1
|
Torrino S, Oldham WM, Tejedor AR, Burgos IS, Nasr L, Rachedi N, Fraissard K, Chauvet C, Sbai C, O'Hara BP, Abélanet S, Brau F, Favard C, Clavel S, Collepardo-Guevara R, Espinosa JR, Ben-Sahra I, Bertero T. Mechano-dependent sorbitol accumulation supports biomolecular condensate. Cell 2025; 188:447-464.e20. [PMID: 39591966 DOI: 10.1016/j.cell.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/11/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Condensed droplets of protein regulate many cellular functions, yet the physiological conditions regulating their formation remain largely unexplored. Increasing our understanding of these mechanisms is paramount, as failure to control condensate formation and dynamics can lead to many diseases. Here, we provide evidence that matrix stiffening promotes biomolecular condensation in vivo. We demonstrate that the extracellular matrix links mechanical cues with the control of glucose metabolism to sorbitol. In turn, sorbitol acts as a natural crowding agent to promote biomolecular condensation. Using in silico simulations and in vitro assays, we establish that variations in the physiological range of sorbitol concentrations, but not glucose concentrations, are sufficient to regulate biomolecular condensates. Accordingly, pharmacological and genetic manipulation of intracellular sorbitol concentration modulates biomolecular condensates in breast cancer-a mechano-dependent disease. We propose that sorbitol is a mechanosensitive metabolite enabling protein condensation to control mechano-regulated cellular functions.
Collapse
Affiliation(s)
- Stephanie Torrino
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France.
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrés R Tejedor
- Department of Chemical Physics, Faculty of Chemical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain; Cavendish Laboratory, Department of Physics, Maxwell Centre, University of Cambridge, J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Ignacio S Burgos
- Department of Chemical Physics, Faculty of Chemical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain; Cavendish Laboratory, Department of Physics, Maxwell Centre, University of Cambridge, J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Lara Nasr
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Nesrine Rachedi
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Kéren Fraissard
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Caroline Chauvet
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Chaima Sbai
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Brendan P O'Hara
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Sophie Abélanet
- Université Côte d'Azur, CNRS, INSERM, IPMC, Valbonne, France
| | - Frederic Brau
- Université Côte d'Azur, CNRS, INSERM, IPMC, Valbonne, France
| | - Cyril Favard
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR 9004, University of Montpellier, Montpellier, France
| | - Stephan Clavel
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Department of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, UK
| | - Jorge R Espinosa
- Department of Chemical Physics, Faculty of Chemical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain; Cavendish Laboratory, Department of Physics, Maxwell Centre, University of Cambridge, J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Thomas Bertero
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France.
| |
Collapse
|
2
|
Hess N, Joseph JA. Structured protein domains enter the spotlight: modulators of biomolecular condensate form and function. Trends Biochem Sci 2025:S0968-0004(24)00280-9. [PMID: 39827079 DOI: 10.1016/j.tibs.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/18/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025]
Abstract
Biomolecular condensates are membraneless organelles that concentrate proteins and nucleic acids. One of the primary components of condensates is multidomain proteins, whose domains can be broadly classified as structured and disordered. While structured protein domains are ubiquitous within biomolecular condensates, the physical ramifications of their unique properties have been relatively underexplored. Therefore, this review synthesizes current literature pertaining to structured protein domains within the context of condensates. We examine how the propensity of structured domains for high interaction specificity and low conformational heterogeneity contributes to the formation, material properties, and functions of biomolecular condensates. Finally, we propose unanswered questions on the behavior of structured protein domains within condensates, the answers of which will contribute to a more complete understanding of condensate biophysics.
Collapse
Affiliation(s)
- Nathaniel Hess
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jerelle A Joseph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
3
|
Holehouse AS, Alberti S. Molecular determinants of condensate composition. Mol Cell 2025; 85:290-308. [PMID: 39824169 PMCID: PMC11750178 DOI: 10.1016/j.molcel.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025]
Abstract
Cells use membraneless compartments to organize their interiors, and recent research has begun to uncover the molecular principles underlying their assembly. Here, we explore how site-specific and chemically specific interactions shape the properties and functions of condensates. Site-specific recruitment involves precise interactions at specific sites driven by partially or fully structured interfaces. In contrast, chemically specific recruitment is driven by complementary chemical interactions without the requirement for a persistent bound-state structure. We propose that site-specific and chemically specific interactions work together to determine the composition of condensates, facilitate biochemical reactions, and regulate enzymatic activities linked to metabolism, signaling, and gene expression. Characterizing the composition of condensates requires novel experimental and computational tools to identify and manipulate the molecular determinants guiding condensate recruitment. Advancing this research will deepen our understanding of how condensates regulate cellular functions, providing valuable insights into cellular physiology and organization.
Collapse
Affiliation(s)
- Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA.
| | - Simon Alberti
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
4
|
Vashishtha S, Sabari BR. Disordered Regions of Condensate-promoting Proteins Have Distinct Molecular Signatures Associated with Cellular Function. J Mol Biol 2025; 437:168953. [PMID: 39826710 DOI: 10.1016/j.jmb.2025.168953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Disordered regions of proteins play crucial roles in cellular functions through diverse mechanisms. Some disordered regions function by promoting the formation of biomolecular condensates through dynamic multivalent interactions. While many have assumed that interactions among these condensate-promoting disordered regions are non-specific, recent studies have shown that distinct sequence compositions and patterning lead to specific condensate compositions associated with cellular function. Despite in-depth characterization of several key examples, the full chemical diversity of condensate-promoting disordered regions has not been surveyed. Here, we define a list of disordered regions of condensate-promoting proteins to survey the relationship between sequence and function. We find that these disordered regions show amino acid biases associated with different cellular functions. These amino acid biases are evolutionarily conserved in the absence of positional sequence conservation. Overall, our analysis highlights the relationship between sequence features and function for condensate-promoting disordered regions. This analysis suggests that molecular signatures encoded within disordered regions could impart functional specificity.
Collapse
Affiliation(s)
- Shubham Vashishtha
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Muzzopappa F, Erdel F. Beyond equilibrium: roles of RNAs in condensate control. Curr Opin Genet Dev 2025; 91:102304. [PMID: 39813812 DOI: 10.1016/j.gde.2024.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025]
Abstract
Membraneless subcompartments organize various activities in the cell nucleus. Some of them are formed through phase separation that is driven by the polymeric and multivalent nature of biomolecules. Here, we discuss the role of RNAs in regulating nuclear subcompartments. On the one hand, chromatin-associated RNA molecules may act as binding platforms that recruit molecules to specific genomic loci. On the other hand, RNA molecules may act as multivalent scaffolds that stabilize biomolecular condensates. The active production and processing of RNAs inside of nuclear subcompartments drives them out of thermodynamic equilibrium and thereby modulates their properties. Accordingly, RNA content and transcriptional activity appear as key determinants of the biophysical and functional nature of nuclear substructures.
Collapse
Affiliation(s)
- Fernando Muzzopappa
- MCD, Center for Integrative Biology (CBI), University of Toulouse, CNRS, Toulouse, France.
| | - Fabian Erdel
- MCD, Center for Integrative Biology (CBI), University of Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
6
|
McCaig CD. Neurological Diseases can be Regulated by Phase Separation. Rev Physiol Biochem Pharmacol 2025; 187:273-338. [PMID: 39838017 DOI: 10.1007/978-3-031-68827-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Several neurological diseases arise from abnormal protein aggregation within neurones and this is closely regulated by phase separation. One such is motor neurone disease and aberrant aggregation of superoxide dismutase. Again these events are regulated by electrical forces that are examined.
Collapse
Affiliation(s)
- Colin D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
7
|
Shi X, Li Y, Zhou H, Hou X, Yang J, Malik V, Faiola F, Ding J, Bao X, Modic M, Zhang W, Chen L, Mahmood SR, Apostolou E, Yang FC, Xu M, Xie W, Huang X, Chen Y, Wang J. DDX18 coordinates nucleolus phase separation and nuclear organization to control the pluripotency of human embryonic stem cells. Nat Commun 2024; 15:10803. [PMID: 39738032 DOI: 10.1038/s41467-024-55054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Pluripotent stem cells possess a unique nuclear architecture characterized by a larger nucleus and more open chromatin, which underpins their ability to self-renew and differentiate. Here, we show that the nucleolus-specific RNA helicase DDX18 is essential for maintaining the pluripotency of human embryonic stem cells. Using techniques such as Hi-C, DNA/RNA-FISH, and biomolecular condensate analysis, we demonstrate that DDX18 regulates nucleolus phase separation and nuclear organization by interacting with NPM1 in the granular nucleolar component, driven by specific nucleolar RNAs. Loss of DDX18 disrupts nucleolar substructures, impairing centromere clustering and perinucleolar heterochromatin (PNH) formation. To probe this further, we develop NoCasDrop, a tool enabling precise nucleolar targeting and controlled liquid condensation, which restores centromere clustering and PNH integrity while modulating developmental gene expression. This study reveals how nucleolar phase separation dynamics govern chromatin organization and cell fate, offering fresh insights into the molecular regulation of stem cell pluripotency.
