Rho GTPases play a central role and transduce signals that contribute to fundamental cell dynamic and survival events. Here, we review our knowledge on how zebrafish helped us understand the role of some of these proteins in a multitude of in vivo cellular behaviors. Zebrafish studies offer a unique opportunity to explore the role and more specifically the spatial and temporal dynamic of Rho GTPases activities within a complex environment at a level of details unachievable in any other vertebrate organism.
Collapse
|
30
|
Heusinkveld HJ, Staal YCM, Baker NC, Daston G, Knudsen TB, Piersma A. An ontology for developmental processes and toxicities of neural tube closure. Reprod Toxicol 2020; 99:160-167. [PMID: 32926990 PMCID: PMC10083840 DOI: 10.1016/j.reprotox.2020.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/12/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
In recent years, the development and implementation of animal-free approaches to chemical and pharmaceutical hazard and risk assessment has taken off. Alternative approaches are being developed starting from the perspective of human biology and physiology. Neural tube closure is a vital step that occurs early in human development. Correct closure of the neural tube depends on a complex interplay between proteins along a number of protein concentration gradients. The sensitivity of neural tube closure to chemical disturbance of signalling pathways such as the retinoid pathway, is well known. To map the pathways underlying neural tube closure, literature data on the molecular regulation of neural tube closure were collected. As the process of neural tube closure is highly conserved in vertebrates, the extensive literature available for the mouse was used whilst considering its relevance for humans. Thus, important cell compartments, regulatory pathways, and protein interactions essential for neural tube closure under physiological circumstances were identified and mapped. An understanding of aberrant processes leading to neural tube defects (NTDs) requires detailed maps of neural tube embryology, including the complex genetic signals and responses underlying critical cellular dynamical and biomechanical processes. The retinoid signaling pathway serves as a case study for this ontology because of well-defined crosstalk with the genetic control of neural tube patterning and morphogenesis. It is a known target for mechanistically-diverse chemical structures that disrupt neural tube closure The data presented in this manuscript will set the stage for constructing mathematical models and computer simulation of neural tube closure for human-relevant AOPs and predictive toxicology.
Collapse
Affiliation(s)
- Harm J Heusinkveld
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Yvonne C M Staal
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | - George Daston
- Global Product Stewardship, The Procter & Gamble Company, Cincinnati, OH USA
| | - Thomas B Knudsen
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park NC 27711, USA
| | - Aldert Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
31
|
Zou J, Wang F, Yang X, Wang H, Niswander L, Zhang T, Li H. Association between rare variants in specific functional pathways and human neural tube defects multiple subphenotypes. Neural Dev 2020; 15:8. [PMID: 32650820 PMCID: PMC7353782 DOI: 10.1186/s13064-020-00145-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neural tube defects (NTDs) are failure of neural tube closure, which includes multiple central nervous system phenotypes. More than 300 mouse mutant strains exhibits NTDs phenotypes and give us some clues to establish association between biological functions and subphenotypes. However, the knowledge about association in human remains still very poor. METHODS High throughput targeted genome DNA sequencing were performed on 280 neural tube closure-related genes in 355 NTDs cases and 225 ethnicity matched controls, RESULTS: We explored that potential damaging rare variants in genes functioning in chromatin modification, apoptosis, retinoid metabolism and lipid metabolism are associated with human NTDs. Importantly, our data indicate that except for planar cell polarity pathway, craniorachischisis is also genetically related with chromatin modification and retinoid metabolism. Furthermore, single phenotype in cranial or spinal regions displays significant association with specific biological function, such as anencephaly is associated with potentially damaging rare variants in genes functioning in chromatin modification, encephalocele is associated with apoptosis, retinoid metabolism and one carbon metabolism, spina bifida aperta and spina bifida cystica are associated with apoptosis; lumbar sacral spina bifida aperta and spina bifida occulta are associated with lipid metabolism. By contrast, complex phenotypes in both cranial and spinal regions display association with various biological functions given the different phenotypes. CONCLUSIONS Our study links genetic variant to subphenotypes of human NTDs and provides a preliminary but direct clue to investigate pathogenic mechanism for human NTDs.
Collapse
Affiliation(s)
- Jizhen Zou
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xueyan Yang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, Key Lab of Reproduction Regulation of NPFPC in SIPPR, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
| | - Lee Niswander
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Huili Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China. .,Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, 80309, USA.
| |
Collapse
|
32
|
Magalhães CG, de Oliveira-Melo M, Cruz MC, Srinivas S, Yan CYI. Characterization of embryonic surface ectoderm cell protrusions. Dev Dyn 2020; 250:249-262. [PMID: 32562595 DOI: 10.1002/dvdy.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND During embryonic development, complex changes in cell behavior generate the final form of the tissues. Extension of cell protrusions have been described as an important component in this process. Cellular protrusions have been associated with generation of traction, intercellular communication or establishment of signaling gradients. Here, we describe and compare in detail from live imaging data the dynamics of protrusions in the surface ectoderm of chick and mouse embryos. In particular, we explore the differences between cells surrounding the lens placode and other regions of the head. RESULTS Our results showed that protrusions from the eye region in mouse embryos are longer than those in chick embryos. In addition, protrusions from regions where there are no significant changes in tissue shape are longer and more stable than protrusions that surround the invaginating lens placode. We did not find a clear directionality to the protrusions in any region. Finally, we observed intercellular trafficking of membrane puncta in the protrusions of both embryos in all the regions analyzed. CONCLUSIONS In summary, the results presented here suggest that the dynamics of these protrusions adapt to their surroundings and possibly contribute to intercellular communication in embryonic cephalic epithelia.
