1
|
Baldassano JF, MacLeod KM. Electrophysiological correlates of divergent projections in the avian superior olivary nucleus. J Neurophysiol 2024; 132:1412-1425. [PMID: 39258776 PMCID: PMC11573260 DOI: 10.1152/jn.00099.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024] Open
Abstract
The physiological diversity of inhibitory neurons provides ample opportunity to influence a wide range of computational roles through their varied activity patterns, especially via feedback loops. In the avian auditory brain stem, inhibition originates primarily from the superior olivary nucleus (SON), and so it is critical to understand the intrinsic physiological properties and processing capabilities of these neurons. Neurons in the SON receive ascending input via the cochlear nuclei: directly from the intensity-coding cochlear nucleus angularis (NA) and indirectly via the interaural timing nucleus laminaris (NL), which itself receives input from cochlear nucleus magnocellularis (NM). Two distinct populations of SON neurons provide inhibitory feedback either to ipsilateral NA, NL, and the timing cochlear nucleus NM or to the contralateral SON. To determine whether these populations correspond to distinct response types, we investigated their electrophysiology in brain stem slices, using patch-clamp electrophysiology. We identified three phenotypes: single-spiking, chattering tonic, and regular tonic neurons. The two tonic phenotypes displayed distinct firing patterns and different membrane properties. Fluctuating "noisy" currents used to probe the capability of SON neurons to encode temporal features showed that each phenotype differed in sensitivity to temporally modulated input. By using cell fills and anatomical reconstructions, we could correlate the firing phenotypes with their axonal projection patterns. We found that SON axons exited via three fiber tracts, with each tract composed of specific phenotypes. These results provide a basis for understanding the role of specific inhibitory cell types in auditory function and elucidate the organization of the SON outputs.NEW & NOTEWORTHY Inhibitory inputs for the avian brain stem originate primarily from the superior olivary nucleus (SON). We describe three intrinsic phenotypes of SON neurons and show how they differ in their temporal processing and projection patterns. We propose that the two types of tonic firing neurons (including one novel type) and the single-spiking neurons in SON comprise separate feedback circuits that may differentially influence the auditory information flowing via the cochlear nuclei and nucleus laminaris.
Collapse
Affiliation(s)
- James F Baldassano
- Department of BiologyUniversity of Maryland, College Park, Maryland, United States
| | - Katrina M MacLeod
- Department of BiologyUniversity of Maryland, College Park, Maryland, United States
| |
Collapse
|
2
|
Silveira MA, Herrera YN, Beebe NL, Schofield BR, Roberts MT. Lineage-tracing reveals an expanded population of NPY neurons in the inferior colliculus. J Neurophysiol 2024; 132:573-588. [PMID: 38988288 PMCID: PMC11427056 DOI: 10.1152/jn.00131.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024] Open
Abstract
Growing evidence suggests that neuropeptide signaling shapes auditory computations. We previously showed that neuropeptide Y (NPY) is expressed in the inferior colliculus (IC) by a population of GABAergic stellate neurons and that NPY regulates the strength of local excitatory circuits in the IC. NPY neurons were initially characterized using the NPY-hrGFP mouse, in which humanized renilla green fluorescent protein (hrGFP) expression indicates NPY expression at the time of assay, i.e., an expression-tracking approach. However, studies in other brain regions have shown that NPY expression can vary based on several factors, suggesting that the NPY-hrGFP mouse might miss NPY neurons not expressing NPY on the experiment date. Here, we hypothesized that neurons with the ability to express NPY represent a larger population of IC GABAergic neurons than previously reported. To test this hypothesis, we used a lineage-tracing approach to irreversibly tag neurons that expressed NPY at any point prior to the experiment date. We then compared the physiological and anatomical features of neurons labeled with this lineage-tracing approach to our prior data set, revealing a larger population of NPY neurons than previously found. In addition, we used optogenetics to test the local connectivity of NPY neurons and found that NPY neurons provide inhibitory synaptic input to other neurons in the ipsilateral IC. Together, our data expand the definition of NPY neurons in the IC, suggest that NPY expression might be dynamically regulated in the IC, and provide functional evidence that NPY neurons form local inhibitory circuits in the IC.NEW & NOTEWORTHY Across brain regions, neuropeptide Y (NPY) expression is dynamic and influenced by extrinsic and intrinsic factors. We previously showed that NPY is expressed by a class of inhibitory neurons in the auditory midbrain. Here, we find that this neuron class also includes neurons that previously expressed NPY, suggesting that NPY expression is dynamically regulated in the auditory midbrain. We also provide functional evidence that NPY neurons contribute to local inhibitory circuits in the auditory midbrain.
Collapse
Affiliation(s)
- Marina A Silveira
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan, United States
- Department of Neuroscience, Development and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas, United States
| | - Yoani N Herrera
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Nichole L Beebe
- Department of Anatomy and Neurobiology, University Hospitals Hearing Research Center at NEOMED, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, University Hospitals Hearing Research Center at NEOMED, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Michael T Roberts
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
3
|
Silveira MA, Herrera YN, Beebe NL, Schofield BR, Roberts MT. Lineage-tracing reveals an expanded population of NPY neurons in the inferior colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587042. [PMID: 38585909 PMCID: PMC10996674 DOI: 10.1101/2024.03.27.587042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Growing evidence suggests that neuropeptide signaling shapes auditory computations. We previously showed that neuropeptide Y (NPY) is expressed in the inferior colliculus (IC) by a population of GABAergic stellate neurons and that NPY regulates the strength of local excitatory circuits in the IC. NPY neurons were initially characterized using the NPY-hrGFP reporter mouse, in which hrGFP expression indicates NPY expression at the time of assay, i.e., an expression-tracking approach. However, studies in other brain regions have shown that NPY expression can vary based on a range of factors, suggesting that the NPY-hrGFP mouse might miss NPY neurons not expressing NPY proximal to the experiment date. Here, we hypothesized that neurons with the ability to express NPY represent a larger population of IC GABAergic neurons than previously reported. To test this hypothesis, we used a lineage-tracing approach to irreversibly tag neurons that expressed NPY at any point prior to the experiment date. We then compared the physiological and anatomical features of neurons labeled with this lineage-tracing approach to our prior data set, revealing a larger population of NPY neurons than previously found. In addition, we used optogenetics to test the local connectivity of NPY neurons and found that NPY neurons routinely provide inhibitory synaptic input to other neurons in the ipsilateral IC. Together, our data expand the definition of NPY neurons in the IC, suggest that NPY expression might be dynamically regulated in the IC, and provide functional evidence that NPY neurons form local inhibitory circuits in the IC.