Collapse
Affiliation(s)
- Xianle Shi
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanjing Li
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai, China
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Xiukun Hou
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jihong Yang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Francesco Faiola
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Junjun Ding
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xichen Bao
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Miha Modic
- The Francis Crick Institute and University College London, London, UK
| | - Weiyu Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Lingyi Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Syed Raza Mahmood
- Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Effie Apostolou
- Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Feng-Chun Yang
- Department of Molecular Medicine/Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mingjiang Xu
- Department of Molecular Medicine/Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Wei Xie
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Yong Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
8
|
Falini B, Sorcini D, Perriello VM, Sportoletti P. Functions of the native NPM1 protein and its leukemic mutant. Leukemia 2024:10.1038/s41375-024-02476-4. [PMID: 39690184 DOI: 10.1038/s41375-024-02476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024]
Abstract
The nucleophosmin (NPM1) gene encodes for the most abundant nucleolar protein. Thanks to its property to act as histone chaperone and to shuttle between the nucleus and cytoplasm, the NPM1 protein is involved in multiple cellular function that are here extensively reviewed and include the formation of the nucleolus through liquid-liquid phase separation, regulation of ribosome biogenesis and transport, control of DNA repair and centrosome duplication as well as response to nucleolar stress. NPM1 is mutated in about 30-35% of adult acute myeloid leukemia (AML). Due to its unique biological and clinical features, NPM1-mutated AML is regarded as a distinct leukemia entity in the WHO 5th edition and ICC classifications of myeloid malignancies. The NPM1 mutant undergoes changes at the C-terminus of the protein that leads to its delocalization in the cytoplasm of the leukemic cells. Here, we focus also on its biological functions discussing the murine models of NPM1 mutations and the various mechanisms that occur at cytoplasmic and nuclear levels to promote and maintain NPM1-mutated AML.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy.
| | - Daniele Sorcini
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Vincenzo Maria Perriello
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Paolo Sportoletti
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
9
|
Ban Y, Ando Y, Terai Y, Matsumura R, Nakane K, Iwai S, Sato S, Yamamoto J. Profiling of i-motif-binding proteins reveals functional roles of nucleolin in regulation of high-order DNA structures. Nucleic Acids Res 2024; 52:13530-13543. [PMID: 39557413 DOI: 10.1093/nar/gkae1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/18/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Non-canonical DNA structures, such as the G-quadruplex (G4) and i-motif (iM), are formed at guanine- and cytosine-rich sequences, respectively, in living cells and involved in regulating various biological processes during the cell cycle. Therefore, the formation and resolution of these non-canonical structures must be dynamically regulated by physiological conditions or factors that can bind G4 and iM structures. Although many G4 binding proteins responsible for tuning the G4 structure have been discovered, the structural regulation of iM by iM-binding proteins remains enigmatic. In this study, we developed a protein-labeling DNA probe bearing an alkyne moiety through a reactive linker, for proximity-labeling of nucleic acid-binding proteins, and searched for new iM-binding proteins. Alkyne-modified proteins in the nuclear extract of HeLa cells were labeled with biotin via a click reaction and then captured with streptavidin-coated magnetic beads. This fingerprint-targeting enrichment, followed by proteome analyses, identified new candidate proteins that potentially bind to the iM structure, in addition to the reported iM-binding proteins. Among the newly identified candidates, we characterized a nucleolar protein, nucleolin, that binds to the iM structure and relaxes it, while nucleolin stabilizes the G4 structure.
Collapse
Affiliation(s)
- Yuki Ban
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yuka Ando
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yuma Terai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Risa Matsumura
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Keita Nakane
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shinichi Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
10
|
Antariksa N, Di Antonio M. The Emerging Roles of Multimolecular G-Quadruplexes in Transcriptional Regulation and Chromatin Organization. Acc Chem Res 2024; 57:3397-3406. [PMID: 39555660 PMCID: PMC11618987 DOI: 10.1021/acs.accounts.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
ConspectusThe ability of genomic DNA to adopt non-canonical secondary structures known as G-quadruplexes (G4s) under physiological conditions has been recognized for its potential regulatory function of various biological processes. Among those, transcription has recently emerged as a key process that can be heavily affected by G4 formation, particularly when these structures form at gene promoters. While the presence of G4s within gene promoters has been traditionally associated with transcriptional inhibition, in a model whereby G4s act as roadblocks to polymerase elongation, recent genomics experiments have revealed that the regulatory role of G4s in transcription is more complex than initially anticipated. Indeed, earlier studies linking G4-formation and transcription mainly relied on small-molecule ligands to stabilize and promote G4s, which might lead to disruption of protein-DNA interactions and local environments and, therefore, does not necessarily reflect the endogenous function of G4s at gene promoters. There is now strong evidence pointing toward G4s being associated with transcriptional enhancement, rather than repression, through multifaceted mechanisms such as recruitment of key transcriptional proteins, molding of chromatin architecture, and mode of phase separation.In this Account, we explore pivotal findings from our research on a particular subset of G4s, namely, those formed through interactions between distant genomic locations or independent nucleic acid strands, referred to as multimolecular G4s (mG4s), and discuss their active role in transcriptional regulation. We present our recent studies suggesting that the formation of mG4s may positively regulate transcription by inducing phase-separation and selectively recruiting chromatin-remodeling proteins. Our work highlighted how mG4-forming DNA and RNA sequences can lead to liquid-liquid phase separation (LLPS) in the absence of any protein. This discovery provided new insights into a potential mechanism by which mG4 can positively regulate active gene expression, namely, by establishing DNA networks based on distal guanine-guanine base pairing that creates liquid droplets at the interface of DNA loops. This is particularly relevant in light of the increasing evidence suggesting that G4 structures formed at enhancers can drive elevated expression of the associated genes. Given the complex three-dimensional nature of enhancers, our findings underscore how mG4 formation at enhancers would be particularly beneficial for promoting transcription. Moreover, we will elaborate on our recent discovery of a DNA repair and chromatin remodeling protein named Cockayne Syndrome B (CSB) that displays astonishing binding selectivity to mG4s over the more canonical unimolecular counterparts, suggesting another role of mG4s for molding chromatin architecture at DNA loops sites.Altogether, the studies presented in this Account suggest that mG4 formation in a chromatin context could be a crucial yet underexplored structural feature for transcriptional regulation. Whether mG4s actively regulate transcription or are formed as a mere consequence of chromatin plasticity remains to be elucidated. Still, given the novel insights offered by our research and the potential for mG4s to be selectively targeted by chemical and biological probes, we anticipate that further studies into the fundamental biology regulated by these structures can provide unprecedented opportunities for the development of therapeutic agents aimed at targeting nucleic acids from a fresh perspective.
Collapse
Affiliation(s)
- Naura
Fakhira Antariksa
- Imperial
College London, Department of Chemistry,
Molecular Sciences Research Hub, 82 Wood Lane, London W12
0BZ, U.K.
| | - Marco Di Antonio
- Imperial
College London, Department of Chemistry,
Molecular Sciences Research Hub, 82 Wood Lane, London W12
0BZ, U.K.
- The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K.
- Institute
of Chemical Biology, Molecular Sciences
Research Hub, 82 Wood
Lane, London W12 0BZ, U.K.
| |
Collapse
|
11
|
King MR, Ruff KM, Pappu RV. Emergent microenvironments of nucleoli. Nucleus 2024; 15:2319957. [PMID: 38443761 PMCID: PMC10936679 DOI: 10.1080/19491034.2024.2319957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
In higher eukaryotes, the nucleolus harbors at least three sub-phases that facilitate multiple functionalities including ribosome biogenesis. The three prominent coexisting sub-phases are the fibrillar center (FC), the dense fibrillar component (DFC), and the granular component (GC). Here, we review recent efforts in profiling sub-phase compositions that shed light on the types of physicochemical properties that emerge from compositional biases and territorial organization of specific types of macromolecules. We highlight roles played by molecular grammars which refers to protein sequence features including the substrate binding domains, the sequence features of intrinsically disordered regions, and the multivalence of these distinct types of domains / regions. We introduce the concept of a barcode of emergent physicochemical properties of nucleoli. Although our knowledge of the full barcode remains incomplete, we hope that the concept prompts investigations into undiscovered emergent properties and engenders an appreciation for how and why unique microenvironments control biochemical reactions.
Collapse
Affiliation(s)
- Matthew R. King
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| | - Kiersten M. Ruff
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| |
Collapse
|
12
|
Shrikondawar AN, Chennoju K, Ghosh DK, Ranjan A. Identification and functional characterization of the nuclear and nucleolar localization signals in the intrinsically disordered region of nucleomethylin. J Cell Physiol 2024; 239:e31433. [PMID: 39245872 DOI: 10.1002/jcp.31433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
The nucleolar localization of proteins is regulated by specific signals directing their trafficking to nucleus and nucleolus. Here, we elucidate the mechanism underlying the nuclear and nucleolar localization of the nucleomethylin (NML) protein, focusing on its nuclear localization signals (NLSs) and nucleolar localization signal (NoLS). Using a combination of bioinformatic analysis and experimental validation, we identified two monopartite and one bipartite NLS motifs within NML. The combined presence of both monopartite NLSs significantly enhances nuclear localization of the protein, while specific basic amino acid clusters within the bipartite NLS are crucial for their functionality. We also reveal the functional role of the NLS-coupled NoLS motif in driving nucleolar localization of NML, which contains an arginine-rich motif essential for its function. The basic residues of the arginine-rich motif of NoLS of NML interacts with nucleophosmin 1 (NPM1), allowing the possible liquid-liquid phase separation and retention of NML in the nucleolus. Remarkably, the strong NoLS of NML can direct the nucleolar localization of a cytosolic protein, aldolase, emphasizing its potency. Overall, our findings provide insights into the combinatorial functioning of NLSs and NoLS in regulating the subcellular localization of NML, highlighting the intricate regulatory mechanisms governing its localization within the nucleus and nucleolus.
Collapse
Affiliation(s)
- Akshaykumar Nanaji Shrikondawar
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, India
| | - Kiranmai Chennoju
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | | | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
13
|
Gest AM, Sahan AZ, Zhong Y, Lin W, Mehta S, Zhang J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem Rev 2024; 124:12573-12660. [PMID: 39535501 PMCID: PMC11613326 DOI: 10.1021/acs.chemrev.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Cellular function is controlled through intricate networks of signals, which lead to the myriad pathways governing cell fate. Fluorescent biosensors have enabled the study of these signaling pathways in living systems across temporal and spatial scales. Over the years there has been an explosion in the number of fluorescent biosensors, as they have become available for numerous targets, utilized across spectral space, and suited for various imaging techniques. To guide users through this extensive biosensor landscape, we discuss critical aspects of fluorescent proteins for consideration in biosensor development, smart tagging strategies, and the historical and recent biosensors of various types, grouped by target, and with a focus on the design and recent applications of these sensors in living systems.