Collapse
Affiliation(s)
- Cecília G Magalhães
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Mario C Cruz
- CEFAP, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - C Y Irene Yan
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
33
|
Abstract
During embryonic development, the central nervous system forms as the neural plate and then rolls into a tube in a complex morphogenetic process known as neurulation. Neural tube defects (NTDs) occur when neurulation fails and are among the most common structural birth defects in humans. The frequency of NTDs varies greatly anywhere from 0.5 to 10 in 1000 live births, depending on the genetic background of the population, as well as a variety of environmental factors. The prognosis varies depending on the size and placement of the lesion and ranges from death to severe or moderate disability, and some NTDs are asymptomatic. This chapter reviews how mouse models have contributed to the elucidation of the genetic, molecular, and cellular basis of neural tube closure, as well as to our understanding of the causes and prevention of this devastating birth defect.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
34
|
Karpińska K, Cao C, Yamamoto V, Gielata M, Kobielak A. Alpha-Catulin, a New Player in a Rho Dependent Apical Constriction That Contributes to the Mouse Neural Tube Closure. Front Cell Dev Biol 2020; 8:154. [PMID: 32258033 PMCID: PMC7089943 DOI: 10.3389/fcell.2020.00154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/25/2020] [Indexed: 01/01/2023] Open
Abstract
Coordination of actomyosin contraction and cell-cell junctions generates forces that can lead to tissue morphogenetic processes like the formation of neural tube (NT), however, its molecular mechanisms responsible for regulating and coupling this contractile network to cadherin adhesion remain to be fully elucidated. Here, using a gene trapping technology, we unveil the new player in this process, α-catulin, which shares sequence homology with vinculin and α-catenin. Ablation of α-catulin in mouse causes defective NT closure due to impairment of apical constriction, concomitant with apical actin and P-Mlc2 accumulation. Using a 3D culture model system, we showed that α-catulin localizes to the apical membrane and its removal alters the distribution of active RhoA and polarization. Actin cytoskeleton and P-Mlc2, downstream targets of RhoA, are not properly organized, with limited accumulation at the junctions, indicating a loss of junction stabilization. Our data suggest that α-catulin plays an important role during NT closure by acting as a scaffold for RhoA distribution, resulting in proper spatial activation of myosin to influence actin-myosin dynamics and tension at cell-cell adhesion.
Collapse
Affiliation(s)
- Kamila Karpińska
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Christine Cao
- Department of Otolaryngology-Head and Neck Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Vicky Yamamoto
- Department of Otolaryngology-Head and Neck Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Mateusz Gielata
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Agnieszka Kobielak
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
35
|
Non-neural surface ectodermal rosette formation and F-actin dynamics drive mammalian neural tube closure. Biochem Biophys Res Commun 2020; 526:647-653. [PMID: 32248972 DOI: 10.1016/j.bbrc.2020.03.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/24/2020] [Indexed: 11/22/2022]
Abstract
The mechanisms underlying mammalian neural tube closure remain poorly understood. We report a unique cellular process involving multicellular rosette formation, convergent cellular protrusions, and F-actin cable network of the non-neural surface ectodermal cells encircling the closure site of the posterior neuropore, which are demonstrated by scanning electron microscopy and genetic fate mapping analyses during mouse spinal neurulation. These unique cellular structures are severely disrupted in the surface ectodermal transcription factor Grhl3 mutants that exhibit fully penetrant spina bifida. We propose a novel model of mammalian neural tube closure driven by surface ectodermal dynamics, which is computationally visualized.
Collapse
|
36
|
Molè MA, Galea GL, Rolo A, Weberling A, Nychyk O, De Castro SC, Savery D, Fässler R, Ybot-González P, Greene NDE, Copp AJ. Integrin-Mediated Focal Anchorage Drives Epithelial Zippering during Mouse Neural Tube Closure. Dev Cell 2020; 52:321-334.e6. [PMID: 32049039 PMCID: PMC7008250 DOI: 10.1016/j.devcel.2020.01.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 10/24/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Epithelial fusion is a key process of morphogenesis by which tissue connectivity is established between adjacent epithelial sheets. A striking and poorly understood feature of this process is "zippering," whereby a fusion point moves directionally along an organ rudiment. Here, we uncover the molecular mechanism underlying zippering during mouse spinal neural tube closure. Fusion is initiated via local activation of integrin β1 and focal anchorage of surface ectoderm cells to a shared point of fibronectin-rich basement membrane, where the neural folds first contact each other. Surface ectoderm cells undergo proximal junction shortening, establishing a transitory semi-rosette-like structure at the zippering point that promotes juxtaposition of cells across the midline enabling fusion propagation. Tissue-specific ablation of integrin β1 abolishes the semi-rosette formation, preventing zippering and causing spina bifida. We propose integrin-mediated anchorage as an evolutionarily conserved mechanism of general relevance for zippering closure of epithelial gaps whose disturbance can produce clinically important birth defects.
