1
|
Lin X, Gupta D, Vaitsiankova A, Bhandari SK, Leung KSK, Menolfi D, Lee BJ, Russell HR, Gershik S, Huang X, Gu W, McKinnon PJ, Dantzer F, Rothenberg E, Tomkinson AE, Zha S. Inactive Parp2 causes Tp53-dependent lethal anemia by blocking replication-associated nick ligation in erythroblasts. Mol Cell 2024; 84:3916-3931.e7. [PMID: 39383878 PMCID: PMC11615737 DOI: 10.1016/j.molcel.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Poly (ADP-ribose) polymerase (PARP) 1 and 2 enzymatic inhibitors (PARPi) are promising cancer treatments. But recently, their use has been hindered by unexplained severe anemia and treatment-related leukemia. In addition to enzymatic inhibition, PARPi also trap PARP1 and 2 at DNA lesions. Here we report that, unlike Parp2-/- mice, which develop normally, mice expressing catalytically inactive Parp2 (E534A and Parp2EA/EA) succumb to Tp53- and Chk2-dependent erythropoietic failure in utero, mirroring Lig1-/- mice. While DNA damage mainly activates PARP1, we demonstrate that DNA replication activates PARP2 robustly. PARP2 is selectively recruited and activated by 5'-phosphorylated nicks (5'p-nicks), including those between Okazaki fragments, resolved by ligase 1 (Lig1) and Lig3. Inactive PARP2, but not its active form or absence, impedes Lig1- and Lig3-mediated ligation, causing dose-dependent replication fork collapse, which is detrimental to erythroblasts with ultra-fast forks. This PARylation-dependent structural function of PARP2 at 5'p-nicks explains the detrimental effects of PARP2 inactivation on erythropoiesis, shedding light on PARPi-induced anemia and the selection for TP53/CHK2 loss.
Collapse
Affiliation(s)
- Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Dipika Gupta
- New York University School of Medicine, New York, NY 10016, USA
| | - Alina Vaitsiankova
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Seema Khattri Bhandari
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | | | - Demis Menolfi
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Helen R Russell
- Center for Pediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Steven Gershik
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Xiaoyu Huang
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology & Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Françoise Dantzer
- Poly(ADP-ribosyl)ation and Genome Integrity, Strasbourg drug discovery and development Institute (IMS), UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
| | - Eli Rothenberg
- New York University School of Medicine, New York, NY 10016, USA
| | - Alan E Tomkinson
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology & Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Department of Immunology & Microbiology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
2
|
Wang J, Sadeghi CA, Le LV, Le Bouteiller M, Frock RL. ATM and 53BP1 regulate alternative end joining-mediated V(D)J recombination. SCIENCE ADVANCES 2024; 10:eadn4682. [PMID: 39083600 PMCID: PMC11290492 DOI: 10.1126/sciadv.adn4682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/11/2024] [Indexed: 08/02/2024]
Abstract
G0-G1 phase alternative end joining (A-EJ) is a recently defined mutagenic pathway characterized by resected deletion and translocation joints that are predominantly direct and are distinguished from A-EJ in cycling cells that rely much more on microhomology-mediated end joining (MMEJ). Using chemical and genetic approaches, we systematically evaluate potential A-EJ factors and DNA damage response (DDR) genes to support this mechanism by mapping the repair fates of RAG1/2-initiated double-strand breaks in the context of Igκ locus V-J recombination and chromosome translocation. Our findings highlight a polymerase theta-independent Parp1-XRCC1/LigIII axis as central A-EJ components, supported by 53BP1 in the context of an Ataxia-telangiectasia mutated (ATM)-activated DDR. Mechanistically, we demonstrate varied changes in short-range resection, MMEJ, and translocation, imposed by compromising specific DDR activities, which include polymerase alpha, Ataxia-telangiectasia and Rad3-related (ATR), DNA2, and Mre11. This study advances our understanding of DNA damage repair within the 53BP1 regulatory domain and the RAG1/2 postcleavage complex.
Collapse
Affiliation(s)
- Jinglong Wang
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cheyenne A. Sadeghi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Long V. Le
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marie Le Bouteiller
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
3
|
Pilié PG, Giuliani V, Wang WL, McGrail DJ, Bristow CA, Ngoi NY, Kyewalabye K, Wani KM, Le H, Campbell E, Sanchez NS, Yang D, Gheeya JS, Goswamy RV, Holla V, Shaw KR, Meric-Bernstam F, Liu CY, Ma X, Feng N, Machado AA, Bardenhagen JP, Vellano CP, Marszalek JR, Rajendra E, Piscitello D, Johnson TI, Likhatcheva M, Elinati E, Majithiya J, Neves J, Grinkevich V, Ranzani M, Luzarraga MR, Boursier M, Armstrong L, Geo L, Lillo G, Tse WY, Lazar AJ, Kopetz SE, Geck Do MK, Lively S, Johnson MG, Robinson HM, Smith GC, Carroll CL, Di Francesco ME, Jones P, Heffernan TP, Yap TA. Ataxia-Telangiectasia Mutated Loss-of-Function Displays Variant and Tissue-Specific Differences across Tumor Types. Clin Cancer Res 2024; 30:2121-2139. [PMID: 38416404 PMCID: PMC11094420 DOI: 10.1158/1078-0432.ccr-23-1763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/31/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE Mutations in the ATM gene are common in multiple cancers, but clinical studies of therapies targeting ATM-aberrant cancers have yielded mixed results. Refinement of ATM loss of function (LOF) as a predictive biomarker of response is urgently needed. EXPERIMENTAL DESIGN We present the first disclosure and preclinical development of a novel, selective ATR inhibitor, ART0380, and test its antitumor activity in multiple preclinical cancer models. To refine ATM LOF as a predictive biomarker, we performed a comprehensive pan-cancer analysis of ATM variants in patient tumors and then assessed the ATM variant-to-protein relationship. Finally, we assessed a novel ATM LOF biomarker approach in retrospective clinical data sets of patients treated with platinum-based chemotherapy or ATR inhibition. RESULTS ART0380 had potent, selective antitumor activity in a range of preclinical cancer models with differing degrees of ATM LOF. Pan-cancer analysis identified 10,609 ATM variants in 8,587 patient tumors. Cancer lineage-specific differences were seen in the prevalence of deleterious (Tier 1) versus unknown/benign (Tier 2) variants, selective pressure for loss of heterozygosity, and concordance between a deleterious variant and ATM loss of protein (LOP). A novel ATM LOF biomarker approach that accounts for variant classification, relationship to ATM LOP, and tissue-specific penetrance significantly enriched for patients who benefited from platinum-based chemotherapy or ATR inhibition. CONCLUSIONS These data help to better define ATM LOF across tumor types in order to optimize patient selection and improve molecularly targeted therapeutic approaches for patients with ATM LOF cancers.
Collapse
Affiliation(s)
- Patrick G. Pilié
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Virginia Giuliani
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel J. McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Christopher A. Bristow
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Natalie Y.L. Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keith Kyewalabye
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khalida M. Wani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hung Le
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Erick Campbell
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nora S. Sanchez
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dong Yang
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jinesh S. Gheeya
- The University of Texas Health Science Center at Houston, Houston, Texas
| | | | - Vijaykumar Holla
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kenna Rael Shaw
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chiu-Yi Liu
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - XiaoYan Ma
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ningping Feng
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Annette A. Machado
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer P. Bardenhagen
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher P. Vellano
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph R. Marszalek
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eeson Rajendra
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Desiree Piscitello
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Timothy I. Johnson
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Maria Likhatcheva
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Elias Elinati
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Jayesh Majithiya
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Joana Neves
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Vera Grinkevich
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Marco Ranzani
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Marina Roy Luzarraga
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Marie Boursier
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Lucy Armstrong
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Lerin Geo
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Giorgia Lillo
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Wai Yiu Tse
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Alexander J. Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott E. Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mary K. Geck Do
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah Lively
- ChemPartner Corporation, San Francisco, California
| | | | - Helen M.R. Robinson
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Graeme C.M. Smith
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Christopher L. Carroll
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - M. Emilia Di Francesco
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Philip Jones
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy P. Heffernan
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy A. Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
4
|
Lin X, Gupta D, Vaitsiankova A, Bhandari SK, Leung KSK, Menolfi D, Lee BJ, Russell HR, Gershik S, Gu W, McKinnon PJ, Dantzer F, Rothenberg E, Tomkinson AE, Zha S. Inactive Parp2 causes Tp53-dependent lethal anemia by blocking replication-associated nick ligation in erythroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584665. [PMID: 38559022 PMCID: PMC10980059 DOI: 10.1101/2024.03.12.584665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PARP1&2 enzymatic inhibitors (PARPi) are promising cancer treatments. But recently, their use has been hindered by unexplained severe anemia and treatment-related leukemia. In addition to enzymatic inhibition, PARPi also trap PARP1&2 at DNA lesions. Here, we report that unlike Parp2 -/- mice, which develop normally, mice expressing catalytically-inactive Parp2 (E534A, Parp2 EA/EA ) succumb to Tp53- and Chk2 -dependent erythropoietic failure in utero , mirroring Lig1 -/- mice. While DNA damage mainly activates PARP1, we demonstrate that DNA replication activates PARP2 robustly. PARP2 is selectively recruited and activated by 5'-phosphorylated nicks (5'p-nicks) between Okazaki fragments, typically resolved by Lig1. Inactive PARP2, but not its active form or absence, impedes Lig1- and Lig3-mediated ligation, causing dose-dependent replication fork collapse, particularly harmful to erythroblasts with ultra-fast forks. This PARylation-dependent structural function of PARP2 at 5'p-nicks explains the detrimental effects of PARP2 inhibition on erythropoiesis, revealing the mechanism behind the PARPi-induced anemia and leukemia, especially those with TP53/CHK2 loss. Significance This work shows that the hematological toxicities associated with PARP inhibitors stem not from impaired PARP1 or PARP2 enzymatic activity but rather from the presence of inactive PARP2 protein. Mechanistically, these toxicities reflect a unique role of PARP2 at 5'-phosphorylated DNA nicks during DNA replication in erythroblasts.
