1
|
Spring MG, Nautiyal KM. Striatal Serotonin Release Signals Reward Value. J Neurosci 2024; 44:e0602242024. [PMID: 39117457 PMCID: PMC11466065 DOI: 10.1523/jneurosci.0602-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/02/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Serotonin modulates diverse phenotypes and functions including depressive, aggressive, impulsive, and feeding behaviors, all of which have reward-related components. To date, research has focused on understanding these effects by measuring and manipulating dorsal raphe serotonin neurons and using single-receptor approaches. These studies have led to a better understanding of the heterogeneity of serotonin actions on behavior; however, they leave open many questions about the timing and location of serotonin's actions modulating the neural circuits that drive these behaviors. Recent advances in genetically encoded fluorescent biosensors, including the GPCR activation-based sensor for serotonin (GRAB-5-HT), enable the measurement of serotonin release in mice on a timescale compatible with a single rewarding event without corelease confounds. Given substantial evidence from slice electrophysiology experiments showing that serotonin influences neural activity of the striatal circuitry, and the known role of the dorsal medial striatal (DMS) in reward-directed behavior, we focused on understanding the parameters and timing that govern serotonin release in the DMS in the context of reward consumption, external reward value, internal state, and cued reward. Overall, we found that serotonin release is associated with each of these and encodes reward anticipation, value, approach, and consumption in the DMS.
Collapse
Affiliation(s)
- Mitchell G Spring
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Katherine M Nautiyal
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
2
|
Kim CM, Chow CC, Averbeck BB. Neural dynamics of reversal learning in the prefrontal cortex and recurrent neural networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613033. [PMID: 39372802 PMCID: PMC11451584 DOI: 10.1101/2024.09.14.613033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
In probabilistic reversal learning, the choice option yielding reward at higher probability switches at a random trial. To perform optimally in this task, one has to accumulate evidence across trials to infer the probability that a reversal has occurred. In this study, we investigated how this reversal probability is represented in cortical neurons by analyzing the neural activity in prefrontal cortex of monkeys and recurrent neural networks trained on the task. We found that neural trajectories encoding reversal probability had substantial dynamics associated with intervening behaviors necessary to perform the task. Furthermore, the neural trajectories were translated systematically in response to whether outcomes were rewarded, and their position in the neural subspace captured information about reward outcomes. These findings suggested that separable dynamic trajectories, instead of fixed points on a line attractor, provided a better description of neural representation of reversal probability. Near the behavioral reversal, in particular, the trajectories shifted monotonically across trials with stable ordering, representing varying estimates of reversal probability around the reversal point. Perturbing the neural trajectory of trained networks biased when the reversal trial occurred, showing the role of reversal probability activity in decision-making. In sum, our study shows that cortical neurons encode reversal probability in a family of dynamic neural trajectories that accommodate flexible behavior while maintaining separability to represent distinct probabilistic values.
Collapse
|
3
|
Boyle N, Betts S, Lu H. Monoaminergic Modulation of Learning and Cognitive Function in the Prefrontal Cortex. Brain Sci 2024; 14:902. [PMID: 39335398 PMCID: PMC11429557 DOI: 10.3390/brainsci14090902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Extensive research has shed light on the cellular and functional underpinnings of higher cognition as influenced by the prefrontal cortex. Neurotransmitters act as key regulatory molecules within the PFC to assist with synchronizing cognitive state and arousal levels. The monoamine family of neurotransmitters, including dopamine, serotonin, and norepinephrine, play multifaceted roles in the cognitive processes behind learning and memory. The present review explores the organization and signaling patterns of monoamines within the PFC, as well as elucidates the numerous roles played by monoamines in learning and higher cognitive function.
Collapse
Affiliation(s)
| | | | - Hui Lu
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (N.B.); (S.B.)
| |
Collapse
|
4
|
Jing JQ, Jia SJ, Yang CJ. Physical activity promotes brain development through serotonin during early childhood. Neuroscience 2024; 554:34-42. [PMID: 39004411 DOI: 10.1016/j.neuroscience.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Early childhood serves as a critical period for neural development and skill acquisition when children are extremely susceptible to the external environment and experience. As a crucial experiential stimulus, physical activity is believed to produce a series of positive effects on brain development, such as cognitive function, social-emotional abilities, and psychological well-being. The World Health Organization recommends that children engage in sufficient daily physical activity, which has already been strongly advocated in the practice of preschool education. However, the mechanisms by which physical activity promotes brain development are still unclear. The role of neurotransmitters, especially serotonin, in promoting brain development through physical activity has received increasing attention. Physical activity has been shown to stimulate the secretion of serotonin by increasing the bioavailability of free tryptophan and enriching the diversity of gut microbiota. Due to its important role in modulating neuronal proliferation, differentiation, synaptic morphogenesis, and synaptic transmission, serotonin can regulate children's explicit cognitive and social interaction behavior in the early stages of life. Therefore, we hypothesized that serotonin emerges as a pivotal transmitter that mediates the relationship between physical activity and brain development during early childhood. Further systematic reviews and meta-analyses are needed to specifically explore whether the type, intensity, dosage, duration, and degree of voluntariness of PA may affect the role of serotonin in the relationship between physical activity and brain function. This review not only helps us understand the impact of exercise on development but also provides a solid theoretical basis for increasing physical activity during early childhood.
Collapse
Affiliation(s)
- Jia-Qi Jing
- Faculty of Education, East China Normal University, Shanghai, China
| | - Si-Jia Jia
- Faculty of Education, East China Normal University, Shanghai, China
| | - Chang-Jiang Yang
- Faculty of Education, East China Normal University, Shanghai, China.
| |
Collapse
|
5
|
McGovern HT, Grimmer HJ, Doss MK, Hutchinson BT, Timmermann C, Lyon A, Corlett PR, Laukkonen RE. An Integrated theory of false insights and beliefs under psychedelics. COMMUNICATIONS PSYCHOLOGY 2024; 2:69. [PMID: 39242747 PMCID: PMC11332244 DOI: 10.1038/s44271-024-00120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/23/2024] [Indexed: 09/09/2024]
Abstract
Psychedelics are recognised for their potential to re-orient beliefs. We propose a model of how psychedelics can, in some cases, lead to false insights and thus false beliefs. We first review experimental work on laboratory-based false insights and false memories. We then connect this to insights and belief formation under psychedelics using the active inference framework. We propose that subjective and brain-based alterations caused by psychedelics increases the quantity and subjective intensity of insights and thence beliefs, including false ones. We offer directions for future research in minimising the risk of false and potentially harmful beliefs arising from psychedelics. Ultimately, knowing how psychedelics may facilitate false insights and beliefs is crucial if we are to optimally leverage their therapeutic potential.
Collapse
Affiliation(s)
- H T McGovern
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia.
- The Cairnmillar Institute, Melbourne, VIC, Australia.
| | - H J Grimmer
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| | - M K Doss
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research & Therapy, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - B T Hutchinson
- Faculty of Behavioural and Movement Sciences, Cognitive Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - C Timmermann
- Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, London, UK
| | - A Lyon
- Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - P R Corlett
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - R E Laukkonen
- Faculty of Health, Southern Cross University, Gold Coast, QLD, Australia
| |
Collapse
|
6
|
Feng YY, Bromberg-Martin ES, Monosov IE. Dorsal raphe neurons integrate the values of reward amount, delay, and uncertainty in multi-attribute decision-making. Cell Rep 2024; 43:114341. [PMID: 38878290 DOI: 10.1016/j.celrep.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/27/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
The dorsal raphe nucleus (DRN) is implicated in psychiatric disorders that feature impaired sensitivity to reward amount, impulsivity when facing reward delays, and risk-seeking when confronting reward uncertainty. However, it has been unclear whether and how DRN neurons signal reward amount, reward delay, and reward uncertainty during multi-attribute value-based decision-making, where subjects consider these attributes to make a choice. We recorded DRN neurons as monkeys chose between offers whose attributes, namely expected reward amount, reward delay, and reward uncertainty, varied independently. Many DRN neurons signaled offer attributes, and this population tended to integrate the attributes in a manner that reflected monkeys' preferences for amount, delay, and uncertainty. After decision-making, in response to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting a broader role in tracking value across task epochs and behavioral contexts. Our data illustrate how the DRN participates in value computations, guiding theories about the role of the DRN in decision-making and psychiatric disease.
Collapse
Affiliation(s)
- Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | | | - Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Washington University Pain Center, Washington University, St. Louis, MO, USA; Department of Neurosurgery, Washington University, St. Louis, MO, USA; Department of Electrical Engineering, Washington University, St. Louis, MO, USA.
| |
Collapse
|
7
|
Stuart SA, Palacios-Filardo J, Domanski A, Udakis M, Duguid I, Jones MW, Mellor JR. Hippocampal-dependent navigation in head-fixed mice using a floating real-world environment. Sci Rep 2024; 14:14315. [PMID: 38906952 PMCID: PMC11192748 DOI: 10.1038/s41598-024-64807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/13/2024] [Indexed: 06/23/2024] Open
Abstract
Head-fixation of mice enables high-resolution monitoring of neuronal activity coupled with precise control of environmental stimuli. Virtual reality can be used to emulate the visual experience of movement during head fixation, but a low inertia floating real-world environment (mobile homecage, MHC) has the potential to engage more sensory modalities and provide a richer experimental environment for complex behavioral tasks. However, it is not known whether mice react to this adapted environment in a similar manner to real environments, or whether the MHC can be used to implement validated, maze-based behavioral tasks. Here, we show that hippocampal place cell representations are intact in the MHC and that the system allows relatively long (20 min) whole-cell patch clamp recordings from dorsal CA1 pyramidal neurons, revealing sub-threshold membrane potential dynamics. Furthermore, mice learn the location of a liquid reward within an adapted T-maze guided by 2-dimensional spatial navigation cues and relearn the location when spatial contingencies are reversed. Bilateral infusions of scopolamine show that this learning is hippocampus-dependent and requires intact cholinergic signalling. Therefore, we characterize the MHC system as an experimental tool to study sub-threshold membrane potential dynamics that underpin complex navigation behaviors.