Collapse
Affiliation(s)
- Marina A. Silveira
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
- Department of Neuroscience, Development and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas
| | - Yoani N. Herrera
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Nichole L. Beebe
- University Hospitals Hearing Research Center at NEOMED, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Brett R. Schofield
- University Hospitals Hearing Research Center at NEOMED, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Michael T. Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
4
|
Li YH, Joris PX. Case reopened: A temporal basis for harmonic pitch templates in the early auditory system?a). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:3986-4003. [PMID: 38149819 DOI: 10.1121/10.0023969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
A fundamental assumption of rate-place models of pitch is the existence of harmonic templates in the central nervous system (CNS). Shamma and Klein [(2000). J. Acoust. Soc. Am. 107, 2631-2644] hypothesized that these templates have a temporal basis. Coincidences in the temporal fine-structure of neural spike trains, even in response to nonharmonic, stochastic stimuli, would be sufficient for the development of harmonic templates. The physiological plausibility of this hypothesis is tested. Responses to pure tones, low-pass noise, and broadband noise from auditory nerve fibers and brainstem "high-sync" neurons are studied. Responses to tones simulate the output of fibers with infinitely sharp filters: for these responses, harmonic structure in a coincidence matrix comparing pairs of spike trains is indeed found. However, harmonic template structure is not observed in coincidences across responses to broadband noise, which are obtained from nerve fibers or neurons with enhanced synchronization. Using a computer model based on that of Shamma and Klein, it is shown that harmonic templates only emerge when consecutive processing steps (cochlear filtering, lateral inhibition, and temporal enhancement) are implemented in extreme, physiologically implausible form. It is concluded that current physiological knowledge does not support the hypothesis of Shamma and Klein (2000).
Collapse
Affiliation(s)
- Yi-Hsuan Li
- Laboratory of Auditory Neurophysiology, Medical School, Campus Gasthuisberg, University of Leuven, B-3000 Leuven, Belgium
| | - Philip X Joris
- Laboratory of Auditory Neurophysiology, Medical School, Campus Gasthuisberg, University of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
5
|
Joris PX. Use of reverse noise to measure ongoing delay. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:926-937. [PMID: 37578194 DOI: 10.1121/10.0020657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
Counts of spike coincidences provide a powerful means to compare responses to different stimuli or of different neurons, particularly regarding temporal factors. A drawback is that these methods do not provide an absolute measure of latency, i.e., the temporal interval between stimulus features and response. It is desirable to have such a measure within the analysis framework of coincidence counting. Single neuron responses were obtained, from 130 fibers in several tracts (auditory nerve, trapezoid body, lateral lemniscus), to a broadband noise and its polarity-inverted version. The spike trains in response to these stimuli are the "forward noise" responses. The same stimuli were also played time-reversed. The resulting spike trains were then again time-reversed: These are the "reverse-noise" responses. The forward and reverse responses were then analyzed with the coincidence count methods we have introduced earlier. Correlograms between forward- and reverse-noise responses show maxima at values consistent with latencies measured with other methods; the pattern of latencies with characteristic frequency, sound pressure level, and recording location was also consistent. At low characteristic frequencies, correlograms were well-predicted by reverse-correlation functions. We conclude that reverse noise provides an easy and reliable means to estimate latency of auditory nerve and brainstem neurons.
Collapse
Affiliation(s)
- Philip X Joris
- Laboratory of Auditory Neurophysiology, KU Leuven, Leuven B-3000, Belgium
| |
Collapse
|
6
|
Spirou GA, Kersting M, Carr S, Razzaq B, Yamamoto Alves Pinto C, Dawson M, Ellisman MH, Manis PB. High-resolution volumetric imaging constrains compartmental models to explore synaptic integration and temporal processing by cochlear nucleus globular bushy cells. eLife 2023; 12:e83393. [PMID: 37288824 PMCID: PMC10435236 DOI: 10.7554/elife.83393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/07/2023] [Indexed: 06/09/2023] Open
Abstract
Globular bushy cells (GBCs) of the cochlear nucleus play central roles in the temporal processing of sound. Despite investigation over many decades, fundamental questions remain about their dendrite structure, afferent innervation, and integration of synaptic inputs. Here, we use volume electron microscopy (EM) of the mouse cochlear nucleus to construct synaptic maps that precisely specify convergence ratios and synaptic weights for auditory nerve innervation and accurate surface areas of all postsynaptic compartments. Detailed biophysically based compartmental models can help develop hypotheses regarding how GBCs integrate inputs to yield their recorded responses to sound. We established a pipeline to export a precise reconstruction of auditory nerve axons and their endbulb terminals together with high-resolution dendrite, soma, and axon reconstructions into biophysically detailed compartmental models that could be activated by a standard cochlear transduction model. With these constraints, the models predict auditory nerve input profiles whereby all endbulbs onto a GBC are subthreshold (coincidence detection mode), or one or two inputs are suprathreshold (mixed mode). The models also predict the relative importance of dendrite geometry, soma size, and axon initial segment length in setting action potential threshold and generating heterogeneity in sound-evoked responses, and thereby propose mechanisms by which GBCs may homeostatically adjust their excitability. Volume EM also reveals new dendritic structures and dendrites that lack innervation. This framework defines a pathway from subcellular morphology to synaptic connectivity, and facilitates investigation into the roles of specific cellular features in sound encoding. We also clarify the need for new experimental measurements to provide missing cellular parameters, and predict responses to sound for further in vivo studies, thereby serving as a template for investigation of other neuron classes.
Collapse
Affiliation(s)
- George A Spirou
- Department of Medical Engineering, University of South FloridaTampaUnited States
| | - Matthew Kersting
- Department of Medical Engineering, University of South FloridaTampaUnited States
| | - Sean Carr
- Department of Medical Engineering, University of South FloridaTampaUnited States
| | - Bayan Razzaq
- Department of Otolaryngology, Head and Neck Surgery, West Virginia UniversityMorgantownUnited States
| | | | - Mariah Dawson
- Department of Otolaryngology, Head and Neck Surgery, West Virginia UniversityMorgantownUnited States
| | - Mark H Ellisman
- Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
- National Center for Microscopy and Imaging Research,University of California, San DiegoSan DiegoUnited States
| | - Paul B Manis
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Cell Biology and Physiology, University of North CarolinaChapel HillUnited States
| |
Collapse
|
7
|
Rafati AH, Ardalan M, Vontell RT, Mallard C, Wegener G. Geometrical modelling of neuronal clustering and development. Heliyon 2022; 8:e09871. [PMID: 35847609 PMCID: PMC9283893 DOI: 10.1016/j.heliyon.2022.e09871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/14/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
The dynamic geometry of neuronal development is an essential concept in theoretical neuroscience. We aimed to design a mathematical model which outlines stepwise in an innovative form and designed to model neuronal development geometrically and modelling spatially the neuronal-electrical field interaction. We demonstrated flexibility in forming the cell and its nucleus to show neuronal growth from inside to outside that uses a fractal cylinder to generate neurons (pyramidal/sphere) in form of mathematically called ‘surface of revolution’. Furthermore, we verified the effect of the adjacent neurons on a free branch from one-side, by modelling a ‘normal vector surface’ that represented a group of neurons. Our model also indicated how the geometrical shapes and clustering of the neurons can be transformed mathematically in the form of vector field that is equivalent to the neuronal electromagnetic activity/electric flux. We further simulated neuronal-electrical field interaction that was implemented spatially using Van der Pol oscillator and taking Laplacian vector field as it reflects biophysical mechanism of neuronal activity and geometrical change. In brief, our study would be considered a proper platform and inspiring modelling for next more complicated geometrical and electrical constructions.