Collapse
|
5
|
Talbot EJ, Joshi L, Thornton P, Dezfouli M, Tsafou K, Perkinton M, Khoronenkova S. cGAS-STING signalling regulates microglial chemotaxis in genome instability. Nucleic Acids Res 2024; 52:1188-1206. [PMID: 38084916 PMCID: PMC10853792 DOI: 10.1093/nar/gkad1184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 02/10/2024] Open
Abstract
Defective DNA damage signalling and repair is a hallmark of age-related and genetic neurodegenerative disease. One mechanism implicated in disease progression is DNA damage-driven neuroinflammation, which is largely mediated by tissue-resident immune cells, microglia. Here, we utilise human microglia-like cell models of persistent DNA damage and ATM kinase deficiency to investigate how genome instability shapes microglial function. We demonstrate that upon DNA damage the cytosolic DNA sensing cGAS-STING axis drives chronic inflammation and a robust chemokine response, exemplified by production of CCL5 and CXCL10. Transcriptomic analyses revealed that cell migratory pathways were highly enriched upon IFN-β treatment of human iPSC-derived microglia, indicating that the chemokine response to DNA damage mirrors type I interferon signalling. Furthermore, we find that STING deletion leads to a defect in microglial chemotaxis under basal conditions and upon ATM kinase loss. Overall, this work provides mechanistic insights into cGAS-STING-dependent neuroinflammatory mechanisms and consequences of genome instability in the central nervous system.
Collapse
Affiliation(s)
- Emily J Talbot
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Lisha Joshi
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Peter Thornton
- Neuroscience, R&D BioPharmaceuticals, AstraZeneca, Cambridge, UK
| | - Mahya Dezfouli
- Translational Genomics, Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Gothenburg, Sweden
| | - Kalliopi Tsafou
- Department of Data Sciences & Quantitative Biology, AstraZeneca, Cambridge, UK
| | | | | |
Collapse
|
6
|
Shao Z, Lee BJ, Zhang H, Lin X, Li C, Jiang W, Chirathivat N, Gershik S, Shen MM, Baer R, Zha S. Inactive PARP1 causes embryonic lethality and genome instability in a dominant-negative manner. Proc Natl Acad Sci U S A 2023; 120:e2301972120. [PMID: 37487079 PMCID: PMC10401025 DOI: 10.1073/pnas.2301972120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/13/2023] [Indexed: 07/26/2023] Open
Abstract
PARP1 (poly-ADP ribose polymerase 1) is recruited and activated by DNA strand breaks, catalyzing the generation of poly-ADP-ribose (PAR) chains from NAD+. PAR relaxes chromatin and recruits other DNA repair factors, including XRCC1 and DNA Ligase 3, to maintain genomic stability. Here we show that, in contrast to the normal development of Parp1-null mice, heterozygous expression of catalytically inactive Parp1 (E988A, Parp1+/A) acts in a dominant-negative manner to disrupt murine embryogenesis. As such, all the surviving F1 Parp1+/A mice are chimeras with mixed Parp1+/AN (neoR retention) cells that act similarly to Parp1+/-. Pure F2 Parp1+/A embryos were found at Mendelian ratios at the E3.5 blastocyst stage but died before E9.5. Compared to Parp1-/- cells, genotype and expression-validated pure Parp1+/A cells retain significant ADP-ribosylation and PARylation activities but accumulate markedly higher levels of sister chromatid exchange and mitotic bridges. Despite proficiency for homologous recombination and nonhomologous end-joining measured by reporter assays and supported by normal lymphocyte and germ cell development, Parp1+/A cells are hypersensitive to base damages, radiation, and Topoisomerase I and II inhibition. The sensitivity of Parp1+/A cells to base damages and Topo inhibitors exceed Parp1-/- controls. The findings show that the enzymatically inactive PARP1 dominant negatively blocks DNA repair in selective pathways beyond wild-type PARP1 and establishes a crucial physiological difference between PARP1 inactivation vs. deletion. As a result, the expression of enzymatically inactive PARP1 from one allele is sufficient to abrogate murine embryonic development, providing a mechanism for the on-target side effect of PARP inhibitors used for cancer therapy.
Collapse
Affiliation(s)
- Zhengping Shao
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Brian J. Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Hanwen Zhang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Chen Li
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Wenxia Jiang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Napon Chirathivat
- Department of Medicine, Columbia University Medical Center, New York, NY10032
- Department of Genetics and Development, Columbia University Medical Center, New York, NY10032
- Department of Urology, Columbia University Medical Center, New York, NY10032
- Department of Systems Biology, Columbia University Medical Center, New York, NY10032
| | - Steven Gershik
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Michael M. Shen
- Department of Medicine, Columbia University Medical Center, New York, NY10032
- Department of Genetics and Development, Columbia University Medical Center, New York, NY10032
- Department of Urology, Columbia University Medical Center, New York, NY10032
- Department of Systems Biology, Columbia University Medical Center, New York, NY10032
| | - Richard Baer
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
- Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY10032
| |
Collapse
|
7
|
Parvin S, Akter J, Takenobu H, Katai Y, Satoh S, Okada R, Haruta M, Mukae K, Wada T, Ohira M, Ando K, Kamijo T. ATM depletion induces proteasomal degradation of FANCD2 and sensitizes neuroblastoma cells to PARP inhibitors. BMC Cancer 2023; 23:313. [PMID: 37020276 PMCID: PMC10077671 DOI: 10.1186/s12885-023-10772-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/26/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Genomic alterations, including loss of function in chromosome band 11q22-23, are frequently observed in neuroblastoma, which is the most common extracranial childhood tumour. In neuroblastoma, ATM, a DNA damage response-associated gene located on 11q22-23, has been linked to tumorigenicity. Genetic changes in ATM are heterozygous in most tumours. However, it is unclear how ATM is associated with tumorigenesis and cancer aggressiveness. METHODS To elucidate its molecular mechanism of action, we established ATM-inactivated NGP and CHP-134 neuroblastoma cell lines using CRISPR/Cas9 genome editing. The knock out cells were rigorously characterized by analyzing proliferation, colony forming abilities and responses to PARP inhibitor (Olaparib). Western blot analyses were performed to detect different protein expression related to DNA repair pathway. ShRNA lentiviral vectors were used to knockdown ATM expression in SK-N-AS and SK-N-SH neuroblastoma cell lines. ATM knock out cells were stably transfected with FANCD2 expression plasmid to over-expressed the FANCD2. Moreover, knock out cells were treated with proteasome inhibitor MG132 to determine the protein stability of FANCD2. FANCD2, RAD51 and γH2AX protein expressions were determined by Immunofluorescence microscopy. RESULTS Haploinsufficient ATM resulted in increased proliferation (p < 0.01) and cell survival following PARP inhibitor (olaparib) treatment. However, complete ATM knockout decreased proliferation (p < 0.01) and promoted cell susceptibility to olaparib (p < 0.01). Complete loss of ATM suppressed the expression of DNA repair-associated molecules FANCD2 and RAD51 and induced DNA damage in neuroblastoma cells. A marked downregulation of FANCD2 expression was also observed in shRNA-mediated ATM-knockdown neuroblastoma cells. Inhibitor experiments demonstrated that the degradation of FANCD2 was regulated at the protein level through the ubiquitin-proteasome pathway. Reintroduction of FANCD2 expression is sufficient to reverse decreased proliferation mediated by ATM depletion. CONCLUSIONS Our study revealed the molecular mechanism underlying ATM heterozygosity in neuroblastomas and elucidated that ATM inactivation enhances the susceptibility of neuroblastoma cells to olaparib treatment. These findings might be useful in the treatment of high-risk NB patients showing ATM zygosity and aggressive cancer progression in future.
Collapse
Affiliation(s)
- Sultana Parvin
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
- Laboratory of Tumor Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Jesmin Akter
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
| | - Hisanori Takenobu
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
| | - Yutaka Katai
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
| | - Shunpei Satoh
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
| | - Ryu Okada
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
- Laboratory of Tumor Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Masayuki Haruta
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
| | - Kyosuke Mukae
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
| | - Tomoko Wada
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
| | - Miki Ohira
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
| | - Kiyohiro Ando
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
| | - Takehiko Kamijo
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan.
- Laboratory of Tumor Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.
| |
Collapse
|
8
|
Petrackova A, Savara J, Turcsanyi P, Gajdos P, Papajik T, Kriegova E. Rare germline ATM variants of uncertain significance in chronic lymphocytic leukaemia and other cancers. Br J Haematol 2022; 199:371-381. [PMID: 36029002 DOI: 10.1111/bjh.18419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 12/26/2022]
Abstract
Germline pathogenic ATM (ataxia-telangiectasia mutated) variants are associated with the risk of multiple cancers; however, genetic testing reveals a large number of ATM variants of uncertain significance (VUS). Here, we studied germline ATM variants occurring in a real-world cohort of 336 patients with chronic lymphocytic leukaemia (CLL) and public cancer whole-exome/genome-sequencing datasets (445 CLL, 75 mantle cell lymphoma, 216 metastatic breast cancer, 140 lung cancer patients). We found that two-thirds of rare germline ATM variants are pathogenic (18%-50%) or VUS-predicted pathogenic (50%-82%), depending on cancer type and reaching a prevalence of up to 8%, and one-third are VUS-predicted benign. Patients with both pathogenic and VUS-predicted pathogenic variants, all heterozygous, mostly missense, are more predisposed to biallelic ATM inactivation by acquiring deletion (del)11q than patients without these variants, similar to patients with somatic ATM variants. A functional assay of ATM activity in primary CLL cells proved that VUS-predicted pathogenic ATM variants partially reduce ATM activity and concurrent del(11q) leads to complete loss of ATM activity. The rare germline variants were associated with reduced progression-free survival in CLL on novel agents, comparable to somatic ATM or TP53 disruptions. Our results highlight the need to determine the pathogenicity of VUS in clinically relevant genes such as ATM.
