1
|
Perrin S, Ladha S, Maragakis N, Rivner MH, Katz J, Genge A, Olney N, Lange D, Heitzman D, Bodkin C, Jawdat O, Goyal NA, Bornstein JD, Mak C, Appel SH, Paganoni S. Safety and tolerability of tegoprubart in patients with amyotrophic lateral sclerosis: A Phase 2A clinical trial. PLoS Med 2024; 21:e1004469. [PMID: 39480764 PMCID: PMC11527214 DOI: 10.1371/journal.pmed.1004469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/28/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND The interaction of CD40L and its receptor CD40 on activated T cells and B cells respectively control pro-inflammatory activation in the pathophysiology of autoimmunity and transplant rejection. Previous studies have implicated signaling pathways involving CD40L (interchangeably referred to as CD154), as well as adaptive and innate immune cell activation, in the induction of neuroinflammation in neurodegenerative diseases. This study aimed to assess the safety, tolerability, and impact on pro-inflammatory biomarker profiles of an anti CD40L antibody, tegoprubart, in individuals with amyotrophic lateral sclerosis (ALS). METHODS AND FINDINGS In this multicenter dose-escalating open-label Phase 2A study, 54 participants with a diagnosis of ALS received 6 infusions of tegoprubart administered intravenously every 2 weeks. The study was comprised of 4 dose cohorts: 1 mg/kg, 2 mg/kg, 4 mg/kg, and 8 mg/kg. The primary endpoint of the study was safety and tolerability. Exploratory endpoints assessed the pharmacokinetics of tegoprubart as well as anti-drug antibody (ADA) responses, changes in disease progression utilizing the Revised ALS Functional Rating Scale (ALSFRS-R), CD154 target engagement, changes in pro-inflammatory biomarkers, and neurofilament light chain (NFL). Seventy subjects were screened, and 54 subjects were enrolled in the study. Forty-nine of 54 subjects completed the study (90.7%) receiving all 6 infusions of tegoprubart and completing their final follow-up visit. The most common treatment emergent adverse events (TEAEs) overall (>10%) were fatigue (25.9%), falls (22.2%), headaches (20.4%), and muscle spasms (11.1%). Mean tegoprubart plasma concentrations increased proportionally with increasing dose with a half-life of approximately 24 days. ADA titers were low and circulating levels of tegoprubart were as predicted for all cohorts. Tegoprubart demonstrated dose dependent target engagement associated and a reduction in 18 pro-inflammatory biomarkers in circulation. CONCLUSIONS Tegoprubart appeared to be safe and well tolerated in adults with ALS demonstrating dose-dependent reduction in pro-inflammatory chemokines and cytokines associated with ALS. These results warrant further clinical studies with sufficient power and duration to assess clinical outcomes as a potential treatment for adults with ALS. TRIAL REGISTRATION Clintrials.gov ID:NCT04322149.
Collapse
MESH Headings
- Humans
- Amyotrophic Lateral Sclerosis/drug therapy
- Amyotrophic Lateral Sclerosis/immunology
- Male
- Middle Aged
- Female
- Aged
- Adult
- CD40 Ligand/blood
- Biomarkers/blood
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Neurofilament Proteins/blood
- Dose-Response Relationship, Drug
- Treatment Outcome
- Disease Progression
- Imidazoles
- Pyrazines
Collapse
Affiliation(s)
- Steven Perrin
- Eledon Pharmaceuticals, Irvine, California, United States of America
| | - Shafeeq Ladha
- Departments of Neurology and Translational Neuroscience, St. Joseph’s Hospital and Medical Center and Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Nicholas Maragakis
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Michael H. Rivner
- Department of Neurology, Augusta University, Augusta, Georgia, United States of America
| | - Jonathan Katz
- California Pacific Medical Center Research Institute and Forbes Norris MDA/ALS Research and Treatment Center, San Francisco, California, United States of America
| | - Angela Genge
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Nicholas Olney
- Providence Portland Medical Center, Providence Brain and Spine Institute, Portland, Oregon, United States of America
| | - Dale Lange
- Department of Neurology, Hospital for Special Surgery, Weill Cornell School of Medicine, New York, New York, United States of America
| | - Daragh Heitzman
- ALS Clinic, Texas Neurology, Dallas, Texas, United States of America
| | - Cynthia Bodkin
- Department of Neurology, University of Indiana, Indianapolis, Indiana, United States of America
| | - Omar Jawdat
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Namita A. Goyal
- Department of Neurology, University of California Irvine School of Medicine, Irvine, California, United States of America
| | | | - Carmen Mak
- Eledon Pharmaceuticals, Irvine, California, United States of America
| | - Stanley H. Appel
- Department of Neurology, Houston Methodist Neurological Institute, Houston, Texas, United States of America
| | - Sabrina Paganoni
- Harvard Medical School, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Wright NE, Kennedy DE, Ai J, Veselits ML, Attaway M, Yoon YM, Durkee MS, Veselits J, Maienschein-Cline M, Mandal M, Clark MR. BRWD1 establishes epigenetic states for germinal center initiation, maintenance, and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591154. [PMID: 38712068 PMCID: PMC11071454 DOI: 10.1101/2024.04.25.591154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Germinal center (GC) B cells segregate into three subsets that compartmentalize the antagonistic molecular programs of selection, proliferation, and somatic hypermutation. In bone marrow, the epigenetic reader BRWD1 orchestrates and insulates the sequential stages of cell proliferation and Igk recombination. We hypothesized BRWD1 might play similar insulative roles in the periphery. In Brwd1 -/- follicular B cells, GC initiation and class switch recombination following immunization were inhibited. In contrast, in Brwd1 -/- GC B cells there was admixing of chromatin accessibility across GC subsets and transcriptional dysregulation including induction of inflammatory pathways. This global molecular GC dysregulation was associated with specific defects in proliferation, affinity maturation, and tolerance. These data suggest that GC subset identity is required for some but not all GC-attributed functions. Furthermore, these data demonstrate a central role for BRWD1 in orchestrating epigenetic transitions at multiple steps along B cell developmental and activation pathways.
Collapse
|
3
|
Abstract
Recent advances in studies of immune memory in mice and humans have reinforced the concept that memory B cells play a critical role in protection against repeated infections, particularly from variant viruses. Hence, insights into the development of high-quality memory B cells that can generate broadly neutralizing antibodies that bind such variants are key for successful vaccine development. Here, we review the cellular and molecular mechanisms by which memory B cells are generated and how these processes shape the antibody diversity and breadth of memory B cells. Then, we discuss the mechanisms of memory B cell reactivation in the context of established immune memory; the contribution of antibody feedback to this process has now begun to be reappreciated.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.
| |
Collapse
|
4
|
Roy K, Chakraborty M, Kumar A, Manna AK, Roy NS. The NFκB signaling system in the generation of B-cell subsets: from germinal center B cells to memory B cells and plasma cells. Front Immunol 2023; 14:1185597. [PMID: 38169968 PMCID: PMC10758606 DOI: 10.3389/fimmu.2023.1185597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Memory B cells and antibody-secreting cells are the two prime effector B cell populations that drive infection- and vaccine-induced long-term antibody-mediated immunity. The antibody-mediated immunity mostly relies on the formation of specialized structures within secondary lymphoid organs, called germinal centers (GCs), that facilitate the interactions between B cells, T cells, and antigen-presenting cells. Antigen-activated B cells may proliferate and differentiate into GC-independent plasmablasts and memory B cells or differentiate into GC B cells. The GC B cells undergo proliferation coupled to somatic hypermutation of their immunoglobulin genes for antibody affinity maturation. Subsequently, affinity mature GC B cells differentiate into GC-dependent plasma cells and memory B cells. Here, we review how the NFκB signaling system controls B cell proliferation and the generation of GC B cells, plasmablasts/plasma cells, and memory B cells. We also identify and discuss some important unanswered questions in this connection.
Collapse
Affiliation(s)
- Koushik Roy
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Mainak Chakraborty
- Division of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ashok Kumar
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Asit Kumar Manna
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Neeladri Sekhar Roy
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
5
|
Tamargo CL, Kant S. Pathophysiology of Rejection in Kidney Transplantation. J Clin Med 2023; 12:4130. [PMID: 37373823 PMCID: PMC10299312 DOI: 10.3390/jcm12124130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Kidney transplantation has been the optimal treatment for end-stage kidney disease for almost 70 years, with increasing frequency over this period. Despite the prevalence of the procedure, allograft rejection continues to impact transplant recipients, with consequences ranging from hospitalization to allograft failure. Rates of rejection have declined over time, which has been largely attributed to developments in immunosuppressive therapy, understanding of the immune system, and monitoring. Developments in these therapies, as well as an improved understanding of rejection risk and the epidemiology of rejection, are dependent on a foundational understanding of the pathophysiology of rejection. This review explains the interconnected mechanisms behind antibody-mediated and T-cell-mediated rejection and highlights how these processes contribute to outcomes and can inform future progress.