Collapse
Affiliation(s)
- Ali H Rafati
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Maryam Ardalan
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark.,Institute of Neuroscience and Physiology, Centre for Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Center of Functionally Integrative Neuroscience-SKS, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Regina T Vontell
- Department of Neurology, University of Miami Miller, School of Medicine, Brain Endowment Bank, Miami, USA
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Centre for Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
8
|
Brughera A, Ballestero JA, McAlpine D. Sensitivity to Envelope Interaural Time Differences: Modeling Auditory Modulation Filtering. J Assoc Res Otolaryngol 2022; 23:35-57. [PMID: 34741225 PMCID: PMC8782955 DOI: 10.1007/s10162-021-00816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 08/30/2021] [Indexed: 02/03/2023] Open
Abstract
For amplitude-modulated sound, the envelope interaural time difference (ITDENV) is a potential cue for sound-source location. ITDENV is encoded in the lateral superior olive (LSO) of the auditory brainstem, by excitatory-inhibitory (EI) neurons receiving ipsilateral excitation and contralateral inhibition. Between human listeners, sensitivity to ITDENV varies considerably, but ultimately decreases with increasing stimulus carrier frequency, and decreases more strongly with increasing modulation rate. Mechanisms underlying the variation in behavioral sensitivity remain unclear. Here, with increasing carrier frequency (4-10 kHz), as we phenomenologically model the associated decrease in ITDENV sensitivity using arbitrarily fewer neurons consistent across populations, we computationally model the variable sensitivity across human listeners and modulation rates (32-800 Hz) as the decreasing range of membrane frequency responses in LSO neurons. Transposed tones stimulate a bilateral auditory-periphery model, driving model EI neurons where electrical membrane impedance filters the frequency content of inputs driven by amplitude-modulated sound, evoking modulation filtering. Calculated from Fisher information in spike-rate functions of ITDENV, for model EI neuronal populations distinctly reflecting the LSO range in membrane frequency responses, just-noticeable differences in ITDENV collectively reproduce the largest variation in ITDENV sensitivity across human listeners. These slow to fast model populations each generally match the best human ITDENV sensitivity at a progressively higher modulation rate, by membrane-filtering and spike-generation properties producing realistically less than Poisson variance. Non-resonant model EI neurons are also sensitive to interaural intensity differences. With peripheral filters centered between carrier frequency and modulation sideband, fast resonant model EI neurons extend ITDENV sensitivity above 500-Hz modulation.
Collapse
Affiliation(s)
- Andrew Brughera
- grid.1004.50000 0001 2158 5405Department of Linguistics, and the Australian Hearing Hub, Macquarie University, Macquarie Park, New South Wales Australia ,grid.189504.10000 0004 1936 7558Department of Biomedical Engineering, Boston University, Boston, MA USA
| | - Jimena A. Ballestero
- Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - David McAlpine
- grid.1004.50000 0001 2158 5405Department of Linguistics, and the Australian Hearing Hub, Macquarie University, Macquarie Park, New South Wales Australia
| |
Collapse
|
9
|
Kessler D, Carr CE, Kretzberg J, Ashida G. Theoretical Relationship Between Two Measures of Spike Synchrony: Correlation Index and Vector Strength. Front Neurosci 2022; 15:761826. [PMID: 34987357 PMCID: PMC8721039 DOI: 10.3389/fnins.2021.761826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022] Open
Abstract
Information processing in the nervous system critically relies on temporally precise spiking activity. In the auditory system, various degrees of phase-locking can be observed from the auditory nerve to cortical neurons. The classical metric for quantifying phase-locking is the vector strength (VS), which captures the periodicity in neuronal spiking. More recently, another metric, called the correlation index (CI), was proposed to quantify the temporally reproducible response characteristics of a neuron. The CI is defined as the peak value of a normalized shuffled autocorrelogram (SAC). Both VS and CI have been used to investigate how temporal information is processed and propagated along the auditory pathways. While previous analyses of physiological data in cats suggested covariation of these two metrics, general characterization of their connection has never been performed. In the present study, we derive a rigorous relationship between VS and CI. To model phase-locking, we assume Poissonian spike trains with a temporally changing intensity function following a von Mises distribution. We demonstrate that VS and CI are mutually related via the so-called concentration parameter that determines the degree of phase-locking. We confirm that these theoretical results are largely consistent with physiological data recorded in the auditory brainstem of various animals. In addition, we generate artificial phase-locked spike sequences, for which recording and analysis parameters can be systematically manipulated. Our analysis results suggest that mismatches between empirical data and the theoretical prediction can often be explained with deviations from the von Mises distribution, including skewed or multimodal period histograms. Furthermore, temporal relations of spike trains across trials can contribute to higher CI values than predicted mathematically based on the VS. We find that, for most applications, a SAC bin width of 50 ms seems to be a favorable choice, leading to an estimated error below 2.5% for physiologically plausible conditions. Overall, our results provide general relations between the two measures of phase-locking and will aid future analyses of different physiological datasets that are characterized with these metrics.
Collapse
Affiliation(s)
- Dominik Kessler
- Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Catherine E Carr
- Department of Biology, University of Maryland, College Park, MD, United States
| | - Jutta Kretzberg
- Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence Hearing4all, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Go Ashida
- Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence Hearing4all, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
Auditory Brainstem Models: Adapting Cochlear Nuclei Improve Spatial Encoding by the Medial Superior Olive in Reverberation. J Assoc Res Otolaryngol 2021; 22:289-318. [PMID: 33861395 DOI: 10.1007/s10162-021-00797-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022] Open
Abstract
Listeners typically perceive a sound as originating from the direction of its source, even as direct sound is followed milliseconds later by reflected sound from multiple different directions. Early-arriving sound is emphasised in the ascending auditory pathway, including the medial superior olive (MSO) where binaural neurons encode the interaural-time-difference (ITD) cue for spatial location. Perceptually, weighting of ITD conveyed during rising sound energy is stronger at 600 Hz than at 200 Hz, consistent with the minimum stimulus rate for binaural adaptation, and with the longer reverberation times at 600 Hz, compared with 200 Hz, in many natural outdoor environments. Here, we computationally explore the combined efficacy of adaptation prior to the binaural encoding of ITD cues, and excitatory binaural coincidence detection within MSO neurons, in emphasising ITDs conveyed in early-arriving sound. With excitatory inputs from adapting, nonlinear model spherical bushy cells (SBCs) of the bilateral cochlear nuclei, a nonlinear model MSO neuron with low-threshold potassium channels reproduces the rate-dependent emphasis of rising vs. peak sound energy in ITD encoding; adaptation is equally effective in the model MSO. Maintaining adaptation in model SBCs, and adjusting membrane speed in model MSO neurons, 'left' and 'right' populations of computationally efficient, linear model SBCs and MSO neurons reproduce this stronger weighting of ITD conveyed during rising sound energy at 600 Hz compared to 200 Hz. This hemispheric population model demonstrates a link between strong weighting of spatial information during rising sound energy, and correct unambiguous lateralisation of a speech source in reverberation.