Collapse
Affiliation(s)
- Anneliese
M. M. Gest
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Ayse Z. Sahan
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Wei Lin
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Sohum Mehta
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Shu
Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
14
|
Wang H, Tang J, Yan S, Li C, Li Z, Xiong Z, Li Z, Tu C. Liquid-liquid Phase Separation in Aging: Novel Insights in the Pathogenesis and Therapeutics. Ageing Res Rev 2024; 102:102583. [PMID: 39566743 DOI: 10.1016/j.arr.2024.102583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
The intricate organization of distinct cellular compartments is paramount for the maintenance of normal biological functions and the orchestration of complex biochemical reactions. These compartments, whether membrane-bound organelles or membraneless structures like Cajal bodies and RNA transport granules, play crucial roles in cellular function. Liquid-liquid phase separation (LLPS) serves as a reversible process that elucidates the genesis of membranelles structures through the self-assembly of biomolecules. LLPS has been implicated in a myriad of physiological and pathological processes, encompassing immune response and tumor genesis. But the association between LLPS and aging has not been clearly clarified. A recent advancement in the realm of aging research involves the introduction of a new edition outlining the twelve hallmarks of aging, categorized into three distinct groups. By delving into the role and mechanism of LLPS in the formation of membraneless structures at a molecular level, this review encapsulates an exploration of the interaction between LLPS and these aging hallmarks, aiming to offer novel perspectives of the intricate mechanisms underlying the aging process and deeper insights into aging therapeutics.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Shuxiang Yan
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zhaoqi Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zijian Xiong
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Engineering Research Center of Artificial Intelligence-Driven Medical Device, The Second Xiangya Hospital of Central South University Changsha 410011, China, Changsha 410011, China; Shenzhen Research Institute of Central South University, Shenzhen 518063, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China; Changsha Medical University, Changsha 410219, China
| |
Collapse
|
15
|
Gibbs E, Miao Q, Ferrolino M, Bajpai R, Hassan A, Phillips AH, Pitre A, Kümmerle R, Miller S, Nagy G, Leite W, Heller W, Stanley C, Perrone B, Kriwacki R. p14 ARF forms meso-scale assemblies upon phase separation with NPM1. Nat Commun 2024; 15:9531. [PMID: 39528457 PMCID: PMC11555371 DOI: 10.1038/s41467-024-53904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
NPM1 is an abundant nucleolar chaperone that, in addition to facilitating ribosome biogenesis, contributes to nucleolar stress responses and tumor suppression through its regulation of the p14 Alternative Reading Frame tumor suppressor protein (p14ARF). Oncogenic stress induces p14ARF to inhibit MDM2, stabilize p53 and arrest the cell cycle. Under non-stress conditions, NPM1 stabilizes p14ARF in nucleoli, preventing its degradation and blocking p53 activation. However, the mechanisms underlying the regulation of p14ARF by NPM1 are unclear because the structural features of the p14ARF-NPM1 complex were elusive. Here we show that p14ARF assembles into a gel-like meso-scale network upon phase separation with NPM1. This assembly is mediated by intermolecular contacts formed by hydrophobic residues in an α-helix and β-strands within a partially folded N-terminal portion of p14ARF. These hydrophobic interactions promote phase separation with NPM1, enhance p14ARF nucleolar partitioning, restrict NPM1 diffusion within condensates and nucleoli, and reduce cellular proliferation. Our structural analysis provides insights into the multifaceted chaperone function of NPM1 in nucleoli by mechanistically linking the nucleolar localization of p14ARF to its partial folding and meso-scale assembly upon phase separation with NPM1.
Collapse
Affiliation(s)
- Eric Gibbs
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Qi Miao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mylene Ferrolino
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richa Bajpai
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Aila Hassan
- Bruker Switzerland AG, Fällanden, Switzerland
| | - Aaron H Phillips
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Aaron Pitre
- Cell and Tissue Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Shondra Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gergely Nagy
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Wellington Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - William Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Chris Stanley
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA.
| |
Collapse
|
16
|
Buggiani J, Meinnel T, Giglione C, Frottin F. Advances in nuclear proteostasis of metazoans. Biochimie 2024; 226:148-164. [PMID: 38642824 DOI: 10.1016/j.biochi.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
The proteostasis network and associated protein quality control (PQC) mechanisms ensure proteome functionality and are essential for cell survival. A distinctive feature of eukaryotic cells is their high degree of compartmentalization, requiring specific and adapted proteostasis networks for each compartment. The nucleus, essential for maintaining the integrity of genetic information and gene transcription, is one such compartment. While PQC mechanisms have been investigated for decades in the cytoplasm and the endoplasmic reticulum, our knowledge of nuclear PQC pathways is only emerging. Recent developments in the field have underscored the importance of spatially managing aberrant proteins within the nucleus. Upon proteotoxic stress, misfolded proteins and PQC effectors accumulate in various nuclear membrane-less organelles. Beyond bringing together effectors and substrates, the biophysical properties of these organelles allow novel PQC functions. In this review, we explore the specificity of the nuclear compartment, the effectors of the nuclear proteostasis network, and the PQC roles of nuclear membrane-less organelles in metazoans.
Collapse
Affiliation(s)
- Julia Buggiani
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Frédéric Frottin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| |
Collapse
|
17
|
Uversky VN. How to drug a cloud? Targeting intrinsically disordered proteins. Pharmacol Rev 2024; 77:PHARMREV-AR-2023-001113. [PMID: 39433443 DOI: 10.1124/pharmrev.124.001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
Biologically active proteins/regions without stable structure (i.e., intrinsically disordered proteins and regions (IDPs and IDRs)) are commonly found in all proteomes. They have a unique functional repertoire that complements the functionalities of ordered proteins and domains. IDPs/IDRs are multifunctional promiscuous binders capable of folding at interaction with specific binding partners on a template- or context-dependent manner, many of which undergo liquid-liquid phase separation, leading to the formation of membrane-less organelles and biomolecular condensates. Many of them are frequently related to the pathogenesis of various human diseases. All this defines IDPs/IDRs as attractive targets for the development of novel drugs. However, their lack of unique structures, multifunctionality, binding promiscuity, and involvement in unusual modes of action preclude direct use of traditional structure-based drug design approaches for targeting IDPs/IDRs, and make disorder-based drug discovery for these "protein clouds" challenging. Despite all these complexities there is continuing progress in the design of small molecules affecting IDPs/IDRs. This article describes the major structural features of IDPs/IDRs and the peculiarities of the disorder-based functionality. It also discusses the roles of IDPs/IDRs in various pathologies, and shows why the approaches elaborated for finding drugs targeting ordered proteins cannot be directly used for the intrinsic disorder-based drug design, and introduces some novel methodologies suitable for these purposes. Finally, it emphasizes that regardless of their multifunctionality, binding promiscuity, lack of unique structures, and highly dynamic nature, "protein clouds" are principally druggable. Significance Statement Intrinsically disordered proteins and regions are highly abundant in nature, have multiple important biological functions, are commonly involved in the pathogenesis of a multitude of human diseases, and are therefore considered as very attractive drug targets. Although dealing with these unstructured multifunctional protein/regions is a challenging task, multiple innovative approaches have been designed to target them by small molecules.
Collapse
|
18
|
Gavrilova AA, Neklesova MV, Zagryadskaya YA, Kuznetsova IM, Turoverov KK, Fonin AV. Stress-Induced Evolution of the Nucleolus: The Role of Ribosomal Intergenic Spacer (rIGS) Transcripts. Biomolecules 2024; 14:1333. [PMID: 39456266 PMCID: PMC11505599 DOI: 10.3390/biom14101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
It became clear more than 20 years ago that the nucleolus not only performs the most important biological function of assembling ribonucleic particles but is also a key controller of many cellular processes, participating in cellular adaptation to stress. The nucleolus's multifunctionality is due to the peculiarities of its biogenesis. The nucleolus is a multilayered biomolecular condensate formed by liquid-liquid phase separation (LLPS). In this review, we focus on changes occurring in the nucleolus during cellular stress, molecular features of the nucleolar response to abnormal and stressful conditions, and the role of long non-coding RNAs transcribed from the intergenic spacer region of ribosomal DNA (IGS rDNA).
Collapse
Affiliation(s)
- Anastasia A. Gavrilova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| | - Margarita V. Neklesova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| | | | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| |
Collapse
|
19
|
Sheu-Gruttadauria J, Yan X, Stuurman N, Vale RD, Floor SN. Nucleolar dynamics are determined by the ordered assembly of the ribosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.26.559432. [PMID: 37808656 PMCID: PMC10557630 DOI: 10.1101/2023.09.26.559432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Ribosome biogenesis occurs in the nucleolus, a nuclear biomolecular condensate that exhibits dynamic biophysical properties thought to be important for function. However, the relationship between ribosome assembly and nucleolar dynamics is incompletely understood. Here, we present a platform for high-throughput fluorescence recovery after photobleaching (HiT-FRAP), which we use to screen hundreds of genes for their impact on dynamics of the nucleolar scaffold nucleophosmin (NPM1). We find that scaffold dynamics and nucleolar morphology respond to disruptions in key stages of ribosome biogenesis. Accumulation of early ribosomal intermediates leads to nucleolar rigidification while late intermediates lead to increased fluidity. We map these biophysical changes to specific ribosomal intermediates and their affinity for NPM1. We also discover that disrupting mRNA processing impacts nucleolar dynamics and ribosome biogenesis. This work mechanistically ties ribosome assembly to the biophysical features of the nucleolus and enables study of how dynamics relate to function across other biomolecular condensates.