Collapse
Affiliation(s)
- Christina L. Tamargo
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA;
| | - Sam Kant
- Division of Nephrology & Comprehensive Transplant Center, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
6
|
Ding Z, Quast I, Yan F, Liao Y, Pitt C, O-Donnell K, Robinson MJ, Shi W, Kallies A, Zotos D, Tarlinton DM. CD137L and CD4 T cells limit BCL6-expressing pre-germinal center B cell expansion and BCL6-driven B cell malignancy. Immunol Cell Biol 2022; 100:705-717. [PMID: 35916066 DOI: 10.1111/imcb.12578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 01/07/2023]
Abstract
Aberrant expression of the proto-oncogene BCL6 is a driver of tumorigenesis in diffuse large B cell lymphoma (DLBCL). Mice overexpressing BCL6 from the B cell-specific immunoglobulin heavy chain μ intron promoter (Iμ-Bcl6Tg/+ ) develop B cell lymphomas with features typical of human DLBCL. While the development of B cell lymphoma in these mice is tightly controlled by T cells, the mechanisms of this immune surveillance are poorly understood. Here we show that CD4 T cells contribute to the control of lymphoproliferative disease in lymphoma-prone Iμ-Bcl6Tg/+ mice. We reveal that this CD4 T cell immuno-surveillance requires signaling by the co-stimulatory molecule CD137 ligand (CD137L; also known as 4-1BBL), which may promote the transition of pre-malignant B cells with an activated phenotype into the germinal center stage via reverse signaling, preventing their hazardous accumulation. Thus, CD137L-mediated CD4 T cell immuno-surveillance adds another layer of protection against B cell malignancy to that provided by CD8 T cell cytotoxicity.
Collapse
Affiliation(s)
- Zhoujie Ding
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Isaak Quast
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Feng Yan
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Yang Liao
- Olivia Newton John Cancer Research Institute, Melbourne, VIC, Australia
| | - Catherine Pitt
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Kristy O-Donnell
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Marcus J Robinson
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Wei Shi
- Olivia Newton John Cancer Research Institute, Melbourne, VIC, Australia.,School of Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Axel Kallies
- The Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Dimitra Zotos
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - David M Tarlinton
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Vlachiotis S, Abolhassani H. Transcriptional regulation of B cell class-switch recombination: the role in development of noninfectious complications. Expert Rev Clin Immunol 2022; 18:1145-1154. [DOI: 10.1080/1744666x.2022.2123795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Stelios Vlachiotis
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Magari M, Nishioka M, Hari T, Ogawa S, Takahashi K, Hatano N, Kanayama N, Futami J, Tokumitsu H. The immunoreceptor SLAMF8 promotes the differentiation of follicular dendritic cell-dependent monocytic cells with B cell-activating ability. FEBS Lett 2022; 596:2659-2667. [PMID: 35953458 DOI: 10.1002/1873-3468.14468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/22/2022] [Accepted: 07/30/2022] [Indexed: 11/06/2022]
Abstract
Follicular dendritic cells (FDCs) play a crucial role in generating high-affinity antibody-producing B cells during the germinal center (GC) reaction. Herein, we analyzed the altered gene expression profile of a mouse FDC line, FL-Y, following lymphotoxin β receptor stimulation, and observed increased Slam-family member 8 (Slamf8) mRNA expression. Forced Slamf8 expression and SLAMF8-Fc addition enhanced the ability of FL-Y cells to induce FDC-induced monocytic cell (FDMC) differentiation. FDMCs accelerated GC-phenotype proliferation in cultured B cells, suggesting that they are capable of promoting GC responses. Furthermore, a pulldown assay showed that SLAMF8-Fc could bind to SLAMF8-His. Overall, the homophilic interaction of SLAMF8 promotes FDMC differentiation and SLAMF8 might act as a novel regulator of GC responses by regulating FDMC differentiation.
Collapse
Affiliation(s)
- Masaki Magari
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.,Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Miku Nishioka
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Tomomi Hari
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Sayaka Ogawa
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Kaho Takahashi
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Naoya Hatano
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Naoki Kanayama
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.,Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Junichiro Futami
- Medical Protein Engineering, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Hiroshi Tokumitsu
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.,Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
9
|
Perrin S, Magill M. The Inhibition of CD40/CD154 Costimulatory Signaling in the Prevention of Renal Transplant Rejection in Nonhuman Primates: A Systematic Review and Meta Analysis. Front Immunol 2022; 13:861471. [PMID: 35464470 PMCID: PMC9022482 DOI: 10.3389/fimmu.2022.861471] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
The prevention of allograft transplant rejection by inhibition of the CD40/CD40L costimulatory pathway has been described in several species. We searched pubmed for studies reporting the prevention of kidney transplant rejection in nonhuman primates utilizing either anti CD40 or anti CD40L (CD154) treatment. Inclusion of data required treatment with anti CD40 or anti CD154 as monotherapy treatment arms, full text available, studies conducted in nonhuman primate species, the transplant was renal transplantation, sufficient duration of treatment to assess long term rejection, and the reporting of individual graft survival or survival duration. Eleven publications were included in the study. Rejection free survival was calculated using the Kaplan-Meier (KM) life test methods to estimate the survival functions. The 95% CI for the medians was also calculated. A log-rank test was used to test the equality of the survival curves between control and treatment arms (CD40 and CD154). The hazard ratio for CD154 compared to CD40 and 95% CI was calculated using a Cox proportional-hazards model including treatment as the covariate to assess the magnitude of the treatment effect. Both anti CD40 and anti CD154 treatments prevented acute and long term graft rejection. The median (95% CI) rejection free survival was 131 days (84,169 days) in the anti CD40 treated animals and 352 days (173,710 days) in the anti CD154 treated animals. Median survival in the untreated animals was 6 days. The inhibition of transplant rejection was more durable in the anti CD154 group compared to the anti CD40 group after cessation of treatment. The median (95% CI) rejection free survival after cessation of treatment was 60 days (21,80 days) in the anti CD40 treated animals and 230 days (84,552 days) in the anti CD154 treated animals.
Collapse
|
10
|
Liu X, Zhao Y, Qi H. T-independent antigen induces humoral memory through germinal centers. J Exp Med 2022; 219:212958. [PMID: 35019947 PMCID: PMC8759593 DOI: 10.1084/jem.20210527] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022] Open
Abstract
T-dependent humoral responses generate long-lived memory B cells and plasma cells (PCs) predominantly through germinal center (GC) reaction. In human and mouse, memory B cells and long-lived PCs are also generated during immune responses to T-independent antigen, including bacterial polysaccharides, although the underlying mechanism for such T-independent humoral memory is not clear. While T-independent antigen can induce GCs, they are transient and thought to be nonproductive. Unexpectedly, by genetic fate-mapping, we find that these GCs actually output memory B cells and PCs. Using a conditional BCL6 deletion approach, we show memory B cells and PCs fail to last when T-independent GCs are precluded, suggesting that the GC experience per se is important for programming longevity of T-independent memory B cells and PCs. Consistent with the fact that infants cannot mount long-lived humoral memory to T-independent antigen, B cells from young animals intrinsically fail to form T-independent GCs. Our results suggest that T-independent GCs support humoral memory, and GC induction may be key to effective vaccines with T-independent antigen.
Collapse
Affiliation(s)
- Xin Liu
- Tsinghua-Peking Center for Life Sciences, Beijing, China.,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yongshan Zhao
- Tsinghua-Peking Center for Life Sciences, Beijing, China.,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing, China.,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China.,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Lee MSJ, Inoue T, Ise W, Matsuo-Dapaah J, Wing JB, Temizoz B, Kobiyama K, Hayashi T, Patil A, Sakaguchi S, Simon AK, Bezbradica JS, Nagatoishi S, Tsumoto K, Inoue JI, Akira S, Kurosaki T, Ishii KJ, Coban C. B cell-intrinsic TBK1 is essential for germinal center formation during infection and vaccination in mice. J Exp Med 2022; 219:212912. [PMID: 34910106 PMCID: PMC8679780 DOI: 10.1084/jem.20211336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023] Open
Abstract
The germinal center (GC) is a site where somatic hypermutation and clonal selection are coupled for antibody affinity maturation against infections. However, how GCs are formed and regulated is incompletely understood. Here, we identified an unexpected role of Tank-binding kinase-1 (TBK1) as a crucial B cell–intrinsic factor for GC formation. Using immunization and malaria infection models, we show that TBK1-deficient B cells failed to form GC despite normal Tfh cell differentiation, although some malaria-infected B cell–specific TBK1-deficient mice could survive by GC-independent mechanisms. Mechanistically, TBK1 phosphorylation elevates in B cells during GC differentiation and regulates the balance of IRF4/BCL6 expression by limiting CD40 and BCR activation through noncanonical NF-κB and AKTT308 signaling. In the absence of TBK1, CD40 and BCR signaling synergistically enhanced IRF4 expression in Pre-GC, leading to BCL6 suppression, and therefore failed to form GCs. As a result, memory B cells generated from TBK1-deficient B cells fail to confer sterile immunity upon reinfection, suggesting that TBK1 determines B cell fate to promote long-lasting humoral immunity.