Collapse
|
11
|
Koert E, Kuenzel T. Small dendritic synapses enhance temporal coding in a model of cochlear nucleus bushy cells. J Neurophysiol 2021; 125:915-937. [PMID: 33471627 DOI: 10.1152/jn.00331.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spherical bushy cells (SBCs) in the anteroventral cochlear nucleus receive a single or very few powerful axosomatic inputs from the auditory nerve. However, SBCs are also contacted by small regular bouton synapses of the auditory nerve, located in their dendritic tree. The function of these small inputs is unknown. It was speculated that the interaction of axosomatic inputs with small dendritic inputs improved temporal precision, but direct evidence for this is missing. In a compartment model of spherical bushy cells with a stylized or realistic three-dimensional (3-D) representation of the bushy dendrite, we explored this hypothesis. Phase-locked dendritic inputs caused both tonic depolarization and a modulation of the model SBC membrane potential at the frequency of the stimulus. For plausible model parameters, dendritic inputs were subthreshold. Instead, the tonic depolarization increased the excitability of the SBC model and the modulation of the membrane potential caused a phase-dependent increase in the efficacy of the main axosomatic input. This improved response rate and entrainment for low-input frequencies and temporal precision of output at and above the characteristic frequency. A careful exploration of morphological and biophysical parameters of the bushy dendrite suggested a functional explanation for the peculiar shape of the bushy dendrite. Our model for the first time directly implied a role for the small excitatory dendritic inputs in auditory processing: they modulate the efficacy of the main input and are thus a plausible mechanism for the improvement of temporal precision and fidelity in these central auditory neurons.NEW & NOTEWORTHY We modeled dendritic inputs from the auditory nerve that spherical bushy cells of the cochlear nucleus receive. Dendritic inputs caused both tonic depolarization and modulation of the membrane potential at the input frequency. This improved the rate, entrainment, and temporal precision of output action potentials. Our simulations suggest a role for small dendritic inputs in auditory processing: they modulate the efficacy of the main input supporting temporal precision and fidelity in these central auditory neurons.
Collapse
Affiliation(s)
- Elisabeth Koert
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| | - Thomas Kuenzel
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
12
|
de Cheveigné A. Harmonic Cancellation-A Fundamental of Auditory Scene Analysis. Trends Hear 2021; 25:23312165211041422. [PMID: 34698574 PMCID: PMC8552394 DOI: 10.1177/23312165211041422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/23/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
This paper reviews the hypothesis of harmonic cancellation according to which an interfering sound is suppressed or canceled on the basis of its harmonicity (or periodicity in the time domain) for the purpose of Auditory Scene Analysis. It defines the concept, discusses theoretical arguments in its favor, and reviews experimental results that support it, or not. If correct, the hypothesis may draw on time-domain processing of temporally accurate neural representations within the brainstem, as required also by the classic equalization-cancellation model of binaural unmasking. The hypothesis predicts that a target sound corrupted by interference will be easier to hear if the interference is harmonic than inharmonic, all else being equal. This prediction is borne out in a number of behavioral studies, but not all. The paper reviews those results, with the aim to understand the inconsistencies and come up with a reliable conclusion for, or against, the hypothesis of harmonic cancellation within the auditory system.
Collapse
Affiliation(s)
- Alain de Cheveigné
- Laboratoire des systèmes perceptifs, CNRS, Paris, France
- Département d’études cognitives, École normale supérieure, PSL
University, Paris, France
- UCL Ear Institute, London, UK
| |
Collapse
|
13
|
Jovanovic S, Milenkovic I. Purinergic Modulation of Activity in the Developing Auditory Pathway. Neurosci Bull 2020; 36:1285-1298. [PMID: 33040238 DOI: 10.1007/s12264-020-00586-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Purinergic P2 receptors, activated by endogenous ATP, are prominently expressed on neuronal and non-neuronal cells during development of the auditory periphery and central auditory neurons. In the mature cochlea, extracellular ATP contributes to ion homeostasis, and has a protective function against noise exposure. Here, we focus on the modulation of activity by extracellular ATP during early postnatal development of the lower auditory pathway. In mammals, spontaneous patterned activity is conveyed along afferent auditory pathways before the onset of acoustically evoked signal processing. During this critical developmental period, inner hair cells fire bursts of action potentials that are believed to provide a developmental code for synaptic maturation and refinement of auditory circuits, thereby establishing a precise tonotopic organization. Endogenous ATP-release triggers such patterned activity by raising the extracellular K+ concentration and contributes to firing by increasing the excitability of auditory nerve fibers, spiral ganglion neurons, and specific neuron types within the auditory brainstem, through the activation of diverse P2 receptors. We review recent studies that provide new models on the contribution of purinergic signaling to early development of the afferent auditory pathway. Further, we discuss potential future directions of purinergic research in the auditory system.
Collapse
Affiliation(s)
- Sasa Jovanovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Ivan Milenkovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
14
|
Cheng L, Guo ZY, Qu YL. Cross-modality modulation of auditory midbrain processing of intensity information. Hear Res 2020; 395:108042. [PMID: 32810721 DOI: 10.1016/j.heares.2020.108042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/12/2020] [Accepted: 07/08/2020] [Indexed: 02/03/2023]
Abstract
In nature, animals constantly receive a multitude of sensory stimuli, such as visual, auditory, and somatosensory. The integration across sensory modalities is advantageous for the precise processing of sensory inputs which is essential for animals to survival. Although some principles of cross-modality integration have been revealed by many studies, little insight has been gained into its functional potentials. In this study, the functional influence of cross-modality modulation on auditory processing of intensity information was investigated via recording neuronal activity in the auditory midbrain (i.e., inferior colliculus, IC) under the conditions of visual, auditory, and audiovisual stimuli, respectively. Results demonstrated that combined audiovisual stimuli either enhanced or suppressed the responses of IC neurons compared to auditory stimuli alone, even though the same visual stimuli alone induced no response. Audiovisual modulation appeared to be strongest when the combined audiovisual stimuli were located at the best auditory azimuth of neurons as well as when presented with intensity at near-threshold levels. Additionally, the rate-intensity function of IC neurons to auditory stimuli was expanded or compressed by audiovisual modulation, which was highly dependent on the minimal threshold (MT) of neurons. Lowering of the MT and greater audiovisual modulation for the neuron indicated an intensity-specific enhancement of auditory intensity sensitivity by cross-modality modulation. Overall, evidence suggests a potential functional role of cross-modality modulation in IC that serves to instruct adaptive plasticity to enhance the auditory perception of intensity information.