Collapse
Affiliation(s)
- Jessica Sheu-Gruttadauria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Xiaowei Yan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Present address: Department of Dermatology, Stanford, CA, USA
| | - Nico Stuurman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Present address: Altos Labs, Redwood City, CA, USA
| | - Ronald D. Vale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stephen N. Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
20
|
Uversky VN. On the Roles of Protein Intrinsic Disorder in the Origin of Life and Evolution. Life (Basel) 2024; 14:1307. [PMID: 39459607 PMCID: PMC11509291 DOI: 10.3390/life14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Obviously, the discussion of different factors that could have contributed to the origin of life and evolution is clear speculation, since there is no way of checking the validity of most of the related hypotheses in practice, as the corresponding events not only already happened, but took place in a very distant past. However, there are a few undisputable facts that are present at the moment, such as the existence of a wide variety of living forms and the abundant presence of intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) in all living forms. Since it seems that the currently existing living forms originated from a common ancestor, their variety is a result of evolution. Therefore, one could ask a logical question of what role(s) the structureless and highly dynamic but vastly abundant and multifunctional IDPs/IDRs might have in evolution. This study represents an attempt to consider various ideas pertaining to the potential roles of protein intrinsic disorder in the origin of life and evolution.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
21
|
Genoveso MJ, Okuwaki M, Kato K, Nagata K, Kawaguchi A. Nuclear reorganization by NPM1-mediated phase separation triggered by adenovirus core protein VII. Microbiol Spectr 2024; 12:e0041624. [PMID: 39162498 PMCID: PMC11448090 DOI: 10.1128/spectrum.00416-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
Recent evidence has revealed that the reorganization of nuclear domains is largely mediated by liquid-liquid phase separation (LLPS). During viral infection, numerous nuclear domains undergo significant changes through LLPS for and against the replication of the virus. However, the regulatory mechanism of LLPS in response to viral infection and its detailed functions in viral replication remain unclear. In this study, we found that the activity of the nucleolar protein NPM1, a remodeling factor for the chromatin-like structure of adenovirus DNA, to induce LLPS is required for deposition of adenovirus core protein VII in a subnuclear domain, the virus-induced post-replication (ViPR) body, in the late phases of infection. The interaction between NPM1 and protein VII was responsible for initiating LLPS. The inhibition of LLPS by 1,6-hexanediol treatment resulted in the dispersion of protein VII from the ViPR bodies. These findings suggest that protein VII accumulates in the ViPR bodies in concert with the LLPS formation of NPM1 triggered by protein VII. After photobleaching of EGFP-NPM1 in the ViPR bodies, EGFP-NPM1 showed a relatively fast recovery half-time, indicating the fluid-like properties of NPM1 in this compartment. Importantly, NPM1 depletion decreased the genome packaging in the viral capsids, possibly owing to the formation of a defective adenovirus core. This study highlights the dynamic interplay between viral pathogens and the host nucleus for the reorganization of membrane-less compartments that facilitate their replication. IMPORTANCE In this study, we explored how adenoviruses utilize a process known as liquid-liquid phase separation (LLPS) to enhance their replication. We focused on a cellular chromatin remodeling protein, NPM1, which plays a crucial role in nucleolar formation through LLPS. NPM1 facilitates LLPS by interacting with adenovirus protein VII, effectively accumulating protein VII into membrane-less compartments called virus-induced post-replication bodies. NPM1 functions as a molecular chaperone of protein VII to assemble viral chromatin by transferring protein VII to viral DNA. Remarkably, when NPM1 was depleted, this process was disrupted, decreasing viral genome packaging. These findings shed light on a critical aspect of virus-host interactions, illustrating how adenovirus utilizes NPM1-mediated LLPS activity. Our findings provide valuable insights into the dynamic interplay between viruses and the host nucleus.
Collapse
Affiliation(s)
- Michelle Jane Genoveso
- Department of Infection Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mitsuru Okuwaki
- Laboratory of Biochemistry, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Kohsuke Kato
- Department of Infection Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kyosuke Nagata
- Department of Infection Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Kawaguchi
- Department of Infection Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
- Center for Quantum and Information Life Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
22
|
Brunetti L, Pianigiani G, Gundry MC, Goodell MA, Falini B. Mutant NPM1 marginally impacts ribosome footprint in acute myeloid leukemia cells. EJHAEM 2024; 5:1028-1032. [PMID: 39415917 PMCID: PMC11481009 DOI: 10.1002/jha2.996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024]
Abstract
Background NPM1-mutated acute myeloid leukemia (AML) is the most frequent AML subtype. As wild-type NPM1 is known to orchestrate ribosome biogenesis, it has been hypothesized that altered translation may contribute to leukemogenesis and leukemia maintenance in NPM1-mutated AML. However, this hypothesis has never been investigated. We reasoned that if mutant NPM1 (NPM1c) directly impacts translation in leukemic cells, loss of NPM1c would result in acute changes in the ribosome footprint. Methods Here, we performed ribosome footprint profiling (Ribo-seq) and bulk messenger RNA (mRNA) sequencing in two NPM1-mutated cell lines engineered to express endogenous NPM1c fused to the FKBP (F36V) degron tag (degron cells). Results and discussion Incubation of degron cells with the small compound dTAG-13 enables highly specific degradation of NPM1c within 4 hours. As expected, RNA-sequencing data showed early loss of homeobox gene expression following NPM1c degradation, confirming the reliability of our model. In contrast, Ribo-seq data showed negligible changes in the ribosome footprint in both cell lines, implying that the presence of NPM1c does not influence ribosome abundance and positioning on mRNA. While it is predictable that NPM1c exerts its leukemogenic activity at multiple levels, ribosome footprint does not seem influenced by the presence of mutant NPM1.
Collapse
Affiliation(s)
- Lorenzo Brunetti
- Department of Clinical and Molecular SciencesHematology, Università Politecnica delle MarcheAnconaItaly
- Department of Medicine and SurgeryHematology, Center for Hemato‐Oncological Research (CREO)University of PerugiaPerugiaItaly
| | - Giulia Pianigiani
- Department of Medicine and SurgeryHematology, Center for Hemato‐Oncological Research (CREO)University of PerugiaPerugiaItaly
- Institute for Maternal and Child HealthI.R.C.C.S. “Burlo Garofolo”TriesteItaly
| | - Michael C. Gundry
- Stem Cell and Regenerative MedicineBaylor College of MedicineHoustonTexasUSA
| | - Margaret A. Goodell
- Stem Cell and Regenerative MedicineBaylor College of MedicineHoustonTexasUSA
| | - Brunangelo Falini
- Department of Medicine and SurgeryHematology, Center for Hemato‐Oncological Research (CREO)University of PerugiaPerugiaItaly
| |
Collapse
|
23
|
Quinodoz SA, Jiang L, Abu-Alfa AA, Comi TJ, Zhao H, Yu Q, Wiesner LW, Botello JF, Donlic A, Soehalim E, Zorbas C, Wacheul L, Košmrlj A, Lafontaine D, Klinge S, Brangwynne CP. Mapping and engineering RNA-controlled architecture of the multiphase nucleolus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.28.615444. [PMID: 39386460 PMCID: PMC11463421 DOI: 10.1101/2024.09.28.615444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Biomolecular condensates are key features of intracellular compartmentalization. As the most prominent nuclear condensate in eukaryotes, the nucleolus is a layered multiphase liquid-like structure and the site of ribosome biogenesis. In the nucleolus, ribosomal RNAs (rRNAs) are transcribed and processed, undergoing multiple maturation steps that ultimately result in formation of the ribosomal small subunit (SSU) and large subunit (LSU). However, how rRNA processing is coupled to the layered nucleolar organization is poorly understood due to a lack of tools to precisely monitor and perturb nucleolar rRNA processing dynamics. Here, we developed two complementary approaches to spatiotemporally map rRNA processing and engineer de novo nucleoli. Using sequencing in parallel with imaging, we found that rRNA processing steps are spatially segregated, with sequential maturation of rRNA required for its outward movement through nucleolar phases. Furthermore, by generating synthetic de novo nucleoli through an engineered rDNA plasmid system in cells, we show that defects in SSU processing can alter the ordering of nucleolar phases, resulting in inside-out nucleoli and preventing rRNA outflux, while LSU precursors are necessary to build the outermost layer of the nucleolus. These findings demonstrate how rRNA is both a scaffold and substrate for the nucleolus, with rRNA acting as a programmable blueprint for the multiphase architecture that facilitates assembly of an essential molecular machine.
Collapse
Affiliation(s)
- S A Quinodoz
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 21044, USA
| | - L Jiang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - A A Abu-Alfa
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - T J Comi
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton NJ, 08544, USA
| | - H Zhao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton NJ, 08544, USA
| | - Q Yu
- Lewis-Sigler Institute for Integrative Genomics, Princeton NJ, 08544, USA
| | - L W Wiesner
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - J F Botello
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - A Donlic
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - E Soehalim
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton NJ, 08544, USA
| | - C Zorbas
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, B-6041 Gosselies, Belgium
| | - L Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, B-6041 Gosselies, Belgium
| | - A Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton NJ, 08544, USA
- Princeton Materials Institute, Princeton NJ, 08544, USA
| | - Dlj Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, B-6041 Gosselies, Belgium
| | - S Klinge
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - C P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton NJ, 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 21044, USA
| |
Collapse
|
24
|
Ulloa-Aguilar JM, Herrera Moro Huitron L, Benítez-Zeferino RY, Cerna-Cortes JF, García-Cordero J, León-Reyes G, Guzman-Bautista ER, Farfan-Morales CN, Reyes-Ruiz JM, Miranda-Labra RU, De Jesús-González LA, León-Juárez M. The Nucleolus and Its Interactions with Viral Proteins Required for Successful Infection. Cells 2024; 13:1591. [PMID: 39329772 PMCID: PMC11430610 DOI: 10.3390/cells13181591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Nuclear bodies are structures in eukaryotic cells that lack a plasma membrane and are considered protein condensates, DNA, or RNA molecules. Known nuclear bodies include the nucleolus, Cajal bodies, and promyelocytic leukemia nuclear bodies. These bodies are involved in the concentration, exclusion, sequestration, assembly, modification, and recycling of specific components involved in the regulation of ribosome biogenesis, RNA transcription, and RNA processing. Additionally, nuclear bodies have been shown to participate in cellular processes such as the regulation of transcription of the cell cycle, mitosis, apoptosis, and the cellular stress response. The dynamics and functions of these bodies depend on the state of the cell. It is now known that both DNA and RNA viruses can direct their proteins to nuclear bodies, causing alterations in their composition, dynamics, and functions. Although many of these mechanisms are still under investigation, it is well known that the interaction between viral and nuclear body proteins is necessary for the success of the viral infection cycle. In this review, we concisely describe the interaction between viral and nuclear body proteins. Furthermore, we focus on the role of the nucleolus in RNA virus infections. Finally, we discuss the possible implications of the interaction of viral proteins on cellular transcription and the formation/degradation of non-coding RNAs.