Collapse
Affiliation(s)
- Matteo A Molè
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK; Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | - Gabriel L Galea
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Ana Rolo
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Antonia Weberling
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Oleksandr Nychyk
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK; Neuro-endocrinology/Nutrition, Food Bioscience Department, Teagasc Moorepark, Fermoy, Co. Cork, Ireland
| | - Sandra C De Castro
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Dawn Savery
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Patricia Ybot-González
- Department of Neurology and Neurophysiology, Hospital Virgen de Macarena, Sevilla, Spain
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
37
|
Savery D, Maniou E, Culshaw LH, Greene NDE, Copp AJ, Galea GL. Refinement of inducible gene deletion in embryos of pregnant mice. Birth Defects Res 2019; 112:196-204. [PMID: 31793758 PMCID: PMC7003956 DOI: 10.1002/bdr2.1628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/22/2019] [Accepted: 11/21/2019] [Indexed: 01/04/2023]
Abstract
CreERT2‐mediated gene recombination is widely applied in developmental biology research. Activation of CreERT2 is typically achieved by injection of tamoxifen in an oily vehicle into the peritoneal cavity of mid‐gestation pregnant mice. This can be technically challenging and adversely impacts welfare. Here we characterize three refinements to this technique: Pipette feeding (not gavage) of tamoxifen, ex vivo CreERT2 activation in whole embryo culture and injection of cell‐permeable TAT‐Cre into Cre‐negative cultured embryos. We demonstrate that pipette feeding of tamoxifen solution to the mother on various days of gestation reliably activates embryonic CreERT2, illustrated here using β‐ActinCreERT2, Sox2CreERT2, TCreERT2, and Nkx1.2CreERT2. Pipette feeding of tamoxifen induces dose‐dependent recombination of Rosa26mTmG reporters when administered at E8.5. Activation of two neuromesodermal progenitor‐targeting Cre drivers, TCreERT2, and Nkx1.2CreERT2, produces comparable neuroepithelial lineage tracing. Dose‐dependent CreERT2 activation can also be achieved by brief exposure to 4OH‐tamoxifen in whole embryo culture, allowing temporal control of gene deletion and eliminating the need to treat pregnant mice. Rosa26mTmG reporter recombination can also be achieved regionally by injecting TAT‐Cre into embryonic tissues at the start of culture. This allows greater spatial control over Cre activation than can typically be achieved with endogenous CreERT2, for example by injecting TAT‐Cre on one side of the midline. We hope that our description and application of these techniques will stimulate refinement of experimental methods involving CreERT2 activation for gene deletion and lineage tracing studies. Improved temporal (ex vivo treatment) and spatial (TAT‐Cre injection) control of recombination will also allow previously intractable questions to be addressed.
Collapse
Affiliation(s)
- Dawn Savery
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Eirini Maniou
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Lucy H Culshaw
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Andrew J Copp
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.,Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
38
|
Rolo A, Galea GL, Savery D, Greene NDE, Copp AJ. Novel mouse model of encephalocele: post-neurulation origin and relationship to open neural tube defects. Dis Model Mech 2019; 12:dmm.040683. [PMID: 31628096 PMCID: PMC6899037 DOI: 10.1242/dmm.040683] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
Encephalocele is a clinically important birth defect that can lead to severe disability in childhood and beyond. The embryonic and early fetal pathogenesis of encephalocele is poorly understood and, although usually classified as a 'neural tube defect', there is conflicting evidence on whether encephalocele results from defective neural tube closure or is a post-neurulation defect. It is also unclear whether encephalocele can result from the same causative factors as anencephaly and open spina bifida, or whether it is aetiologically distinct. This lack of information results largely from the scarce availability of animal models of encephalocele, particularly ones that resemble the commonest, nonsyndromic human defects. Here, we report a novel mouse model of occipito-parietal encephalocele, in which the small GTPase Rac1 is conditionally ablated in the (non-neural) surface ectoderm. Most mutant fetuses have open spina bifida, and some also exhibit exencephaly/anencephaly. However, a proportion of mutant fetuses exhibit brain herniation, affecting the occipito-parietal region and closely resembling encephalocele. The encephalocele phenotype does not result from defective neural tube closure, but rather from a later disruption of the surface ectoderm covering the already closed neural tube, allowing the brain to herniate. The neuroepithelium itself shows no downregulation of Rac1 and appears morphologically normal until late gestation. A large skull defect overlies the region of brain herniation. Our work provides a new genetic model of occipito-parietal encephalocele, particularly resembling nonsyndromic human cases. Although encephalocele has a different, later-arising pathogenesis than open neural tube defects, both can share the same genetic causation.