Collapse
Affiliation(s)
- Liang Cheng
- School of Psychology & Key Laboratory of Adolescent Cyberpsycology and Behavior (CCNU) of Ministry of Education, Central China Normal University, Wuhan, 430079, China; School of Life Sciences & Hubei Key Lab of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China.
| | - Zhao-Yang Guo
- School of Psychology & Key Laboratory of Adolescent Cyberpsycology and Behavior (CCNU) of Ministry of Education, Central China Normal University, Wuhan, 430079, China
| | - Yi-Li Qu
- School of Psychology & Key Laboratory of Adolescent Cyberpsycology and Behavior (CCNU) of Ministry of Education, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
15
|
Ghanbari A, Ren N, Keine C, Stoelzel C, Englitz B, Swadlow HA, Stevenson IH. Modeling the Short-Term Dynamics of in Vivo Excitatory Spike Transmission. J Neurosci 2020; 40:4185-4202. [PMID: 32303648 PMCID: PMC7244199 DOI: 10.1523/jneurosci.1482-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 11/21/2022] Open
Abstract
Information transmission in neural networks is influenced by both short-term synaptic plasticity (STP) as well as nonsynaptic factors, such as after-hyperpolarization currents and changes in excitability. Although these effects have been widely characterized in vitro using intracellular recordings, how they interact in vivo is unclear. Here, we develop a statistical model of the short-term dynamics of spike transmission that aims to disentangle the contributions of synaptic and nonsynaptic effects based only on observed presynaptic and postsynaptic spiking. The model includes a dynamic functional connection with short-term plasticity as well as effects due to the recent history of postsynaptic spiking and slow changes in postsynaptic excitability. Using paired spike recordings, we find that the model accurately describes the short-term dynamics of in vivo spike transmission at a diverse set of identified and putative excitatory synapses, including a pair of connected neurons within thalamus in mouse, a thalamocortical connection in a female rabbit, and an auditory brainstem synapse in a female gerbil. We illustrate the utility of this modeling approach by showing how the spike transmission patterns captured by the model may be sufficient to account for stimulus-dependent differences in spike transmission in the auditory brainstem (endbulb of Held). Finally, we apply this model to large-scale multielectrode recordings to illustrate how such an approach has the potential to reveal cell type-specific differences in spike transmission in vivo Although STP parameters estimated from ongoing presynaptic and postsynaptic spiking are highly uncertain, our results are partially consistent with previous intracellular observations in these synapses.SIGNIFICANCE STATEMENT Although synaptic dynamics have been extensively studied and modeled using intracellular recordings of postsynaptic currents and potentials, inferring synaptic effects from extracellular spiking is challenging. Whether or not a synaptic current contributes to postsynaptic spiking depends not only on the amplitude of the current, but also on many other factors, including the activity of other, typically unobserved, synapses, the overall excitability of the postsynaptic neuron, and how recently the postsynaptic neuron has spiked. Here, we developed a model that, using only observations of presynaptic and postsynaptic spiking, aims to describe the dynamics of in vivo spike transmission by modeling both short-term synaptic plasticity (STP) and nonsynaptic effects. This approach may provide a novel description of fast, structured changes in spike transmission.
Collapse
Affiliation(s)
| | - Naixin Ren
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06268
| | - Christian Keine
- Carver College of Medicine, Iowa Neuroscience Institute, Department of Anatomy and Cell Biology, University of Iowa, Iowa, IA 52242
| | - Carl Stoelzel
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06268
| | - Bernhard Englitz
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 AJ Nijmegen, Netherlands
| | - Harvey A Swadlow
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06268
| | - Ian H Stevenson
- Department of Biomedical Engineering
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06268
| |
Collapse
|
16
|
Characterization of Auditory and Binaural Spatial Hearing in a Fragile X Syndrome Mouse Model. eNeuro 2020; 7:ENEURO.0300-19.2019. [PMID: 31953317 PMCID: PMC7031856 DOI: 10.1523/eneuro.0300-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/01/2019] [Accepted: 12/20/2019] [Indexed: 12/31/2022] Open
Abstract
The auditory brainstem compares sound-evoked excitation and inhibition from both ears to compute sound source location and determine spatial acuity. Although alterations to the anatomy and physiology of the auditory brainstem have been demonstrated in fragile X syndrome (FXS), it is not known whether these changes cause spatial acuity deficits in FXS. To test the hypothesis that FXS-related alterations to brainstem circuits impair spatial hearing abilities, a reflexive prepulse inhibition (PPI) task, with variations in sound (gap, location, masking) as the prepulse stimulus, was used on Fmr1 knock-out mice and B6 controls. Specifically, Fmr1 mice show decreased PPI compared with wild-type mice during gap detection, changes in sound source location, and spatial release from masking with no alteration to their overall startle thresholds compared with wild-type mice. Last, Fmr1 mice have increased latency to respond in these tasks, suggesting additional impairments in the pathway responsible for reacting to a startling sound. This study further supports data in humans with FXS that show similar deficits in PPI.
Collapse
|
17
|
Kuenzel T. Modulatory influences on time-coding neurons in the ventral cochlear nucleus. Hear Res 2019; 384:107824. [DOI: 10.1016/j.heares.2019.107824] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/10/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
|
18
|
Lopez Espejo M, Schwartz ZP, David SV. Spectral tuning of adaptation supports coding of sensory context in auditory cortex. PLoS Comput Biol 2019; 15:e1007430. [PMID: 31626624 PMCID: PMC6821137 DOI: 10.1371/journal.pcbi.1007430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/30/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Perception of vocalizations and other behaviorally relevant sounds requires integrating acoustic information over hundreds of milliseconds. Sound-evoked activity in auditory cortex typically has much shorter latency, but the acoustic context, i.e., sound history, can modulate sound evoked activity over longer periods. Contextual effects are attributed to modulatory phenomena, such as stimulus-specific adaption and contrast gain control. However, an encoding model that links context to natural sound processing has yet to be established. We tested whether a model in which spectrally tuned inputs undergo adaptation mimicking short-term synaptic plasticity (STP) can account for contextual effects during natural sound processing. Single-unit activity was recorded from primary auditory cortex of awake ferrets during presentation of noise with natural temporal dynamics and fully natural sounds. Encoding properties were characterized by a standard linear-nonlinear spectro-temporal receptive field (LN) model and variants that incorporated STP-like adaptation. In the adapting models, STP was applied either globally across all input spectral channels or locally to subsets of channels. For most neurons, models incorporating local STP predicted neural activity as well or better than LN and global STP models. The strength of nonlinear adaptation varied across neurons. Within neurons, adaptation was generally stronger for spectral channels with excitatory than inhibitory gain. Neurons showing improved STP model performance also tended to undergo stimulus-specific adaptation, suggesting a common mechanism for these phenomena. When STP models were compared between passive and active behavior conditions, response gain often changed, but average STP parameters were stable. Thus, spectrally and temporally heterogeneous adaptation, subserved by a mechanism with STP-like dynamics, may support representation of the complex spectro-temporal patterns that comprise natural sounds across wide-ranging sensory contexts.