Collapse
Affiliation(s)
- Michelle S J Lee
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Wataru Ise
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Julia Matsuo-Dapaah
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - James B Wing
- Laboratory of Human Immunology (Single Cell Immunology), Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Human Single Cell Immunology Team, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Burcu Temizoz
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kouji Kobiyama
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoya Hayashi
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - A Katharina Simon
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jelena S Bezbradica
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Satoru Nagatoishi
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kouhei Tsumoto
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Jun-Ichiro Inoue
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shizuo Akira
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Immunology Frontier Research Center, Osaka University, Osaka, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Cevayir Coban
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Immunology Frontier Research Center, Osaka University, Osaka, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Zhang P, Yang CL, Du T, Liu YD, Ge MR, Li H, Liu RT, Wang CC, Dou YC, Duan RS. Diabetes mellitus exacerbates experimental autoimmune myasthenia gravis via modulating both adaptive and innate immunity. J Neuroinflammation 2021; 18:244. [PMID: 34702288 PMCID: PMC8549151 DOI: 10.1186/s12974-021-02298-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/17/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a common concomitant disease of late-onset myasthenia gravis (MG). However, the impacts of DM on the progression of late-onset MG were unclear. METHODS In this study, we examined the immune response in experimental autoimmune myasthenia gravis (EAMG) rats with DM or not. The phenotype and function of the spleen and lymph nodes were determined by flow cytometry. The serum antibodies, Tfh cells, and germinal center B cells were determined by ELISA and flow cytometry. The roles of advanced glycation end products (AGEs) in regulating Tfh cells were further explored in vitro by co-culture assays. RESULTS Our results indicated clinical scores of EAMG rats were worse in diabetes rats compared to control, which was due to the increased production of anti-R97-116 antibody and antibody-secreting cells. Furthermore, diabetes induced a significant upregulation of Tfh cells and the subtypes of Tfh1 and Tfh17 cells to provide assistance for antibody production. The total percentages of B cells were increased with an activated statue of improved expression of costimulatory molecules CD80 and CD86. We found CD4+ T-cell differentiation was shifted from Treg cells towards Th1/Th17 in the DM+EAMG group compared to the EAMG group. In addition, in innate immunity, diabetic EAMG rats displayed more CXCR5 expression on NK cells. However, the expression of CXCR5 on NKT cells was down-regulated with the increased percentages of NKT cells in the DM+EAMG group. Ex vivo studies further indicated that Tfh cells were upregulated by AGEs instead of hyperglycemia. The upregulation was mediated by the existence of B cells, the mechanism of which might be attributed the elevated molecule CD40 on B cells. CONCLUSIONS Diabetes promoted both adaptive and innate immunity and exacerbated clinical symptoms in EAMG rats. Considering the effect of diabetes, therapy in reducing blood glucose levels in MG patients might improve clinical efficacy through suppressing the both innate and adaptive immune responses. Additional studies are needed to confirm the effect of glucose or AGEs reduction to seek treatment for MG.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China
| | - Chun-Lin Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China
| | - Tong Du
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China
| | - Yu-Dong Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China
| | - Meng-Ru Ge
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Heng Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China
| | - Ru-Tao Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China
| | - Cong-Cong Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China
| | - Ying-Chun Dou
- College of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Rui-Sheng Duan
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China. .,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China. .,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China.
| |
Collapse
|
13
|
de Mol J, Kuiper J, Tsiantoulas D, Foks AC. The Dynamics of B Cell Aging in Health and Disease. Front Immunol 2021; 12:733566. [PMID: 34675924 PMCID: PMC8524000 DOI: 10.3389/fimmu.2021.733566] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022] Open
Abstract
Aging is considered to be an important risk factor for several inflammatory diseases. B cells play a major role in chronic inflammatory diseases by antibody secretion, antigen presentation and T cell regulation. Different B cell subsets have been implicated in infections and multiple autoimmune diseases. Since aging decreases B cell numbers, affects B cell subsets and impairs antibody responses, the aged B cell is expected to have major impacts on the development and progression of these diseases. In this review, we summarize the role of B cells in health and disease settings, such as atherosclerotic disease. Furthermore, we provide an overview of age-related changes in B cell development and function with respect to their impact in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jill de Mol
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | | | - Amanda C. Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
14
|
Limited access to antigen drives generation of early B cell memory while restraining the plasmablast response. Immunity 2021; 54:2005-2023.e10. [PMID: 34525339 PMCID: PMC7612941 DOI: 10.1016/j.immuni.2021.08.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 05/26/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023]
Abstract
Cell fate decisions during early B cell activation determine the outcome of responses to pathogens and vaccines. We examined the early B cell response to T-dependent antigen in mice by single-cell RNA sequencing. Early after immunization, a homogeneous population of activated precursors (APs) gave rise to a transient wave of plasmablasts (PBs), followed a day later by the emergence of germinal center B cells (GCBCs). Most APs rapidly exited the cell cycle, giving rise to non-GC-derived early memory B cells (eMBCs) that retained an AP-like transcriptional profile. Rapid decline of antigen availability controlled these events; provision of excess antigen precluded cell cycle exit and induced a new wave of PBs. Fate mapping revealed a prominent contribution of eMBCs to the MBC pool. Quiescent cells with an MBC phenotype dominated the early response to immunization in primates. A reservoir of APs/eMBCs may enable rapid readjustment of the immune response when failure to contain a threat is manifested by increased antigen availability.
Collapse
|
15
|
Finney J, Kelsoe G. Continuous Culture of Mouse Primary B Lymphocytes by Forced Expression of Bach2. THE JOURNAL OF IMMUNOLOGY 2021; 207:1478-1492. [PMID: 34389622 DOI: 10.4049/jimmunol.2100172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/01/2021] [Indexed: 12/26/2022]
Abstract
Stable, long-term culture of primary B lymphocytes has many potential scientific and medical applications, but remains an elusive feat. A major obstacle to long-term culture is that in vitro mitogens quickly drive B cells to differentiate into short-lived plasma cells (PCs). PC differentiation is governed by opposing teams of transcription factors: Pax5, Bach2, and Bcl6 suppress PC commitment, whereas IFN regulatory factor 4 and Blimp1 promote it. To determine whether transcriptional programming could prolong B cell culture by blocking PC commitment, we generated mouse primary B cells harboring gain- or loss-of-function in the key transcription factors, continuously stimulated these cells with CD154 and IL-21, and determined growth potential and phenotypes in vitro. We found that transgenic expression of Bach2 prohibits PC commitment and endows B cells with extraordinary growth potential in response to external proliferation and survival cues. Long-term Bach2-transgenic B cell lines have genetically stable BCRs [i.e., do not acquire V(D)J mutations], express high levels of MHC class II and molecules for costimulation of T cells, and transduce intracellular signals when incubated with BCR ligands. Silencing the Bach2 transgene in an established transgenic cell line causes the cells to secrete large quantities of Ig. This system has potential applications in mAb production, BCR signaling studies, Ag presentation to T cells, and ex vivo clonal expansion for adoptive cell transfer. Additionally, our results provide insight into molecular control over activated B cell fate and suggest that forced Bach2 expression in vivo may augment germinal center B cell or memory B cell differentiation at the expense of PC commitment.
Collapse
Affiliation(s)
- Joel Finney
- Department of Immunology, Duke University, Durham, NC; and
| | - Garnett Kelsoe
- Department of Immunology, Duke University, Durham, NC; and .,Human Vaccine Institute, Duke University, Durham, NC
| |
Collapse
|
16
|
Ricker E, Manni M, Flores-Castro D, Jenkins D, Gupta S, Rivera-Correa J, Meng W, Rosenfeld AM, Pannellini T, Bachu M, Chinenov Y, Sculco PK, Jessberger R, Prak ETL, Pernis AB. Altered function and differentiation of age-associated B cells contribute to the female bias in lupus mice. Nat Commun 2021; 12:4813. [PMID: 34376664 PMCID: PMC8355159 DOI: 10.1038/s41467-021-25102-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Differences in immune responses to viruses and autoimmune diseases such as systemic lupus erythematosus (SLE) can show sexual dimorphism. Age-associated B cells (ABC) are a population of CD11c+T-bet+ B cells critical for antiviral responses and autoimmune disorders. Absence of DEF6 and SWAP-70, two homologous guanine exchange factors, in double-knock-out (DKO) mice leads to a lupus-like syndrome in females marked by accumulation of ABCs. Here we demonstrate that DKO ABCs show sex-specific differences in cell number, upregulation of an ISG signature, and further differentiation. DKO ABCs undergo oligoclonal expansion and differentiate into both CD11c+ and CD11c- effector B cell populations with pathogenic and pro-inflammatory function as demonstrated by BCR sequencing and fate-mapping experiments. Tlr7 duplication in DKO males overrides the sex-bias and further augments the dissemination and pathogenicity of ABCs, resulting in severe pulmonary inflammation and early mortality. Thus, sexual dimorphism shapes the expansion, function and differentiation of ABCs that accompanies TLR7-driven immunopathogenesis.