Collapse
Affiliation(s)
- Sarah A Stuart
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Jon Palacios-Filardo
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Aleks Domanski
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Matt Udakis
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Ian Duguid
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Matt W Jones
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
8
|
Hamada HT, Abe Y, Takata N, Taira M, Tanaka KF, Doya K. Optogenetic activation of dorsal raphe serotonin neurons induces brain-wide activation. Nat Commun 2024; 15:4152. [PMID: 38755120 PMCID: PMC11099070 DOI: 10.1038/s41467-024-48489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Serotonin is a neuromodulator that affects multiple behavioral and cognitive functions. Nonetheless, how serotonin causes such a variety of effects via brain-wide projections and various receptors remains unclear. Here we measured brain-wide responses to optogenetic stimulation of serotonin neurons in the dorsal raphe nucleus (DRN) of the male mouse brain using functional MRI with an 11.7 T scanner and a cryoprobe. Transient activation of DRN serotonin neurons caused brain-wide activation, including the medial prefrontal cortex, the striatum, and the ventral tegmental area. The same stimulation under anesthesia with isoflurane decreased brain-wide activation, including the hippocampal complex. These brain-wide response patterns can be explained by DRN serotonergic projection topography and serotonin receptor expression profiles, with enhanced weights on 5-HT1 receptors. Together, these results provide insight into the DR serotonergic system, which is consistent with recent discoveries of its functions in adaptive behaviors.
Collapse
Affiliation(s)
- Hiro Taiyo Hamada
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
- Research & Development Department, Araya Inc, Tokyo, Japan.
| | - Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Norio Takata
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Masakazu Taira
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
9
|
Alonso L, Peeva P, Fernández-del Valle Alquicira T, Erdelyi N, Gil Nolskog Á, Bader M, Winter Y, Alenina N, Rivalan M. Poor Decision Making and Sociability Impairment Following Central Serotonin Reduction in Inducible TPH2-Knockdown Rats. Int J Mol Sci 2024; 25:5003. [PMID: 38732220 PMCID: PMC11084943 DOI: 10.3390/ijms25095003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Serotonin is an essential neuromodulator for mental health and animals' socio-cognitive abilities. However, we previously found that a constitutive depletion of central serotonin did not impair rat cognitive abilities in stand-alone tests. Here, we investigated how a mild and acute decrease in brain serotonin would affect rats' cognitive abilities. Using a novel rat model of inducible serotonin depletion via the genetic knockdown of tryptophan hydroxylase 2 (TPH2), we achieved a 20% decrease in serotonin levels in the hypothalamus after three weeks of non-invasive oral doxycycline administration. Decision making, cognitive flexibility, and social recognition memory were tested in low-serotonin (Tph2-kd) and control rats. Our results showed that the Tph2-kd rats were more prone to choose disadvantageously in the long term (poor decision making) in the Rat Gambling Task and that only the low-serotonin poor decision makers were more sensitive to probabilistic discounting and had poorer social recognition memory than other low-serotonin and control individuals. Flexibility was unaffected by the acute brain serotonin reduction. Poor social recognition memory was the most central characteristic of the behavioral network of low-serotonin poor decision makers, suggesting a key role of social recognition in the expression of their profile. The acute decrease in brain serotonin appeared to specifically amplify the cognitive impairments of the subgroup of individuals also identified as poor decision makers in the population. This study highlights the great opportunity the Tph2-kd rat model offers to study inter-individual susceptibilities to develop cognitive impairment following mild variations of brain serotonin in otherwise healthy individuals. These transgenic and differential approaches together could be critical for the identification of translational markers and vulnerabilities in the development of mental disorders.
Collapse
Affiliation(s)
- Lucille Alonso
- Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; (L.A.); (T.F.-d.V.A.); (Y.W.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany (M.B.)
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Polina Peeva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Tania Fernández-del Valle Alquicira
- Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; (L.A.); (T.F.-d.V.A.); (Y.W.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany (M.B.)
| | - Narda Erdelyi
- Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; (L.A.); (T.F.-d.V.A.); (Y.W.)
| | - Ángel Gil Nolskog
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany (M.B.)
| | - Michael Bader
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany (M.B.)
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Institute for Biology, University of Lübeck, 23562 Lübeck, Germany
| | - York Winter
- Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; (L.A.); (T.F.-d.V.A.); (Y.W.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany (M.B.)
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Marion Rivalan
- Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; (L.A.); (T.F.-d.V.A.); (Y.W.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany (M.B.)
- NeuroPSI—Paris-Saclay Institute of Neuroscience, CNRS—Université Paris-Saclay, F-91400 Saclay, France
| |
Collapse
|
10
|
Kohtz AS, Zhao J, Aston-Jones G. Serotonin Signaling in Hippocampus during Initial Cocaine Abstinence Drives Persistent Drug Seeking. J Neurosci 2024; 44:e1505212024. [PMID: 38514181 PMCID: PMC11044100 DOI: 10.1523/jneurosci.1505-21.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/23/2024] Open
Abstract
The initiation of abstinence after chronic drug self-administration is stressful. Cocaine-seeking behavior on the first day of the absence of the expected drug (Extinction Day 1, ED1) is reduced by blocking 5-HT signaling in dorsal hippocampal cornu ammonis 1 (CA1) in both male and female rats. We hypothesized that the experience of ED1 can substantially influence later relapse behavior and that dorsal raphe (DR) serotonin (5-HT) input to CA1 may be involved. We inhibited 5-HT1A/1B receptors (WAY-100635 plus GR-127935), or DR input (chemogenetics), in CA1 on ED1 to test the role of this pathway on cocaine-seeking persistence 2 weeks later. We also inhibited 5-HT1A or 5-HT1B receptors in CA1 during conditioned place preference (CPP) for cocaine, to examine mechanisms involved in the persistent effects of ED1 manipulations. Inhibition of DR inputs, or 5-HT1A/1B signaling, in CA1 decreased drug seeking on ED1 and decreased cocaine seeking 2 weeks later revealing that 5-HT signaling in CA1 during ED1 contributes to persistent drug seeking during abstinence. In addition, 5-HT1B antagonism alone transiently decreased drug-associated memory performance when given prior to a CPP test, whereas similar antagonism of 5-HT1A alone had no such effect but blocked CPP retrieval on a test 24 h later. These CPP findings are consistent with prior work showing that DR inputs to CA1 augment recall of the drug-associated context and drug seeking via 5-HT1B receptors and prevent consolidation of the updated nondrug context via 5-HT1A receptors. Thus, treatments that modulate 5-HT-dependent memory mechanisms in CA1 during initial abstinence may facilitate later maintenance of abstinence.
Collapse
Affiliation(s)
- Amy S Kohtz
- Brain Health Institute, Rutgers University, Piscataway, New Jersey 08854
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Joshua Zhao
- Brain Health Institute, Rutgers University, Piscataway, New Jersey 08854
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
11
|
Zárate-Rochín AM. Contemporary neurocognitive models of memory: A descriptive comparative analysis. Neuropsychologia 2024; 196:108846. [PMID: 38430963 DOI: 10.1016/j.neuropsychologia.2024.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
The great complexity involved in the study of memory has given rise to numerous hypotheses and models associated with various phenomena at different levels of analysis. This has allowed us to delve deeper in our knowledge about memory but has also made it difficult to synthesize and integrate data from different lines of research. In this context, this work presents a descriptive comparative analysis of contemporary models that address the structure and function of multiple memory systems. The main goal is to outline a panoramic view of the key elements that constitute these models in order to visualize both the current state of research and possible future directions. The elements that stand out from different levels of analysis are distributed neural networks, hierarchical organization, predictive coding, homeostasis, and evolutionary perspective.
Collapse
Affiliation(s)
- Alba Marcela Zárate-Rochín
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Dr. Castelazo Ayala s/n, Industrial Animas, 91190, Xalapa-Enríquez, Veracruz, Mexico.
| |
Collapse
|
12
|
Batten SR, Bang D, Kopell BH, Davis AN, Heflin M, Fu Q, Perl O, Ziafat K, Hashemi A, Saez I, Barbosa LS, Twomey T, Lohrenz T, White JP, Dayan P, Charney AW, Figee M, Mayberg HS, Kishida KT, Gu X, Montague PR. Dopamine and serotonin in human substantia nigra track social context and value signals during economic exchange. Nat Hum Behav 2024; 8:718-728. [PMID: 38409356 PMCID: PMC11045309 DOI: 10.1038/s41562-024-01831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/16/2024] [Indexed: 02/28/2024]
Abstract
Dopamine and serotonin are hypothesized to guide social behaviours. In humans, however, we have not yet been able to study neuromodulator dynamics as social interaction unfolds. Here, we obtained subsecond estimates of dopamine and serotonin from human substantia nigra pars reticulata during the ultimatum game. Participants, who were patients with Parkinson's disease undergoing awake brain surgery, had to accept or reject monetary offers of varying fairness from human and computer players. They rejected more offers in the human than the computer condition, an effect of social context associated with higher overall levels of dopamine but not serotonin. Regardless of the social context, relative changes in dopamine tracked trial-by-trial changes in offer value-akin to reward prediction errors-whereas serotonin tracked the current offer value. These results show that dopamine and serotonin fluctuations in one of the basal ganglia's main output structures reflect distinct social context and value signals.
Collapse
Affiliation(s)
- Seth R Batten
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA.
| | - Dan Bang
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA.
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Brian H Kopell
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Neuromodulation, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arianna N Davis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Heflin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qixiu Fu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ofer Perl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kimia Ziafat
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice Hashemi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ignacio Saez
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leonardo S Barbosa
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Thomas Twomey
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Terry Lohrenz
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Jason P White
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Peter Dayan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- University of Tübingen, Tübingen, Germany
| | - Alexander W Charney
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Neuromodulation, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Neuromodulation, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenneth T Kishida
- Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Xiaosi Gu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - P Read Montague
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA.
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
- Department of Physics, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
13
|
Lee KKY, Chattopadhyaya B, do Nascimento ASF, Moquin L, Rosa-Neto P, Amilhon B, Di Cristo G. Neonatal hypoxia impairs serotonin release and cognitive functions in adult mice. Neurobiol Dis 2024; 193:106465. [PMID: 38460800 DOI: 10.1016/j.nbd.2024.106465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
Children who experienced moderate perinatal asphyxia (MPA) are at risk of developing long lasting subtle cognitive and behavioral deficits, including learning disabilities and emotional problems. The prefrontal cortex (PFC) regulates cognitive flexibility and emotional behavior. Neurons that release serotonin (5-HT) project to the PFC, and compounds modulating 5-HT activity influence emotion and cognition. Whether 5-HT dysregulations contribute to MPA-induced cognitive problems is unknown. We established a MPA mouse model, which displays recognition and spatial memory impairments and dysfunctional cognitive flexibility. We found that 5-HT expression levels, quantified by immunohistochemistry, and 5-HT release, quantified by in vivo microdialysis in awake mice, are reduced in PFC of adult MPA mice. MPA mice also show impaired body temperature regulation following injection of the 5-HT1A receptor agonist 8-OH-DPAT, suggesting the presence of deficits in 5-HT auto-receptor function on raphe neurons. Finally, chronic treatment of adult MPA mice with fluoxetine, an inhibitor of 5-HT reuptake transporter, or the 5-HT1A receptor agonist tandospirone rescues cognitive flexibility and memory impairments. All together, these data demonstrate that the development of 5-HT system function is vulnerable to moderate perinatal asphyxia. 5-HT hypofunction might in turn contribute to long-term cognitive impairment in adulthood, indicating a potential target for pharmacological therapies.