Collapse
Affiliation(s)
- Mateo Lopez Espejo
- Neuroscience Graduate Program, Oregon Health and Science University, Portland, OR, United States of America
| | - Zachary P. Schwartz
- Neuroscience Graduate Program, Oregon Health and Science University, Portland, OR, United States of America
| | - Stephen V. David
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR, United States of America
| |
Collapse
|
19
|
Principal Neurons in the Anteroventral Cochlear Nucleus Express Cell-Type Specific Glycine Receptor α Subunits. Neuroscience 2019; 415:77-88. [PMID: 31325562 DOI: 10.1016/j.neuroscience.2019.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 11/21/2022]
Abstract
Signal processing in the principal neurons of the anteroventral cochlear nucleus (AVCN) is modulated by glycinergic inhibition. The kinetics of IPSCs are specific to the target neurons. It remains unclear what glycine receptor subunits are involved in generating such target-specific IPSC kinetics in AVCN principal neurons. We investigated the expression patterns of glycine receptor α (GlyRα) subunits in AVCN using immunohistochemical labeling of four isoforms of GlyRα subunits (GlyRα1-α4), and found that AVCN neurons express GlyRα1 and GlyRα4, but not GlyRα2 and GlyRα3 subunits. To further identify the cell type-specific expression patterns of GlyRα subunits, we combined whole-cell patch clamp recording with immunohistochemistry by recording from all three types of AVCN principal neurons, characterizing the synaptic properties of their glycinergic inhibition, dye-filling the neurons, and processing the slice for immunostaining of different GlyRα subunits. We found that AVCN bushy neurons express both GlyRα1 and GlyRα4 subunits that underlie their slow IPSC kinetics, whereas both T-stellate and D-stellate neurons express only GlyRα1 subunit that underlies their fast IPSC kinetics. In conclusion, AVCN principal neurons express cell-type specific GlyRα subunits that underlie their distinct IPSC kinetics, which enables glycinergic inhibition from the same source to exert target cell-specific modulation of activity to support the unique physiological function of these neurons.
Collapse
|
20
|
Chen C, Read HL, Escabí MA. A temporal integration mechanism enhances frequency selectivity of broadband inputs to inferior colliculus. PLoS Biol 2019; 17:e2005861. [PMID: 31233489 PMCID: PMC6611646 DOI: 10.1371/journal.pbio.2005861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/05/2019] [Accepted: 05/22/2019] [Indexed: 11/18/2022] Open
Abstract
Accurately resolving frequency components in sounds is essential for sound recognition, yet there is little direct evidence for how frequency selectivity is preserved or newly created across auditory structures. We demonstrate that prepotentials (PPs) with physiological properties resembling presynaptic potentials from broadly tuned brainstem inputs can be recorded concurrently with postsynaptic action potentials in inferior colliculus (IC). These putative brainstem inputs (PBIs) are broadly tuned and exhibit delayed and spectrally interleaved excitation and inhibition not present in the simultaneously recorded IC neurons (ICNs). A sharpening of tuning is accomplished locally at the expense of spike-timing precision through nonlinear temporal integration of broadband inputs. A neuron model replicates the finding and demonstrates that temporal integration alone can degrade timing precision while enhancing frequency tuning through interference of spectrally in- and out-of-phase inputs. These findings suggest that, in contrast to current models that require local inhibition, frequency selectivity can be sharpened through temporal integration, thus supporting an alternative computational strategy to quickly refine frequency selectivity.
Collapse
Affiliation(s)
- Chen Chen
- Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Heather L. Read
- Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Monty A. Escabí
- Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
21
|
Parthasarathy A, Bartlett EL, Kujawa SG. Age-related Changes in Neural Coding of Envelope Cues: Peripheral Declines and Central Compensation. Neuroscience 2019; 407:21-31. [DOI: 10.1016/j.neuroscience.2018.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/22/2022]
|
22
|
Müller MK, Jovanovic S, Keine C, Radulovic T, Rübsamen R, Milenkovic I. Functional Development of Principal Neurons in the Anteroventral Cochlear Nucleus Extends Beyond Hearing Onset. Front Cell Neurosci 2019; 13:119. [PMID: 30983974 PMCID: PMC6447607 DOI: 10.3389/fncel.2019.00119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/11/2019] [Indexed: 01/23/2023] Open
Abstract
Sound information is transduced into graded receptor potential by cochlear hair cells and encoded as discrete action potentials of auditory nerve fibers. In the cochlear nucleus, auditory nerve fibers convey this information through morphologically distinct synaptic terminals onto bushy cells (BCs) and stellate cells (SCs) for processing of different sound features. With expanding use of transgenic mouse models, it is increasingly important to understand the in vivo functional development of these neurons in mice. We characterized the maturation of spontaneous and acoustically evoked activity in BCs and SCs by acquiring single-unit juxtacellular recordings between hearing onset (P12) and young adulthood (P30) of anesthetized CBA/J mice. In both cell types, hearing sensitivity and characteristic frequency (CF) range are mostly adult-like by P14, consistent with rapid maturation of the auditory periphery. In BCs, however, some physiological features like maximal firing rate, dynamic range, temporal response properties, recovery from post-stimulus depression, first spike latency (FSL) and encoding of sinusoid amplitude modulation undergo further maturation up to P18. In SCs, the development of excitatory responses is even more prolonged, indicated by a gradual increase in spontaneous and maximum firing rates up to P30. In the same cell type, broadly tuned acoustically evoked inhibition is immediately effective at hearing onset, covering the low- and high-frequency flanks of the excitatory response area. Together, these data suggest that maturation of auditory processing in the parallel ascending BC and SC streams engages distinct mechanisms at the first central synapses that may differently depend on the early auditory experience.