Collapse
Affiliation(s)
- Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Michela Manni
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Danny Flores-Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Daniel Jenkins
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Sanjay Gupta
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Juan Rivera-Correa
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA, USA
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA, USA
| | - Tania Pannellini
- Research Division and Precision Medicine Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Mahesh Bachu
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY, USA
| | - Yurii Chinenov
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Peter K Sculco
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Technische Universitat, Dresden, Germany
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Plasmablasts derive from CD23- activated B cells after the extinction of IL-4/STAT6 signaling and IRF4 induction. Blood 2021; 137:1166-1180. [PMID: 33150420 DOI: 10.1182/blood.2020005083] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
The terminal differentiation of B cells into antibody-secreting cells (ASCs) is a critical component of adaptive immune responses. However, it is a very sensitive process, and dysfunctions lead to a variety of lymphoproliferative neoplasias including germinal center-derived lymphomas. To better characterize the late genomic events that drive the ASC differentiation of human primary naive B cells, we used our in vitro differentiation system and a combination of RNA sequencing and Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC sequencing). We discovered 2 mechanisms that drive human terminal B-cell differentiation. First, after an initial response to interleukin-4 (IL-4), cells that were committed to an ASC fate downregulated the CD23 marker and IL-4 signaling, whereas cells that maintained IL-4 signaling did not differentiate. Second, human CD23- cells also increased IRF4 protein to levels required for ASC differentiation, but they did that independently of the ubiquitin-mediated degradation process previously described in mice. Finally, we showed that CD23- cells carried the imprint of their previous activated B-cell status, were precursors of plasmablasts, and had a phenotype similar to that of in vivo preplasmablasts. Altogether, our results provide an unprecedented genomic characterization of the fate decision between activated B cells and plasmablasts, which provides new insights into the pathological mechanisms that drive lymphoma biology.
Collapse
|
18
|
Robinson MJ, Quast I, Tarlinton DM. Complement-in' the germinal center response. Nat Immunol 2021; 22:673-674. [PMID: 34031616 DOI: 10.1038/s41590-021-00946-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marcus James Robinson
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Isaak Quast
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - David Mathew Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
19
|
Narayanan B, Prado de Maio D, La Porta J, Voskoboynik Y, Ganapathi U, Xie P, Covey LR. A Posttranscriptional Pathway of CD40 Ligand mRNA Stability Is Required for the Development of an Optimal Humoral Immune Response. THE JOURNAL OF IMMUNOLOGY 2021; 206:2552-2565. [PMID: 34031147 DOI: 10.4049/jimmunol.2001074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/30/2021] [Indexed: 11/19/2022]
Abstract
CD40 ligand (CD40L) mRNA stability is dependent on an activation-induced pathway that is mediated by the binding complexes containing the multifunctional RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1) to a 3' untranslated region of the transcript. To understand the relationship between regulated CD40L and the requirement for variegated expression during a T-dependent response, we engineered a mouse lacking the CD40L stability element (CD40LΔ5) and asked how this mutation altered multiple aspects of the humoral immunity. We found that CD40LΔ5 mice expressed CD40L at 60% wildtype levels, and lowered expression corresponded to significantly decreased levels of T-dependent Abs, loss of germinal center (GC) B cells and a disorganized GC structure. Gene expression analysis of B cells from CD40LΔ5 mice revealed that genes associated with cell cycle and DNA replication were significantly downregulated and genes linked to apoptosis upregulated. Importantly, somatic hypermutation was relatively unaffected although the number of cells expressing high-affinity Abs was greatly reduced. Additionally, a significant loss of plasmablasts and early memory B cell precursors as a percentage of total GL7+ B cells was observed, indicating that differentiation cues leading to the development of post-GC subsets was highly dependent on a threshold level of CD40L. Thus, regulated mRNA stability plays an integral role in the optimization of humoral immunity by allowing for a dynamic level of CD40L expression on CD4 T cells that results in the proliferation and differentiation of pre-GC and GC B cells into functional subsets.
Collapse
Affiliation(s)
- Bitha Narayanan
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and
| | - Diego Prado de Maio
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and
| | - James La Porta
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and
| | | | - Usha Ganapathi
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Lori R Covey
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| |
Collapse
|
20
|
Haniuda K, Fukao S, Kitamura D. Metabolic Reprogramming Induces Germinal Center B Cell Differentiation through Bcl6 Locus Remodeling. Cell Rep 2021; 33:108333. [PMID: 33147467 DOI: 10.1016/j.celrep.2020.108333] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/08/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
The germinal center (GC) reaction is essential for long-lived humoral immunity. However, molecular requirements for the induction of Bcl6, the master regulator for GC B cell differentiation, remain unclear. Through screening for cytokines and other stimuli that regulate Bcl6 expression, we identify IL-4 as the strongest inducer. IL-4 signaling alters the metabolomic profile in activated B cells and induces accumulation of the TCA cycle intermediate α-ketoglutarate (αKG), which is required for activation of the Bcl6 gene locus. Mechanistically, after IL-4 treatment, STAT6 bound to the known enhancers in the Bcl6 locus recruits UTX, a demethylase for the repressive histone mark H3K27me3 that requires αKG as a cofactor. In turn, the H3K27me3 demethylation activates the enhancers and transcription of the Bcl6 gene. We propose that IL-4-mediated metabolic reprogramming in B cells is pivotal for epigenomic activation of Bcl6 expression to promote GC B cell differentiation.
Collapse
Affiliation(s)
- Kei Haniuda
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan.
| | - Saori Fukao
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan.
| |
Collapse
|
21
|
Rossi A, Pacella I, Piconese S. RNA Flow Cytometry for the Study of T Cell Metabolism. Int J Mol Sci 2021; 22:ijms22083906. [PMID: 33918901 PMCID: PMC8069477 DOI: 10.3390/ijms22083906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
T cells undergo activation and differentiation programs along a continuum of states that can be tracked through flow cytometry using a combination of surface and intracellular markers. Such dynamic behavior is the result of transcriptional and post-transcriptional events, initiated and sustained by the activation of specific transcription factors and by epigenetic remodeling. These signaling pathways are tightly integrated with metabolic routes in a bidirectional manner: on the one hand, T cell receptors and costimulatory molecules activate metabolic reprogramming; on the other hand, metabolites modify T cell transcriptional programs and functions. Flow cytometry represents an invaluable tool to analyze the integration of phenotypical, functional, metabolic and transcriptional features, at the single cell level in heterogeneous T cell populations, and from complex microenvironments, with potential clinical application in monitoring the efficacy of cancer immunotherapy. Here, we review the most recent advances in flow cytometry-based analysis of gene expression, in combination with indicators of mitochondrial activity, with the aim of revealing and characterizing major metabolic pathways in T cells.
Collapse
Affiliation(s)
- Alessandra Rossi
- Department of Internal Clinical Sciences, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Roma, Italy; (A.R.); (I.P.)
| | - Ilenia Pacella
- Department of Internal Clinical Sciences, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Roma, Italy; (A.R.); (I.P.)
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Roma, Italy; (A.R.); (I.P.)
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Roma, Italy
- Correspondence:
| |
Collapse
|
22
|
Abstract
Memory B cells (MBCs) are critical for the rapid development of protective immunity following re-infection. MBCs capable of neutralizing distinct subclasses of pathogens, such as influenza and HIV, have been identified in humans. However, efforts to develop vaccines that induce broadly protective MBCs to rapidly mutating pathogens have not yet been successful. Better understanding of the signals regulating MBC development and function are essential to overcome current challenges hindering successful vaccine development. Here, we discuss recent advancements regarding the signals and transcription factors regulating germinal centre-derived MBC development and function.
Collapse
Affiliation(s)
- Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Jason G Cyster
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
23
|
Kennedy DE, Clark MR. Compartments and Connections Within the Germinal Center. Front Immunol 2021; 12:659151. [PMID: 33868306 PMCID: PMC8045557 DOI: 10.3389/fimmu.2021.659151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Protective high affinity antibody responses emerge through an orchestrated developmental process that occurs in germinal centers (GCs). While GCs have been appreciated since 1930, a wealth of recent progress provides new insights into the molecular and cellular dynamics governing humoral immunity. In this review, we highlight advances that demonstrate that fundamental GC B cell function, selection, proliferation and SHM occur within distinct cell states. The resulting new model provides new opportunities to understand the evolution of immunity in infectious, autoimmune and neoplastic diseases.
Collapse
Affiliation(s)
| | - Marcus R. Clark
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
24
|
Robinson MJ, Ding Z, Pitt C, Brodie EJ, Quast I, Tarlinton DM, Zotos D. The Amount of BCL6 in B Cells Shortly after Antigen Engagement Determines Their Representation in Subsequent Germinal Centers. Cell Rep 2021; 30:1530-1541.e4. [PMID: 32023467 DOI: 10.1016/j.celrep.2020.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 10/29/2019] [Accepted: 01/02/2020] [Indexed: 12/19/2022] Open
Abstract
It is unknown whether the incremental increases in BCL6 amounts in antigen-activated B cells influence the unfolding differentiation before germinal center (GC) formation. By comparing shortly after immunization the distribution of conventional B cells to those enforced to express BCL6 at the upper quartile of normal and those lacking BCL6 altogether, we determined that B cell representation in the stages before the GC compartment was related to BCL6 amounts. This was not by increased proliferation or suppression of early plasmablast differentiation, but rather by preferential recruitment and progression through these early stages of B cell activation, culminating in preferential transition into GC. Once established, this bias was stable in GC over several weeks; other BCL6-regulated GC B cell behaviors were unaffected. We propose that setting BCL6 amounts very early in activated B cells will be central in determining clonal representation in the GC and thus memory populations.