Collapse
Affiliation(s)
- Karen Ka Yan Lee
- Neurosciences Department, Université de Montréal, Montréal, Canada; CHU Sainte-Justine Azrieli Research Center, Montréal, Canada
| | | | | | - Luc Moquin
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Canada
| | - Pedro Rosa-Neto
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Canada
| | - Bénédicte Amilhon
- Neurosciences Department, Université de Montréal, Montréal, Canada; CHU Sainte-Justine Azrieli Research Center, Montréal, Canada.
| | - Graziella Di Cristo
- Neurosciences Department, Université de Montréal, Montréal, Canada; CHU Sainte-Justine Azrieli Research Center, Montréal, Canada.
| |
Collapse
|
14
|
Barry MLLR, Gerstner W. Fast adaptation to rule switching using neuronal surprise. PLoS Comput Biol 2024; 20:e1011839. [PMID: 38377112 PMCID: PMC10906910 DOI: 10.1371/journal.pcbi.1011839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/01/2024] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
In humans and animals, surprise is a physiological reaction to an unexpected event, but how surprise can be linked to plausible models of neuronal activity is an open problem. We propose a self-supervised spiking neural network model where a surprise signal is extracted from an increase in neural activity after an imbalance of excitation and inhibition. The surprise signal modulates synaptic plasticity via a three-factor learning rule which increases plasticity at moments of surprise. The surprise signal remains small when transitions between sensory events follow a previously learned rule but increases immediately after rule switching. In a spiking network with several modules, previously learned rules are protected against overwriting, as long as the number of modules is larger than the total number of rules-making a step towards solving the stability-plasticity dilemma in neuroscience. Our model relates the subjective notion of surprise to specific predictions on the circuit level.
Collapse
Affiliation(s)
- Martin L. L. R. Barry
- School of Computer and Communication Sciences and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Wulfram Gerstner
- School of Computer and Communication Sciences and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
De Filippo R, Schmitz D. Synthetic surprise as the foundation of the psychedelic experience. Neurosci Biobehav Rev 2024; 157:105538. [PMID: 38220035 PMCID: PMC10839673 DOI: 10.1016/j.neubiorev.2024.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Psychedelic agents, such as LSD and psilocybin, induce marked alterations in consciousness via activation of the 5-HT2A receptor (5-HT2ARs). We hypothesize that psychedelics enforce a state of synthetic surprise through the biased activation of the 5-HTRs system. This idea is informed by recent insights into the role of 5-HT in signaling surprise. The effects on consciousness, explained by the cognitive penetrability of perception, can be described within the predictive coding framework where surprise corresponds to prediction error, the mismatch between predictions and actual sensory input. Crucially, the precision afforded to the prediction error determines its effect on priors, enabling a dynamic interaction between top-down expectations and incoming sensory data. By integrating recent findings on predictive coding circuitry and 5-HT2ARs transcriptomic data, we propose a biological implementation with emphasis on the role of inhibitory interneurons. Implications arise for the clinical use of psychedelics, which may rely primarily on their inherent capacity to induce surprise in order to disrupt maladaptive patterns.
Collapse
Affiliation(s)
- Roberto De Filippo
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany.
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Einstein Center for Neuroscience, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, 10117 Berlin, Germany; Humboldt-Universität zu Berlin, Bernstein Center for Computational Neuroscience, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
16
|
Luo Q, Kanen JW, Bari A, Skandali N, Langley C, Knudsen GM, Alsiö J, Phillips BU, Sahakian BJ, Cardinal RN, Robbins TW. Comparable roles for serotonin in rats and humans for computations underlying flexible decision-making. Neuropsychopharmacology 2024; 49:600-608. [PMID: 37914893 PMCID: PMC10789782 DOI: 10.1038/s41386-023-01762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/22/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Serotonin is critical for adapting behavior flexibly to meet changing environmental demands. Cognitive flexibility is important for successful attainment of goals, as well as for social interactions, and is frequently impaired in neuropsychiatric disorders, including obsessive-compulsive disorder. However, a unifying mechanistic framework accounting for the role of serotonin in behavioral flexibility has remained elusive. Here, we demonstrate common effects of manipulating serotonin function across two species (rats and humans) on latent processes supporting choice behavior during probabilistic reversal learning, using computational modelling. The findings support a role of serotonin in behavioral flexibility and plasticity, indicated, respectively, by increases or decreases in choice repetition ('stickiness') or reinforcement learning rates following manipulations intended to increase or decrease serotonin function. More specifically, the rate at which expected value increased following reward and decreased following punishment (reward and punishment 'learning rates') was greatest after sub-chronic administration of the selective serotonin reuptake inhibitor (SSRI) citalopram (5 mg/kg for 7 days followed by 10 mg/kg twice a day for 5 days) in rats. Conversely, humans given a single dose of an SSRI (20 mg escitalopram), which can decrease post-synaptic serotonin signalling, and rats that received the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), which destroys forebrain serotonergic neurons, exhibited decreased reward learning rates. A basic perseverative tendency ('stickiness'), or choice repetition irrespective of the outcome produced, was likewise increased in rats after the 12-day SSRI regimen and decreased after single dose SSRI in humans and 5,7-DHT in rats. These common effects of serotonergic manipulations on rats and humans-identified via computational modelling-suggest an evolutionarily conserved role for serotonin in plasticity and behavioral flexibility and have clinical relevance transdiagnostically for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, P. R. China.
- Center for Computational Psychiatry, Ministry of Education Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai, 200433, China.
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| | - Jonathan W Kanen
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | | | - Nikolina Skandali
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, CB21 5EF, UK
- NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Christelle Langley
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, the Neuroscience Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Johan Alsiö
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Benjamin U Phillips
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Barbara J Sahakian
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, P. R. China
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Rudolf N Cardinal
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, CB21 5EF, UK
| | - Trevor W Robbins
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, P. R. China.
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| |
Collapse
|
17
|
Luppi AI, Girn M, Rosas FE, Timmermann C, Roseman L, Erritzoe D, Nutt DJ, Stamatakis EA, Spreng RN, Xing L, Huttner WB, Carhart-Harris RL. A role for the serotonin 2A receptor in the expansion and functioning of human transmodal cortex. Brain 2024; 147:56-80. [PMID: 37703310 DOI: 10.1093/brain/awad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- Data Science Institute, Imperial College London, London, SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London, SW7 2AZ, UK
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
18
|
Carvalheiro J, Philiastides MG. Distinct spatiotemporal brainstem pathways of outcome valence during reward- and punishment-based learning. Cell Rep 2023; 42:113589. [PMID: 38100353 DOI: 10.1016/j.celrep.2023.113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/05/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Learning to seek rewards and avoid punishments, based on positive and negative choice outcomes, is essential for human survival. Yet, the neural underpinnings of outcome valence in the human brainstem and the extent to which they differ in reward and punishment learning contexts remain largely elusive. Here, using simultaneously acquired electroencephalography and functional magnetic resonance imaging data, we show that during reward learning the substantia nigra (SN)/ventral tegmental area (VTA) and locus coeruleus are initially activated following negative outcomes, while the VTA subsequently re-engages exhibiting greater responses for positive than negative outcomes, consistent with an early arousal/avoidance response and a later value-updating process, respectively. During punishment learning, we show that distinct raphe nucleus and SN subregions are activated only by negative outcomes with a sustained post-outcome activity across time, supporting the involvement of these brainstem subregions in avoidance behavior. Finally, we demonstrate that the coupling of these brainstem structures with other subcortical and cortical areas helps to shape participants' serial choice behavior in each context.
Collapse
Affiliation(s)
- Joana Carvalheiro
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, UK; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| | - Marios G Philiastides
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, UK; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| |
Collapse
|
19
|
Troconis EL, Seo C, Guru A, Warden MR. Serotonin neurons in mating female mice are activated by male ejaculation. Curr Biol 2023; 33:4926-4936.e4. [PMID: 37865094 PMCID: PMC10901455 DOI: 10.1016/j.cub.2023.09.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Sexual stimulation triggers changes in female physiology and behavior, including sexual satiety and preparing the uterus for pregnancy. Serotonin (5-HT) is an important regulator of reproductive physiology and sexual receptivity, but the relationship between sexual stimulation and 5-HT neural activity in females is poorly understood. Here, we investigated dorsal raphe 5-HT neural activity in female mice during sexual behavior. We found that 5-HT neural activity in mating females peaked specifically upon male ejaculation and remained elevated above baseline until disengagement. Artificial intravaginal mechanical stimulation was sufficient to elicit increased 5-HT neural activity but the delivery of ejaculatory fluids was not. Distal penis expansion ("penile cupping") at ejaculation and forceful expulsion of ejaculatory fluid each provided sufficient mechanical stimulation to elicit 5-HT neuron activation. Our study identifies a female ejaculation-specific signal in a major neuromodulatory system and shows that intravaginal mechanosensory stimulation is necessary and sufficient to drive this signal.
Collapse
Affiliation(s)
- Eileen L Troconis
- Biological and Biomedical Sciences Program, Cornell University, Ithaca, NY 14853, USA
| | - Changwoo Seo
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - Akash Guru
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - Melissa R Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
20
|
Feng YY, Bromberg-Martin ES, Monosov IE. Dorsal raphe neurons signal integrated value during multi-attribute decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553745. [PMID: 37662243 PMCID: PMC10473596 DOI: 10.1101/2023.08.17.553745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The dorsal raphe nucleus (DRN) is implicated in psychiatric disorders that feature impaired sensitivity to reward amount, impulsivity when facing reward delays, and risk-seeking when grappling with reward uncertainty. However, whether and how DRN neurons signal reward amount, reward delay, and reward uncertainty during multi-attribute value-based decision-making, where subjects consider all these attributes to make a choice, is unclear. We recorded DRN neurons as monkeys chose between offers whose attributes, namely expected reward amount, reward delay, and reward uncertainty, varied independently. Many DRN neurons signaled offer attributes. Remarkably, these neurons commonly integrated offer attributes in a manner that reflected monkeys' overall preferences for amount, delay, and uncertainty. After decision-making, in response to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting a broader role in tracking value across task epochs and behavioral contexts. Our data illustrate how DRN participates in integrated value computations, guiding theories of DRN in decision-making and psychiatric disease.