Collapse
Affiliation(s)
- Anna Petrackova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Jakub Savara
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic.,Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Peter Turcsanyi
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Petr Gajdos
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Tomas Papajik
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
9
|
Putti S, Giovinazzo A, Merolle M, Falchetti ML, Pellegrini M. ATM Kinase Dead: From Ataxia Telangiectasia Syndrome to Cancer. Cancers (Basel) 2021; 13:5498. [PMID: 34771661 PMCID: PMC8583659 DOI: 10.3390/cancers13215498] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
ATM is one of the principal players of the DNA damage response. This protein exerts its role in DNA repair during cell cycle replication, oxidative stress, and DNA damage from endogenous events or exogenous agents. When is activated, ATM phosphorylates multiple substrates that participate in DNA repair, through its phosphoinositide 3-kinase like domain at the 3'end of the protein. The absence of ATM is the cause of a rare autosomal recessive disorder called Ataxia Telangiectasia characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility, and radiation sensitivity. There is a correlation between the severity of the phenotype and the mutations, depending on the residual activity of the protein. The analysis of patient mutations and mouse models revealed that the presence of inactive ATM, named ATM kinase-dead, is more cancer prone and lethal than its absence. ATM mutations fall into the whole gene sequence, and it is very difficult to predict the resulting effects, except for some frequent mutations. In this regard, is necessary to characterize the mutated protein to assess if it is stable and maintains some residual kinase activity. Moreover, the whole-genome sequencing of cancer patients with somatic or germline mutations has highlighted a high percentage of ATM mutations in the phosphoinositide 3-kinase domain, mostly in cancer cells resistant to classical therapy. The relevant differences between the complete absence of ATM and the presence of the inactive form in in vitro and in vivo models need to be explored in more detail to predict cancer predisposition of A-T patients and to discover new therapies for ATM-associated cancer cells. In this review, we summarize the multiple discoveries from humans and mouse models on ATM mutations, focusing into the inactive versus null ATM.
Collapse
Affiliation(s)
- Sabrina Putti
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Campus Adriano Buzzati Traverso, Via Ercole Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy; (A.G.); (M.M.); (M.L.F.)
| | | | | | | | - Manuela Pellegrini
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Campus Adriano Buzzati Traverso, Via Ercole Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy; (A.G.); (M.M.); (M.L.F.)
| |
Collapse
|
10
|
Cellular functions of the protein kinase ATM and their relevance to human disease. Nat Rev Mol Cell Biol 2021; 22:796-814. [PMID: 34429537 DOI: 10.1038/s41580-021-00394-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
The protein kinase ataxia telangiectasia mutated (ATM) is a master regulator of double-strand DNA break (DSB) signalling and stress responses. For three decades, ATM has been investigated extensively to elucidate its roles in the DNA damage response (DDR) and in the pathogenesis of ataxia telangiectasia (A-T), a human neurodegenerative disease caused by loss of ATM. Although hundreds of proteins have been identified as ATM phosphorylation targets and many important roles for this kinase have been identified, it is still unclear how ATM deficiency leads to the early-onset cerebellar degeneration that is common in all individuals with A-T. Recent studies suggest the existence of links between ATM deficiency and other cerebellum-specific neurological disorders, as well as the existence of broader similarities with more common neurodegenerative disorders. In this Review, we discuss recent structural insights into ATM regulation, and possible aetiologies of A-T phenotypes, including reactive oxygen species, mitochondrial dysfunction, alterations in transcription, R-loop metabolism and alternative splicing, defects in cellular proteostasis and metabolism, and potential pathogenic roles for hyper-poly(ADP-ribosyl)ation.
Collapse
|
11
|
Silva GLA, Tosi LRO, McCulloch R, Black JA. Unpicking the Roles of DNA Damage Protein Kinases in Trypanosomatids. Front Cell Dev Biol 2021; 9:636615. [PMID: 34422791 PMCID: PMC8377203 DOI: 10.3389/fcell.2021.636615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 07/13/2021] [Indexed: 12/31/2022] Open
Abstract
To preserve genome integrity when faced with DNA lesions, cells activate and coordinate a multitude of DNA repair pathways to ensure timely error correction or tolerance, collectively called the DNA damage response (DDR). These interconnecting damage response pathways are molecular signal relays, with protein kinases (PKs) at the pinnacle. Focused efforts in model eukaryotes have revealed intricate aspects of DNA repair PK function, including how they direct DDR pathways and how repair reactions connect to wider cellular processes, including DNA replication and transcription. The Kinetoplastidae, including many parasites like Trypanosoma spp. and Leishmania spp. (causative agents of debilitating, neglected tropical infections), exhibit peculiarities in several core biological processes, including the predominance of multigenic transcription and the streamlining or repurposing of DNA repair pathways, such as the loss of non-homologous end joining and novel operation of nucleotide excision repair (NER). Very recent studies have implicated ATR and ATM kinases in the DDR of kinetoplastid parasites, whereas DNA-dependent protein kinase (DNA-PKcs) displays uncertain conservation, questioning what functions it fulfills. The wide range of genetic manipulation approaches in these organisms presents an opportunity to investigate DNA repair kinase roles in kinetoplastids and to ask if further kinases are involved. Furthermore, the availability of kinase inhibitory compounds, targeting numerous eukaryotic PKs, could allow us to test the suitability of DNA repair PKs as novel chemotherapeutic targets. Here, we will review recent advances in the study of trypanosomatid DNA repair kinases.
Collapse
Affiliation(s)
- Gabriel L A Silva
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz R O Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Jennifer Ann Black
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
12
|
Lee JH, Ryu SW, Ender NA, Paull TT. Poly-ADP-ribosylation drives loss of protein homeostasis in ATM and Mre11 deficiency. Mol Cell 2021; 81:1515-1533.e5. [PMID: 33571423 PMCID: PMC8026623 DOI: 10.1016/j.molcel.2021.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Loss of the ataxia-telangiectasia mutated (ATM) kinase causes cerebellum-specific neurodegeneration in humans. We previously demonstrated that deficiency in ATM activation via oxidative stress generates insoluble protein aggregates in human cells, reminiscent of protein dysfunction in common neurodegenerative disorders. Here, we show that this process is driven by poly-ADP-ribose polymerases (PARPs) and that the insoluble protein species arise from intrinsically disordered proteins associating with PAR-associated genomic sites in ATM-deficient cells. The lesions implicated in this process are single-strand DNA breaks dependent on reactive oxygen species, transcription, and R-loops. Human cells expressing Mre11 A-T-like disorder mutants also show PARP-dependent aggregation identical to ATM deficiency. Lastly, analysis of A-T patient cerebellum samples shows widespread protein aggregation as well as loss of proteins known to be critical in human spinocerebellar ataxias that is not observed in neocortex tissues. These results provide a hypothesis accounting for loss of protein integrity and cerebellum function in A-T.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Seung W Ryu
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Nicolette A Ender
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Tanya T Paull
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA.
| |
Collapse
|
13
|
Gout J, Perkhofer L, Morawe M, Arnold F, Ihle M, Biber S, Lange S, Roger E, Kraus JM, Stifter K, Hahn SA, Zamperone A, Engleitner T, Müller M, Walter K, Rodriguez-Aznar E, Sainz B, Hermann PC, Hessmann E, Müller S, Azoitei N, Lechel A, Liebau S, Wagner M, Simeone DM, Kestler HA, Seufferlein T, Wiesmüller L, Rad R, Frappart PO, Kleger A. Synergistic targeting and resistance to PARP inhibition in DNA damage repair-deficient pancreatic cancer. Gut 2021; 70:743-760. [PMID: 32873698 PMCID: PMC7948173 DOI: 10.1136/gutjnl-2019-319970] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE ATM serine/threonine kinase (ATM) is the most frequently mutated DNA damage response gene, involved in homologous recombination (HR), in pancreatic ductal adenocarcinoma (PDAC). DESIGN Combinational synergy screening was performed to endeavour a genotype-tailored targeted therapy. RESULTS Synergy was found on inhibition of PARP, ATR and DNA-PKcs (PAD) leading to synthetic lethality in ATM-deficient murine and human PDAC. Mechanistically, PAD-induced PARP trapping, replication fork stalling and mitosis defects leading to P53-mediated apoptosis. Most importantly, chemical inhibition of ATM sensitises human PDAC cells toward PAD with long-term tumour control in vivo. Finally, we anticipated and elucidated PARP inhibitor resistance within the ATM-null background via whole exome sequencing. Arising cells were aneuploid, underwent epithelial-mesenchymal-transition and acquired multidrug resistance (MDR) due to upregulation of drug transporters and a bypass within the DNA repair machinery. These functional observations were mirrored in copy number variations affecting a region on chromosome 5 comprising several of the upregulated MDR genes. Using these findings, we ultimately propose alternative strategies to overcome the resistance. CONCLUSION Analysis of the molecular susceptibilities triggered by ATM deficiency in PDAC allow elaboration of an efficient mutation-specific combinational therapeutic approach that can be also implemented in a genotype-independent manner by ATM inhibition.