Collapse
Affiliation(s)
- Ana Rolo
- Newlife Birth Defects Research Centre, UCL GOS Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Gabriel L Galea
- Newlife Birth Defects Research Centre, UCL GOS Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Dawn Savery
- Newlife Birth Defects Research Centre, UCL GOS Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, UCL GOS Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, UCL GOS Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
39
|
Update on the Role of the Non-Canonical Wnt/Planar Cell Polarity Pathway in Neural Tube Defects. Cells 2019; 8:cells8101198. [PMID: 31590237 PMCID: PMC6829399 DOI: 10.3390/cells8101198] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Neural tube defects (NTDs), including spina bifida and anencephaly, represent the most severe and common malformations of the central nervous system affecting 0.7–3 per 1000 live births. They result from the failure of neural tube closure during the first few weeks of pregnancy. They have a complex etiology that implicate a large number of genetic and environmental factors that remain largely undetermined. Extensive studies in vertebrate models have strongly implicated the non-canonical Wnt/planar cell polarity (PCP) signaling pathway in the pathogenesis of NTDs. The defects in this pathway lead to a defective convergent extension that is a major morphogenetic process essential for neural tube elongation and subsequent closure. A large number of genetic studies in human NTDs have demonstrated an important role of PCP signaling in their etiology. However, the relative contribution of this pathway to this complex etiology awaits a better picture of the complete genetic architecture of these defects. The emergence of new genome technologies and bioinformatics pipelines, complemented with the powerful tool of animal models for variant interpretation as well as significant collaborative efforts, will help to dissect the complex genetics of NTDs. The ultimate goal is to develop better preventive and counseling strategies for families affected by these devastating conditions.
Collapse
|
40
|
Spinal neural tube closure depends on regulation of surface ectoderm identity and biomechanics by Grhl2. Nat Commun 2019; 10:2487. [PMID: 31171776 PMCID: PMC6554357 DOI: 10.1038/s41467-019-10164-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 04/25/2019] [Indexed: 02/07/2023] Open
Abstract
Lack or excess expression of the surface ectoderm-expressed transcription factor Grainyhead-like2 (Grhl2), each prevent spinal neural tube closure. Here we investigate the causative mechanisms and find reciprocal dysregulation of epithelial genes, cell junction components and actomyosin properties in Grhl2 null and over-expressing embryos. Grhl2 null surface ectoderm shows a shift from epithelial to neuroepithelial identity (with ectopic expression of N-cadherin and Sox2), actomyosin disorganisation, cell shape changes and diminished resistance to neural fold recoil upon ablation of the closure point. In contrast, excessive abundance of Grhl2 generates a super-epithelial surface ectoderm, in which up-regulation of cell-cell junction proteins is associated with an actomyosin-dependent increase in local mechanical stress. This is compatible with apposition of the neural folds but not with progression of closure, unless myosin activity is inhibited. Overall, our findings suggest that Grhl2 plays a crucial role in regulating biomechanical properties of the surface ectoderm that are essential for spinal neurulation. Loss or over-expression of Grainyhead-like transcription factors (Grhl) prevents closure of the neural tube but the mechanism underlying this is unclear. Here, the authors show that Grhl2 regulates murine posterior-neuropore closure via changes in the identity and biomechanics of the non-neural, surface ectoderm cells.