Collapse
Affiliation(s)
- Marcus James Robinson
- Department of Immunology & Pathology, Alfred Medical Research and Education Precinct, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia
| | - Zhoujie Ding
- Department of Immunology & Pathology, Alfred Medical Research and Education Precinct, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165 Solna, Sweden
| | - Catherine Pitt
- Department of Immunology & Pathology, Alfred Medical Research and Education Precinct, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia
| | - Erica Janet Brodie
- Department of Immunology & Pathology, Alfred Medical Research and Education Precinct, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia
| | - Isaak Quast
- Department of Immunology & Pathology, Alfred Medical Research and Education Precinct, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia
| | - David Mathew Tarlinton
- Department of Immunology & Pathology, Alfred Medical Research and Education Precinct, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Dimitra Zotos
- Department of Immunology & Pathology, Alfred Medical Research and Education Precinct, Monash University, Level 6, Burnet Tower, 89 Commercial Road, Melbourne, VIC 3004, Australia; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
25
|
Olson WJ, Jakic B, Hermann‐Kleiter N. Regulation of the germinal center response by nuclear receptors and implications for autoimmune diseases. FEBS J 2020; 287:2866-2890. [PMID: 32246891 PMCID: PMC7497069 DOI: 10.1111/febs.15312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/15/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023]
Abstract
The immune system plays an essential role in protecting the host from infectious diseases and cancer. Notably, B and T lymphocytes from the adaptive arm of the immune system can co-operate to form long-lived antibody responses and are therefore the main target in vaccination approaches. Nevertheless, protective immune responses must be tightly regulated to avoid hyper-responsiveness and responses against self that can result in autoimmunity. Nuclear receptors (NRs) are perfectly adapted to rapidly alter transcriptional cellular responses to altered environmental settings. Their functional role is associated with both immune deficiencies and autoimmunity. Despite extensive linking of nuclear receptor function with specific CD4 T helper subsets, research on the functional roles and mechanisms of specific NRs in CD4 follicular T helper cells (Tfh) and germinal center (GC) B cells during the germinal center reaction is just emerging. We review recent advances in our understanding of NR regulation in specific cell types of the GC response and discuss their implications for autoimmune diseases such as systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- William J. Olson
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
| | - Bojana Jakic
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
- Department of Immunology, Genetics and PathologyUppsala UniversitySweden
| | - Natascha Hermann‐Kleiter
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
| |
Collapse
|
26
|
Lopez-Ocasio M, Buszko M, Blain M, Wang K, Shevach EM. T Follicular Regulatory Cell Suppression of T Follicular Helper Cell Function Is Context-Dependent in vitro. Front Immunol 2020; 11:637. [PMID: 32362895 PMCID: PMC7181357 DOI: 10.3389/fimmu.2020.00637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
The production of antibody-secreting plasma cells and memory B cells requires the interaction of T follicular helper (Tfh) cells with B cells in the follicle and is modulated by T follicular regulatory (Tfr) cells. We compare the effects of Tfr cells in an in vitro model of bystander Tfh function in the absence of BCR engagement and in a model in which mimics cognate T-B interactions in which the BCR is engaged. In the absence of Tfr cells, Tfh cells from primed mice induce naive B cell differentiation into GC B cells and class switch recombination (CSR) in the presence of anti-CD3 alone or anti-CD3/IgM in a contact-dependent manner. Addition of primed Tfr cells efficiently suppressed GC B cell proliferation, differentiation and CSR in the anti-CD3 alone cultures, but only moderately suppressed BCR-stimulated B cells. When stimulated with anti-CD3 alone, IL-4 is critical for the induction of GC B cells and CSR. IL-21 plays a minimal role in GC B cell differentiation, but a greater role in switching. When the BCR is engaged, IL-4 is primarily required for switching and IL-21 only modestly affects switching. CD40L expression was critical for Tfh-mediated B cell proliferation/differentiation in the absence of B cell engagement. When the BCR was engaged, proliferation of CD40 deficient B cells was partially restored, but was susceptible to suppression by Tfr. These studies suggest that in vitro Tfr suppressor function is complex and is modulated by BCR signaling and CD40-CD40L interactions.
Collapse
Affiliation(s)
- Maria Lopez-Ocasio
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Maja Buszko
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Melissa Blain
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ke Wang
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ethan M Shevach
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
27
|
Haberman AM, Gonzalez DG, Wong P, Zhang TT, Kerfoot SM. Germinal center B cell initiation, GC maturation, and the coevolution of its stromal cell niches. Immunol Rev 2019; 288:10-27. [PMID: 30874342 DOI: 10.1111/imr.12731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
Throughout the developing GC response, B cell survival and fate choices made at the single cell level are dependent on signals received largely through interactions with other cells, often with cognate T cells. The type of signals that a given B cell can encounter is dictated by its location within tissue microarchitecture. The focus of this review is on the initiation and evolution of the GC response at the earliest time points. Here, we review the key factors influencing the progression of GC B cell differentiation that are both stage and context dependent. Finally, we describe the coevolution of niches within and surrounding the GC that influence the outcome of the GC response.
Collapse
Affiliation(s)
- Ann M Haberman
- Department of Immunobiology, Yale University, New Haven, Connecticut.,Department of Laboratory Medicine, Yale University, New Haven, Connecticut
| | - David G Gonzalez
- Department of Immunobiology, Yale University, New Haven, Connecticut.,Department of Genetics, Yale University, New Haven, Connecticut
| | - Patrick Wong
- Department of Immunobiology, Yale University, New Haven, Connecticut
| | - Ting-Ting Zhang
- Department of Immunobiology, Yale University, New Haven, Connecticut
| | - Steven M Kerfoot
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| |
Collapse
|
28
|
Yang MG, Sun L, Han J, Zheng C, Liang H, Zhu J, Jin T. Biological characteristics of transcription factor RelB in different immune cell types: implications for the treatment of multiple sclerosis. Mol Brain 2019; 12:115. [PMID: 31881915 PMCID: PMC6935142 DOI: 10.1186/s13041-019-0532-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/04/2019] [Indexed: 12/22/2022] Open
Abstract
Transcription factor RelB is a member of the nuclear factror-kappa B (NF-κB) family, which plays a crucial role in mediating immune responses. Plenty of studies have demonstrated that RelB actively contributes to lymphoid organ development, dendritic cells maturation and function and T cells differentiation, as well as B cell development and survival. RelB deficiency may cause a variety of immunological disorders in both mice and humans. Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system which involves a board of immune cell populations. Thereby, RelB may exert an impact on MS by modulating the functions of dendritic cells and the differentiation of T cells and B cells. Despite intensive research, the role of RelB in MS and its animal model, experimental autoimmune encephalomyelitis, is still unclear. Herein, we give an overview of the biological characters of RelB, summarize the updated knowledge regarding the role of RelB in different cell types that contribute to MS pathogenesis and discuss the potential RelB-targeted therapeutic implications for MS.
Collapse
Affiliation(s)
- Meng-Ge Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Jinming Han
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.,Present address: Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Chao Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Hudong Liang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| |
Collapse
|
29
|
B cell memory: building two walls of protection against pathogens. Nat Rev Immunol 2019; 20:229-238. [PMID: 31836872 PMCID: PMC7223087 DOI: 10.1038/s41577-019-0244-2] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2019] [Indexed: 12/24/2022]
Abstract
Surviving a single infection often results in lifelong immunity to the infecting pathogen. Such protection is mediated, in large part, by two main B cell memory ‘walls’ — namely, long-lived plasma cells and memory B cells. The cellular and molecular processes that drive the production of long-lived plasma cells and memory B cells are subjects of intensive research and have important implications for global health. Indeed, although nearly all vaccines in use today depend on their ability to induce B cell memory, we have not yet succeeded in developing vaccines for some of the world’s most deadly diseases, including AIDS and malaria. Here, we describe the two-phase process by which antigen drives the generation of long-lived plasma cells and memory B cells and highlight the challenges for successful vaccine development in each phase. The authors discuss the formation of two main ‘walls’ of B cell memory to protect against pathogen reinfection. The first wall comprises high-affinity antibodies produced by long-lived plasma cells, while the second wall is formed by memory B cells.