Collapse
Affiliation(s)
- Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | | | - Ilya E. Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Washington University Pain Center, Washington University, St. Louis, Missouri, USA
- Department of Neurosurgery, Washington University, St. Louis, Missouri, USA
- Department of Electrical Engineering, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
21
|
Troconis EL, Seo C, Guru A, Warden MR. Serotonin neurons in mating female mice are activated by male ejaculation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.14.540716. [PMID: 37645786 PMCID: PMC10461921 DOI: 10.1101/2023.05.14.540716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Sexual stimulation triggers changes in female physiology and behavior, including sexual satiety and preparing the uterus for pregnancy. Serotonin is an important regulator of reproductive physiology and sexual receptivity, but the relationship between sexual stimulation and serotonin neural activity in females is poorly understood. Here, we investigated dorsal raphe serotonin neural activity in females during sexual behavior. We found that serotonin neural activity in mating females peaked specifically upon male ejaculation, and remained elevated above baseline until disengagement. Artificial intravaginal mechanical stimulation was sufficient to elicit increased 5-HT neural activity but the delivery of ejaculatory fluids was not. Distal penis erectile enlargement ("penile cupping") at ejaculation and forceful expulsion of ejaculatory fluid each provided sufficient mechanical stimulation to elicit serotonin neuron activation. Our study identifies a female ejaculation-specific signal in a major neuromodulatory system and shows that intravaginal mechanosensory stimulation is necessary and sufficient to drive this signal.
Collapse
Affiliation(s)
- Eileen L. Troconis
- Department of Biological and Biomedical Sciences, Cornell University, Ithaca, NY 14853 USA
| | - Changwoo Seo
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853 USA
- Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA
| | - Akash Guru
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853 USA
- Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA
| | - Melissa R. Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853 USA
- Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA
- Lead Contact
| |
Collapse
|
22
|
Froudist-Walsh S, Xu T, Niu M, Rapan L, Zhao L, Margulies DS, Zilles K, Wang XJ, Palomero-Gallagher N. Gradients of neurotransmitter receptor expression in the macaque cortex. Nat Neurosci 2023; 26:1281-1294. [PMID: 37336976 PMCID: PMC10322721 DOI: 10.1038/s41593-023-01351-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/01/2023] [Indexed: 06/21/2023]
Abstract
Dynamics and functions of neural circuits depend on interactions mediated by receptors. Therefore, a comprehensive map of receptor organization across cortical regions is needed. In this study, we used in vitro receptor autoradiography to measure the density of 14 neurotransmitter receptor types in 109 areas of macaque cortex. We integrated the receptor data with anatomical, genetic and functional connectivity data into a common cortical space. We uncovered a principal gradient of receptor expression per neuron. This aligns with the cortical hierarchy from sensory cortex to higher cognitive areas. A second gradient, driven by serotonin 5-HT1A receptors, peaks in the anterior cingulate, default mode and salience networks. We found a similar pattern of 5-HT1A expression in the human brain. Thus, the macaque may be a promising translational model of serotonergic processing and disorders. The receptor gradients may enable rapid, reliable information processing in sensory cortical areas and slow, flexible integration in higher cognitive areas.
Collapse
MESH Headings
- Aged
- Animals
- Female
- Humans
- Male
- Rats
- Autoradiography
- Brain Mapping
- Cerebral Cortex/cytology
- Cerebral Cortex/metabolism
- Cognition
- Dendritic Spines
- Gyrus Cinguli/cytology
- Gyrus Cinguli/metabolism
- Macaca fascicularis
- Rats, Inbred Lew
- Receptor, Serotonin, 5-HT1A/analysis
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, Cholinergic/analysis
- Receptors, Cholinergic/metabolism
- Receptors, Dopamine/analysis
- Receptors, Dopamine/metabolism
- Receptors, Neurotransmitter/analysis
- Receptors, Neurotransmitter/metabolism
- Serotonin/metabolism
- Species Specificity
- Myelin Sheath/metabolism
Collapse
Affiliation(s)
- Sean Froudist-Walsh
- Computational Neuroscience Unit, Faculty of Engineering, University of Bristol, Bristol, UK
- Center for Neural Science, New York University, New York, NY, USA
| | - Ting Xu
- Child Mind Institute, New York, NY, USA
| | - Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Lucija Rapan
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Ling Zhao
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, University of Paris Cité, Paris, France
| | | | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
23
|
Brown VM, Price R, Dombrovski AY. Anxiety as a disorder of uncertainty: implications for understanding maladaptive anxiety, anxious avoidance, and exposure therapy. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:844-868. [PMID: 36869259 PMCID: PMC10475148 DOI: 10.3758/s13415-023-01080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/05/2023]
Abstract
In cognitive-behavioral conceptualizations of anxiety, exaggerated threat expectancies underlie maladaptive anxiety. This view has led to successful treatments, notably exposure therapy, but is not consistent with the empirical literature on learning and choice alterations in anxiety. Empirically, anxiety is better described as a disorder of uncertainty learning. How disruptions in uncertainty lead to impairing avoidance and are treated with exposure-based methods, however, is unclear. Here, we integrate concepts from neurocomputational learning models with clinical literature on exposure therapy to propose a new framework for understanding maladaptive uncertainty functioning in anxiety. Specifically, we propose that anxiety disorders are fundamentally disorders of uncertainty learning and that successful treatments, particularly exposure therapy, work by remediating maladaptive avoidance from dysfunctional explore/exploit decisions in uncertain, potentially aversive situations. This framework reconciles several inconsistencies in the literature and provides a path forward to better understand and treat anxiety.
Collapse
Affiliation(s)
- Vanessa M Brown
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Rebecca Price
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
24
|
Odland AU, Sandahl R, Andreasen JT. Chronic corticosterone improves perseverative behavior in mice during sequential reversal learning. Behav Brain Res 2023; 450:114479. [PMID: 37169127 DOI: 10.1016/j.bbr.2023.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/04/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Stressful life events can both trigger development of psychiatric disorders and promote positive behavioral changes in response to adversities. The relationship between stress and cognitive flexibility is complex, and conflicting effects of stress manifest in both humans and laboratory animals. OBJECTIVE To mirror the clinical situation where stressful life events impair mental health or promote behavioral change, we examined the post-exposure effects of stress on cognitive flexibility in mice. METHODS We tested female C57BL/6JOlaHsd mice in the touchscreen-based sequential reversal learning test. Corticosterone (CORT) was used as a model of stress and was administered in the drinking water for two weeks before reversal learning. Control animals received drinking water without CORT. Behaviors in supplementary tests were included to exclude non-specific confounding effects of CORT and improve interpretation of the results. RESULTS CORT-treated mice were similar to controls on all touchscreen parameters before reversal. During the low accuracy phase of reversal learning, CORT reduced perseveration index, a measure of perseverative responding, but did not affect acquisition of the new reward contingency. This effect was not related to non-specific deficits in chamber activity. CORT increased anxiety-like behavior in the elevated zero maze test and repetitive digging in the marble burying test, reduced locomotor activity, but did not affect spontaneous alternation behavior. CONCLUSION CORT improved cognitive flexibility in the reversal learning test by extinguishing prepotent responses that were no longer rewarded, an effect possibly related to a stress-mediated increase in sensitivity to negative feedback that should be confirmed in a larger study.
Collapse
Affiliation(s)
- Anna U Odland
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Rune Sandahl
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
25
|
Wang Z, Nan T, Goerlich KS, Li Y, Aleman A, Luo Y, Xu P. Neurocomputational mechanisms underlying fear-biased adaptation learning in changing environments. PLoS Biol 2023; 21:e3001724. [PMID: 37126501 PMCID: PMC10174591 DOI: 10.1371/journal.pbio.3001724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 05/11/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Humans are able to adapt to the fast-changing world by estimating statistical regularities of the environment. Although fear can profoundly impact adaptive behaviors, the computational and neural mechanisms underlying this phenomenon remain elusive. Here, we conducted a behavioral experiment (n = 21) and a functional magnetic resonance imaging experiment (n = 37) with a novel cue-biased adaptation learning task, during which we simultaneously manipulated emotional valence (fearful/neutral expressions of the cue) and environmental volatility (frequent/infrequent reversals of reward probabilities). Across 2 experiments, computational modeling consistently revealed a higher learning rate for the environment with frequent versus infrequent reversals following neutral cues. In contrast, this flexible adjustment was absent in the environment with fearful cues, suggesting a suppressive role of fear in adaptation to environmental volatility. This suppressive effect was underpinned by activity of the ventral striatum, hippocampus, and dorsal anterior cingulate cortex (dACC) as well as increased functional connectivity between the dACC and temporal-parietal junction (TPJ) for fear with environmental volatility. Dynamic causal modeling identified that the driving effect was located in the TPJ and was associated with dACC activation, suggesting that the suppression of fear on adaptive behaviors occurs at the early stage of bottom-up processing. These findings provide a neuro-computational account of how fear interferes with adaptation to volatility during dynamic environments.
Collapse
Affiliation(s)
- Zhihao Wang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China
- CNRS-Centre d'Economie de la Sorbonne, Panthéon-Sorbonne University, France
| | - Tian Nan
- School of Psychology, Sichuan Center of Applied Psychology, Chengdu Medical College, Chengdu, China
| | - Katharina S Goerlich
- University of Groningen, Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neuroscience, University Medical Center Groningen, Groningen, the Netherlands
| | - Yiman Li
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
| | - André Aleman
- University of Groningen, Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neuroscience, University Medical Center Groningen, Groningen, the Netherlands
| | - Yuejia Luo
- School of Psychology, Sichuan Center of Applied Psychology, Chengdu Medical College, Chengdu, China
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- The State Key Lab of Cognitive and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China
- Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China
| |
Collapse
|
26
|
Murphy KZ, Haile E, Tigue AM, Pierce AF, Donaldson ZR. PhAT: A Flexible Open-Source GUI-Driven Toolkit for Photometry Analysis. Curr Protoc 2023; 3:e763. [PMID: 37184156 PMCID: PMC10246504 DOI: 10.1002/cpz1.763] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Photometry approaches detect sensor-mediated changes in fluorescence as a proxy for rapid molecular changes within the brain. As a flexible technique with a relatively low cost to implement, photometry is rapidly being incorporated into neuroscience laboratories. Yet, although multiple data acquisition systems for photometry now exist, robust analytical pipelines for the resulting data remain limited. Here we present the Photometry Analysis Toolkit (PhAT)-a free open-source analysis pipeline that provides options for signal normalization, incorporation of multiple data streams to align photometry data with behavior and other events, calculation of event-related changes in fluorescence, and comparison of similarity across fluorescent traces. A graphical user interface (GUI) enables use of this software without prior coding knowledge. In addition to providing foundational analytical tools, PhAT is designed to readily incorporate community-driven development of new modules for more bespoke analyses, and enables data to be easily exported to enable subsequent statistical testing and/or code-based analyses. In addition, we provide recommendations regarding technical aspects of photometry experiments, including sensor selection and validation, reference signal considerations, and best practices for experimental design and data collection. We hope that the distribution of this software and protocols will lower the barrier to entry for new photometry users and improve the quality of collected data, increasing transparency and reproducibility in photometry analyses. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Software and environment installation Alternate Protocol 1: Software and environment update Basic Protocol 2: GUI-driven fiber photometry analysis Support Protocol 1: Examining signal quality Support Protocol 2: Interacting with graphs Basic Protocol 3: Adding modules to PhAT Alternate Protocol 2: Creating functions for use in Jupyter Notebook.