Collapse
|
41
|
Kerstens A, Corthout N, Pavie B, Huang Z, Vernaillen F, Vande Velde G, Munck S. A Label-free Multicolor Optical Surface Tomography (ALMOST) imaging method for nontransparent 3D samples. BMC Biol 2019; 17:1. [PMID: 30616566 PMCID: PMC6323867 DOI: 10.1186/s12915-018-0614-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
Background Current mesoscale 3D imaging techniques are limited to transparent or cleared samples or require the use of X-rays. This is a severe limitation for many research areas, as the 3D color surface morphology of opaque samples—for example, intact adult Drosophila, Xenopus embryos, and other non-transparent samples—cannot be assessed. We have developed “ALMOST,” a novel optical method for 3D surface imaging of reflective opaque objects utilizing an optical projection tomography device in combination with oblique illumination and optical filters. Results As well as demonstrating image formation, we provide background information and explain the reconstruction—and consequent rendering—using a standard filtered back projection algorithm and 3D software. We expanded our approach to fluorescence and multi-channel spectral imaging, validating our results with micro-computed tomography. Different biological and inorganic test samples were used to highlight the versatility of our approach. To further demonstrate the applicability of ALMOST, we explored the muscle-induced form change of the Drosophila larva, imaged adult Drosophila, dynamically visualized the closure of neural folds during neurulation of live Xenopus embryos, and showed the complementarity of our approach by comparison with transmitted light and fluorescence OPT imaging of a Xenopus tadpole. Conclusion Thus, our new modality for spectral/color, macro/mesoscopic 3D imaging can be applied to a variety of model organisms and enables the longitudinal surface dynamics during development to be revealed. Electronic supplementary material The online version of this article (10.1186/s12915-018-0614-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Axelle Kerstens
- VIB Bio Imaging Core, Herestraat 49, Box 602, 3000, Leuven, Belgium.,Research Group Molecular Neurobiology, Department of Neuroscience, KU Leuven, Herestraat 49, Box 602, 3000, Leuven, Belgium.,VIB Center for Brain and Disease Research, KU Leuven, Herestraat 49, Box 602, 3000, Leuven, Belgium
| | - Nikky Corthout
- VIB Bio Imaging Core, Herestraat 49, Box 602, 3000, Leuven, Belgium.,Research Group Molecular Neurobiology, Department of Neuroscience, KU Leuven, Herestraat 49, Box 602, 3000, Leuven, Belgium.,VIB Center for Brain and Disease Research, KU Leuven, Herestraat 49, Box 602, 3000, Leuven, Belgium
| | - Benjamin Pavie
- VIB Bio Imaging Core, Herestraat 49, Box 602, 3000, Leuven, Belgium.,Research Group Molecular Neurobiology, Department of Neuroscience, KU Leuven, Herestraat 49, Box 602, 3000, Leuven, Belgium.,VIB Center for Brain and Disease Research, KU Leuven, Herestraat 49, Box 602, 3000, Leuven, Belgium
| | - Zengjin Huang
- VIB Center for Brain and Disease Research, KU Leuven, Herestraat 49, Box 602, 3000, Leuven, Belgium.,Neuronal Wiring Lab, Department of Neuroscience, KU Leuven, Herestraat 49, Box 602, 3000, Leuven, Belgium
| | - Frank Vernaillen
- VIB BioInformatics Core, Rijvisschestraat 126 3R, 9052, Ghent, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, KU Leuven - University of Leuven, Herestraat 49, Box 505, 3000, Leuven, Belgium
| | - Sebastian Munck
- VIB Bio Imaging Core, Herestraat 49, Box 602, 3000, Leuven, Belgium. .,Research Group Molecular Neurobiology, Department of Neuroscience, KU Leuven, Herestraat 49, Box 602, 3000, Leuven, Belgium. .,VIB Center for Brain and Disease Research, KU Leuven, Herestraat 49, Box 602, 3000, Leuven, Belgium.
| |
Collapse
|
42
|
De Castro SCP, Gustavsson P, Marshall AR, Gordon WM, Galea G, Nikolopoulou E, Savery D, Rolo A, Stanier P, Andersen B, Copp AJ, Greene NDE. Overexpression of Grainyhead-like 3 causes spina bifida and interacts genetically with mutant alleles of Grhl2 and Vangl2 in mice. Hum Mol Genet 2018; 27:4218-4230. [PMID: 30189017 PMCID: PMC6276835 DOI: 10.1093/hmg/ddy313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022] Open
Abstract
The genetic basis of human neural tube defects (NTDs), such as anencephaly and spina bifida (SB), is complex and heterogeneous. Grainyhead-like genes represent candidates for involvement in NTDs based on the presence of SB and exencephaly in mice carrying loss-of-function alleles of Grhl2 or Grhl3. We found that reinstatement of Grhl3 expression, by bacterial artificial chromosome (BAC)-mediated transgenesis, prevents SB in Grhl3-null embryos, as in the Grhl3 hypomorphic curly tail strain. Notably, however, further increase in expression of Grhl3 causes highly penetrant SB. Grhl3 overexpression recapitulates the spinal NTD phenotype of loss-of-function embryos, although the underlying mechanism differs. However, it does not phenocopy other defects of Grhl3-null embryos such as abnormal axial curvature, cranial NTDs (exencephaly) or skin barrier defects, the latter being rescued by the Grhl3-transgene. Grhl2 and Grhl3 can form homodimers and heterodimers, suggesting a possible model in which defects arising from overexpression of Grhl3 result from sequestration of Grhl2 in heterodimers, mimicking Grhl2 loss of function. This hypothesis predicts that increased abundance of Grhl2 would have an ameliorating effect in Grhl3 overexpressing embryo. Instead, we observed a striking additive genetic interaction between Grhl2 and Grhl3 gain-of-function alleles. Severe SB arose in embryos in which both genes were expressed at moderately elevated levels that individually do not cause NTDs. Furthermore, moderate Grhl3 overexpression also interacted with the Vangl2Lp allele to cause SB, demonstrating genetic interaction with the planar cell polarity signalling pathway that is implicated in mouse and human NTDs.