Collapse
|
30
|
Stoler-Barak L, Biram A, Davidzohn N, Addadi Y, Golani O, Shulman Z. B cell dissemination patterns during the germinal center reaction revealed by whole-organ imaging. J Exp Med 2019; 216:2515-2530. [PMID: 31492809 PMCID: PMC6829594 DOI: 10.1084/jem.20190789] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/02/2019] [Accepted: 08/07/2019] [Indexed: 01/04/2023] Open
Abstract
Antibody-mediated long-lasting protection from harmful pathogens depends on collaboration of immune cells within immunological niches. Stoler-Barak et al. introduce an approach that enables the visualization of all the germinal center niches and activated B cells within intact lymph nodes. Germinal centers (GCs) are sites wherein B cells proliferate and mutate their immunoglobulins in the dark zone (DZ), followed by affinity-based selection in the light zone (LZ). Here, we mapped the location of single B cells in the context of intact lymph nodes (LNs) throughout the GC response, and examined the role of BCR affinity in dictating their position. Imaging of entire GC structures and proximal single cells by light-sheet fluorescence microscopy revealed that individual B cells that previously expressed AID are located within the LN cortex, in an area close to the GC LZ. Using in situ photoactivation, we demonstrated that B cells migrate from the LZ toward the GC outskirts, while DZ B cells are confined to the GC. B cells expressing very-low-affinity BCRs formed GCs but were unable to efficiently disperse within the follicles. Our findings reveal that BCR affinity regulates B cell positioning during the GC response.
Collapse
Affiliation(s)
- Liat Stoler-Barak
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Biram
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Natalia Davidzohn
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
31
|
Robinson MJ, Pitt C, Brodie EJ, Valk AM, O'Donnell K, Nitschke L, Jones S, Tarlinton DM. BAFF, IL-4 and IL-21 separably program germinal center-like phenotype acquisition, BCL6 expression, proliferation and survival of CD40L-activated B cells in vitro. Immunol Cell Biol 2019; 97:826-839. [PMID: 31276232 DOI: 10.1111/imcb.12283] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/05/2019] [Accepted: 07/03/2019] [Indexed: 11/28/2022]
Abstract
A B cell culture system using BAFF, IL-4 and IL-21 was recently developed that generates B cells with phenotypic and functional characteristics of in vivo-generated germinal center (GC) B cells. Here, we observe discrete influences of each exogenous signal on the expansion and differentiation of a CD40L-activated B cell pool. IL-4 was expressly necessary, but neither BAFF nor IL-21 was required for B cell acquisition of the GC B cell phenotypes of peanut agglutinin binding and loss of CD38 and IgD expression. Both IL-4 and IL-21 enhanced cell cycle entry upon initial activation dose-dependently, and did so additively. Importantly, while both cytokines acted in concert to increase overall BCL6 expression amounts, IL-21 exposure uniquely caused a small proportion of cells to attain a higher level of BCL6 expression, reminiscent of in vivo GC B cells. In contrast, BAFF supported survival of a fraction of memory-like B cells in extended cultures after removal of surrogate T cell-help signals. Thus, by separably programming proliferation, survival and GC phenotype acquisition, IL-4, BAFF and IL-21 drive distinct components of activated B cell fate.
Collapse
Affiliation(s)
- Marcus J Robinson
- Department of Immunology & Pathology, Alfred Research Alliance, Monash University, Melbourne, VIC, 3004, Australia
| | - Catherine Pitt
- Department of Immunology & Pathology, Alfred Research Alliance, Monash University, Melbourne, VIC, 3004, Australia
| | - Erica J Brodie
- Department of Immunology & Pathology, Alfred Research Alliance, Monash University, Melbourne, VIC, 3004, Australia
| | - Anika M Valk
- Department of Immunology & Pathology, Alfred Research Alliance, Monash University, Melbourne, VIC, 3004, Australia
| | - Kristy O'Donnell
- Department of Immunology & Pathology, Alfred Research Alliance, Monash University, Melbourne, VIC, 3004, Australia
| | - Lars Nitschke
- Department of Immunology & Pathology, Alfred Research Alliance, Monash University, Melbourne, VIC, 3004, Australia.,Department of Biology, University of Erlangen, Staudtstr. 5, 91058, Erlangen, Germany
| | - Sarah Jones
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
| | - David M Tarlinton
- Department of Immunology & Pathology, Alfred Research Alliance, Monash University, Melbourne, VIC, 3004, Australia
| |
Collapse
|
32
|
Cyster JG, Allen CDC. B Cell Responses: Cell Interaction Dynamics and Decisions. Cell 2019; 177:524-540. [PMID: 31002794 PMCID: PMC6538279 DOI: 10.1016/j.cell.2019.03.016] [Citation(s) in RCA: 528] [Impact Index Per Article: 105.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022]
Abstract
B cells and the antibodies they produce have a deeply penetrating influence on human physiology. Here, we review current understanding of how B cell responses are initiated; the different paths to generate short- and long-lived plasma cells, germinal center cells, and memory cells; and how each path impacts antibody diversity, selectivity, and affinity. We discuss how basic research is informing efforts to generate vaccines that induce broadly neutralizing antibodies against viral pathogens, revealing the special features associated with allergen-reactive IgE responses and uncovering the antibody-independent mechanisms by which B cells contribute to health and disease.
Collapse
Affiliation(s)
- Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Christopher D C Allen
- Cardiovascular Research Institute, Department of Anatomy, and Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
33
|
Ueno H. Tfh cell response in influenza vaccines in humans: what is visible and what is invisible. Curr Opin Immunol 2019; 59:9-14. [PMID: 30921542 DOI: 10.1016/j.coi.2019.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/11/2019] [Accepted: 02/22/2019] [Indexed: 01/03/2023]
Abstract
Elucidating the immune mechanism by which seasonal influenza vaccines induce a protective immune response is of great importance to gain insights into the design of next-generation vaccines conferring more effective and long-lasting immune protection. Recent studies have established that T follicular helper (Tfh) cells play a major role for the generation of antibody response following influenza vaccination. Yet, the evidence is gained largely through the analysis of blood samples, and our knowledge on the role of Tfh cells in influenza vaccination is still largely limited to the generation of antigen-specific plasmablasts. Recently, influenza vaccination was shown to induce the expansion of two types of memory B cells in addition to plasmablasts. It is plausible that activated Tfh cells that remain in the lymph nodes after vaccination, a cell population missed in the analysis of blood samples, might also contribute to the diversification of memory B cell repertoire. However, current evidence shows no increase of somatic hypermutation of the expanded memory B cell clones, suggesting that this mechanism is not efficiently active in current influenza vaccines.
Collapse
Affiliation(s)
- Hideki Ueno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Box: 1124, Annenberg Building, Room: 15-14A New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Box: 1124, Annenberg Building, Room: 15-14A New York, NY 10029, United States.
| |
Collapse
|
34
|
Inoue T, Moran I, Shinnakasu R, Phan TG, Kurosaki T. Generation of memory B cells and their reactivation. Immunol Rev 2019; 283:138-149. [PMID: 29664566 DOI: 10.1111/imr.12640] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The successful establishment of humoral memory response depends on at least two layers of defense. Pre-existing protective antibodies secreted by long-lived plasma cells act as a first line of defense against reinfection ("constitutive humoral memory"). Previously, a second line of defense in which pathogen-experienced memory B cells are rapidly reactivated to produce antibodies ("reactive humoral memory"), was considered as simply a back-up system for the first line (particularly for re-infection with homologous viruses). However, in the case of re-infection with similar but different strains of viruses, or in response to viral escape mutants, the reactive humoral memory plays a crucial role. Here, we review recent progress in our understanding of how memory B cells are generated in the pre-GC stage and during the GC reaction, and how these memory B cells are robustly reactivated with the help of memory Tfh cells to generate the secondary antibody response. In addition, we discuss how these advances may be relevant to the quest for a vaccine that can induce broadly reactive antibodies against influenza and HIV.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Imogen Moran
- Intravital Microscopy Laboratory, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Darlinghurst, NSW, Australia
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tri Giang Phan
- Intravital Microscopy Laboratory, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Darlinghurst, NSW, Australia
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| |
Collapse
|
35
|
Thornton S, Tan R, Sproles A, Do T, Schick J, Grom AA, DeLay M, Schulert GS. A Multiparameter Flow Cytometry Analysis Panel to Assess CD163 mRNA and Protein in Monocyte and Macrophage Populations in Hyperinflammatory Diseases. THE JOURNAL OF IMMUNOLOGY 2019; 202:1635-1643. [PMID: 30683706 DOI: 10.4049/jimmunol.1800765] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/22/2018] [Indexed: 01/01/2023]
Abstract
CD163 facilitates regulation and resolution of inflammation and removal of free hemoglobin and is highly expressed in myeloid cells from patients with inflammatory disorders, such as systemic juvenile idiopathic arthritis (SJIA) and macrophage activation syndrome (MAS). Our recent studies indicate that regulation of CD163 mRNA expression is a key functional property of polarized monocytes and macrophages and is mediated at the transcriptional and posttranscriptional level, including via microRNAs. The goal of the current study is to develop a multiparameter flow cytometry panel incorporating detection of CD163 mRNA for polarized monocyte and macrophage populations in disorders such as SJIA and MAS. THP-1 cells and CD14+ human monocytes were stained using fluorochrome-conjugated Abs to myeloid surface markers, along with CD163 mRNA. Staining for mRNA could reliably detect CD163 expression while simultaneously detecting different macrophage populations using Abs targeting CD14, CD64, CD80, CD163, and CD209. This approach was found to be highly sensitive for increased mRNA expression when macrophages were polarized with IL-10 [M(IL-10)], with a strong signal over a broad range of IL-10 concentrations, and showed distinct kinetics of CD163 mRNA and protein induction upon IL-10 stimulation. Finally, this panel demonstrated clear changes in polarization markers in unstimulated monocytes from patients with SJIA and MAS, including upregulated CD163 mRNA and increased CD64 expression. This approach represents a robust and sensitive system for RNA flow cytometry, useful for studying CD163 expression as part of a multimarker panel for human monocytes and macrophages, with broad applicability to the pathogenesis of hyperinflammatory diseases.