Collapse
Affiliation(s)
- Maria Katharina Müller
- Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Sasa Jovanovic
- Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Christian Keine
- Carver College of Medicine, Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States.,Institute of Biology, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Tamara Radulovic
- Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.,Carver College of Medicine, Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
| | - Rudolf Rübsamen
- Institute of Biology, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Ivan Milenkovic
- Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.,School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
23
|
Brown DH, Hyson RL. Intrinsic physiological properties underlie auditory response diversity in the avian cochlear nucleus. J Neurophysiol 2019; 121:908-927. [PMID: 30649984 DOI: 10.1152/jn.00459.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory systems exploit parallel processing of stimulus features to enable rapid, simultaneous extraction of information. Mechanisms that facilitate this differential extraction of stimulus features can be intrinsic or synaptic in origin. A subdivision of the avian cochlear nucleus, nucleus angularis (NA), extracts sound intensity information from the auditory nerve and contains neurons that exhibit diverse responses to sound and current injection. NA neurons project to multiple regions ascending the auditory brain stem including the superior olivary nucleus, lateral lemniscus, and avian inferior colliculus, with functional implications for inhibitory gain control and sound localization. Here we investigated whether the diversity of auditory response patterns in NA can be accounted for by variation in intrinsic physiological features. Modeled sound-evoked auditory nerve input was applied to NA neurons with dynamic clamp during in vitro whole cell recording at room temperature. Temporal responses to auditory nerve input depended on variation in intrinsic properties, and the low-threshold K+ current was implicated as a major contributor to temporal response diversity and neuronal input-output functions. An auditory nerve model of acoustic amplitude modulation produced synchrony coding of modulation frequency that depended on the intrinsic physiology of the individual neuron. In Primary-Like neurons, varying low-threshold K+ conductance with dynamic clamp altered temporal modulation tuning bidirectionally. Taken together, these data suggest that intrinsic physiological properties play a key role in shaping auditory response diversity to both simple and more naturalistic auditory stimuli in the avian cochlear nucleus. NEW & NOTEWORTHY This article addresses the question of how the nervous system extracts different information in sounds. Neurons in the cochlear nucleus show diverse responses to acoustic stimuli that may allow for parallel processing of acoustic features. The present studies suggest that diversity in intrinsic physiological features of individual neurons, including levels of a low voltage-activated K+ current, play a major role in regulating the diversity of auditory responses.
Collapse
Affiliation(s)
- David H Brown
- Program in Neuroscience, Department of Psychology, Florida State University , Tallahassee, Florida
| | - Richard L Hyson
- Program in Neuroscience, Department of Psychology, Florida State University , Tallahassee, Florida
| |
Collapse
|
24
|
Stasiak A, Sayles M, Winter IM. Perfidious synaptic transmission in the guinea-pig auditory brainstem. PLoS One 2018; 13:e0203712. [PMID: 30286113 PMCID: PMC6172016 DOI: 10.1371/journal.pone.0203712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/24/2018] [Indexed: 02/02/2023] Open
Abstract
The presence of 'giant' synapses in the auditory brainstem is thought to be a specialization designed to encode temporal information to support perception of pitch, frequency, and sound-source localisation. These 'giant' synapses have been found in the ventral cochlear nucleus, the medial nucleus of the trapezoid body and the ventral nucleus of the lateral lemniscus. An interpretation of these synapses as simple relays has, however, been challenged by the observation in the gerbil that the action potential frequently fails in the ventral cochlear nucleus. Given the prominence of these synapses it is important to establish whether this phenomenon is unique to the gerbil or can be observed in other species. Here we examine the responses of units, thought to be the output of neurons in receipt of 'giant' synaptic endings, in the ventral cochlear nucleus and the medial nucleus of the trapezoid body in the guinea pig. We found that failure of the action-potential component, recorded from cells in the ventral cochlear nucleus, occurred in ~60% of spike waveforms when recording spontaneous activity. In the medial nucleus of the trapezoid body, we did not find evidence for action-potential failure. In the ventral cochlear nucleus action-potential failures transform the receptive field between input and output of bushy cells. Additionally, the action-potential failures result in "non-primary-like" temporal-adaptation patterns. This is important for computational models of the auditory system, which commonly assume the responses of ventral cochlear nucleus bushy cells are very similar to their "primary like" auditory-nerve-fibre inputs.
Collapse
Affiliation(s)
- Arkadiusz Stasiak
- Centre for the Neural Basis of Hearing, The Physiological Laboratory, Downing Street, Cambridge, United Kingdom
| | - Mark Sayles
- Centre for the Neural Basis of Hearing, The Physiological Laboratory, Downing Street, Cambridge, United Kingdom
| | - Ian M. Winter
- Centre for the Neural Basis of Hearing, The Physiological Laboratory, Downing Street, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Gillet C, Goyer D, Kurth S, Griebel H, Kuenzel T. Cholinergic innervation of principal neurons in the cochlear nucleus of the Mongolian gerbil. J Comp Neurol 2018; 526:1647-1661. [DOI: 10.1002/cne.24433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 02/16/2018] [Accepted: 02/25/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Charlène Gillet
- Institute for Biology 2; RWTH Aachen University; Aachen D-52074 Germany
| | - David Goyer
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan; Kresge Hearing Research Institute; Ann Arbor Michigan 48109
| | - Stefanie Kurth
- Institute for Biology 2; RWTH Aachen University; Aachen D-52074 Germany
| | - Hannah Griebel
- Institute for Biology 2; RWTH Aachen University; Aachen D-52074 Germany
| | - Thomas Kuenzel
- Institute for Biology 2; RWTH Aachen University; Aachen D-52074 Germany
| |
Collapse
|
26
|
Encke J, Hemmert W. Extraction of Inter-Aural Time Differences Using a Spiking Neuron Network Model of the Medial Superior Olive. Front Neurosci 2018; 12:140. [PMID: 29559886 PMCID: PMC5845713 DOI: 10.3389/fnins.2018.00140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/21/2018] [Indexed: 11/13/2022] Open
Abstract
The mammalian auditory system is able to extract temporal and spectral features from sound signals at the two ears. One important cue for localization of low-frequency sound sources in the horizontal plane are inter-aural time differences (ITDs) which are first analyzed in the medial superior olive (MSO) in the brainstem. Neural recordings of ITD tuning curves at various stages along the auditory pathway suggest that ITDs in the mammalian brainstem are not represented in form of a Jeffress-type place code. An alternative is the hemispheric opponent-channel code, according to which ITDs are encoded as the difference in the responses of the MSO nuclei in the two hemispheres. In this study, we present a physiologically-plausible, spiking neuron network model of the mammalian MSO circuit and apply two different methods of extracting ITDs from arbitrary sound signals. The network model is driven by a functional model of the auditory periphery and physiological models of the cochlear nucleus and the MSO. Using a linear opponent-channel decoder, we show that the network is able to detect changes in ITD with a precision down to 10 μs and that the sensitivity of the decoder depends on the slope of the ITD-rate functions. A second approach uses an artificial neuronal network to predict ITDs directly from the spiking output of the MSO and ANF model. Using this predictor, we show that the MSO-network is able to reliably encode static and time-dependent ITDs over a large frequency range, also for complex signals like speech.