Collapse
Affiliation(s)
- Sandra C P De Castro
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Peter Gustavsson
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Abigail R Marshall
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - William M Gordon
- Department of Biological Chemistry, University of California Irvine, Irvine, California, USA
| | - Gabriel Galea
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Evanthia Nikolopoulou
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Dawn Savery
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Ana Rolo
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Philip Stanier
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Bogi Andersen
- Department of Biological Chemistry, University of California Irvine, Irvine, California, USA
- Department of Medicine, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Andrew J Copp
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Nicholas D E Greene
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
43
|
Rodrigo Albors A, Halley PA, Storey KG. Lineage tracing of axial progenitors using Nkx1-2CreER T2 mice defines their trunk and tail contributions. Development 2018; 145:dev.164319. [PMID: 30201686 PMCID: PMC6198475 DOI: 10.1242/dev.164319] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022]
Abstract
The vertebrate body forms by continuous generation of new tissue from progenitors at the posterior end of the embryo. The study of these axial progenitors has proved to be challenging in vivo largely because of the lack of unique molecular markers to identify them. Here, we elucidate the expression pattern of the transcription factor Nkx1-2 in the mouse embryo and show that it identifies axial progenitors throughout body axis elongation, including neuromesodermal progenitors and early neural and mesodermal progenitors. We create a tamoxifen-inducible Nkx1-2CreERT2 transgenic mouse and exploit the conditional nature of this line to uncover the lineage contributions of Nkx1-2-expressing cells at specific stages. We show that early Nkx1-2-expressing epiblast cells contribute to all three germ layers, mostly neuroectoderm and mesoderm, excluding notochord. Our data are consistent with the presence of some self-renewing axial progenitors that continue to generate neural and mesoderm tissues from the tail bud. This study identifies Nkx1-2-expressing cells as the source of most trunk and tail tissues in the mouse and provides a useful tool to genetically label and manipulate axial progenitors in vivo. Summary: Changing lineage contributions of axial progenitors to the developing mouse embryo are revealed using a tamoxifen-inducible Cre line under the control of the endogenous Nkx1-2 promoter.
Collapse
Affiliation(s)
- Aida Rodrigo Albors
- Neural Development Group, Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Pamela A Halley
- Neural Development Group, Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Kate G Storey
- Neural Development Group, Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
44
|
Insights into the Etiology of Mammalian Neural Tube Closure Defects from Developmental, Genetic and Evolutionary Studies. J Dev Biol 2018; 6:jdb6030022. [PMID: 30134561 PMCID: PMC6162505 DOI: 10.3390/jdb6030022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
The human neural tube defects (NTD), anencephaly, spina bifida and craniorachischisis, originate from a failure of the embryonic neural tube to close. Human NTD are relatively common and both complex and heterogeneous in genetic origin, but the genetic variants and developmental mechanisms are largely unknown. Here we review the numerous studies, mainly in mice, of normal neural tube closure, the mechanisms of failure caused by specific gene mutations, and the evolution of the vertebrate cranial neural tube and its genetic processes, seeking insights into the etiology of human NTD. We find evidence of many regions along the anterior–posterior axis each differing in some aspect of neural tube closure—morphology, cell behavior, specific genes required—and conclude that the etiology of NTD is likely to be partly specific to the anterior–posterior location of the defect and also genetically heterogeneous. We revisit the hypotheses explaining the excess of females among cranial NTD cases in mice and humans and new developments in understanding the role of the folate pathway in NTD. Finally, we demonstrate that evidence from mouse mutants strongly supports the search for digenic or oligogenic etiology in human NTD of all types.
Collapse
|
45
|
Shimada IS, Mukhopadhyay S. G-protein-coupled receptor signaling and neural tube closure defects. Birth Defects Res 2018; 109:129-139. [PMID: 27731925 DOI: 10.1002/bdra.23567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Disruption of the normal mechanisms that mediate neural tube closure can result in neural tube defects (NTDs) with devastating consequences in affected patients. With the advent of next-generation sequencing, we are increasingly detecting mutations in multiple genes in NTD cases. However, our ability to determine which of these genes contribute to the malformation is limited by our understanding of the pathways controlling neural tube closure. G-protein-coupled receptors (GPCRs) comprise the largest family of transmembrane receptors in humans and have been historically favored as drug targets. Recent studies implicate several GPCRs and downstream signaling pathways in neural tube development and closure. In this review, we will discuss our current understanding of GPCR signaling pathways in pathogenesis of NTDs. Notable examples include the orphan primary cilia-localized GPCR, Gpr161 that regulates the basal suppression machinery of sonic hedgehog pathway by means of activation of cAMP-protein kinase A signaling in the neural tube, and protease-activated receptors that are activated by a local network of membrane-tethered proteases during neural tube closure involving the surface ectoderm. Understanding the role of these GPCR-regulated pathways in neural tube development and closure is essential toward identification of underlying genetic causes to prevent NTDs. Birth Defects Research 109:129-139, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Issei S Shimada