Collapse
Affiliation(s)
- Sherry Thornton
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; and.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Rachel Tan
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; and.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Alyssa Sproles
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; and
| | - Thuy Do
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; and
| | - Jonathan Schick
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; and
| | - Alexei A Grom
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; and.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Monica DeLay
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; and
| | - Grant S Schulert
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; and .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| |
Collapse
|
36
|
Abstract
In this review, Boothby et al. summarize some salient advances toward elucidation of the molecular programming of the fate choices and function of B cells in the periphery. They also note unanswered questions that pertain to differences among subsets of B lymphocytes and plasma cells. Mature B lymphocytes are crucial components of adaptive immunity, a system essential for the evolutionary fitness of mammals. Adaptive lymphocyte function requires an initially naïve cell to proliferate extensively and its progeny to have the capacity to assume a variety of fates. These include either terminal differentiation (the long-lived plasma cell) or metastable transcriptional reprogramming (germinal center and memory B cells). In this review, we focus principally on the regulation of differentiation and functional diversification of the “B2” subset. An overview is combined with an account of more recent advances, including initial work on mechanisms that eliminate DNA methylation and potential links between intracellular metabolites and chromatin editing.
Collapse
|
37
|
Yang J, Sakai J, Siddiqui S, Lee RC, Ireland DDC, Verthelyi D, Akkoyunlu M. IL-6 Impairs Vaccine Responses in Neonatal Mice. Front Immunol 2018; 9:3049. [PMID: 30619375 PMCID: PMC6307459 DOI: 10.3389/fimmu.2018.03049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022] Open
Abstract
The inability of infants to mount proper follicular helper T (TFH) cell response renders this age group susceptible to infectious diseases. Initial instruction of T cells by antigen presenting cells and subsequent differentiation into TFH cells are controlled by T cell receptor signal strength, co-stimulatory molecules and cytokines such as IL-6 and IL-21. In immunized adults, IL-6 promotes TFH development by increasing the expression of CXCR5 and the TFH master transcription factor, B cell lymphoma 6. Underscoring the importance of IL-6 in TFH generation, we found improved antibody responses accompanied by increased TFH cells and decreased follicular regulatory helper T (TFR) cells, a Foxp3 expressing inhibitory CD4+ T cell occupying the germinal center (GC), when a tetanus toxoid conjugated pneumococcal polysaccharide type 14 vaccine was injected in adult mice together with IL-6. Paradoxically, in neonates IL-6 containing PPS14-TT vaccine suppressed the already impaired TFH development and antibody responses in addition to increasing TFR cell population. Supporting the diminished TFH development, we detected lower frequency of phospho-STAT-3+ TFH in immunized neonatal T cells after IL-6 stimulation than adult cells. Moreover, IL-6 induced more phospho-STAT-3+ TFR in neonatal cells than adult cells. We also measured lower expression of IL-6R on TFH cells and higher expression on TFR cells in neonatal cells than adult cells, a possible explanation for the difference in IL-6 induced signaling in different age groups. Supporting the flow cytometry findings, microscopic examination revealed the localization of Treg cells in the splenic interfollicular niches of immunized adult mice compared to splenic follicles in neonatal mice. In addition to the limitations in the formation of IL-21 producing TFH cells, neonatal mice GC B cells also expressed lower levels of IL-21R in comparison to the adult mice cells. These findings point to diminished IL-6 activity on neonatal TFH cells as an underlying mechanism of the increased TFR: TFH ratio in immunized neonatal mice.
Collapse
Affiliation(s)
- Jiyeon Yang
- Division of Bacterial Allergenic and Parasitic Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Jiro Sakai
- Division of Bacterial Allergenic and Parasitic Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Shafiuddin Siddiqui
- Division of Bacterial Allergenic and Parasitic Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Robert C Lee
- Division of Bacterial Allergenic and Parasitic Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Derek D C Ireland
- Office of Biotechnology Products, Division of Biotechnology Review and Research III, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Daniela Verthelyi
- Office of Biotechnology Products, Division of Biotechnology Review and Research III, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Mustafa Akkoyunlu
- Division of Bacterial Allergenic and Parasitic Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
38
|
Ogawa S, Matsuoka Y, Takada M, Matsui K, Yamane F, Kubota E, Yasuhara S, Hieda K, Kanayama N, Hatano N, Tokumitsu H, Magari M. Interleukin 34 (IL-34) cell-surface localization regulated by the molecular chaperone 78-kDa glucose-regulated protein facilitates the differentiation of monocytic cells. J Biol Chem 2018; 294:2386-2396. [PMID: 30573681 DOI: 10.1074/jbc.ra118.006226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/07/2018] [Indexed: 01/06/2023] Open
Abstract
Interleukin 34 (IL-34) constitutes a cytokine that shares a common receptor, colony-stimulating factor-1 receptor (CSF-1R), with CSF-1. We recently identified a novel type of monocytic cell termed follicular dendritic cell-induced monocytic cells (FDMCs), whose differentiation depended on CSF-1R signaling through the IL-34 produced from a follicular dendritic cell line, FL-Y. Here, we report the functional mechanisms of the IL-34-mediated CSF-1R signaling underlying FDMC differentiation. CRIPSR/Cas9-mediated knockout of the Il34 gene confirmed that the ability of FL-Y cells to induce FDMCs completely depends on the IL-34 expressed by FL-Y cells. Transwell culture experiments revealed that FDMC differentiation requires a signal from a membrane-anchored form of IL-34 on the FL-Y cell surface, but not from a secreted form, in a direct interaction between FDMC precursor cells and FL-Y cells. Furthermore, flow cytometric analysis using an anti-IL-34 antibody indicated that IL-34 was also expressed on the FL-Y cell surface. Thus, we explored proteins interacting with IL-34 in FL-Y cells. Mass spectrometry analysis and pulldown assay identified that IL-34 was associated with the molecular chaperone 78-kDa glucose-regulated protein (GRP78) in the plasma membrane fraction of FL-Y cells. Consistent with this finding, GRP78-heterozygous FL-Y cells expressed a lower level of IL-34 protein on their cell surface and exhibited a reduced competency to induce FDMC differentiation compared with the original FL-Y cells. These results indicated a novel GRP78-dependent localization and specific function of IL-34 in FL-Y cells related to monocytic cell differentiation.
Collapse
Affiliation(s)
- Sayaka Ogawa
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology
| | - Yukiko Matsuoka
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology
| | - Miho Takada
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology
| | - Kazue Matsui
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology
| | - Fumihiro Yamane
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology
| | - Eri Kubota
- the Department of Applied Chemistry and Biotechnology, Faculty of Engineering, and
| | - Shiori Yasuhara
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology
| | - Kentaro Hieda
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology
| | - Naoki Kanayama
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology.,the Laboratory of Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Naoya Hatano
- the Laboratory of Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Hiroshi Tokumitsu
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology.,the Laboratory of Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Masaki Magari
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology, .,the Laboratory of Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
39
|
Gonzalez DG, Cote CM, Patel JR, Smith CB, Zhang Y, Nickerson KM, Zhang T, Kerfoot SM, Haberman AM. Nonredundant Roles of IL-21 and IL-4 in the Phased Initiation of Germinal Center B Cells and Subsequent Self-Renewal Transitions. THE JOURNAL OF IMMUNOLOGY 2018; 201:3569-3579. [PMID: 30446568 DOI: 10.4049/jimmunol.1500497] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 10/19/2018] [Indexed: 11/19/2022]
Abstract
We examined the unique contributions of the cytokines IL-21 and IL-4 on germinal center (GC) B cell initiation and subsequent maturation in a murine model system. Similar to other reports, we found T follicular helper cell expression of IL-21 begins prior to T follicular helper cell migration into the B cell follicle and precedes that of IL-4. Consistent with this timing, IL-21 signaling has a greater influence on the perifollicular pre-GC B cell transition to the intrafollicular stage. Notably, Bcl6hi B cells can form in the combined absence of IL-21R- and STAT6-derived signals; however, these nascent GC B cells cease to proliferate and are more prone to apoptosis. When B cells lack either IL-21R or STAT6, aberrant GCs form atypical centroblasts and centrocytes that differ in their phenotypic maturation and costimulatory molecule expression. Thus, IL-4 and IL-21 play nonredundant roles in the phased progression of GC B cell development that can initiate in the combined absence of these cytokine signals.