Collapse
Affiliation(s)
- Johann Gout
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Lukas Perkhofer
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Mareen Morawe
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Frank Arnold
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Michaela Ihle
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Stephanie Biber
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Sebastian Lange
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
| | - Elodie Roger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Johann M Kraus
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Katja Stifter
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Stephan A Hahn
- Department of Molecular GI Oncology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Andrea Zamperone
- Department of Surgery, NYU Langone Health, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Martin Müller
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Karolin Walter
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | | | - Bruno Sainz
- Cancer Stem Cell and Tumor Microenvironment Group, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
- Cancer Stem Cell and Fibroinflammatory Microenvironment Group, Area 3 - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Patrick C Hermann
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Müller
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Ninel Azoitei
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - André Lechel
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology INDB, Eberhard Karls Universitat Tübingen, Tübingen, Germany
| | - Martin Wagner
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Diane M Simeone
- Department of Surgery, NYU Langone Health, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pierre-Olivier Frappart
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
14
|
Cancer genome datamining and functional genetic analysis implicate mechanisms of ATM/ATR dysfunction underpinning carcinogenesis. Commun Biol 2021; 4:363. [PMID: 33742106 PMCID: PMC7979806 DOI: 10.1038/s42003-021-01884-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
ATM and ATR are conserved regulators of the DNA damage response linked to cancer. Comprehensive DNA sequencing efforts identified ~4,000 cancer-associated mutations in ATM/ATR; however, their cancer implications remain largely unknown. To gain insights, we identify functionally important conserved residues in ATM, ATR and budding yeast Mec1ATR via cancer genome datamining and a functional genetic analysis, respectively. Surprisingly, only a small fraction of the critical residues is in the active site of the respective enzyme complexes, implying that loss of the intrinsic kinase activity is infrequent in carcinogenesis. A number of residues are solvent accessible, suggestive of their involvement in interacting with a protein-partner(s). The majority, buried inside the respective enzyme complexes, might play a structural or regulatory role. Together, these findings identify evolutionarily conserved ATM, ATR, and Mec1ATR residues involved in diverse aspects of the enzyme function and provide fresh insights into the elusive genotype-phenotype relationships in ATM/ATR and their cancer-associated variants. Waskiewicz et al. identify functionally important and evolutionarily conserved residues of ATM/ATR via data mining and a functional genetic analysis, finding that loss of the intrinsic kinase activity occurs infrequently in carcinogenesis. This study provides insights into the genotype-phenotype relationships in ATM/ATR and their cancer-associated variants.
Collapse
|
15
|
Milanovic M, Sprinzen L, Menolfi D, Lee JH, Yamamoto K, Li Y, Lee BJ, Xu J, Estes VM, Wang D, Mckinnon PJ, Paull TT, Zha S. The Cancer-Associated ATM R3008H Mutation Reveals the Link between ATM Activation and Its Exchange. Cancer Res 2021; 81:426-437. [PMID: 33239428 PMCID: PMC8137556 DOI: 10.1158/0008-5472.can-20-2447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022]
Abstract
ATM kinase is a tumor suppressor and a master regulator of the DNA damage response. Most cancer-associated alterations to ATM are missense mutations at the PI3-kinase regulatory domain (PRD) or the kinase domain. Expression of kinase-dead (KD) ATM protein solely accelerates lymphomagenesis beyond ATM loss. To understand how PRD suppresses lymphomagenesis, we introduced the cancer-associated PRD mutation R3008H (R3016 in mouse) into mice. R3008H abrogated DNA damage- and oxidative stress-induced activation of ATM without consistently affecting ATM protein stability and recruitment. In contrast to the early embryonic lethality of AtmKD/KD mice, AtmR3016H (AtmR/R ) mice were viable, immunodeficient, and displayed spontaneous craniofacial abnormalities and delayed lymphomagenesis compared with Atm-/- controls. Mechanistically, R3008H rescued the tardy exchange of ATM-KD at DNA damage foci, indicating that PRD coordinates ATM activation with its exchange at DNA-breaks. Taken together, our results reveal a unique tumorigenesis profile for PRD mutations that is distinct from null or KD mutations. SIGNIFICANT: This study functionally characterizes the most common ATM missense mutation R3008H in cancer and identifies a unique role of PI3-kinase regulatory domain in ATM activation.
Collapse
Affiliation(s)
- Maja Milanovic
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Lisa Sprinzen
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
- Department of Pathology and Cell Biology, Pathobiology and Human Disease Graduate Program, Vagelos College for Physicians and Surgeons, Columbia University, New York, New York
| | - Demis Menolfi
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Ji-Hoon Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Kenta Yamamoto
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
- Department of Pathology and Cell Biology, Pathobiology and Human Disease Graduate Program, Vagelos College for Physicians and Surgeons, Columbia University, New York, New York
| | - Yang Li
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brian J Lee
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Jun Xu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Verna M Estes
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Peter J Mckinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tanya T Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Shan Zha
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York.
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York City, New York
| |
Collapse
|
16
|
Gong Y, Tian C, Lu S, Gao Y, Wen L, Chen B, Gao H, Zhang H, Zhao J, Wang J. Harmine Combined with Rad54 Knockdown Inhibits the Viability of Echinococcus granulosus by Enhancing DNA Damage. DNA Cell Biol 2020; 40:1-9. [PMID: 33170025 DOI: 10.1089/dna.2020.5779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aimed at exploring the role of EgRad54 and the effect of harmine (HM) or HM derivatives (HMDs) on DNA damage in Echinococcus granulosus. DNA damage in E. granulosus protoscoleces (PSCs) was assessed by using a comet assay, after treatment with HM or HMDs. Efficiency of electroporation-based transfection of PSCs and subsequent EgRad54 knockdown was evaluated by using real-time quantitative polymerase chain reaction (RT-qPCR) and fluorescence intensity. Viability of PSCs was determined via eosin exclusion test, and expression of related genes was analyzed via RT-qPCR. HM and HMDs significantly (p < 0.05) increased DNA damage in E. granulosus, and upregulated EgRad54 expression. Compared with HM and HMD-only treatment groups, EgRad54 knockdown combined with HM and HMD treatment further reduced E. granulosus viability. This combined approach resulted in significant (p < 0.05) downregulation of Rad54 and Topo2a expression, and upregulation of ATM expression, whereas H2A and P53 expression was significantly higher compared with control groups. These data show that EgRad54 knockdown, combined with HM or HMD treatment, enhances DNA damage in E. granulosus via upregulation of ATM and H2A, and downregulation of Rad54 and Topo2a, thereby inhibiting E. granulosus growth, and suggest that EgRad54 is a potential therapeutic target for cystic echinococcosis treatment.
Collapse
Affiliation(s)
- Yuehong Gong
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chunyan Tian
- College of Pharmaceutical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shuai Lu
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yi Gao
- College of Pharmaceutical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Limei Wen
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bei Chen
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huijing Gao
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Haibo Zhang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jun Zhao
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jianhua Wang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
17
|
Shao Z, Lee BJ, Rouleau-Turcotte É, Langelier MF, Lin X, Estes VM, Pascal JM, Zha S. Clinical PARP inhibitors do not abrogate PARP1 exchange at DNA damage sites in vivo. Nucleic Acids Res 2020; 48:9694-9709. [PMID: 32890402 PMCID: PMC7515702 DOI: 10.1093/nar/gkaa718] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/13/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
DNA breaks recruit and activate PARP1/2, which deposit poly-ADP-ribose (PAR) to recruit XRCC1-Ligase3 and other repair factors to promote DNA repair. Clinical PARP inhibitors (PARPi) extend the lifetime of damage-induced PARP1/2 foci, referred to as ‘trapping’. To understand the molecular nature of ‘trapping’ in cells, we employed quantitative live-cell imaging and fluorescence recovery after photo-bleaching. Unexpectedly, we found that PARP1 exchanges rapidly at DNA damage sites even in the presence of clinical PARPi, suggesting the persistent foci are not caused by physical stalling. Loss of Xrcc1, a major downstream effector of PAR, also caused persistent PARP1 foci without affecting PARP1 exchange. Thus, we propose that the persistent PARP1 foci are formed by different PARP1 molecules that are continuously recruited to and exchanging at DNA lesions due to attenuated XRCC1-LIG3 recruitment and delayed DNA repair. Moreover, mutation analyses of the NAD+ interacting residues of PARP1 showed that PARP1 can be physically trapped at DNA damage sites, and identified H862 as a potential regulator for PARP1 exchange. PARP1-H862D, but not PARylation-deficient PARP1-E988K, formed stable PARP1 foci upon activation. Together, these findings uncovered the nature of persistent PARP1 foci and identified NAD+ interacting residues involved in the PARP1 exchange.