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
46
|
Galea GL, Nychyk O, Mole MA, Moulding D, Savery D, Nikolopoulou E, Henderson DJ, Greene NDE, Copp AJ. Vangl2 disruption alters the biomechanics of late spinal neurulation leading to spina bifida in mouse embryos. Dis Model Mech 2018; 11:dmm.032219. [PMID: 29590636 PMCID: PMC5897727 DOI: 10.1242/dmm.032219] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/28/2018] [Indexed: 12/13/2022] Open
Abstract
Human mutations in the planar cell polarity component VANGL2 are associated with the neural tube defect spina bifida. Homozygous Vangl2 mutation in mice prevents initiation of neural tube closure, precluding analysis of its subsequent roles in neurulation. Spinal neurulation involves rostral-to-caudal ‘zippering’ until completion of closure is imminent, when a caudal-to-rostral closure point, ‘Closure 5’, arises at the caudal-most extremity of the posterior neuropore (PNP). Here, we used Grhl3Cre to delete Vangl2 in the surface ectoderm (SE) throughout neurulation and in an increasing proportion of PNP neuroepithelial cells at late neurulation stages. This deletion impaired PNP closure after the ∼25-somite stage and resulted in caudal spina bifida in 67% of Grhl3Cre/+Vangl2Fl/Fl embryos. In the dorsal SE, Vangl2 deletion diminished rostrocaudal cell body orientation, but not directional polarisation of cell divisions. In the PNP, Vangl2 disruption diminished mediolateral polarisation of apical neuroepithelial F-actin profiles and resulted in eversion of the caudal PNP. This eversion prevented elevation of the caudal PNP neural folds, which in control embryos is associated with formation of Closure 5 around the 25-somite stage. Closure 5 formation in control embryos is associated with a reduction in mechanical stress withstood at the main zippering point, as inferred from the magnitude of neural fold separation following zippering point laser ablation. This stress accommodation did not happen in Vangl2-disrupted embryos. Thus, disruption of Vangl2-dependent planar-polarised processes in the PNP neuroepithelium and SE preclude zippering point biomechanical accommodation associated with Closure 5 formation at the completion of PNP closure. Summary: Disruption of Vangl2-dependent planar-polarised processes in the posterior neuropore (PNP) neuroepithelium and surface ectoderm preclude zippering point biomechanical accommodation associated with Closure 5 formation at the completion of PNP closure.
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| | - Oleksandr Nychyk
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| | - Matteo A Mole
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| | - Dale Moulding
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| | - Dawn Savery
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| | - Evanthia Nikolopoulou
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| | - Deborah J Henderson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Nicholas D E Greene
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| | - Andrew J Copp
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
| |
Collapse
|
47
|
Freudenblum J, Iglesias JA, Hermann M, Walsen T, Wilfinger A, Meyer D, Kimmel RA. In vivo imaging of emerging endocrine cells reveals a requirement for PI3K-regulated motility in pancreatic islet morphogenesis. Development 2018; 145:dev158477. [PMID: 29386244 PMCID: PMC5818004 DOI: 10.1242/dev.158477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/10/2018] [Indexed: 01/03/2023]
Abstract
The three-dimensional architecture of the pancreatic islet is integral to beta cell function, but the process of islet formation remains poorly understood due to the difficulties of imaging internal organs with cellular resolution. Within transparent zebrafish larvae, the developing pancreas is relatively superficial and thus amenable to live imaging approaches. We performed in vivo time-lapse and longitudinal imaging studies to follow islet development, visualizing both naturally occurring islet cells and cells arising with an accelerated timecourse following an induction approach. These studies revealed previously unappreciated fine dynamic protrusions projecting between neighboring and distant endocrine cells. Using pharmacological compound and toxin interference approaches, and single-cell analysis of morphology and cell dynamics, we determined that endocrine cell motility is regulated by phosphoinositide 3-kinase (PI3K) and G-protein-coupled receptor (GPCR) signaling. Linking cell dynamics to islet formation, perturbation of protrusion formation disrupted endocrine cell coalescence, and correlated with decreased islet cell differentiation. These studies identified novel cell behaviors contributing to islet morphogenesis, and suggest a model in which dynamic exploratory filopodia establish cell-cell contacts that subsequently promote cell clustering.