Collapse
Affiliation(s)
- David G Gonzalez
- Department of Immunobiology, Yale University, New Haven, CT 06519.,Department of Genetics, Yale University, New Haven, CT 06519
| | - Christine M Cote
- Department of Immunobiology, Yale University, New Haven, CT 06519
| | - Jaymin R Patel
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06519
| | - Colin B Smith
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Yuqi Zhang
- Department of Surgery, Yale-New Haven Hospital, New Haven, CT 06519
| | - Kevin M Nickerson
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Tingting Zhang
- Department of Immunobiology, Yale University, New Haven, CT 06519
| | - Steven M Kerfoot
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and
| | - Ann M Haberman
- Department of Immunobiology, Yale University, New Haven, CT 06519; .,Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06519
| |
Collapse
|
40
|
Agarwal D, Schmader KE, Kossenkov AV, Doyle S, Kurupati R, Ertl HCJ. Immune response to influenza vaccination in the elderly is altered by chronic medication use. Immun Ageing 2018; 15:19. [PMID: 30186359 PMCID: PMC6119322 DOI: 10.1186/s12979-018-0124-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The elderly patient population is the most susceptible to influenza virus infection and its associated complications. Polypharmacy is common in the aged, who often have multiple co-morbidities. Previous studies have demonstrated that commonly used prescription drugs can have extensive impact on immune defenses and responses to vaccination. In this study, we examined how the dynamics of immune responses to the two influenza A virus strains of the trivalent inactivated influenza vaccine (TIV) can be affected by patient's history of using the prescription drugs Metformin, NSAIDs or Statins. RESULTS We provide evidence for differential antibody (Ab) production, B-cell phenotypic changes, alteration in immune cell proportions and transcriptome-wide perturbation in individuals with a history of long-term medication use, compared with non-users. We noted a diminished response to TIV in the elderly on Metformin, whereas those on NSAIDs or Statins had higher baseline responses but reduced relative increases in virus-neutralizing Abs (VNAs) or Abs detected by an enzyme-linked immunosorbent assay (ELISA) following vaccination. CONCLUSION Collectively, our findings suggest novel pathways that might underlie how long-term medication use impacts immune response to influenza vaccination in the elderly. They provide a strong rationale for targeting the medication-immunity interaction in the aged population to improve vaccination responses.
Collapse
Affiliation(s)
- Divyansh Agarwal
- Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Kenneth E. Schmader
- Division of Geriatrics, Duke University Medical Center; Geriatric Research, Education, and Clinical Center, Durham VA Medical Center, Durham, NC 27705 USA
| | | | - Susan Doyle
- Division of Geriatrics, Duke University Medical Center; Geriatric Research, Education, and Clinical Center, Durham VA Medical Center, Durham, NC 27705 USA
| | - Raj Kurupati
- The Wistar Institute, Philadelphia, PA 19104 USA
| | | |
Collapse
|
41
|
Xu H, Ziani W, Shao J, Doyle-Meyers LA, Russell-Lodrigue KE, Ratterree MS, Veazey RS, Wang X. Impaired Development and Expansion of Germinal Center Follicular Th Cells in Simian Immunodeficiency Virus-Infected Neonatal Macaques. THE JOURNAL OF IMMUNOLOGY 2018; 201:1994-2003. [PMID: 30104244 DOI: 10.4049/jimmunol.1800235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/15/2018] [Indexed: 12/16/2022]
Abstract
Germinal center (GC) CD4+ follicular Th (Tfh) cells are critical for cognate B cell help in humoral immune responses to pathogenic infections. Although Tfh cells are expanded or depleted in HIV/SIV-infected adults, the effects of pediatric HIV/SIV infection on Tfh cells remain unclear. In this study, we examined changes in lymphoid follicle formation in lymph nodes focusing on GC Tfh cells, B cell development, and differentiation in SIV-infected neonatal rhesus macaques (Macaca mulatta) compared with age-matched cohorts. Our data showed that follicles and GCs of normal infants rapidly formed in the first few weeks of age, in parallel with increasing GC Tfh cells in various lymphoid tissues. In contrast, GC development and GC Tfh cells were markedly impaired in SIV-infected infants. There was a very low frequency of GC Tfh cells throughout SIV infection in neonates and subsequent infants, accompanied by high viremia, reduction of B cell proliferation/resting memory B cells, and displayed proinflammatory unresponsiveness. These findings indicate neonatal HIV/SIV infection compromises the development of GC Tfh cells, likely contributing to ineffective Ab responses, high viremia, and eventually rapid disease progression to AIDS.
Collapse
Affiliation(s)
- Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Widade Ziani
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Jiasheng Shao
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Lara A Doyle-Meyers
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Kasi E Russell-Lodrigue
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Marion S Ratterree
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| |
Collapse
|
42
|
Barington L, Wanke F, Niss Arfelt K, Holst PJ, Kurschus FC, Rosenkilde MM. EBI2 in splenic and local immune responses and in autoimmunity. J Leukoc Biol 2018; 104:313-322. [DOI: 10.1002/jlb.2vmr1217-510r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- L. Barington
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - F. Wanke
- Institute for Molecular Medicine; University Medical Center of the Johannes Gutenberg-University Mainz; Mainz Germany
| | - K. Niss Arfelt
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - P. J. Holst
- Department of Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - F. C. Kurschus
- Institute for Molecular Medicine; University Medical Center of the Johannes Gutenberg-University Mainz; Mainz Germany
| | - M. M. Rosenkilde
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
43
|
Wang X, Xu H. Potential Epigenetic Regulation in the Germinal Center Reaction of Lymphoid Tissues in HIV/SIV Infection. Front Immunol 2018; 9:159. [PMID: 29449847 PMCID: PMC5799247 DOI: 10.3389/fimmu.2018.00159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023] Open
Abstract
The production of high-affinity and broadly neutralizing antibodies plays a key role in the defense against pathogens. These antibody responses require effective germinal center (GC) reaction within anatomical niches of GCs, where follicular helper T (Tfh) cells provide cognate help to B cells for T cell-dependent antibody responses. Emerging evidences indicate that GC reaction in normal state and perhaps establishment of latent Tfh cell reservoir in HIV/SIV infection are tightly regulated by epigenetic histone modifications, which are responsible for activating or silencing chromatin. A better understanding of the mechanisms behind GC responses at cellular and molecular levels thus provides necessary knowledge for vaccination and immunotherapy. In this review, we discussed the epigenetic regulation of GC responses, especially for GC B and Tfh cell under normal state or HIV/SIV infection.
Collapse
Affiliation(s)
- Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| |
Collapse
|
44
|
Hahn WO, Butler NS, Lindner SE, Akilesh HM, Sather DN, Kappe SH, Hamerman JA, Gale M, Liles WC, Pepper M. cGAS-mediated control of blood-stage malaria promotes Plasmodium-specific germinal center responses. JCI Insight 2018; 3:94142. [PMID: 29367469 DOI: 10.1172/jci.insight.94142] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022] Open
Abstract
Sensing of pathogens by host pattern recognition receptors is essential for activating the immune response during infection. We used a nonlethal murine model of malaria (Plasmodium yoelii 17XNL) to assess the contribution of the pattern recognition receptor cyclic GMP-AMP synthase (cGAS) to the development of humoral immunity. Despite previous reports suggesting a critical, intrinsic role for cGAS in early B cell responses, cGAS-deficient (cGAS-/-) mice had no defect in the early expansion or differentiation of Plasmodium-specific B cells. As the infection proceeded, however, cGAS-/- mice exhibited higher parasite burdens and aberrant germinal center and memory B cell formation when compared with littermate controls. Antimalarial drugs were used to further demonstrate that the disrupted humoral response was not B cell intrinsic but instead was a secondary effect of a loss of parasite control. These findings therefore demonstrate that cGAS-mediated innate-sensing contributes to parasite control but is not intrinsically required for the development of humoral immunity. Our findings highlight the need to consider the indirect effects of pathogen burden in investigations examining how the innate immune system affects the adaptive immune response.
Collapse
Affiliation(s)
- William O Hahn
- Division of Allergy and Infectious Diseases and.,Center For Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Noah S Butler
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, USA
| | - Scott E Lindner
- Center for Infectious Disease Research, Seattle, Washington, USA
| | - Holly M Akilesh
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA.,Division of Rheumatology, Department of Medicine, and
| | - D Noah Sather
- Center for Infectious Disease Research, Seattle, Washington, USA
| | - Stefan Hi Kappe
- Center for Infectious Disease Research, Seattle, Washington, USA.,Department of Global Health and
| | - Jessica A Hamerman
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA.,Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Michael Gale
- Center For Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA.,Department of Immunology, University of Washington, Seattle, Washington, USA
| | - W Conrad Liles
- Division of Allergy and Infectious Diseases and.,Center For Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Marion Pepper
- Center For Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA.,Department of Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|