Collapse
Affiliation(s)
- Kathleen Z. Murphy
- Department of Psychology & Neuroscience, 345 UCB, University of Colorado Boulder, Boulder, CO 80304
| | - Eyobel Haile
- Department of Psychology & Neuroscience, 345 UCB, University of Colorado Boulder, Boulder, CO 80304
| | - Anna Mc Tigue
- Department of Computer Science, 430 UCB, University of Colorado Boulder, Boulder, CO 80304
| | - Anne F. Pierce
- Department of Psychology & Neuroscience, 345 UCB, University of Colorado Boulder, Boulder, CO 80304
| | - Zoe R. Donaldson
- Department of Psychology & Neuroscience, 345 UCB, University of Colorado Boulder, Boulder, CO 80304
- Department of Computer Science, 430 UCB, University of Colorado Boulder, Boulder, CO 80304
| |
Collapse
|
27
|
Physical activity for cognitive health promotion: An overview of the underlying neurobiological mechanisms. Ageing Res Rev 2023; 86:101868. [PMID: 36736379 DOI: 10.1016/j.arr.2023.101868] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Physical activity is one of the modifiable factors of cognitive decline and dementia with the strongest evidence. Although many influential reviews have illustrated the neurobiological mechanisms of the cognitive benefits of physical activity, none of them have linked the neurobiological mechanisms to normal exercise physiology to help the readers gain a more advanced, comprehensive understanding of the phenomenon. In this review, we address this issue and provide a synthesis of the literature by focusing on five most studied neurobiological mechanisms. We show that the body's adaptations to enhance exercise performance also benefit the brain and contribute to improved cognition. Specifically, these adaptations include, 1), the release of growth factors that are essential for the development and growth of neurons and for neurogenesis and angiogenesis, 2), the production of lactate that provides energy to the brain and is involved in the synthesis of glutamate and the maintenance of long-term potentiation, 3), the release of anti-inflammatory cytokines that reduce neuroinflammation, 4), the increase in mitochondrial biogenesis and antioxidant enzyme activity that reduce oxidative stress, and 5), the release of neurotransmitters such as dopamine and 5-HT that regulate neurogenesis and modulate cognition. We also discussed several issues relevant for prescribing physical activity, including what intensity and mode of physical activity brings the most cognitive benefits, based on their influence on the above five neurobiological mechanisms. We hope this review helps readers gain a general understanding of the state-of-the-art knowledge on the neurobiological mechanisms of the cognitive benefits of physical activity and guide them in designing new studies to further advance the field.
Collapse
|
28
|
Morgan AA, Alves ND, Stevens GS, Yeasmin TT, Mackay A, Power S, Sargin D, Hanna C, Adib AL, Ziolkowski-Blake A, Lambe EK, Ansorge MS. Medial Prefrontal Cortex Serotonin Input Regulates Cognitive Flexibility in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534775. [PMID: 37034804 PMCID: PMC10081203 DOI: 10.1101/2023.03.30.534775] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The medial prefrontal cortex (mPFC) regulates cognitive flexibility and emotional behavior. Neurons that release serotonin project to the mPFC, and serotonergic drugs influence emotion and cognition. Yet, the specific roles of endogenous serotonin release in the mPFC on neurophysiology and behavior are unknown. We show that axonal serotonin release in the mPFC directly inhibits the major mPFC output neurons. In serotonergic neurons projecting from the dorsal raphe to the mPFC, we find endogenous activity signatures pre-reward retrieval and at reward retrieval during a cognitive flexibility task. In vivo optogenetic activation of this pathway during pre-reward retrieval selectively improved extradimensional rule shift performance while inhibition impaired it, demonstrating sufficiency and necessity for mPFC serotonin release in cognitive flexibility. Locomotor activity and anxiety-like behavior were not affected by either optogenetic manipulation. Collectively, our data reveal a powerful and specific modulatory role of endogenous serotonin release from dorsal raphe-to-mPFC projecting neurons in cognitive flexibility.
Collapse
|
29
|
Murphy KZ, Haile E, McTigue A, Pierce AF, Donaldson ZR. PhAT: A flexible open-source GUI-driven toolkit for photometry analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532489. [PMID: 36993180 PMCID: PMC10054971 DOI: 10.1101/2023.03.14.532489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Photometry approaches detect sensor-mediated changes in fluorescence as a proxy for rapid molecular changes within the brain. As a flexible technique with a relatively low cost to implement, photometry is rapidly being incorporated into neuroscience laboratories. While multiple data acquisition systems for photometry now exist, robust analytical pipelines for the resulting data remain limited. Here we present the Ph otometry A nalysis T oolkit (PhAT) - a free open source analysis pipeline that provides options for signal normalization, incorporation of multiple data streams to align photometry data with behavior and other events, calculation of event-related changes in fluorescence, and comparison of similarity across fluorescent traces. A graphical user interface (GUI) enables use of this software without prior coding knowledge. In addition to providing foundational analytical tools, PhAT is designed to readily incorporate community-driven development of new modules for more bespoke analyses, and data can be easily exported to enable subsequent statistical testing and/or code-based analyses. In addition, we provide recommendations regarding technical aspects of photometry experiments including sensor selection and validation, reference signal considerations, and best practices for experimental design and data collection. We hope that the distribution of this software and protocol will lower the barrier to entry for new photometry users and improve the quality of collected data, increasing transparency and reproducibility in photometry analyses. Basic Protocol 1: Software Environment InstallationBasic Protocol 2: GUI-driven Fiber Photometry AnalysisBasic Protocol 3: Adding Modules.
Collapse
Affiliation(s)
- Kathleen Z. Murphy
- Department of Psychology & Neuroscience, 345 UCB, University of Colorado Boulder, Boulder, CO 80304
| | - Eyobel Haile
- Department of Computer Science, 430 UCB, University of Colorado Boulder, Boulder, CO 80304
| | - Anna McTigue
- Department of Molecular, Cellular, and Developmental Biology, UCB 347, University of Colorado Boulder, Boulder, CO 80304
| | - Anne F. Pierce
- Department of Psychology & Neuroscience, 345 UCB, University of Colorado Boulder, Boulder, CO 80304
| | - Zoe R. Donaldson
- Department of Psychology & Neuroscience, 345 UCB, University of Colorado Boulder, Boulder, CO 80304
- Department of Molecular, Cellular, and Developmental Biology, UCB 347, University of Colorado Boulder, Boulder, CO 80304
| |
Collapse
|
30
|
Hyun JH, Hannan P, Iwamoto H, Blakely RD, Kwon HB. Serotonin in the orbitofrontal cortex enhances cognitive flexibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531880. [PMID: 36945634 PMCID: PMC10028980 DOI: 10.1101/2023.03.09.531880] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Cognitive flexibility is a brain's ability to switch between different rules or action plans depending on the context. However, cellular level understanding of cognitive flexibility have been largely unexplored. We probed a specific serotonergic pathway from dorsal raphe nuclei (DRN) to the orbitofrontal cortex (OFC) while animals are performing reversal learning task. We found that serotonin release from DRN to the OFC promotes reversal learning. A long-range connection between these two brain regions was confirmed anatomically and functionally. We further show that spatiotemporally precise serotonergic action directly enhances the excitability of OFC neurons and offers enhanced spike probability of OFC network. Serotonergic action facilitated the induction of synaptic plasticity by enhancing Ca2+ influx at dendritic spines in the OFC. Thus, our findings suggest that a key signature of flexibility is the formation of choice specific ensembles via serotonin-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Jung Ho Hyun
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Patrick Hannan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| | - Hideki Iwamoto
- Department of Biomedical Science and Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Randy D. Blakely
- Department of Biomedical Science and Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| |
Collapse
|
31
|
Roberts BF, Zylko AL, Waters CE, Crowder JD, Gibbons WJ, Sen AK, Jones JA, McMurray MS. Effect of psilocybin on decision-making and motivation in the healthy rat. Behav Brain Res 2023; 440:114262. [PMID: 36529299 DOI: 10.1016/j.bbr.2022.114262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Psilocybin and its active metabolite psilocin are hallucinogenic serotonergic agonists with high affinity for several serotonin receptors. In addition to underlying the hallucinogenic effects of these compounds, serotonin receptor activation also has important effects on decision-making and goal-directed behaviors. The impact of psilocybin and psilocin on these cognitive systems, however, remains unclear. This study investigated the effects of psilocybin treatment on decision-making and motivation in healthy male and female rats. We compared probability and delay discounting performance of psilocybin treated (1 mg/kg) to vehicle rats (n = 10/sex/group), and further assessed motivation in each group using a progressive ratio task. We also confirmed drug action by assessing head twitch responses after psilocybin treatment (1 mg/kg). Results from this study demonstrated that exposure to 1 mg/kg psilocybin did not affect decision-making in the probability and delay discounting tasks and did not reduce response rates in the progressive ratio task. However, psilocybin treatment did cause the expected increase in head twitch responses in both male and female rats, demonstrating that the drug was delivered at a pharmacologically relevant dosage. Combined, these results suggest that psilocybin may not impair or improve decision-making and motivation. Considering recent interest in psilocybin as a potential fast-acting therapeutic for a variety of mental health disorders, our findings also suggest the therapeutic effects of this drug may not be mediated by changes to the brain systems underlying reward and decision-making. Finally, these results may have important implications regarding the relative safety of this compound, suggesting that widespread cognitive impairments may not be seen in subjects, even after chronic treatment.