Collapse
Affiliation(s)
- Jörg Encke
- Bioanaloge-Informationsverarbeitung, Department of Electrical and Computer Engineering, Technical University Munich, Munich, Germany
| | - Werner Hemmert
- Bioanaloge-Informationsverarbeitung, Department of Electrical and Computer Engineering, Technical University Munich, Munich, Germany
| |
Collapse
|
27
|
Keine C, Rübsamen R, Englitz B. Signal integration at spherical bushy cells enhances representation of temporal structure but limits its range. eLife 2017; 6:29639. [PMID: 28945194 PMCID: PMC5626481 DOI: 10.7554/elife.29639] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/25/2017] [Indexed: 11/25/2022] Open
Abstract
Neuronal inhibition is crucial for temporally precise and reproducible signaling in the auditory brainstem. Previously we showed that for various synthetic stimuli, spherical bushy cell (SBC) activity in the Mongolian gerbil is rendered sparser and more reliable by subtractive inhibition (Keine et al., 2016). Here, employing environmental stimuli, we demonstrate that the inhibitory gain control becomes even more effective, keeping stimulated response rates equal to spontaneous ones. However, what are the costs of this modulation? We performed dynamic stimulus reconstructions based on neural population responses for auditory nerve (ANF) input and SBC output to assess the influence of inhibition on acoustic signal representation. Compared to ANFs, reconstructions of natural stimuli based on SBC responses were temporally more precise, but the match between acoustic and represented signal decreased. Hence, for natural sounds, inhibition at SBCs plays an even stronger role in achieving sparse and reproducible neuronal activity, while compromising general signal representation.
Collapse
Affiliation(s)
- Christian Keine
- Carver College of Medicine, Department of Anatomy and Cell Biology, University of Iowa, Iowa City, United States.,Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Rudolf Rübsamen
- Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Bernhard Englitz
- Donders Center for Neuroscience, Department of Neurophysiology, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
28
|
Nerlich J, Rübsamen R, Milenkovic I. Developmental Shift of Inhibitory Transmitter Content at a Central Auditory Synapse. Front Cell Neurosci 2017; 11:211. [PMID: 28769768 PMCID: PMC5516124 DOI: 10.3389/fncel.2017.00211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
Synaptic inhibition in the CNS is mostly mediated by GABA or glycine. Generally, the use of the two transmitters is spatially segregated, but there are central synapses employing both, which allows for spatial and temporal variability of inhibitory mechanisms. Spherical bushy cells (SBCs) in the mammalian cochlear nucleus receive primary excitatory inputs through auditory nerve fibers arising from the organ of Corti and non-primary inhibition mediated by a dual glycine-GABA transmission. Slow kinetics IPSCs enable activity dependent tonic-like conductance build up, functioning as a gain control by filtering out small or temporally imprecise EPSPs. However, it remained elusive whether GABA and glycine are released as content of the same vesicle or from distinct presynaptic terminals. The developmental profile of quantal release was investigated with whole cell recordings of miniature inhibitory postsynaptic currents (mIPSCs) from P1–P25 SBCs of Mongolian gerbils. GABA is the initial transmitter eliciting slow-rising and -decaying events of relatively small amplitudes, occurring only during early postnatal life. Around and after hearing onset, the inhibitory quanta are predominantly containing glycine that—with maturity—triggers progressively larger and longer mIPSC. In addition, GABA corelease with glycine evokes mIPSCs of particularly large amplitudes consistently occurring across all ages, but with low probability. Together, these results suggest that GABA, as the primary transmitter released from immature inhibitory terminals, initially plays a developmental role. In maturity, GABA is contained in synaptic vesicles only in addition to glycine to increase the inhibitory potency, thereby fulfilling solely a modulatory function.
Collapse
Affiliation(s)
- Jana Nerlich
- Department of Physiology, Faculty of Medicine, Carl Ludwig Institute for Physiology, University of LeipzigLeipzig, Germany
| | - Rudolf Rübsamen
- Faculty of Biosciences, Pharmacy and Psychology, University of LeipzigLeipzig, Germany
| | - Ivan Milenkovic
- Department of Physiology, Faculty of Medicine, Carl Ludwig Institute for Physiology, University of LeipzigLeipzig, Germany
| |
Collapse
|
29
|
Wei L, Karino S, Verschooten E, Joris PX. Enhancement of phase-locking in rodents. I. An axonal recording study in gerbil. J Neurophysiol 2017; 118:2009-2023. [PMID: 28701535 DOI: 10.1152/jn.00194.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 11/22/2022] Open
Abstract
The trapezoid body (TB) contains axons of neurons in the anteroventral cochlear nucleus projecting to monaural and binaural nuclei in the superior olivary complex (SOC). Characterization of these monaural inputs is important for the interpretation of response properties of SOC neurons. In particular, understanding of the sensitivity to interaural time differences (ITDs) in neurons of the medial and lateral superior olive requires knowledge of the temporal firing properties of the monaural excitatory and inhibitory inputs to these neurons. In recent years, studies of ITD sensitivity of SOC neurons have made increasing use of small animal models with good low-frequency hearing, particularly the gerbil. We presented stimuli as used in binaural studies to monaural neurons in the TB and studied their temporal coding. We found that general trends as have been described in the cat are present in gerbil, but with some important differences. Phase-locking to pure tones tends to be higher in TB axons and in neurons of the medial nucleus of the TB (MNTB) than in the auditory nerve for neurons with characteristic frequencies (CFs) below 1 kHz, but this enhancement is quantitatively more modest than in cat. Stronger enhancement is common when TB neurons are stimulated at low frequencies below CF. It is rare for TB neurons in gerbil to entrain to low-frequency stimuli, i.e., to discharge a well-timed spike on every stimulus cycle. Also, complex phase-locking behavior, with multiple modes of increased firing probability per stimulus cycle, is common in response to low frequencies below CF.NEW & NOTEWORTHY Phase-locking is an important property of neurons in the early auditory pathway: it is critical for the sensitivity to time differences between the two ears enabling spatial hearing. Studies in cat have shown an improvement in phase-locking from the peripheral to the central auditory nervous system. We recorded from axons in an output tract of the cochlear nucleus and show that a similar but more limited form of temporal enhancement is present in gerbil.
Collapse
Affiliation(s)
- Liting Wei
- Laboratory of Auditory Neurophysiology, KU Leuven, Leuven, Belgium
| | - Shotaro Karino
- Laboratory of Auditory Neurophysiology, KU Leuven, Leuven, Belgium
| | - Eric Verschooten
- Laboratory of Auditory Neurophysiology, KU Leuven, Leuven, Belgium
| | - Philip X Joris
- Laboratory of Auditory Neurophysiology, KU Leuven, Leuven, Belgium
| |
Collapse
|