Collapse
Affiliation(s)
- José Manuel Ulloa-Aguilar
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
- Posgrado en Biología Experimental, Departamento de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09310, Mexico
| | - Luis Herrera Moro Huitron
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Rocío Yazmin Benítez-Zeferino
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Jorge Francisco Cerna-Cortes
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Guadalupe León-Reyes
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Edgar Rodrigo Guzman-Bautista
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
| | - Carlos Noe Farfan-Morales
- Departamento de Ciencias Naturales, Universidad Autonoma Metropolitana (UAM), Unidad Cuajimalpa, Mexico City 05348, Mexico;
| | - José Manuel Reyes-Ruiz
- Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS), Veracruz 91897, Mexico;
| | - Roxana U. Miranda-Labra
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09310, Mexico;
| | | | - Moises León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
| |
Collapse
|
25
|
Mathias C, Rodrigues AC, Baal SCS, de Azevedo ALK, Kozak VN, Alves LF, de Oliveira JC, Guil S, Gradia DF. The landscape of lncRNAs in cell granules: Insights into their significance in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1870. [PMID: 39268566 DOI: 10.1002/wrna.1870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
Cellular compartmentalization, achieved through membrane-based compartments, is a fundamental aspect of cell biology that contributes to the evolutionary success of cells. While organelles have traditionally been the focus of research, membrane-less organelles (MLOs) are emerging as critical players, exhibiting distinct morphological features and unique molecular compositions. Recent research highlights the pivotal role of long noncoding RNAs (lncRNAs) in MLOs and their involvement in various cellular processes across different organisms. In the context of cancer, dysregulation of MLO formation, influenced by altered lncRNA expression, impacts chromatin organization, oncogenic transcription, signaling pathways, and telomere lengthening. This review synthesizes the current understanding of lncRNA composition within MLOs, delineating their functions and exploring how their dysregulation contributes to human cancers. Environmental challenges in tumorigenesis, such as nutrient deprivation and hypoxia, induce stress granules, promoting cancer cell survival and progression. Advancements in biochemical techniques, particularly single RNA imaging methods, offer valuable tools for studying RNA functions within live cells. However, detecting low-abundance lncRNAs remains challenging due to their limited expression levels. The correlation between lncRNA expression and pathological conditions, particularly cancer, should be explored, emphasizing the importance of single-cell studies for precise biomarker identification and the development of personalized therapeutic strategies. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Carolina Mathias
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Ana Carolina Rodrigues
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Suelen Cristina Soares Baal
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Vanessa Nascimento Kozak
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| |
Collapse
|
26
|
Sakthivel D, Brown-Suedel AN, Lopez KE, Salgar S, Coutinho LE, Keane F, Huang S, Sherry KM, Charendoff CI, Dunne KP, Robichaux DJ, Vargas-Hernández A, Le B, Shin CS, Carisey AF, Poreba M, Flanagan JM, Bouchier-Hayes L. Caspase-2 is essential for proliferation and self-renewal of nucleophosmin-mutated acute myeloid leukemia. SCIENCE ADVANCES 2024; 10:eadj3145. [PMID: 39093977 PMCID: PMC11296348 DOI: 10.1126/sciadv.adj3145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/28/2024] [Indexed: 08/04/2024]
Abstract
Mutation in nucleophosmin (NPM1) causes relocalization of this normally nucleolar protein to the cytoplasm (NPM1c+). Despite NPM1 mutation being the most common driver mutation in cytogenetically normal adult acute myeloid leukemia (AML), the mechanisms of NPM1c+-induced leukemogenesis remain unclear. Caspase-2 is a proapoptotic protein activated by NPM1 in the nucleolus. Here, we show that caspase-2 is also activated by NPM1c+ in the cytoplasm and DNA damage-induced apoptosis is caspase-2 dependent in NPM1c+ but not in NPM1wt AML cells. Strikingly, in NPM1c+ cells, caspase-2 loss results in profound cell cycle arrest, differentiation, and down-regulation of stem cell pathways that regulate pluripotency including impairment of the AKT/mTORC1 pathways, and inhibition of Rictor cleavage. In contrast, there were minimal differences in proliferation, differentiation, or the transcriptional profile of NPM1wt cells lacking caspase-2. Our results show that caspase-2 is essential for proliferation and self-renewal of AML cells expressing mutated NPM1. This study demonstrates that caspase-2 is a major effector of NPM1c+ function.
Collapse
Affiliation(s)
- Dharaniya Sakthivel
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital William T. Shearer Center for Human Immunobiology, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexandra N. Brown-Suedel
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital William T. Shearer Center for Human Immunobiology, Houston, TX 77030, USA
| | - Karla E. Lopez
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital William T. Shearer Center for Human Immunobiology, Houston, TX 77030, USA
| | - Suruchi Salgar
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital William T. Shearer Center for Human Immunobiology, Houston, TX 77030, USA
| | - Luiza E. Coutinho
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital William T. Shearer Center for Human Immunobiology, Houston, TX 77030, USA
| | - Francesca Keane
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shixia Huang
- Advanced Technology Cores, Department of Molecular and Cellular Biology, Huffington Department of Education, Innovation & Technology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kenneth Mc Sherry
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chloé I. Charendoff
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin P. Dunne
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dexter J. Robichaux
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander Vargas-Hernández
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital William T. Shearer Center for Human Immunobiology, Houston, TX 77030, USA
| | - BaoChau Le
- Texas Children’s Hospital William T. Shearer Center for Human Immunobiology, Houston, TX 77030, USA
| | - Crystal S. Shin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexandre F. Carisey
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Marcin Poreba
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50370, Poland
| | - Jonathan M. Flanagan
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital William T. Shearer Center for Human Immunobiology, Houston, TX 77030, USA
| | - Lisa Bouchier-Hayes
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital William T. Shearer Center for Human Immunobiology, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
27
|
Joshi A, Avni A, Walimbe A, Rai SK, Sarkar S, Mukhopadhyay S. Hydrogen-Bonded Network of Water in Phase-Separated Biomolecular Condensates. J Phys Chem Lett 2024; 15:7724-7734. [PMID: 39042834 DOI: 10.1021/acs.jpclett.4c01153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Biomolecular condensates formed via phase separation of intrinsically disordered proteins/regions (IDPs/IDRs) and nucleic acids are associated with cell physiology and disease. Water makes up for ∼60-70% of the condensate volume and is thought to influence the complex interplay of chain-chain and chain-solvent interactions, modulating the mesoscale properties of condensates. The behavior of water in condensates and the key roles of protein hydration water in driving the phase separation remain elusive. Here, we employ single-droplet vibrational Raman spectroscopy to illuminate the structural redistribution within protein hydration water during the phase separation of neuronal IDPs. Our Raman measurements reveal the changes in the water hydrogen bonding network during homotypic and heterotypic phase separation governed by various molecular drivers. Such single-droplet water Raman measurements offer a potent generic tool to unmask the intriguing interplay of sequence-encoded chain-chain and chain-solvent interactions governing macromolecular phase separation into membraneless organelles, synthetic condensates, and protocells.
Collapse
|
28
|
Chakraborty S, Mishra J, Roy A, Niharika, Manna S, Baral T, Nandi P, Patra S, Patra SK. Liquid-liquid phase separation in subcellular assemblages and signaling pathways: Chromatin modifications induced gene regulation for cellular physiology and functions including carcinogenesis. Biochimie 2024; 223:74-97. [PMID: 38723938 DOI: 10.1016/j.biochi.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024]
Abstract
Liquid-liquid phase separation (LLPS) describes many biochemical processes, including hydrogel formation, in the integrity of macromolecular assemblages and existence of membraneless organelles, including ribosome, nucleolus, nuclear speckles, paraspeckles, promyelocytic leukemia (PML) bodies, Cajal bodies (all exert crucial roles in cellular physiology), and evidence are emerging day by day. Also, phase separation is well documented in generation of plasma membrane subdomains and interplay between membranous and membraneless organelles. Intrinsically disordered regions (IDRs) of biopolymers/proteins are the most critical sticking regions that aggravate the formation of such condensates. Remarkably, phase separated condensates are also involved in epigenetic regulation of gene expression, chromatin remodeling, and heterochromatinization. Epigenetic marks on DNA and histones cooperate with RNA-binding proteins through their IDRs to trigger LLPS for facilitating transcription. How phase separation coalesces mutant oncoproteins, orchestrate tumor suppressor genes expression, and facilitated cancer-associated signaling pathways are unravelling. That autophagosome formation and DYRK3-mediated cancer stem cell modification also depend on phase separation is deciphered in part. In view of this, and to linchpin insight into the subcellular membraneless organelle assembly, gene activation and biological reactions catalyzed by enzymes, and the downstream physiological functions, and how all these events are precisely facilitated by LLPS inducing organelle function, epigenetic modulation of gene expression in this scenario, and how it goes awry in cancer progression are summarized and presented in this article.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Subhajit Patra
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
29
|
Taha MS, Ahmadian MR. Nucleophosmin: A Nucleolar Phosphoprotein Orchestrating Cellular Stress Responses. Cells 2024; 13:1266. [PMID: 39120297 PMCID: PMC11312075 DOI: 10.3390/cells13151266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Nucleophosmin (NPM1) is a key nucleolar protein released from the nucleolus in response to stress stimuli. NPM1 functions as a stress regulator with nucleic acid and protein chaperone activities, rapidly shuttling between the nucleus and cytoplasm. NPM1 is ubiquitously expressed in tissues and can be found in the nucleolus, nucleoplasm, cytoplasm, and extracellular environment. It plays a central role in various biological processes such as ribosome biogenesis, cell cycle regulation, cell proliferation, DNA damage repair, and apoptosis. In addition, it is highly expressed in cancer cells and solid tumors, and its mutation is a major cause of acute myeloid leukemia (AML). This review focuses on NPM1's structural features, functional diversity, subcellular distribution, and role in stress modulation.
Collapse
Affiliation(s)
- Mohamed S. Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Research on Children with Special Needs Department, Institute of Medical Research and Clinical Studies, National Research Centre, Cairo 12622, Egypt
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
30
|
Borghi F, Azevedo C, Johnson E, Burden JJ, Saiardi A. A mammalian model reveals inorganic polyphosphate channeling into the nucleolus and induction of a hyper-condensate state. CELL REPORTS METHODS 2024; 4:100814. [PMID: 38981472 PMCID: PMC11294840 DOI: 10.1016/j.crmeth.2024.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
Inorganic polyphosphate (polyP) is a ubiquitous polymer that controls fundamental processes. To overcome the absence of a genetically tractable mammalian model, we developed an inducible mammalian cell line expressing Escherichia coli polyphosphate kinase 1 (EcPPK1). Inducing EcPPK1 expression prompted polyP synthesis, enabling validation of polyP analytical methods. Virtually all newly synthesized polyP accumulates within the nucleus, mainly in the nucleolus. The channeled polyP within the nucleolus results in the redistribution of its markers, leading to altered rRNA processing. Ultrastructural analysis reveals electron-dense polyP structures associated with a hyper-condensed nucleolus resulting from an exacerbation of the liquid-liquid phase separation (LLPS) phenomena controlling this membraneless organelle. The selective accumulation of polyP in the nucleoli could be interpreted as an amplification of polyP channeling to where its physiological function takes place. Indeed, quantitative analysis of several mammalian cell lines confirms that endogenous polyP accumulates within the nucleolus.