Collapse
Affiliation(s)
- Zhengping Shao
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Brian J Lee
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Élise Rouleau-Turcotte
- Université de Montréal, Biochemistry and Molecular Medicine, Montréal, Québec H3T 1J4, Canada
| | - Marie-France Langelier
- Université de Montréal, Biochemistry and Molecular Medicine, Montréal, Québec H3T 1J4, Canada
| | - Xiaohui Lin
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Verna M Estes
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - John M Pascal
- Université de Montréal, Biochemistry and Molecular Medicine, Montréal, Québec H3T 1J4, Canada
| | - Shan Zha
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA.,Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York City, NY 10032, USA
| |
Collapse
|
18
|
McGillivray E, Farma J, Savage M, Hall MJ, Luo B, Jain R. Pathologic Complete Response in Patient With ATM Mutation After Neoadjuvant FOLFOXIRI Plus Panitumumab Therapy for Locally Advanced Colon Cancer: A Case Report. Clin Colorectal Cancer 2020; 20:e96-e99. [PMID: 33121919 DOI: 10.1016/j.clcc.2020.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Erin McGillivray
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Jeffrey Farma
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA
| | - Michelle Savage
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA
| | - Michael J Hall
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA
| | - Biao Luo
- Molecular Diagnostics Laboratory, Fox Chase Cancer Center, Philadelphia, PA
| | - Rishi Jain
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA.
| |
Collapse
|
19
|
Hotokezaka Y, Katayama I, Nakamura T. ATM-associated signalling triggers the unfolded protein response and cell death in response to stress. Commun Biol 2020; 3:378. [PMID: 32665601 PMCID: PMC7360780 DOI: 10.1038/s42003-020-1102-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Endoplasmic reticulum (ER) stress can be caused by perturbations in ER function resulting from the accumulation of unfolded/misfolded proteins in the ER lumen. Accumulating unfolded proteins trigger unfolded protein responses (UPRs) through activating three transmembrane sensors on the ER: IRE1α, PERK, and ATF6. The orchestrated action of these molecules upregulates genes encoding proteins involved in the downregulation of protein synthesis and acceleration of protein secretion. Ineffectiveness of these fail-safe mechanisms may lead to apoptosis. However, the molecular mechanisms upstream of the UPR are not fully understood. Here we show participation of ataxia telangiectasia mutated (ATM) in stress-induced apoptosis. Cytoplasmic ATM serves as a platform on which protein phosphatase 2A-dependent dephosphorylation of AKT activates glycogen synthase kinase 3β, thereby downregulating nascent polypeptide-associated complex α subunit and γ-taxilin, triggering UPRs and leading to mitochondria-dependent apoptosis. These results suggest an ATM/AKT-dependent cell death pathway triggered by various forms of stress.
Collapse
Affiliation(s)
- Yuka Hotokezaka
- Department of Radiology and Cancer Biology, Nagasaki University Graduate School of Biomedical Sciences 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Ikuo Katayama
- Department of Radiology and Cancer Biology, Nagasaki University Graduate School of Biomedical Sciences 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Takashi Nakamura
- Department of Radiology and Cancer Biology, Nagasaki University Graduate School of Biomedical Sciences 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan.
| |
Collapse
|
20
|
Rafiei S, Fitzpatrick K, Liu D, Cai MY, Elmarakeby HA, Park J, Ricker C, Kochupurakkal BS, Choudhury AD, Hahn WC, Balk SP, Hwang JH, Van Allen EM, Mouw KW. ATM Loss Confers Greater Sensitivity to ATR Inhibition Than PARP Inhibition in Prostate Cancer. Cancer Res 2020; 80:2094-2100. [PMID: 32127357 PMCID: PMC7272301 DOI: 10.1158/0008-5472.can-19-3126] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/23/2020] [Accepted: 02/26/2020] [Indexed: 01/11/2023]
Abstract
Alterations in DNA damage response (DDR) genes are common in advanced prostate tumors and are associated with unique genomic and clinical features. ATM is a DDR kinase that has a central role in coordinating DNA repair and cell-cycle response following DNA damage, and ATM alterations are present in approximately 5% of advanced prostate tumors. Recently, inhibitors of PARP have demonstrated activity in advanced prostate tumors harboring DDR gene alterations, particularly in tumors with BRCA1/2 alterations. However, the role of alterations in DDR genes beyond BRCA1/2 in mediating PARP inhibitor sensitivity is poorly understood. To define the role of ATM loss in prostate tumor DDR function and sensitivity to DDR-directed agents, we created a series of ATM-deficient preclinical prostate cancer models and tested the impact of ATM loss on DNA repair function and therapeutic sensitivities. ATM loss altered DDR signaling, but did not directly impact homologous recombination function. Furthermore, ATM loss did not significantly impact sensitivity to PARP inhibition but robustly sensitized to inhibitors of the related DDR kinase ATR. These results have important implications for planned and ongoing prostate cancer clinical trials and suggest that patients with tumor ATM alterations may be more likely to benefit from ATR inhibitor than PARP inhibitor therapy. SIGNIFICANCE: ATM loss occurs in a subset of prostate tumors. This study shows that deleting ATM in prostate cancer models does not significantly increase sensitivity to PARP inhibition but does sensitize to ATR inhibition.See related commentary by Setton and Powell, p. 2085.
Collapse
Affiliation(s)
- Shahrzad Rafiei
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kenyon Fitzpatrick
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mu-Yan Cai
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Haitham A Elmarakeby
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Cora Ricker
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Bose S Kochupurakkal
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Atish D Choudhury
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Steven P Balk
- Hematology/Oncology Division, Department of Medical Oncology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Justin H Hwang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
21
|
Menolfi D, Zha S. ATM, ATR and DNA-PKcs kinases-the lessons from the mouse models: inhibition ≠ deletion. Cell Biosci 2020; 10:8. [PMID: 32015826 PMCID: PMC6990542 DOI: 10.1186/s13578-020-0376-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 01/11/2023] Open
Abstract
DNA damage, especially DNA double strand breaks (DSBs) and replication stress, activates a complex post-translational network termed DNA damage response (DDR). Our review focuses on three PI3-kinase related protein kinases-ATM, ATR and DNA-PKcs, which situate at the apex of the mammalian DDR. They are recruited to and activated at the DNA damage sites by their respective sensor protein complexes-MRE11/RAD50/NBS1 for ATM, RPA/ATRIP for ATR and KU70-KU80/86 (XRCC6/XRCC5) for DNA-PKcs. Upon activation, ATM, ATR and DNA-PKcs phosphorylate a large number of partially overlapping substrates to promote efficient and accurate DNA repair and to coordinate DNA repair with other DNA metabolic events (e.g., transcription, replication and mitosis). At the organism level, robust DDR is critical for normal development, aging, stem cell maintenance and regeneration, and physiological genomic rearrangements in lymphocytes and germ cells. In addition to endogenous damage, oncogene-induced replication stresses and genotoxic chemotherapies also activate DDR. On one hand, DDR factors suppress genomic instability to prevent malignant transformation. On the other hand, targeting DDR enhances the therapeutic effects of anti-cancer chemotherapy, which led to the development of specific kinase inhibitors for ATM, ATR and DNA-PKcs. Using mouse models expressing kinase dead ATM, ATR and DNA-PKcs, an unexpected structural function of these kinases was revealed, where the expression of catalytically inactive kinases causes more genomic instability than the loss of the proteins themselves. The spectrum of genomic instabilities and physiological consequences are unique for each kinase and depends on their activating complexes, suggesting a model in which the catalysis is coupled with DNA/chromatin release and catalytic inhibition leads to the persistence of the kinases at the DNA lesion, which in turn affects repair pathway choice and outcomes. Here we discuss the experimental evidences supporting this mode of action and their implications in the design and use of specific kinase inhibitors for ATM, ATR and DNA-PKcs for cancer therapy.
Collapse
Affiliation(s)
- Demis Menolfi
- Institute for Cancer Genetics, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA
| | - Shan Zha
- Institute for Cancer Genetics, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA
- Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA
| |
Collapse
|
22
|
ATM, DNA-PKcs and ATR: shaping development through the regulation of the DNA damage responses. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42764-019-00003-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
van Os NJH, Chessa L, Weemaes CMR, van Deuren M, Fiévet A, van Gaalen J, Mahlaoui N, Roeleveld N, Schrader C, Schindler D, Taylor AMR, Van de Warrenburg BPC, Dörk T, Willemsen MAAP. Genotype-phenotype correlations in ataxia telangiectasia patients with ATM c.3576G>A and c.8147T>C mutations. J Med Genet 2019; 56:308-316. [PMID: 30819809 DOI: 10.1136/jmedgenet-2018-105635] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/21/2018] [Accepted: 12/19/2018] [Indexed: 11/03/2022]
Abstract
BACKGROUND Ataxia telangiectasia (A-T) is a neurodegenerative disorder. While patients with classic A-T generally die in their 20s, some patients with variant A-T, who have residual ataxia-telangiectasia mutated (ATM) kinase activity, have a milder phenotype. We noticed two commonly occurring ATM mutations that appeared to be associated with prolonged survival and decided to study patients carrying one of these mutations. METHODS Data were retrospectively collected from the Dutch, Italian, German and French A-T cohorts. To supplement these data, we searched the literature for patients with identical genotypes. RESULTS This study included 35 patients who were homozygous or compound heterozygous for the ATM c.3576G>A; p.(Ser1135_Lys1192del58) mutation and 24 patients who were compound heterozygous for the ATM c.8147T>C; p.(Val2716Ala) mutation. Compared with 51 patients with classic A-T from the Dutch cohort, patients with ATM c.3576G>A had a longer survival and were less likely to develop cancer, respiratory disease or immunodeficiency. This was also true for patients with ATM c.8147T>C, who additionally became wheelchair users later in life and had fewer telangiectasias. The oldest patient with A-T reported so far was a 78-year-old patient who was compound heterozygous for ATM c.8147T>C. ATM kinase activity was demonstrated in cells from all patients tested with the ATM c.8147T>C mutant protein and only at a low level in some patients with ATM c.3576G>A. CONCLUSION Compared with classic A-T, the presence of ATM c.3576G>A results in a milder classic phenotype. Patients with ATM c.8147T>C have a variant phenotype with prolonged survival, which in exceptional cases may approach a near-normal lifespan.