Collapse
Affiliation(s)
| | - Alexia L Zylko
- Miami University, Department of Psychology, Oxford, OH 45056, USA
| | | | | | - William J Gibbons
- Miami University, Department of Chemical, Paper, and Biomedical Engineering, Oxford, OH 45056, USA
| | - Abhishek K Sen
- Miami University, Department of Chemical, Paper, and Biomedical Engineering, Oxford, OH 45056, USA
| | - J Andrew Jones
- Miami University, Department of Chemical, Paper, and Biomedical Engineering, Oxford, OH 45056, USA; PsyBio Therapeutics, Inc., Oxford, OH 45056, USA
| | | |
Collapse
|
32
|
Alonso L, Peeva P, Stasko S, Bader M, Alenina N, Winter Y, Rivalan M. Constitutive depletion of brain serotonin differentially affects rats' social and cognitive abilities. iScience 2023; 26:105998. [PMID: 36798444 PMCID: PMC9926123 DOI: 10.1016/j.isci.2023.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 09/30/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Central serotonin appears a promising transdiagnostic marker of psychiatric disorders and a modulator of some of their key behavioral symptoms. In adult male Tph2 -/- rats, constitutively lacking central serotonin, we tested individual's cognitive, social and non-social abilities and characterized group's social organization under classical and ethological testing conditions. Using unsupervised machine learning, we identified the functions most dependent on serotonin. Although serotonin depletion did not affect cognitive performances in classical testing, in the home-cage it induced compulsive aggression and sexual behavior, hyperactive and hypervigilant stereotyped behavior, reduced self-care and exacerbated corticosterone levels. This profile recalled symptoms of impulse control and anxiety disorders. Serotonin appeared essential for behavioral adaptation to dynamic social environments. Our animal model challenges the essential role of serotonin in decision-making, flexibility, impulsivity, and risk-taking. These findings highlight the importance of studying everyday life functions within the dynamic social living environment to model complexity in animal models.
Collapse
Affiliation(s)
- Lucille Alonso
- Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Polina Peeva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Michael Bader
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - York Winter
- Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marion Rivalan
- Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
33
|
The Role of α-Synuclein in the Regulation of Serotonin System: Physiological and Pathological Features. Biomedicines 2023; 11:biomedicines11020541. [PMID: 36831077 PMCID: PMC9953742 DOI: 10.3390/biomedicines11020541] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
In patients affected by Parkinson's disease (PD), up to 50% of them experience cognitive changes, and psychiatric disturbances, such as anxiety and depression, often precede the onset of motor symptoms and have a negative impact on their quality of life. Pathologically, PD is characterized by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc) and the presence of intracellular inclusions, called Lewy bodies and Lewy neurites, composed mostly of α-synuclein (α-Syn). Much of PD research has focused on the role of α-Syn aggregates in the degeneration of SNc DA neurons due to the impact of striatal DA deficits on classical motor phenotypes. However, abundant Lewy pathology is also found in other brain regions including the midbrain raphe nuclei, which may contribute to non-motor symptoms. Indeed, dysfunction of the serotonergic (5-HT) system, which regulates mood and emotional pathways, occurs during the premotor phase of PD. However, little is known about the functional consequences of α-Syn inclusions in this neuronal population other than DA neurons. Here, we provide an overview of the current knowledge of α-Syn and its role in regulating the 5-HT function in health and disease. Understanding the relative contributions to α-Syn-linked alterations in the 5-HT system may provide a basis for identifying PD patients at risk for developing depression and could lead to a more targeted therapeutic approach.
Collapse
|
34
|
Behera CK, Joshi A, Wang DH, Sharp T, Wong-Lin K. Degeneracy and stability in neural circuits of dopamine and serotonin neuromodulators: A theoretical consideration. Front Comput Neurosci 2023; 16:950489. [PMID: 36761394 PMCID: PMC9905743 DOI: 10.3389/fncom.2022.950489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023] Open
Abstract
Degenerate neural circuits perform the same function despite being structurally different. However, it is unclear whether neural circuits with interacting neuromodulator sources can themselves degenerate while maintaining the same neuromodulatory function. Here, we address this by computationally modeling the neural circuits of neuromodulators serotonin and dopamine, local glutamatergic and GABAergic interneurons, and their possible interactions, under reward/punishment-based conditioning tasks. The neural modeling is constrained by relevant experimental studies of the VTA or DRN system using, e.g., electrophysiology, optogenetics, and voltammetry. We first show that a single parsimonious, sparsely connected neural circuit model can recapitulate several separate experimental findings that indicated diverse, heterogeneous, distributed, and mixed DRNVTA neuronal signaling in reward and punishment tasks. The inability of this model to recapitulate all observed neuronal signaling suggests potentially multiple circuits acting in parallel. Then using computational simulations and dynamical systems analysis, we demonstrate that several different stable circuit architectures can produce the same observed network activity profile, hence demonstrating degeneracy. Due to the extensive D2-mediated connections in the investigated circuits, we simulate the D2 receptor agonist by increasing the connection strengths emanating from the VTA DA neurons. We found that the simulated D2 agonist can distinguish among sub-groups of the degenerate neural circuits based on substantial deviations in specific neural populations' activities in reward and punishment conditions. This forms a testable model prediction using pharmacological means. Overall, this theoretical work suggests the plausibility of degeneracy within neuromodulator circuitry and has important implications for the stable and robust maintenance of neuromodulatory functions.
Collapse
Affiliation(s)
- Chandan K. Behera
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Derry∼Londonderry, United Kingdom,*Correspondence: Chandan K. Behera,
| | - Alok Joshi
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Derry∼Londonderry, United Kingdom
| | - Da-Hui Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China,School of Systems Science, Beijing Normal University, Beijing, China
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Derry∼Londonderry, United Kingdom,KongFatt Wong-Lin,
| |
Collapse
|
35
|
Piszár I, Lőrincz ML. Differential Serotonergic Modulation of Synaptic Inputs to the Olfactory Cortex. Int J Mol Sci 2023; 24:ijms24031950. [PMID: 36768274 PMCID: PMC9916768 DOI: 10.3390/ijms24031950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Serotonin (5-hydroxytriptamine, 5-HT) is an important monoaminergic neuromodulator involved in a variety of physiological and pathological functions. It has been implicated in the regulation of sensory functions at various stages of multiple modalities, but its mechanisms and functions in the olfactory system have remained elusive. Combining electrophysiology, optogenetics and pharmacology, here we show that afferent (feed-forward) pathway-evoked synaptic responses are boosted, whereas feedback responses are suppressed by presynaptic 5-HT1B receptors in the anterior piriform cortex (aPC) in vitro. Blocking 5-HT1B receptors also reduces the suppressive effects of serotonergic photostimulation of baseline firing in vivo. We suggest that by regulating the relative weights of synaptic inputs to aPC, 5-HT finely tunes sensory inputs in the olfactory cortex.
Collapse
Affiliation(s)
- Ildikó Piszár
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Magor L. Lőrincz
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
- Department of Physiology, University of Szeged, 6720 Szeged, Hungary
- Neuroscience Division, Cardiff University, Cardiff CF10 3AX, UK
- Correspondence:
| |
Collapse
|
36
|
Harkin EF, Lynn MB, Payeur A, Boucher JF, Caya-Bissonnette L, Cyr D, Stewart C, Longtin A, Naud R, Béïque JC. Temporal derivative computation in the dorsal raphe network revealed by an experimentally driven augmented integrate-and-fire modeling framework. eLife 2023; 12:72951. [PMID: 36655738 PMCID: PMC9977298 DOI: 10.7554/elife.72951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
By means of an expansive innervation, the serotonin (5-HT) neurons of the dorsal raphe nucleus (DRN) are positioned to enact coordinated modulation of circuits distributed across the entire brain in order to adaptively regulate behavior. Yet the network computations that emerge from the excitability and connectivity features of the DRN are still poorly understood. To gain insight into these computations, we began by carrying out a detailed electrophysiological characterization of genetically identified mouse 5-HT and somatostatin (SOM) neurons. We next developed a single-neuron modeling framework that combines the realism of Hodgkin-Huxley models with the simplicity and predictive power of generalized integrate-and-fire models. We found that feedforward inhibition of 5-HT neurons by heterogeneous SOM neurons implemented divisive inhibition, while endocannabinoid-mediated modulation of excitatory drive to the DRN increased the gain of 5-HT output. Our most striking finding was that the output of the DRN encodes a mixture of the intensity and temporal derivative of its input, and that the temporal derivative component dominates this mixture precisely when the input is increasing rapidly. This network computation primarily emerged from prominent adaptation mechanisms found in 5-HT neurons, including a previously undescribed dynamic threshold. By applying a bottom-up neural network modeling approach, our results suggest that the DRN is particularly apt to encode input changes over short timescales, reflecting one of the salient emerging computations that dominate its output to regulate behavior.
Collapse
Affiliation(s)
- Emerson F Harkin
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Michael B Lynn
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Alexandre Payeur
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
- Department of Physics, University of OttawaOttawaCanada
| | - Jean-François Boucher
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Léa Caya-Bissonnette
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Dominic Cyr
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Chloe Stewart
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - André Longtin
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
- Department of Physics, University of OttawaOttawaCanada
| | - Richard Naud
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
- Department of Physics, University of OttawaOttawaCanada
| | - Jean-Claude Béïque
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| |
Collapse
|
37
|
Next generation genetically encoded fluorescent sensors for serotonin. Nat Commun 2022; 13:7525. [PMID: 36473867 PMCID: PMC9726753 DOI: 10.1038/s41467-022-35200-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
We developed a family of genetically encoded serotonin (5-HT) sensors (sDarken) on the basis of the native 5-HT1A receptor and circularly permuted GFP. sDarken 5-HT sensors are bright in the unbound state and diminish their fluorescence upon binding of 5-HT. Sensor variants with different affinities for serotonin were engineered to increase the versatility in imaging of serotonin dynamics. Experiments in vitro and in vivo showed the feasibility of imaging serotonin dynamics with high temporal and spatial resolution. As demonstrated here, the designed sensors show excellent membrane expression, have high specificity and a superior signal-to-noise ratio, detect the endogenous release of serotonin and are suitable for two-photon in vivo imaging.