Collapse
Affiliation(s)
- Filipy Borghi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Cristina Azevedo
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Jemima J Burden
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
31
|
Rana U, Xu K, Narayanan A, Walls MT, Panagiotopoulos AZ, Avalos JL, Brangwynne CP. Asymmetric oligomerization state and sequence patterning can tune multiphase condensate miscibility. Nat Chem 2024; 16:1073-1082. [PMID: 38383656 PMCID: PMC11230906 DOI: 10.1038/s41557-024-01456-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Endogenous biomolecular condensates, composed of a multitude of proteins and RNAs, can organize into multiphasic structures with compositionally distinct phases. This multiphasic organization is generally understood to be critical for facilitating their proper biological function. However, the biophysical principles driving multiphase formation are not completely understood. Here we use in vivo condensate reconstitution experiments and coarse-grained molecular simulations to investigate how oligomerization and sequence interactions modulate multiphase organization in biomolecular condensates. We demonstrate that increasing the oligomerization state of an intrinsically disordered protein results in enhanced immiscibility and multiphase formation. Interestingly, we find that oligomerization tunes the miscibility of intrinsically disordered proteins in an asymmetric manner, with the effect being more pronounced when the intrinsically disordered protein, exhibiting stronger homotypic interactions, is oligomerized. Our findings suggest that oligomerization is a flexible biophysical mechanism that cells can exploit to tune the internal organization of biomolecular condensates and their associated biological functions.
Collapse
Affiliation(s)
- Ushnish Rana
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Ke Xu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Amal Narayanan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA
| | - Mackenzie T Walls
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, USA.
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA.
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA.
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
32
|
Kapitonova AA, Perfilova KV, Cooley RB, Sluchanko NN. Phosphorylation Code of Human Nucleophosmin Includes Four Cryptic Sites for Hierarchical Binding of 14-3-3 Proteins. J Mol Biol 2024; 436:168592. [PMID: 38702038 DOI: 10.1016/j.jmb.2024.168592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Nucleophosmin (NPM1) is the 46th most abundant human protein with many functions whose dysregulation leads to various cancers. Pentameric NPM1 resides in the nucleolus but can also shuttle to the cytosol. NPM1 is regulated by multisite phosphorylation, yet molecular consequences of site-specific NPM1 phosphorylation remain elusive. Here we identify four 14-3-3 protein binding sites in NPM1 concealed within its oligomerization and α-helical C-terminal domains that are found phosphorylated in vivo. By combining mutagenesis, in-cell phosphorylation and PermaPhos technology for site-directed incorporation of a non-hydrolyzable phosphoserine mimic, we show how phosphorylation promotes NPM1 monomerization and partial unfolding, to recruit 14-3-3 dimers with low-micromolar affinity. Using fluorescence anisotropy we quantified pairwise interactions of all seven human 14-3-3 isoforms with four recombinant NPM1 phosphopeptides and assessed their druggability by fusicoccin. This revealed a complex hierarchy of 14-3-3 affinities toward the primary (S48, S293) and secondary (S106, S260) sites, differentially modulated by the small molecule. As three of these 14-3-3 binding phosphosites in NPM1 reside within signal sequences, this work suggests a mechanism of NPM1 regulation by which NPM1 phosphorylation can promote 14-3-3 binding to affect NPM1 shuttling between cell compartments. It also provides further evidence that phosphorylation-induced structural rearrangements of globular proteins serve to expose otherwise cryptic 14-3-3-binding sites that are important for cellular function.
Collapse
Affiliation(s)
- Anna A Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Kristina V Perfilova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Richard B Cooley
- GCE4All Center, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia.
| |
Collapse
|
33
|
González-Arzola K. The nucleolus: Coordinating stress response and genomic stability. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195029. [PMID: 38642633 DOI: 10.1016/j.bbagrm.2024.195029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
The perception that the nucleoli are merely the organelles where ribosome biogenesis occurs is challenged. Only around 30 % of nucleolar proteins are solely involved in producing ribosomes. Instead, the nucleolus plays a critical role in controlling protein trafficking during stress and, according to its dynamic nature, undergoes continuous protein exchange with nucleoplasm under various cellular stressors. Hence, the concept of nucleolar stress has evolved as cellular insults that disrupt the structure and function of the nucleolus. Considering the emerging role of this organelle in DNA repair and the fact that rDNAs are the most fragile genomic loci, therapies targeting the nucleoli are increasingly being developed. Besides, drugs that target ribosome synthesis and induce nucleolar stress can be used in cancer therapy. In contrast, agents that regulate nucleolar activity may be a potential treatment for neurodegeneration caused by abnormal protein accumulation in the nucleolus. Here, I explore the roles of nucleoli beyond their ribosomal functions, highlighting the factors triggering nucleolar stress and their impact on genomic stability.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, 41092 Seville, Spain; Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
34
|
Zorbas C, Soenmez A, Léger J, De Vleeschouwer C, Lafontaine DL. Detecting material state changes in the nucleolus by label-free digital holographic microscopy. EMBO Rep 2024; 25:2786-2811. [PMID: 38654122 PMCID: PMC11169520 DOI: 10.1038/s44319-024-00134-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Ribosome biogenesis is initiated in the nucleolus, a multiphase biomolecular condensate formed by liquid-liquid phase separation. The nucleolus is a powerful disease biomarker and stress biosensor whose morphology reflects function. Here we have used digital holographic microscopy (DHM), a label-free quantitative phase contrast microscopy technique, to detect nucleoli in adherent and suspension human cells. We trained convolutional neural networks to detect and quantify nucleoli automatically on DHM images. Holograms containing cell optical thickness information allowed us to define a novel index which we used to distinguish nucleoli whose material state had been modulated optogenetically by blue-light-induced protein aggregation. Nucleoli whose function had been impacted by drug treatment or depletion of ribosomal proteins could also be distinguished. We explored the potential of the technology to detect other natural and pathological condensates, such as those formed upon overexpression of a mutant form of huntingtin, ataxin-3, or TDP-43, and also other cell assemblies (lipid droplets). We conclude that DHM is a powerful tool for quantitatively characterizing nucleoli and other cell assemblies, including their material state, without any staining.
Collapse
Affiliation(s)
- Christiane Zorbas
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, B-6041, Gosselies, Belgium
| | - Aynur Soenmez
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, B-6041, Gosselies, Belgium
| | - Jean Léger
- ICTEAM-ELEN, Fonds de la Recherche Scientifique (F.R.S./FNRS), UCLouvain, B-1348, Louvain-la-Neuve, Belgium
| | - Christophe De Vleeschouwer
- ICTEAM-ELEN, Fonds de la Recherche Scientifique (F.R.S./FNRS), UCLouvain, B-1348, Louvain-la-Neuve, Belgium
| | - Denis Lj Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, B-6041, Gosselies, Belgium.
| |
Collapse
|
35
|
Florio D, Luciano P, Di Natale C, Marasco D. The effects of histidine substitution of aromatic residues on the amyloidogenic properties of the fragment 264-277 of nucleophosmin 1. Bioorg Chem 2024; 147:107404. [PMID: 38678777 DOI: 10.1016/j.bioorg.2024.107404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Histidine (His) plays a key role in mediating protein interactions and its unique side chain determines pH responsive self-assembling processes and thus in the formation of nanostructures. In this study, To identify novel self-assembling bioinspired sequences, we analyzed a series of peptide sequences obtained through the point mutation of aromatic residues of 264-277 fragment of nucleophosmin 1 (NPM1) with single and double histidines. Through several orthogonal biophysical techniques and under different pH and ionic strength conditions we evaluated the effects of these substitutions in the amyloidogenic features of derived peptides. The results clearly indicate that both the type of aromatic mutated residue and its position can have different effect on amyloid-like behaviors. They corroborate the crucial role exerted by Tyr271 in the self-assembling process of CTD of NPM1 in AML mutated form and add novel insights in the accurate investigation of how side chain orientations can determine successful design of innovative bioinspired materials.
Collapse
Affiliation(s)
- Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Paolo Luciano
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Concetta Di Natale
- Department of Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
36
|
Mathias KM, Liu Y, Wan L. Dysregulation of transcriptional condensates in human disease: mechanisms, biological functions, and open questions. Curr Opin Genet Dev 2024; 86:102203. [PMID: 38788489 PMCID: PMC11162900 DOI: 10.1016/j.gde.2024.102203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Precise gene expression, crucial for normal development and health, depends on the co-ordinated assembly and function of various factors within the crowded nucleus. Recent evidence suggests that this process is in part regulated by mesoscale compartmentalization and concentration of transcriptional components within condensates, offering a new perspective on gene regulation. Dysregulation of transcriptional condensates is increasingly associated with diseases, indicating a potential role in pathogenesis. In this mini-review, we provide a concise overview of the current understanding of the formation and function of transcriptional condensates, with a specific focus on recent advances in their dysregulation and implications in diseases, notably cancer. We also address limitations in the field and highlight open questions for future research.
Collapse
Affiliation(s)
- Kaeli M Mathias
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry Biophysics Chemical Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yiman Liu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liling Wan
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Enustun E, Armbruster EG, Lee J, Zhang S, Yee BA, Malukhina K, Gu Y, Deep A, Naritomi J, Liang Q, Aigner S, Adler B, Cress B, Doudna J, Chaikeeratisak V, Cleveland D, Ghassemian M, Bintu B, Yeo G, Pogliano J, Corbett K. A phage nucleus-associated RNA-binding protein is required for jumbo phage infection. Nucleic Acids Res 2024; 52:4440-4455. [PMID: 38554115 PMCID: PMC11077065 DOI: 10.1093/nar/gkae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Large-genome bacteriophages (jumbo phages) of the proposed family Chimalliviridae assemble a nucleus-like compartment bounded by a protein shell that protects the replicating phage genome from host-encoded restriction enzymes and DNA-targeting CRISPR-Cas nucleases. While the nuclear shell provides broad protection against host nucleases, it necessitates transport of mRNA out of the nucleus-like compartment for translation by host ribosomes, and transport of specific proteins into the nucleus-like compartment to support DNA replication and mRNA transcription. Here, we identify a conserved phage nuclear shell-associated protein that we term Chimallin C (ChmC), which adopts a nucleic acid-binding fold, binds RNA with high affinity in vitro, and binds phage mRNAs in infected cells. ChmC also forms phase-separated condensates with RNA in vitro. Targeted knockdown of ChmC using mRNA-targeting dCas13d results in accumulation of phage-encoded mRNAs in the phage nucleus, reduces phage protein production, and compromises virion assembly. Taken together, our data show that the conserved ChmC protein plays crucial roles in the viral life cycle, potentially by facilitating phage mRNA translocation through the nuclear shell to promote protein production and virion development.