Collapse
Affiliation(s)
- Nienke J H van Os
- Department of Pediatric Neurology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Luciana Chessa
- Department of Clinical and Molecular Medicine, Sapienza Università di Roma, Rome, Italy
| | - Corry M R Weemaes
- Department of Pediatrics, Pediatric Infectious Disease and Immunology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marcel van Deuren
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alice Fiévet
- INSERM UMR 830, Institut de recherche, Institut Curie, PSL Research University, Paris, France
- Service de Génétique, Institut Curie Hôpital, Paris, France
| | - Judith van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nizar Mahlaoui
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Pediatric Immuno-Haematology and Rheumatology Unit, Biostatistics Unit, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, Paris, France
- INSERM UMR 1163, Sorbonne Paris Cité, Imagine Institute, Paris Descartes University, Paris, France
| | - Nel Roeleveld
- Department of Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Detlev Schindler
- Institute of Human Genetics, University of Wurzburg, Wurzburg, Germany
| | | | - Bart P C Van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Michèl A A P Willemsen
- Department of Pediatric Neurology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
24
|
Randon G, Fucà G, Rossini D, Raimondi A, Pagani F, Perrone F, Tamborini E, Busico A, Peverelli G, Morano F, Niger M, Antista M, Corallo S, Saggio S, Borelli B, Zucchelli G, Milione M, Pruneri G, Di Bartolomeo M, Falcone A, de Braud F, Cremolini C, Pietrantonio F. Prognostic impact of ATM mutations in patients with metastatic colorectal cancer. Sci Rep 2019; 9:2858. [PMID: 30814645 PMCID: PMC6393680 DOI: 10.1038/s41598-019-39525-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
Tumors bearing homologous recombination deficiency are extremely sensitive to DNA double strand breaks induced by several chemotherapeutic agents. ATM gene, encoding a protein involved in DNA damage response, is frequently mutated in colorectal cancer (CRC), but its potential role as predictive and prognostic biomarker has not been fully investigated. We carried out a multicenter effort aimed at defining the prognostic impact of ATM mutational status in metastatic CRC (mCRC) patients. Mutational profiles were obtained by means of next-generation sequencing. Overall, 35 out of 227 samples (15%) carried an ATM mutation. At a median follow-up of 56.6 months, patients with ATM mutated tumors showed a significantly longer median overall survival (OS) versus ATM wild-type ones (64.9 vs 34.8 months; HR, 0.50; 95% CI, 0.29-0.85; P = 0.01). In the multivariable model, ATM mutations confirmed the association with longer OS (HR, 0.57; 95% CI, 0.33-0.98; P = 0.04). The prognostic impact of ATM mutations was independent from TP53 mutational status and primary tumor location. High heterogeneity score for ATM mutations, possibly reflecting the loss of wild-type allele, was associated with excellent prognosis. In conclusion, we showed that ATM mutations are independently associated with longer OS in patients with mCRC.
Collapse
Affiliation(s)
- Giovanni Randon
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Giovanni Fucà
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Daniele Rossini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Via Roma, 67 - 56126, Pisa, Italy
| | - Alessandra Raimondi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Filippo Pagani
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Federica Perrone
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Elena Tamborini
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Adele Busico
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Giorgia Peverelli
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Federica Morano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Maria Antista
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Salvatore Corallo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Serena Saggio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Beatrice Borelli
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Via Roma, 67 - 56126, Pisa, Italy
| | - Gemma Zucchelli
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Via Roma, 67 - 56126, Pisa, Italy
| | - Massimo Milione
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Giancarlo Pruneri
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono, 7 - 20122, Milan, Italy
| | - Maria Di Bartolomeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Alfredo Falcone
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Via Roma, 67 - 56126, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Risorgimento, 36 - 56126, Pisa, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono, 7 - 20122, Milan, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Via Roma, 67 - 56126, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Risorgimento, 36 - 56126, Pisa, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono, 7 - 20122, Milan, Italy.
| |
Collapse
|
25
|
Kahl BS, Dreyling M, Gordon LI, Martin P, Quintanilla-Martinez L, Sotomayor EM. Recent advances and future directions in mantle cell lymphoma research: report of the 2018 mantle cell lymphoma consortium workshop. Leuk Lymphoma 2019; 60:1853-1865. [PMID: 30696305 DOI: 10.1080/10428194.2019.1571205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin lymphoma characterized by the t(11;14) chromosomal translocation. This translocation most often results in overexpression of cyclin D1. MCL is clinically heterogeneous, outcomes are generally poor, and no standard treatment has been established. The recent approvals of ibrutinib and acalabrutinib have provided an additional therapeutic option; however, resistance has emerged as a significant issue and presents the need for more detailed studies of resistance mechanisms. Recent clinical trials have provided new perspectives on the relative efficacy and safety of various approaches for both transplant-eligible and transplant-ineligible patients. Multiple novel strategies are being evaluated in the treatment of MCL, including both targeted agents and cellular immunotherapies. At the Lymphoma Research Foundation's 13th MCL Workshop, researchers gathered to discuss research findings, clinical trial results, and future directions related to MCL, its biology, and its treatment. This report, which includes a summary of each presentation, aims to review recent findings in MCL research and highlight potential areas for future study.
Collapse
Affiliation(s)
- Brad S Kahl
- a Washington University School of Medicine , St. Louis , MO , USA
| | - Martin Dreyling
- b Department of Medicine III , University Hospital, LMU Munich , Munchen , Germany
| | - Leo I Gordon
- c Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Peter Martin
- d Weill Cornell Medicine Division of Hematology-Oncology , New York , NY , USA
| | | | | |
Collapse
|
26
|
Corti A, Sota R, Dugo M, Calogero RA, Terragni B, Mantegazza M, Franceschetti S, Restelli M, Gasparini P, Lecis D, Chrzanowska KH, Delia D. DNA damage and transcriptional regulation in iPSC-derived neurons from Ataxia Telangiectasia patients. Sci Rep 2019; 9:651. [PMID: 30679601 PMCID: PMC6346060 DOI: 10.1038/s41598-018-36912-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/23/2018] [Indexed: 11/22/2022] Open
Abstract
Ataxia Telangiectasia (A-T) is neurodegenerative syndrome caused by inherited mutations inactivating the ATM kinase, a master regulator of the DNA damage response (DDR). What makes neurons vulnerable to ATM loss remains unclear. In this study we assessed on human iPSC-derived neurons whether the abnormal accumulation of DNA-Topoisomerase 1 adducts (Top1ccs) found in A-T impairs transcription elongation, thus favoring neurodegeneration. Furthermore, whether neuronal activity-induced immediate early genes (IEGs), a process involving the formation of DNA breaks, is affected by ATM deficiency. We found that Top1cc trapping by CPT induces an ATM-dependent DDR as well as an ATM-independent induction of IEGs and repression especially of long genes. As revealed by nascent RNA sequencing, transcriptional elongation and recovery were found to proceed with the same rate, irrespective of gene length and ATM status. Neuronal activity induced by glutamate receptors stimulation, or membrane depolarization with KCl, triggered a DDR and expression of IEGs, the latter independent of ATM. In unperturbed A-T neurons a set of genes (FN1, DCN, RASGRF1, FZD1, EOMES, SHH, NR2E1) implicated in the development, maintenance and physiology of central nervous system was specifically downregulated, underscoring their potential involvement in the neurodegenerative process in A-T patients.
Collapse
Affiliation(s)
- Alessandro Corti
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy
| | - Raina Sota
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy
| | - Matteo Dugo
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133, Milano, Italy
| | - Raffaele A Calogero
- Universita' degli Studi di Torino, Bioinformatics and Genomics Unit, Molecular Biotechnology Centre, Via Nizza 52, 10126, Torino, Italy
| | - Benedetta Terragni
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Neurophysiopathology and Diagnostic Epileptology, Via Celoria 11, 20133, Milano, Italy
| | - Massimo Mantegazza
- Institute of Molecular and Cellular Pharmacology (IPMC) LabEx ICST, CNRS UMR7275, Route des Lucioles, 06560, Valbonne, Sophia Antipolis, France.,University Côte d'Azur, 660 Route des Lucioles, 06560, Valbonne, Sophia Antipolis, France
| | - Silvana Franceschetti
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Neurophysiopathology and Diagnostic Epileptology, Via Celoria 11, 20133, Milano, Italy
| | - Michela Restelli
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133, Milano, Italy
| | - Patrizia Gasparini
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via G Venezian 1, 20133, Milano, Italy
| | - Daniele Lecis
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy
| | - Krystyna H Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Domenico Delia
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy. .,IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milano, Italy.
| |
Collapse
|
27
|
Kinase-dead ATR differs from ATR loss by limiting the dynamic exchange of ATR and RPA. Nat Commun 2018; 9:5351. [PMID: 30559436 PMCID: PMC6297235 DOI: 10.1038/s41467-018-07798-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022] Open
Abstract
ATR kinase is activated by RPA-coated single-stranded DNA (ssDNA) to orchestrate DNA damage responses. Here we show that ATR inhibition differs from ATR loss. Mouse model expressing kinase-dead ATR (Atr+/KD), but not loss of ATR (Atr+/−), displays ssDNA-dependent defects at the non-homologous region of X-Y chromosomes during male meiosis leading to sterility, and at telomeres, rDNA, and fragile sites during mitosis leading to lymphocytopenia. Mechanistically, we find that ATR kinase activity is necessary for the rapid exchange of ATR at DNA-damage-sites, which in turn promotes CHK1-phosphorylation. ATR-KD, but not loss of ATR, traps a subset of ATR and RPA on chromatin, where RPA is hyper-phosphorylated by ATM/DNA-PKcs and prevents downstream repair. Consequently, Atr+/KD cells have shorter inter-origin distances and are vulnerable to induced fork collapses, genome instability and mitotic catastrophe. These results reveal mechanistic differences between ATR inhibition and ATR loss, with implications for ATR signaling and cancer therapy. ATR kinase is a key regulator of chromosome integrity. Here the authors by analysing the phenotype of a mouse model expressing a kinase-dead ATR, reveal the effect of ATR inhibition compared to ATR loss and its consequences for meiosis, DNA replication, checkpoint activation and genome instability .