Collapse
|
38
|
Marzuki AA, Vaghi MM, Conway‐Morris A, Kaser M, Sule A, Apergis‐Schoute A, Sahakian BJ, Robbins TW. Atypical action updating in a dynamic environment associated with adolescent obsessive-compulsive disorder. J Child Psychol Psychiatry 2022; 63:1591-1601. [PMID: 35537441 PMCID: PMC9790358 DOI: 10.1111/jcpp.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Computational research had determined that adults with obsessive-compulsive disorder (OCD) display heightened action updating in response to noise in the environment and neglect metacognitive information (such as confidence) when making decisions. These features are proposed to underlie patients' compulsions despite the knowledge they are irrational. Nonetheless, it is unclear whether this extends to adolescents with OCD as research in this population is lacking. Thus, this study aimed to investigate the interplay between action and confidence in adolescents with OCD. METHODS Twenty-seven adolescents with OCD and 46 controls completed a predictive-inference task, designed to probe how subjects' actions and confidence ratings fluctuate in response to unexpected outcomes. We investigated how subjects update actions in response to prediction errors (indexing mismatches between expectations and outcomes) and used parameters from a Bayesian model to predict how confidence and action evolve over time. Confidence-action association strength was assessed using a regression model. We also investigated the effects of serotonergic medication. RESULTS Adolescents with OCD showed significantly increased learning rates, particularly following small prediction errors. Results were driven primarily by unmedicated patients. Confidence ratings appeared equivalent between groups, although model-based analysis revealed that patients' confidence was less affected by prediction errors compared to controls. Patients and controls did not differ in the extent to which they updated actions and confidence in tandem. CONCLUSIONS Adolescents with OCD showed enhanced action adjustments, especially in the face of small prediction errors, consistent with previous research establishing 'just-right' compulsions, enhanced error-related negativity, and greater decision uncertainty in paediatric-OCD. These tendencies were ameliorated in patients receiving serotonergic medication, emphasising the importance of early intervention in preventing disorder-related cognitive deficits. Confidence ratings were equivalent between young patients and controls, mirroring findings in adult OCD research.
Collapse
Affiliation(s)
- Aleya A. Marzuki
- Behavioural and Clinical Neuroscience InstituteDepartment of PsychologyUniversity of CambridgeCambridgeUK,Department of PsychologySchool of Medical and Life SciencesSunway UniversityPetaling JayaMalaysia
| | - Matilde M. Vaghi
- Department of PsychologySchool of Humanities and SciencesStanford UniversityStanfordCAUSA
| | | | - Muzaffer Kaser
- Cambridgeshire and Peterborough NHS Foundation TrustCambridgeUK,Department of PsychiatrySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Akeem Sule
- Department of PsychiatrySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
| | | | - Barbara J. Sahakian
- Behavioural and Clinical Neuroscience InstituteDepartment of PsychologyUniversity of CambridgeCambridgeUK,Department of PsychiatrySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Trevor W. Robbins
- Behavioural and Clinical Neuroscience InstituteDepartment of PsychologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
39
|
Janet R, Ligneul R, Losecaat-Vermeer AB, Philippe R, Bellucci G, Derrington E, Park SQ, Dreher JC. Regulation of social hierarchy learning by serotonin transporter availability. Neuropsychopharmacology 2022; 47:2205-2212. [PMID: 35945275 PMCID: PMC9630526 DOI: 10.1038/s41386-022-01378-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022]
Abstract
Learning one's status in a group is a fundamental process in building social hierarchies. Although animal studies suggest that serotonin (5-HT) signaling modulates learning social hierarchies, direct evidence in humans is lacking. Here we determined the relationship between serotonin transporter (SERT) availability and brain systems engaged in learning social ranks combining computational approaches with simultaneous PET-fMRI acquisition in healthy males. We also investigated the link between SERT availability and brain activity in a non-social control condition involving learning the payoffs of slot machines. Learning social ranks was modulated by the dorsal raphe nucleus (DRN) 5-HT function. BOLD ventral striatal response, tracking the rank of opponents, decreased with DRN SERT levels. Moreover, this link was specific to the social learning task. These findings demonstrate that 5-HT plays an influence on the computations required to learn social ranks.
Collapse
Affiliation(s)
- Remi Janet
- CNRS-Institut de Sciences Cognitives Marc Jeannerod, UMR5229, Neuroeconomics, reward, and decision making laboratory, Bron, France
| | - Romain Ligneul
- grid.421010.60000 0004 0453 9636Champalimaud Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Annabel B. Losecaat-Vermeer
- grid.10420.370000 0001 2286 1424Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria ,grid.7468.d0000 0001 2248 7639Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
| | - Remi Philippe
- CNRS-Institut de Sciences Cognitives Marc Jeannerod, UMR5229, Neuroeconomics, reward, and decision making laboratory, Bron, France
| | - Gabriele Bellucci
- grid.419501.80000 0001 2183 0052Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Edmund Derrington
- CNRS-Institut de Sciences Cognitives Marc Jeannerod, UMR5229, Neuroeconomics, reward, and decision making laboratory, Bron, France
| | - Soyoung Q. Park
- grid.7468.d0000 0001 2248 7639Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany ,grid.418213.d0000 0004 0390 0098Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Nuthetal, Germany
| | - Jean-Claude Dreher
- CNRS-Institut de Sciences Cognitives Marc Jeannerod, UMR5229, Neuroeconomics, reward, and decision making laboratory, Bron, France.
| |
Collapse
|
40
|
Kanen JW, Luo Q, Rostami Kandroodi M, Cardinal RN, Robbins TW, Nutt DJ, Carhart-Harris RL, den Ouden HEM. Effect of lysergic acid diethylamide (LSD) on reinforcement learning in humans. Psychol Med 2022; 53:1-12. [PMID: 36411719 PMCID: PMC10600934 DOI: 10.1017/s0033291722002963] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The non-selective serotonin 2A (5-HT2A) receptor agonist lysergic acid diethylamide (LSD) holds promise as a treatment for some psychiatric disorders. Psychedelic drugs such as LSD have been suggested to have therapeutic actions through their effects on learning. The behavioural effects of LSD in humans, however, remain incompletely understood. Here we examined how LSD affects probabilistic reversal learning (PRL) in healthy humans. METHODS Healthy volunteers received intravenous LSD (75 μg in 10 mL saline) or placebo (10 mL saline) in a within-subjects design and completed a PRL task. Participants had to learn through trial and error which of three stimuli was rewarded most of the time, and these contingencies switched in a reversal phase. Computational models of reinforcement learning (RL) were fitted to the behavioural data to assess how LSD affected the updating ('learning rates') and deployment of value representations ('reinforcement sensitivity') during choice, as well as 'stimulus stickiness' (choice repetition irrespective of reinforcement history). RESULTS Raw data measures assessing sensitivity to immediate feedback ('win-stay' and 'lose-shift' probabilities) were unaffected, whereas LSD increased the impact of the strength of initial learning on perseveration. Computational modelling revealed that the most pronounced effect of LSD was the enhancement of the reward learning rate. The punishment learning rate was also elevated. Stimulus stickiness was decreased by LSD, reflecting heightened exploration. Reinforcement sensitivity differed by phase. CONCLUSIONS Increased RL rates suggest LSD induced a state of heightened plasticity. These results indicate a potential mechanism through which revision of maladaptive associations could occur in the clinical application of LSD.
Collapse
Affiliation(s)
- Jonathan W. Kanen
- Department of Psychology, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Center for Computational Psychiatry, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200241, China
| | - Mojtaba Rostami Kandroodi
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Rudolf N. Cardinal
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - David J. Nutt
- Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, London, UK
| | - Robin L. Carhart-Harris
- Neuroscape Psychedelics Division, University of California San Francisco, San Francisco, California, USA
| | - Hanneke E. M. den Ouden
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
41
|
Lee C, Zhang Z, Janušonis S. Brain serotonergic fibers suggest anomalous diffusion-based dropout in artificial neural networks. Front Neurosci 2022; 16:949934. [PMID: 36267232 PMCID: PMC9577023 DOI: 10.3389/fnins.2022.949934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Random dropout has become a standard regularization technique in artificial neural networks (ANNs), but it is currently unknown whether an analogous mechanism exists in biological neural networks (BioNNs). If it does, its structure is likely to be optimized by hundreds of millions of years of evolution, which may suggest novel dropout strategies in large-scale ANNs. We propose that the brain serotonergic fibers (axons) meet some of the expected criteria because of their ubiquitous presence, stochastic structure, and ability to grow throughout the individual's lifespan. Since the trajectories of serotonergic fibers can be modeled as paths of anomalous diffusion processes, in this proof-of-concept study we investigated a dropout algorithm based on the superdiffusive fractional Brownian motion (FBM). The results demonstrate that serotonergic fibers can potentially implement a dropout-like mechanism in brain tissue, supporting neuroplasticity. They also suggest that mathematical theories of the structure and dynamics of serotonergic fibers can contribute to the design of dropout algorithms in ANNs.
Collapse
Affiliation(s)
- Christian Lee
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Zheng Zhang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Skirmantas Janušonis
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
42
|
Stoliker D, Egan GF, Friston KJ, Razi A. Neural Mechanisms and Psychology of Psychedelic Ego Dissolution. Pharmacol Rev 2022; 74:876-917. [PMID: 36786290 DOI: 10.1124/pharmrev.121.000508] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Neuroimaging studies of psychedelics have advanced our understanding of hierarchical brain organization and the mechanisms underlying their subjective and therapeutic effects. The primary mechanism of action of classic psychedelics is binding to serotonergic 5-HT2A receptors. Agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy that can have a profound effect on hierarchical message-passing in the brain. Here, we review the cognitive and neuroimaging evidence for the effects of psychedelics: in particular, their influence on selfhood and subject-object boundaries-known as ego dissolution-surmised to underwrite their subjective and therapeutic effects. Agonism of 5-HT2A receptors, located at the apex of the cortical hierarchy, may have a particularly powerful effect on sentience and consciousness. These effects can endure well after the pharmacological half-life, suggesting that psychedelics may have effects on neural plasticity that may play a role in their therapeutic efficacy. Psychologically, this may be accompanied by a disarming of ego resistance that increases the repertoire of perceptual hypotheses and affords alternate pathways for thought and behavior, including those that undergird selfhood. We consider the interaction between serotonergic neuromodulation and sentience through the lens of hierarchical predictive coding, which speaks to the value of psychedelics in understanding how we make sense of the world and specific predictions about effective connectivity in cortical hierarchies that can be tested using functional neuroimaging. SIGNIFICANCE STATEMENT: Classic psychedelics bind to serotonergic 5-HT2A receptors. Their agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy, resulting in a profound effect on information processing in the brain. Here, we synthesize an abundance of brain imaging research with pharmacological and psychological interpretations informed by the framework of predictive coding. Moreover, predictive coding is suggested to offer more sophisticated interpretations of neuroimaging findings by bridging the role between the 5-HT2A receptors and large-scale brain networks.