Collapse
Affiliation(s)
- Eray Enustun
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Emily G Armbruster
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Jina Lee
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sitao Zhang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kseniya Malukhina
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yajie Gu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jack T Naritomi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Qishan Liang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Benjamin A Adler
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Brady F Cress
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
| | - Majid Ghassemian
- Biomolecular and Proteomics Mass Spectrometry Facility, University of California San Diego, La Jolla, CA 92093, USA
| | - Bogdan Bintu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
| | - Joe Pogliano
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin D Corbett
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
38
|
Dar F, Cohen SR, Mitrea DM, Phillips AH, Nagy G, Leite WC, Stanley CB, Choi JM, Kriwacki RW, Pappu RV. Biomolecular condensates form spatially inhomogeneous network fluids. Nat Commun 2024; 15:3413. [PMID: 38649740 PMCID: PMC11035652 DOI: 10.1038/s41467-024-47602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
The functions of biomolecular condensates are thought to be influenced by their material properties, and these will be determined by the internal organization of molecules within condensates. However, structural characterizations of condensates are challenging, and rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that are formed by macromolecules from nucleolar granular components (GCs). We show that these minimal facsimiles of GCs form condensates that are network fluids featuring spatial inhomogeneities across different length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights suggest that condensates formed by multivalent proteins share features with network fluids formed by systems such as patchy or hairy colloids.
Collapse
Affiliation(s)
- Furqan Dar
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Samuel R Cohen
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Diana M Mitrea
- Dewpoint Therapeutics Inc., 451 D Street, Boston, MA, 02210, USA
| | - Aaron H Phillips
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Gergely Nagy
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wellington C Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Christopher B Stanley
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Jeong-Mo Choi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea.
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
39
|
King MR, Ruff KM, Lin AZ, Pant A, Farag M, Lalmansingh JM, Wu T, Fossat MJ, Ouyang W, Lew MD, Lundberg E, Vahey MD, Pappu RV. Macromolecular condensation organizes nucleolar sub-phases to set up a pH gradient. Cell 2024; 187:1889-1906.e24. [PMID: 38503281 DOI: 10.1016/j.cell.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/02/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
Nucleoli are multicomponent condensates defined by coexisting sub-phases. We identified distinct intrinsically disordered regions (IDRs), including acidic (D/E) tracts and K-blocks interspersed by E-rich regions, as defining features of nucleolar proteins. We show that the localization preferences of nucleolar proteins are determined by their IDRs and the types of RNA or DNA binding domains they encompass. In vitro reconstitutions and studies in cells showed how condensation, which combines binding and complex coacervation of nucleolar components, contributes to nucleolar organization. D/E tracts of nucleolar proteins contribute to lowering the pH of co-condensates formed with nucleolar RNAs in vitro. In cells, this sets up a pH gradient between nucleoli and the nucleoplasm. By contrast, juxta-nucleolar bodies, which have different macromolecular compositions, featuring protein IDRs with very different charge profiles, have pH values that are equivalent to or higher than the nucleoplasm. Our findings show that distinct compositional specificities generate distinct physicochemical properties for condensates.
Collapse
Affiliation(s)
- Matthew R King
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Kiersten M Ruff
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew Z Lin
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Avnika Pant
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Mina Farag
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jared M Lalmansingh
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tingting Wu
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Department of Electrical and Systems Engineering, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Martin J Fossat
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Wei Ouyang
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA; Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Matthew D Lew
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Department of Electrical and Systems Engineering, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Emma Lundberg
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA; Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Michael D Vahey
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
40
|
Valyaeva AA, Sheval EV. Nonspecific Interactions in Transcription Regulation and Organization of Transcriptional Condensates. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:688-700. [PMID: 38831505 DOI: 10.1134/s0006297924040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 06/05/2024]
Abstract
Eukaryotic cells are characterized by a high degree of compartmentalization of their internal contents, which ensures precise and controlled regulation of intracellular processes. During many processes, including different stages of transcription, dynamic membraneless compartments termed biomolecular condensates are formed. Transcription condensates contain various transcription factors and RNA polymerase and are formed by high- and low-specificity interactions between the proteins, DNA, and nearby RNA. This review discusses recent data demonstrating important role of nonspecific multivalent protein-protein and RNA-protein interactions in organization and regulation of transcription.
Collapse
Affiliation(s)
- Anna A Valyaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Eugene V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
41
|
Brown IN, Levario A, Jiang C, Stachera W, Rodriguez E, Hao YH, Woodruff JB, Lafita-Navarro MC, Conacci-Sorrell M. ZNF692 regulates nucleolar morphology by interacting with NPM1 and modifying its self-assembly properties. J Biol Chem 2024; 300:105773. [PMID: 38382671 PMCID: PMC10956046 DOI: 10.1016/j.jbc.2024.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
The nucleolus, a membrane-less organelle, is responsible for ribosomal RNA transcription, ribosomal RNA processing, and ribosome assembly. Nucleolar size and number are indicative of a cell's protein synthesis rate and proliferative capacity, and abnormalities in the nucleolus have been linked to neurodegenerative diseases and cancer. In this study, we demonstrated that the nucleolar protein ZNF692 directly interacts with nucleophosmin 1 (NPM1). Knocking down ZNF692 resulted in the nucleolar redistribution of NPM1 in ring-like structures and reduced protein synthesis. Purified NPM1 forms spherical condensates in vitro but mixing it with ZNF692 produces irregular condensates more closely resembling living cell nucleoli. Our findings indicate that ZNF692, by interacting with NPM1, plays a critical role in regulating nucleolar architecture and function in living cells.
Collapse
Affiliation(s)
- Isabella N Brown
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Arlene Levario
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chunhui Jiang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Weronika Stachera
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Enrique Rodriguez
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yi-Heng Hao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jeffrey B Woodruff
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - M Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
42
|
Kapitonova AA, Perfilova KV, Cooley RB, Sluchanko NN. Phosphorylation code of human nucleophosmin includes four cryptic sites for hierarchical binding of 14-3-3 proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580064. [PMID: 38405961 PMCID: PMC10888825 DOI: 10.1101/2024.02.13.580064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Nucleophosmin (NPM1) is the 46th most abundant human protein with many functions whose dysregulation leads to various cancers. Pentameric NPM1 resides in the nucleolus but can also shuttle to the cytosol. NPM1 is regulated by multisite phosphorylation, yet molecular consequences of site-specific NPM1 phosphorylation remain elusive. Here we identify four 14-3-3 protein binding sites in NPM1 concealed within its oligomerization and α-helical C-terminal domains that are found phosphorylated in vivo. By combining mutagenesis, in-cell phosphorylation and PermaPhos technology for site-directed incorporation of a non-hydrolyzable phosphoserine mimic, we show how phosphorylation promotes NPM1 monomerization and partial unfolding, to recruit 14-3-3 dimers with low-micromolar affinity. Using fluorescence anisotropy we quantified pairwise interactions of all seven human 14-3-3 isoforms with four recombinant NPM1 phosphopeptides and assessed their druggability by fusicoccin. This revealed a complex hierarchy of 14-3-3 affinities toward the primary (S48, S293) and secondary (S106, S260) sites, differentially modulated by the small molecule. As three of these 14-3-3 binding phospho-sites in NPM1 reside within signal sequences, this work highlights a key mechanism of NPM1 regulation by which NPM1 phosphorylation promotes 14-3-3 binding to control nucleocytoplasmic shuttling. It also provides further evidence that phosphorylation-induced structural rearrangements of globular proteins serve to expose otherwise cryptic 14-3-3-binding sites that are important for cellular function.
Collapse
Affiliation(s)
- Anna A. Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Kristina V. Perfilova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Richard B. Cooley
- GCE4All Center, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Nikolai N. Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
43
|
Dar F, Cohen SR, Mitrea DM, Phillips AH, Nagy G, Leite WC, Stanley CB, Choi JM, Kriwacki RW, Pappu RV. Biomolecular condensates form spatially inhomogeneous network fluids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.07.561338. [PMID: 37873180 PMCID: PMC10592670 DOI: 10.1101/2023.10.07.561338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The functions of biomolecular condensates are thought to be influenced by their material properties, and these will be determined by the internal organization of molecules within condensates. However, structural characterizations of condensates are challenging, and rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that are formed by macromolecules from nucleolar granular components (GCs). We show that these minimal facsimiles of GCs form condensates that are network fluids featuring spatial inhomogeneities across different length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights suggest that condensates formed by multivalent proteins share features with network fluids formed by systems such as patchy or hairy colloids.
Collapse
|
44
|
Pham AT, Mani M, Wang X, Vafabakhsh R. Multiscale biophysical analysis of nucleolus disassembly during mitosis. Proc Natl Acad Sci U S A 2024; 121:e2312250121. [PMID: 38285946 PMCID: PMC10861868 DOI: 10.1073/pnas.2312250121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/01/2024] [Indexed: 01/31/2024] Open
Abstract
During cell division, precise and regulated distribution of cellular material between daughter cells is a critical step and is governed by complex biochemical and biophysical mechanisms. To achieve this, membraneless organelles and condensates often require complete disassembly during mitosis. The biophysical principles governing the disassembly of condensates remain poorly understood. Here, we used a physical biology approach to study how physical and material properties of the nucleolus, a prominent nuclear membraneless organelle in eukaryotic cells, change during mitosis and across different scales. We found that nucleolus disassembly proceeds continuously through two distinct phases with a slow and reversible preparatory phase followed by a rapid irreversible phase that was concurrent with the nuclear envelope breakdown. We measured microscopic properties of nucleolar material including effective diffusion rates and binding affinities as well as key macroscopic properties of surface tension and bending rigidity. By incorporating these measurements into the framework of critical phenomena, we found evidence that near mitosis surface tension displays a power-law behavior as a function of biochemically modulated interaction strength. This two-step disassembly mechanism maintains structural and functional stability of nucleolus while enabling its rapid and efficient disassembly in response to cell cycle cues.