Collapse
|
28
|
Tal E, Alfo M, Zha S, Barzilai A, De Zeeuw CI, Ziv Y, Shiloh Y. Inactive Atm abrogates DSB repair in mouse cerebellum more than does Atm loss, without causing a neurological phenotype. DNA Repair (Amst) 2018; 72:10-17. [PMID: 30348496 PMCID: PMC7985968 DOI: 10.1016/j.dnarep.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/22/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Abstract
The genome instability syndrome, ataxia-telangiectasia (A-T) is caused by null mutations in the ATM gene, that lead to complete loss or inactivation of the gene's product, the ATM protein kinase. ATM is the primary mobilizer of the cellular response to DNA double-strand breaks (DSBs) - a broad signaling network in which many components are ATM targets. The major clinical feature of A-T is cerebellar atrophy, characterized by relentless loss of Purkinje and granule cells. In Atm-knockout (Atm-KO) mice, complete loss of Atm leads to a very mild neurological phenotype, suggesting that Atm loss is not sufficient to markedly abrogate cerebellar structure and function in this organism. Expression of inactive ("kinase-dead") Atm (AtmKD) in mice leads to embryonic lethality, raising the question of whether conditional expression of AtmKD in the murine nervous system would lead to a more pronounced neurological phenotype than Atm loss. We generated two mouse strains in which AtmKD was conditionally expressed as the sole Atm species: one in the CNS and one specifically in Purkinje cells. Focusing our analysis on Purkinje cells, the dynamics of DSB readouts indicated that DSB repair was delayed longer in the presence of AtmKD compared to Atm loss. However, both strains exhibited normal life span and displayed no gross cerebellar histological abnormalities or significant neurological phenotype. We conclude that the presence of AtmKD is indeed more harmful to DSB repair than Atm loss, but the murine central nervous system can reasonably tolerate the extent of this DSB repair impairment. Greater pressure needs to be exerted on genome stability to obtain a mouse model that recapitulates the severe A-T neurological phenotype.
Collapse
Affiliation(s)
- Efrat Tal
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States
| | - Marina Alfo
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States
| | - Shan Zha
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, and the Royal Netherlands Academy of Art & Science, Amsterdam, Netherlands
| | - Yael Ziv
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States.
| |
Collapse
|
29
|
da Silva RB, Machado CR, Rodrigues ARA, Pedrosa AL. Selective human inhibitors of ATR and ATM render Leishmania major promastigotes sensitive to oxidative damage. PLoS One 2018; 13:e0205033. [PMID: 30265735 PMCID: PMC6161909 DOI: 10.1371/journal.pone.0205033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022] Open
Abstract
All cellular processes, including those involved in normal cell metabolism to those responsible for cell proliferation or death, are finely controlled by cell signaling pathways, whose core proteins constitute the family of phosphatidylinositol 3-kinase-related kinases (PIKKs). Ataxia Telangiectasia Mutated (ATM) and Ataxia Telangiectasia and Rad3 related (ATR) are two important PIKK proteins that act in response to DNA damage, phosphorylating a large number of proteins to exert control over genomic integrity. The genus Leishmania belongs to a group of early divergent eukaryotes in evolution and has a highly plastic genome, probably owing to the existence of signaling pathways designed to maintain genomic integrity. The objective of this study was to evaluate the use of specific human inhibitors of ATR and ATM in Leishmania major. Bioinformatic analyses revealed the existence of the putative PIKK genes ATR and ATM, in addition to mTOR and DNA-PKcs in Leishmania spp. Moreover, it was possible to suggest that the inhibitors VE-821 and KU-55933 have binding affinity for the catalytic sites of putative L. major ATR and ATM, respectively. Promastigotes of L. major exposed to these inhibitors show slight growth impairment and minor changes in cell cycle and morphology. It is noteworthy that treatment of promastigotes with inhibitors VE-821 and KU-55933 enhanced the oxidative damage caused by hydrogen peroxide. These inhibitors could significantly reduce the number of surviving L. major cells following H2O2 exposure whilst also decreasing their evaluated IC50 to H2O2 to less than half of that observed for non-treated cells. These results suggest that the use of specific inhibitors of ATR and ATM in Leishmania interferes in the signaling pathways of this parasite, which can impair its tolerance to DNA damage and affect its genome integrity. ATR and ATM could constitute novel targets for drug development and/or repositioning for treatment of leishmaniases.
Collapse
Affiliation(s)
- Raíssa Bernardes da Silva
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aldo Rogelis Aquiles Rodrigues
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - André Luiz Pedrosa
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
30
|
Chen CC, Feng W, Lim PX, Kass EM, Jasin M. Homology-Directed Repair and the Role of BRCA1, BRCA2, and Related Proteins in Genome Integrity and Cancer. ANNUAL REVIEW OF CANCER BIOLOGY 2018; 2:313-336. [PMID: 30345412 PMCID: PMC6193498 DOI: 10.1146/annurev-cancerbio-030617-050502] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Germ-line and somatic mutations in genes that promote homology-directed repair (HDR), especially BRCA1 and BRCA2, are frequently observed in several cancers, in particular, breast and ovary but also prostate and other cancers. HDR is critical for the error-free repair of DNA double-strand breaks and other lesions, and HDR factors also protect stalled replication forks. As a result, loss of BRCA1 or BRCA2 poses significant risks to genome integrity, leading not only to cancer predisposition but also to sensitivity to DNA-damaging agents, affecting therapeutic approaches. Here we review recent advances in our understanding of BRCA1 and BRCA2, including how they genetically interact with other repair factors, how they protect stalled replication forks, how they affect the response to aldehydes, and how loss of their functions links to mutation signatures. Importantly, given the recent advances with poly(ADP-ribose) polymerase inhibitors (PARPi) for the treatment of HDR-deficient tumors, we discuss mechanisms by which BRCA-deficient tumors acquire resistance to PARPi and other agents.
Collapse
Affiliation(s)
- Chun-Chin Chen
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065
| | - Weiran Feng
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Pei Xin Lim
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Elizabeth M Kass
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
31
|
Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL. Nat Commun 2018; 9:697. [PMID: 29449575 PMCID: PMC5814445 DOI: 10.1038/s41467-017-02688-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell malignancy. Here we integrated large-scale profiling data of alterations in gene expression, allelic copy number (CN), and nucleotide sequences in 111 well-characterized patients. Besides prominent signatures of T-cell activation and prevalent clonal variants, we also identify novel hot-spots for CN variability, fusion molecules, alternative transcripts, and progression-associated dynamics. The overall lesional spectrum of T-PLL is mainly annotated to axes of DNA damage responses, T-cell receptor/cytokine signaling, and histone modulation. We formulate a multi-dimensional model of T-PLL pathogenesis centered around a unique combination of TCL1 overexpression with damaging ATM aberrations as initiating core lesions. The effects imposed by TCL1 cooperate with compromised ATM toward a leukemogenic phenotype of impaired DNA damage processing. Dysfunctional ATM appears inefficient in alleviating elevated redox burdens and telomere attrition and in evoking a p53-dependent apoptotic response to genotoxic insults. As non-genotoxic strategies, synergistic combinations of p53 reactivators and deacetylase inhibitors reinstate such cell death execution. T-cell prolymphocytic leukemia (T-PLL) is a rare malignancy with a poor prognosis. Here, the authors investigate the genomic landscape, gene expression profiles and functional mechanisms in 111 patients, highlighting TCL1 overexpression and ATM aberrations as core lesions which co-operate to impair DNA damage processing.
Collapse
|
32
|
Lee JH, Mand MR, Kao CH, Zhou Y, Ryu SW, Richards AL, Coon JJ, Paull TT. ATM directs DNA damage responses and proteostasis via genetically separable pathways. Sci Signal 2018; 11:eaan5598. [PMID: 29317520 PMCID: PMC5898228 DOI: 10.1126/scisignal.aan5598] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The protein kinase ATM is a master regulator of the DNA damage response but also responds directly to oxidative stress. Loss of ATM causes ataxia telangiectasia, a neurodegenerative disorder with pleiotropic symptoms that include cerebellar dysfunction, cancer, diabetes, and premature aging. We genetically separated the activation of ATM by DNA damage from that by oxidative stress using separation-of-function mutations. We found that deficient activation of ATM by the Mre11-Rad50-Nbs1 complex and DNA double-strand breaks resulted in loss of cell viability, checkpoint activation, and DNA end resection in response to DNA damage. In contrast, loss of oxidative activation of ATM had minimal effects on DNA damage-related outcomes but blocked ATM-mediated initiation of checkpoint responses after oxidative stress and resulted in deficiencies in mitochondrial function and autophagy. In addition, expression of a variant ATM incapable of activation by oxidative stress resulted in widespread protein aggregation. These results indicate a direct relationship between the mechanism of ATM activation and its effects on cellular metabolism and DNA damage responses in human cells and implicate ATM in the control of protein homeostasis.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Michael R Mand
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Chung-Hsuan Kao
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Yi Zhou
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Seung W Ryu
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Alicia L Richards
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tanya T Paull
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
33
|
SbcC-SbcD and ExoI process convergent forks to complete chromosome replication. Proc Natl Acad Sci U S A 2017; 115:349-354. [PMID: 29208713 DOI: 10.1073/pnas.1715960114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SbcC-SbcD are the bacterial orthologs of Mre11-Rad50, a nuclease complex essential for genome stability, normal development, and viability in mammals. In vitro, these enzymes degrade long DNA palindromic structures. When inactivated along with ExoI in Escherichia coli, or Sae2 in eukaryotes, palindromic amplifications arise and propagate in cells. However, long DNA palindromes are not normally found in bacterial or human genomes, leaving the cellular substrates and function of these enzymes unknown. Here, we show that during the completion of DNA replication, convergent replication forks form a palindrome-like structural intermediate that requires nucleolytic processing by SbcC-SbcD and ExoI before chromosome replication can be completed. Inactivation of these nucleases prevents completion from occurring, and under these conditions, cells maintain viability by shunting the reaction through an aberrant recombinational pathway that leads to amplifications and instability in this region. The results identify replication completion as an event critical to maintain genome integrity and cell viability, demonstrate SbcC-SbcD-ExoI acts before RecBCD and is required to initiate the completion reaction, and reveal how defects in completion result in genomic instability.