Collapse
Affiliation(s)
- Julia Freudenblum
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - José A Iglesias
- Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenbergerstrasse 69, A-4040 Linz, Austria
| | - Martin Hermann
- Department of Anaesthesiology and Critical Care Medicine, Innsbruck Medical University, Innrain 66, 6020 Innsbruck, Austria
| | - Tanja Walsen
- Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck Austria
| | - Armin Wilfinger
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Robin A Kimmel
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|
48
|
Neural tube closure depends on expression of Grainyhead-like 3 in multiple tissues. Dev Biol 2018; 435:130-137. [PMID: 29397878 PMCID: PMC5854268 DOI: 10.1016/j.ydbio.2018.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/10/2018] [Indexed: 12/03/2022]
Abstract
Failure of neural tube closure leads to neural tube defects (NTDs), common congenital abnormalities in humans. Among the genes whose loss of function causes NTDs in mice, Grainyhead-like3 (Grhl3) is essential for spinal neural tube closure, with null mutants exhibiting fully penetrant spina bifida. During spinal neurulation Grhl3 is initially expressed in the surface (non-neural) ectoderm, subsequently in the neuroepithelial component of the neural folds and at the node-streak border, and finally in the hindgut endoderm. Here, we show that endoderm-specific knockout of Grhl3 causes late-arising spinal NTDs, preceded by increased ventral curvature of the caudal region which was shown previously to suppress closure of the spinal neural folds. This finding supports the hypothesis that diminished Grhl3 expression in the hindgut is the cause of spinal NTDs in the curly tail, carrying a hypomorphic Grhl3 allele. Complete loss of Grhl3 function produces a more severe phenotype in which closure fails earlier in neurulation, before the stage of onset of expression in the hindgut of wild-type embryos. This implicates additional tissues and NTD mechanisms in Grhl3 null embryos. Conditional knockout of Grhl3 in the neural plate and node-streak border has minimal effect on closure, suggesting that abnormal function of surface ectoderm, where Grhl3 transcripts are first detected, is primarily responsible for early failure of spinal neurulation in Grhl3 null embryos. Conditional knockout of Grhl3 in the hindgut causes spinal NTDs owing to incomplete closure of the posterior neuropore late in spinal neurulation. On the other hand, closure fails early in spinal neurulation in Grhl3 null embryos, prior to the normal stage of hindgut expression. Stage-dependent analysis of Grhl3 expression implicates the non-neural ectoderm in the early failure of closure. Grhl3 is also expressed in neural plate and neuromesodermal precursors, but knock-out in these tissues does not cause NTDs.
Collapse
|
49
|
Genes and pathways in optic fissure closure. Semin Cell Dev Biol 2017; 91:55-65. [PMID: 29198497 DOI: 10.1016/j.semcdb.2017.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/29/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022]
Abstract
Embryonic development of the vertebrate eye begins with the formation of an optic vesicle which folds inwards to form a double-layered optic cup with a fissure on the ventral surface, known as the optic fissure. Closure of the optic fissure is essential for subsequent growth and development of the eye. A defect in this process can leave a gap in the iris, retina or optic nerve, known as a coloboma, which can lead to severe visual impairment. This review brings together current information about genes and pathways regulating fissure closure from human coloboma patients and animal models. It focuses especially on current understanding of the morphological changes and processes of epithelial remodelling occurring at the fissure margins.
Collapse
|
50
|
Shan Y, Liang Z, Xing Q, Zhang T, Wang B, Tian S, Huang W, Zhang Y, Yao J, Zhu Y, Huang K, Liu Y, Wang X, Chen Q, Zhang J, Shang B, Li S, Shi X, Liao B, Zhang C, Lai K, Zhong X, Shu X, Wang J, Yao H, Chen J, Pei D, Pan G. PRC2 specifies ectoderm lineages and maintains pluripotency in primed but not naïve ESCs. Nat Commun 2017; 8:672. [PMID: 28939884 PMCID: PMC5610324 DOI: 10.1038/s41467-017-00668-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/17/2017] [Indexed: 12/22/2022] Open
Abstract
Polycomb repressive complex 2 and the epigenetic mark that it deposits, H3K27me3, are evolutionarily conserved and play critical roles in development and cancer. However, their roles in cell fate decisions in early embryonic development remain poorly understood. Here we report that knockout of polycomb repressive complex 2 genes in human embryonic stem cells causes pluripotency loss and spontaneous differentiation toward a meso-endoderm fate, owing to de-repression of BMP signalling. Moreover, human embryonic stem cells with deletion of EZH1 or EZH2 fail to differentiate into ectoderm lineages. We further show that polycomb repressive complex 2-deficient mouse embryonic stem cells also release Bmp4 but retain their pluripotency. However, when converted into a primed state, they undergo spontaneous differentiation similar to that of hESCs. In contrast, polycomb repressive complex 2 is dispensable for pluripotency when human embryonic stem cells are converted into the naive state. Our studies reveal both lineage- and pluripotent state-specific roles of polycomb repressive complex 2 in cell fate decisions. Polycomb repressive complex 2 (PRC2) plays an essential role in development by modifying chromatin but what this means at a cellular level is unclear. Here, the authors show that ablation of PRC2 genes in human embryonic stem cells and in mice results in changes in pluripotency and the primed state of cells.
Collapse
Affiliation(s)
- Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zechuan Liang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qi Xing
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Tian Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Bo Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shulan Tian
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Wenhao Huang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yanqi Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiao Yao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yanling Zhu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ke Huang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yujian Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoshan Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qianyu Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jian Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Bizhi Shang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shengbiao Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xi Shi
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Baojian Liao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Cong Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Keyu Lai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaofen Zhong
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaodong Shu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinyong Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Hongjie Yao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|