Collapse
Affiliation(s)
- An T. Pham
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
| | - Madhav Mani
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL60208
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL60208
| | - Xiaozhong Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL60208
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
| |
Collapse
|
45
|
Florio D, Marasco D. Could Targeting NPM1c+ Misfolding Be a Promising Strategy for Combating Acute Myeloid Leukemia? Int J Mol Sci 2024; 25:811. [PMID: 38255885 PMCID: PMC10815591 DOI: 10.3390/ijms25020811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of diseases classified into various types on the basis of distinct features concerning the morphology, cytochemistry and cytogenesis of leukemic cells. Among the different subtypes, the group "AML with gene mutations" includes the variations of the gene of the multifunctional protein nucleophosmin 1 (NPM1). These mutations are the most frequent (~30-35% of AML adult patients and less in pediatric ones) and occur predominantly in the C-terminal domain (CTD) of NPM1. The most important mutation is the insertion at W288, which determines the frame shift W288Cfs12/Ffs12/Lfs*12 and leads to the addition of 2-12 amino acids, which hamper the correct folding of NPM1. This mutation leads to the loss of the nuclear localization signal (NoLS) and to aberrant cytoplasmic localization, denoted as NPM1c+. Many investigations demonstrated that interfering with the cellular location and oligomerization status of NPM1 can influence its biological functions, including the proper buildup of the nucleolus, and therapeutic strategies have been proposed to target NPM1c+, particularly the use of drugs able to re-direct NPM1 localization. Our studies unveiled a direct link between AML mutations and the neat amyloidogenic character of the CTDs of NPM1c+. Herein, with the aim of exploiting these conformational features, novel therapeutic strategies are proposed that rely on the induction of the selective self-cytotoxicity of leukemic blasts by focusing on agents such as peptides, peptoids or small molecules able to enhance amyloid aggregation and targeting selectively AML-NPM1c+ mutations.
Collapse
Affiliation(s)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| |
Collapse
|
46
|
Gauthier CM, LeGallais J, Savic N, Moradi-Fard S, Grew A, Loe M, Kirlikaya B, Cobb J, Nelson CJ. Intrinsic disorder of a nucleoplasmin-like histone chaperone specifies its discrete nuclear and nucleolar functions. FEBS Lett 2024; 598:187-198. [PMID: 38058218 DOI: 10.1002/1873-3468.14783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Nucleoplasmin (NPM) histone chaperones regulate distinct processes in the nucleus and nucleolus. While intrinsically disordered regions (IDRs) are hallmarks of NPMs, it is not clear whether all NPM functions require these unstructured features. We assessed the importance of IDRs in a yeast NPM-like protein and found that regulation of rDNA copy number and genetic interactions with the nucleolar RNA surveillance machinery require the highly conserved FKBP prolyl isomerase domain, but not the NPM domain or IDRs. By contrast, transcriptional repression in the nucleus requires IDRs. Furthermore, multiple lysines in polyacidic serine/lysine motifs of IDRs are required for both lysine polyphosphorylation and NPM-mediated transcriptional repression. These results demonstrate that this NPM-like protein relies on IDRs only for some of its chromatin-related functions.
Collapse
Affiliation(s)
| | - Josey LeGallais
- Department of Biochemistry and Microbiology, University of Victoria, Canada
| | - Neda Savic
- Department of Biochemistry and Microbiology, University of Victoria, Canada
| | - Sarah Moradi-Fard
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Arden Grew
- Department of Biochemistry and Microbiology, University of Victoria, Canada
| | - Martin Loe
- Department of Biochemistry and Microbiology, University of Victoria, Canada
| | - Baran Kirlikaya
- Department of Biochemistry and Microbiology, University of Victoria, Canada
| | - Jennifer Cobb
- Department of Biochemistry and Microbiology, University of Victoria, Canada
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | |
Collapse
|
47
|
Parra AS, Johnston CA. Phase Separation as a Driver of Stem Cell Organization and Function during Development. J Dev Biol 2023; 11:45. [PMID: 38132713 PMCID: PMC10743522 DOI: 10.3390/jdb11040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
A properly organized subcellular composition is essential to cell function. The canonical organizing principle within eukaryotic cells involves membrane-bound organelles; yet, such structures do not fully explain cellular complexity. Furthermore, discrete non-membrane-bound structures have been known for over a century. Liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mode of cellular organization without the need for formal lipid membranes, with an ever-expanding and diverse list of cellular functions that appear to be regulated by this process. In comparison to traditional organelles, LLPS can occur across wider spatial and temporal scales and involves more distinct protein and RNA complexes. In this review, we discuss the impacts of LLPS on the organization of stem cells and their function during development. Specifically, the roles of LLPS in developmental signaling pathways, chromatin organization, and gene expression will be detailed, as well as its impacts on essential processes of asymmetric cell division. We will also discuss how the dynamic and regulated nature of LLPS may afford stem cells an adaptable mode of organization throughout the developmental time to control cell fate. Finally, we will discuss how aberrant LLPS in these processes may contribute to developmental defects and disease.
Collapse
|
48
|
Gibbs E, Miao Q, Ferrolino M, Bajpai R, Hassan A, Phillips AH, Pitre A, Kümmerle R, Miller S, Heller W, Stanley C, Perrone B, Kriwacki R. p14 ARF forms meso-scale assemblies upon phase separation with NPM1. RESEARCH SQUARE 2023:rs.3.rs-3592059. [PMID: 38106181 PMCID: PMC10723529 DOI: 10.21203/rs.3.rs-3592059/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
NPM1 is an abundant nucleolar chaperone that, in addition to facilitating ribosome biogenesis, contributes to nucleolar stress responses and tumor suppression through its regulation of the p14 Alternative Reading Frame tumor suppressor protein (p14ARF). Oncogenic stress induces p14ARF to inhibit MDM2, stabilize p53 and arrest the cell cycle. Under non-stress conditions, NPM1 stabilizes p14ARF in nucleoli, preventing its degradation and blocking p53 activation. However, the mechanisms underlying the regulation of p14ARF by NPM1 are unclear because the structural features of the p14ARF-NPM1 complex remain elusive. Here we show that NPM1 sequesters p14ARF within phase-separated condensates, facilitating the assembly of p14ARF into a gel-like meso-scale network. This assembly is mediated by intermolecular contacts formed by hydrophobic residues in an α-helix and β-strands within a partially folded N-terminal domain of p14ARF. Those hydrophobic interactions promote phase separation with NPM1, enhance nucleolar partitioning of p14ARF, restrict p14ARF and NPM1 diffusion within condensates and in nucleoli, and reduce cell viability. Our structural model provides novel insights into the multifaceted chaperone function of NPM1 in nucleoli by mechanistically linking the nucleolar localization of p14ARF to its partial folding and meso-scale assembly upon phase separation with NPM1.
Collapse
Affiliation(s)
- Eric Gibbs
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Qi Miao
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Mylene Ferrolino
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Richa Bajpai
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Aila Hassan
- Bruker Switzerland AG, Fällanden, Switzerland
| | - Aaron H. Phillips
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Aaron Pitre
- Cell and Tissue Imaging Shared Resource, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Shondra Miller
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - William Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Chris Stanley
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| |
Collapse
|
49
|
Sahin C, Leppert A, Landreh M. Advances in mass spectrometry to unravel the structure and function of protein condensates. Nat Protoc 2023; 18:3653-3661. [PMID: 37907762 DOI: 10.1038/s41596-023-00900-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/09/2023] [Indexed: 11/02/2023]
Abstract
Membrane-less organelles assemble through liquid-liquid phase separation (LLPS) of partially disordered proteins into highly specialized microenvironments. Currently, it is challenging to obtain a clear understanding of the relationship between the structure and function of phase-separated protein assemblies, owing to their size, dynamics and heterogeneity. In this Perspective, we discuss recent advances in mass spectrometry (MS) that offer several promising approaches for the study of protein LLPS. We survey MS tools that have provided valuable insights into other insoluble protein systems, such as amyloids, and describe how they can also be applied to study proteins that undergo LLPS. On the basis of these recent advances, we propose to integrate MS into the experimental workflow for LLPS studies. We identify specific challenges and future opportunities for the analysis of protein condensate structure and function by MS.
Collapse
Affiliation(s)
- Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet-Biomedicum, Solna, Sweden.
- Structural Biology and NMR laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Axel Leppert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet-Biomedicum, Solna, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet-Biomedicum, Solna, Sweden.
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
50
|
Liu J, Chen Y, Nong B, Luo X, Cui K, Li Z, Zhang P, Tan W, Yang Y, Ma W, Liang P, Songyang Z. CRISPR-assisted transcription activation by phase-separation proteins. Protein Cell 2023; 14:874-887. [PMID: 36905356 PMCID: PMC10691850 DOI: 10.1093/procel/pwad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/11/2023] [Indexed: 03/12/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been widely used for genome engineering and transcriptional regulation in many different organisms. Current CRISPR-activation (CRISPRa) platforms often require multiple components because of inefficient transcriptional activation. Here, we fused different phase-separation proteins to dCas9-VPR (dCas9-VP64-P65-RTA) and observed robust increases in transcriptional activation efficiency. Notably, human NUP98 (nucleoporin 98) and FUS (fused in sarcoma) IDR domains were best at enhancing dCas9-VPR activity, with dCas9-VPR-FUS IDR (VPRF) outperforming the other CRISPRa systems tested in this study in both activation efficiency and system simplicity. dCas9-VPRF overcomes the target strand bias and widens gRNA designing windows without affecting the off-target effect of dCas9-VPR. These findings demonstrate the feasibility of using phase-separation proteins to assist in the regulation of gene expression and support the broad appeal of the dCas9-VPRF system in basic and clinical applications.
Collapse
Affiliation(s)
- Jiaqi Liu
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuxi Chen
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Baoting Nong
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiao Luo
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Kaixin Cui
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhan Li
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Pengfei Zhang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | | - Yue Yang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenbin Ma
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Puping Liang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhou Songyang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|