Collapse
|
34
|
Abstract
PURPOSE It was first suggested more than 40 years ago that heterozygous carriers for the human autosomal recessive disorder Ataxia-Telangiectasia (A-T) might also be at increased risk for cancer. Subsequent studies have identified the responsible gene, Ataxia-Telangiectasia Mutated (ATM), characterized genetic variation at this locus in A-T and a variety of different cancers, and described the functions of the ATM protein with regard to cellular DNA damage responses. However, an overall model of how ATM contributes to cancer risk, and in particular, the role of DNA damage in this process, remains lacking. This review considers these questions in the context of contralateral breast cancer (CBC). CONCLUSIONS Heterozygous carriers of loss of function mutations in ATM that are A-T causing, are at increased risk of breast cancer. However, examination of a range of genetic variants, both rare and common, across multiple cancers, suggests that ATM may have additional effects on cancer risk that are allele-dependent. In the case of CBC, selected common alleles at ATM are associated with a reduced incidence of CBC, while other rare and predicted deleterious variants may act jointly with radiation exposure to increase risk. Further studies that characterize germline and somatic ATM mutations in breast cancer and relate the detected genetic changes to functional outcomes, particularly with regard to radiation responses, are needed to gain a complete picture of the complex relationship between ATM, radiation and breast cancer.
Collapse
Affiliation(s)
- Jonine L Bernstein
- a Department of Epidemiology and Biostatistics , Memorial Sloan Kettering Cancer Center , New York , NY , U.S.A
| | | | - Patrick Concannon
- b Genetics Institute and Department of Pathology, Immunology and Laboratory Medicine , University of Florida , Gainesville , FL , U.S.A
| |
Collapse
|
35
|
Chen CC, Kass EM, Yen WF, Ludwig T, Moynahan ME, Chaudhuri J, Jasin M. ATM loss leads to synthetic lethality in BRCA1 BRCT mutant mice associated with exacerbated defects in homology-directed repair. Proc Natl Acad Sci U S A 2017; 114:7665-7670. [PMID: 28659469 PMCID: PMC5530697 DOI: 10.1073/pnas.1706392114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BRCA1 is essential for homology-directed repair (HDR) of DNA double-strand breaks in part through antagonism of the nonhomologous end-joining factor 53BP1. The ATM kinase is involved in various aspects of DNA damage signaling and repair, but how ATM participates in HDR and genetically interacts with BRCA1 in this process is unclear. To investigate this question, we used the Brca1S1598F mouse model carrying a mutation in the BRCA1 C-terminal domain of BRCA1. Whereas ATM loss leads to a mild HDR defect in adult somatic cells, we find that ATM inhibition leads to severely reduced HDR in Brca1S1598F cells. Consistent with a critical role for ATM in HDR in this background, loss of ATM leads to synthetic lethality of Brca1S1598F mice. Whereas both ATM and BRCA1 promote end resection, which can be regulated by 53BP1, 53bp1 deletion does not rescue the HDR defects of Atm mutant cells, in contrast to Brca1 mutant cells. These results demonstrate that ATM has a role in HDR independent of the BRCA1-53BP1 antagonism and that its HDR function can become critical in certain contexts.
Collapse
Affiliation(s)
- Chun-Chin Chen
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Allied Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
| | - Elizabeth M Kass
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Wei-Feng Yen
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Allied Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Thomas Ludwig
- Department of Cancer Biology and Genetics, Ohio State University College of Medicine, Columbus, OH 43210
| | - Mary Ellen Moynahan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Allied Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
| |
Collapse
|
36
|
Kahl BS, Dreyling M, Gordon LI, Quintanilla-Martinez L, Sotomayor EM. Recent advances and future directions in mantle cell lymphoma research: report of the 2016 mantle cell lymphoma consortium workshop. Leuk Lymphoma 2017; 58:1561-1569. [PMID: 28140709 DOI: 10.1080/10428194.2017.1283036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin lymphoma typically associated with the t(11;14) chromosomal translocation, resulting in overexpression of cyclin D1. Although MCL is associated with clinical heterogeneity, outcomes are generally poor and no standard treatment has been established. However, the recent approval of ibrutinib provides a new therapeutic option. Moreover, recent clinical trials have provided new perspectives on the relative efficacy and safety of various approaches for both transplant-eligible and transplant-ineligible patients. Multiple novel strategies are being evaluated in the treatment of MCL, including both targeted agents and cellular immunotherapies. At the Lymphoma Research Foundation's 12th MCL Workshop, researchers gathered to discuss research findings, clinical trial results, and future directions related to MCL, its biology, and its treatment. This manuscript, which includes a summary of each presentation, aims to review recent findings in MCL research and highlight potential areas for future study.
Collapse
Affiliation(s)
- Brad S Kahl
- a Department of Medicine, Washington University in Saint Louis , St. Louis , MO , USA
| | - Martin Dreyling
- b Department of Medicine, University of Munich-Grosshadern , Munich , Germany
| | - Leo I Gordon
- c Department of Medicine, Northwestern University Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center , Chicago , IL , USA
| | | | - Eduardo M Sotomayor
- e Department of Medicine, George Washington University , Washington DC , USA
| |
Collapse
|
37
|
New diagnosis of atypical ataxia-telangiectasia in a 17-year-old boy with T-cell acute lymphoblastic leukemia and a novel ATM mutation. J Hum Genet 2017; 62:581-584. [PMID: 28123174 PMCID: PMC5404952 DOI: 10.1038/jhg.2017.6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/25/2016] [Accepted: 01/03/2017] [Indexed: 01/09/2023]
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive chromosome breakage
disorder caused by mutations in the ATM gene. Typically it
presents in early childhood with progressive cerebellar dysfunction along with
immunodeficiency and oculocutaneous telangiectasia. An increased risk of
malignancy is also associated with the syndrome and, rarely, may be the
presenting feature in small children. We describe a 17-year-old boy with slurred
speech, mild motor delays and learning disability diagnosed with atypical A-T in
the setting of T-cell acute lymphoblastic leukemia. Suspicion for A-T was raised
after review of a peripheral blood karyotype demonstrating rearrangements
involving chromosomes 7 and/or 14. The diagnosis was confirmed after molecular
testing identified a novel homozygous missense variant in ATM
(c.5585T>A; p.Leu1862His) that resulted in protein instability and
abolished serine/threonine protein kinase activity. To our knowledge, this is
the first report of concurrent A-T and lymphoid malignancy diagnoses in an older
child or adult with only mild neurological disease. Our experience suggests that
screening for the disorder should be considered in any individual with lymphoid
malignancy and neurological findings, especially as radiation and certain
chemotherapy protocols are contraindicated in A-T.
Collapse
|
38
|
Erdem C, Nagle AM, Casa AJ, Litzenburger BC, Wang YF, Taylor DL, Lee AV, Lezon TR. Proteomic Screening and Lasso Regression Reveal Differential Signaling in Insulin and Insulin-like Growth Factor I (IGF1) Pathways. Mol Cell Proteomics 2016; 15:3045-57. [PMID: 27364358 PMCID: PMC5013316 DOI: 10.1074/mcp.m115.057729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 06/23/2016] [Indexed: 01/22/2023] Open
Abstract
Insulin and insulin-like growth factor I (IGF1) influence cancer risk and progression through poorly understood mechanisms. To better understand the roles of insulin and IGF1 signaling in breast cancer, we combined proteomic screening with computational network inference to uncover differences in IGF1 and insulin induced signaling. Using reverse phase protein array, we measured the levels of 134 proteins in 21 breast cancer cell lines stimulated with IGF1 or insulin for up to 48 h. We then constructed directed protein expression networks using three separate methods: (i) lasso regression, (ii) conventional matrix inversion, and (iii) entropy maximization. These networks, named here as the time translation models, were analyzed and the inferred interactions were ranked by differential magnitude to identify pathway differences. The two top candidates, chosen for experimental validation, were shown to regulate IGF1/insulin induced phosphorylation events. First, acetyl-CoA carboxylase (ACC) knock-down was shown to increase the level of mitogen-activated protein kinase (MAPK) phosphorylation. Second, stable knock-down of E-Cadherin increased the phospho-Akt protein levels. Both of the knock-down perturbations incurred phosphorylation responses stronger in IGF1 stimulated cells compared with insulin. Overall, the time-translation modeling coupled to wet-lab experiments has proven to be powerful in inferring differential interactions downstream of IGF1 and insulin signaling, in vitro.
Collapse
Affiliation(s)
- Cemal Erdem
- From the ‡Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; §University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alison M Nagle
- ¶Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; ‖Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Angelo J Casa
- **Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Beate C Litzenburger
- **Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Yu-Fen Wang
- **Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - D Lansing Taylor
- From the ‡Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; §University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adrian V Lee
- ¶Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; ‖Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania; ‡‡Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Timothy R Lezon
- From the ‡Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; §University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania;
| |
Collapse
|