Collapse
Affiliation(s)
- Devon Stoliker
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Gary F Egan
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Karl J Friston
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Adeel Razi
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| |
Collapse
|
43
|
Jacobs DS, Allen MC, Park J, Moghaddam B. Learning of probabilistic punishment as a model of anxiety produces changes in action but not punisher encoding in the dmPFC and VTA. eLife 2022; 11:e78912. [PMID: 36102386 PMCID: PMC9525102 DOI: 10.7554/elife.78912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Previously, we developed a novel model for anxiety during motivated behavior by training rats to perform a task where actions executed to obtain a reward were probabilistically punished and observed that after learning, neuronal activity in the ventral tegmental area (VTA) and dorsomedial prefrontal cortex (dmPFC) represent the relationship between action and punishment risk (Park and Moghaddam, 2017). Here, we used male and female rats to expand on the previous work by focusing on neural changes in the dmPFC and VTA that were associated with the learning of probabilistic punishment, and anxiolytic treatment with diazepam after learning. We find that adaptive neural responses of dmPFC and VTA during the learning of anxiogenic contingencies are independent from the punisher experience and occur primarily during the peri-action and reward period. Our results also identify peri-action ramping of VTA neural calcium activity, and VTA-dmPFC correlated activity, as potential markers for the anxiolytic properties of diazepam.
Collapse
Affiliation(s)
- David S Jacobs
- Department of Behavioral Neuroscience, Oregon Health & Science UniversityPortlandUnited States
| | - Madeleine C Allen
- Department of Behavioral Neuroscience, Oregon Health & Science UniversityPortlandUnited States
- Department of Psychiatry, Oregon Health & Science UniversityPortlandUnited States
| | - Junchol Park
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Bita Moghaddam
- Department of Behavioral Neuroscience, Oregon Health & Science UniversityPortlandUnited States
- Department of Psychiatry, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
44
|
Shine JM, O’Callaghan C, Walpola IC, Wainstein G, Taylor N, Aru J, Huebner B, John YJ. Understanding the effects of serotonin in the brain through its role in the gastrointestinal tract. Brain 2022; 145:2967-2981. [DOI: 10.1093/brain/awac256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The neuromodulatory arousal system imbues the nervous system with the flexibility and robustness required to facilitate adaptive behaviour. While there are well-understood mechanisms linking dopamine, noradrenaline and acetylcholine to distinct behavioural states, similar conclusions have not been as readily available for serotonin. Fascinatingly, despite clear links between serotonergic function and cognitive capacities as diverse as reward processing, exploration, and the psychedelic experience, over 95% of the serotonin in the body is released in the gastrointestinal tract, where it controls digestive muscle contractions (peristalsis). Here, we argue that framing neural serotonin as a rostral extension of the gastrointestinal serotonergic system dissolves much of the mystery associated with the central serotonergic system. Specifically, we outline that central serotonin activity mimics the effects of a digestion/satiety circuit mediated by hypothalamic control over descending serotonergic nuclei in the brainstem. We review commonalities and differences between these two circuits, with a focus on the heterogeneous expression of different classes of serotonin receptors in the brain. Much in the way that serotonin-induced peristalsis facilitates the work of digestion, serotonergic influences over cognition can be reframed as performing the work of cognition. Extending this analogy, we argue that the central serotonergic system allows the brain to arbitrate between different cognitive modes as a function of serotonergic tone: low activity facilitates cognitive automaticity, whereas higher activity helps to identify flexible solutions to problems, particularly if and when the initial responses fail. This perspective sheds light on otherwise disparate capacities mediated by serotonin, and also helps to understand why there are such pervasive links between serotonergic pathology and the symptoms of psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Ishan C Walpola
- Prince of Wales Hospital , Randwick, New South Wales , Australia
| | | | | | - Jaan Aru
- University of Tartu , Tartu , Estonia
| | | | | |
Collapse
|
45
|
Cruz BF, Guiomar G, Soares S, Motiwala A, Machens CK, Paton JJ. Action suppression reveals opponent parallel control via striatal circuits. Nature 2022; 607:521-526. [PMID: 35794480 DOI: 10.1038/s41586-022-04894-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/23/2022] [Indexed: 01/24/2023]
Abstract
The direct and indirect pathways of the basal ganglia are classically thought to promote and suppress action, respectively1. However, the observed co-activation of striatal direct and indirect medium spiny neurons2 (dMSNs and iMSNs, respectively) has challenged this view. Here we study these circuits in mice performing an interval categorization task that requires a series of self-initiated and cued actions and, critically, a sustained period of dynamic action suppression. Although movement produced the co-activation of iMSNs and dMSNs in the sensorimotor, dorsolateral striatum (DLS), fibre photometry and photo-identified electrophysiological recordings revealed signatures of functional opponency between the two pathways during action suppression. Notably, optogenetic inhibition showed that DLS circuits were largely engaged to suppress-and not promote-action. Specifically, iMSNs on a given hemisphere were dynamically engaged to suppress tempting contralateral action. To understand how such regionally specific circuit function arose, we constructed a computational reinforcement learning model that reproduced key features of behaviour, neural activity and optogenetic inhibition. The model predicted that parallel striatal circuits outside the DLS learned the action-promoting functions, generating the temptation to act. Consistent with this, optogenetic inhibition experiments revealed that dMSNs in the associative, dorsomedial striatum, in contrast to those in the DLS, promote contralateral actions. These data highlight how opponent interactions between multiple circuit- and region-specific basal ganglia processes can lead to behavioural control, and establish a critical role for the sensorimotor indirect pathway in the proactive suppression of tempting actions.
Collapse
Affiliation(s)
- Bruno F Cruz
- Champalimaud Neuroscience Programme, Champalimaud Research, Champalimaud Foundation, Lisbon, PT, Portugal
| | - Gonçalo Guiomar
- Champalimaud Neuroscience Programme, Champalimaud Research, Champalimaud Foundation, Lisbon, PT, Portugal
| | - Sofia Soares
- Champalimaud Neuroscience Programme, Champalimaud Research, Champalimaud Foundation, Lisbon, PT, Portugal.,Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Asma Motiwala
- Champalimaud Neuroscience Programme, Champalimaud Research, Champalimaud Foundation, Lisbon, PT, Portugal.,Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Christian K Machens
- Champalimaud Neuroscience Programme, Champalimaud Research, Champalimaud Foundation, Lisbon, PT, Portugal
| | - Joseph J Paton
- Champalimaud Neuroscience Programme, Champalimaud Research, Champalimaud Foundation, Lisbon, PT, Portugal.
| |
Collapse
|
46
|
Plasticity in mental health: A network theory. Neurosci Biobehav Rev 2022; 138:104691. [PMID: 35568207 DOI: 10.1016/j.neubiorev.2022.104691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023]
Abstract
Plasticity is the ability to modify brain and behavior, ultimately promoting an amplification of the impact of the context on the individual's mental health. Thus, plasticity is not beneficial per se but its value depends on contextual factors, such as the quality of the living environment. High plasticity is beneficial in a favorable environment, but can be detrimental in adverse conditions, while the opposite applies to low plasticity. Resilience and vulnerability are not univocally associated to high or low plasticity. Consequently, individuals should undergo different preventive and therapeutic strategies according to their plasticity levels and living conditions. Here, an operationalization of plasticity relying on network theory is proposed: the strength of the connection among the network elements defining the individual, such as its symptoms, is a measure of plasticity. This theoretical framework represents a promising tool to investigate research questions related to changes in neural structure and activity and in behavior, and to improve therapeutic strategies for psychiatric disorders, such as major depression.
Collapse
|
47
|
Hong SZ, Mesik L, Grossman CD, Cohen JY, Lee B, Severin D, Lee HK, Hell JW, Kirkwood A. Norepinephrine potentiates and serotonin depresses visual cortical responses by transforming eligibility traces. Nat Commun 2022; 13:3202. [PMID: 35680879 PMCID: PMC9184610 DOI: 10.1038/s41467-022-30827-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Reinforcement allows organisms to learn which stimuli predict subsequent biological relevance. Hebbian mechanisms of synaptic plasticity are insufficient to account for reinforced learning because neuromodulators signaling biological relevance are delayed with respect to the neural activity associated with the stimulus. A theoretical solution is the concept of eligibility traces (eTraces), silent synaptic processes elicited by activity which upon arrival of a neuromodulator are converted into a lasting change in synaptic strength. Previously we demonstrated in visual cortical slices the Hebbian induction of eTraces and their conversion into LTP and LTD by the retroactive action of norepinephrine and serotonin Here we show in vivo in mouse V1 that the induction of eTraces and their conversion to LTP/D by norepinephrine and serotonin respectively potentiates and depresses visual responses. We also show that the integrity of this process is crucial for ocular dominance plasticity, a canonical model of experience-dependent plasticity.
Collapse
Affiliation(s)
- Su Z Hong
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Lukas Mesik
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Cooper D Grossman
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jeremiah Y Cohen
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Boram Lee
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Daniel Severin
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Hey-Kyoung Lee
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Alfredo Kirkwood
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
48
|
Spatiotemporal dynamics of noradrenaline during learned behaviour. Nature 2022; 606:732-738. [PMID: 35650441 PMCID: PMC9837982 DOI: 10.1038/s41586-022-04782-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/20/2022] [Indexed: 01/17/2023]
Abstract
Noradrenaline released from the locus coeruleus (LC) is a ubiquitous neuromodulator1-4 that has been linked to multiple functions including arousal5-8, action and sensory gain9-11, and learning12-16. Whether and how activation of noradrenaline-expressing neurons in the LC (LC-NA) facilitates different components of specific behaviours is unknown. Here we show that LC-NA activity displays distinct spatiotemporal dynamics to enable two functions during learned behaviour: facilitating task execution and encoding reinforcement to improve performance accuracy. To examine these functions, we used a behavioural task in mice with graded auditory stimulus detection and task performance. Optogenetic inactivation of the LC demonstrated that LC-NA activity was causal for both task execution and optimization. Targeted recordings of LC-NA neurons using photo-tagging, two-photon micro-endoscopy and two-photon output monitoring showed that transient LC-NA activation preceded behavioural execution and followed reinforcement. These two components of phasic activity were heterogeneously represented in LC-NA cortical outputs, such that the behavioural response signal was higher in the motor cortex and facilitated task execution, whereas the negative reinforcement signal was widely distributed among cortical regions and improved response sensitivity on the subsequent trial. Modular targeting of LC outputs thus enables diverse functions, whereby some noradrenaline signals are segregated among targets, whereas others are broadly distributed.
Collapse
|
49
|
Lee RX, Stephens GJ, Kuhn B. Social Relationship as a Factor for the Development of Stress Incubation in Adult Mice. Front Behav Neurosci 2022; 16:854486. [PMID: 35685272 PMCID: PMC9172995 DOI: 10.3389/fnbeh.2022.854486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
While stress reactions can emerge long after the triggering event, it remains elusive how they emerge after a protracted, seemingly stress-free period during which stress incubates. Here, we study the behavioral development in mice isolated after observing an aggressive encounter inflicted upon their pair-housed partners. We developed a spatially resolved fine-scale behavioral analysis and applied it to standard behavioral tests. It reveals that the seemingly sudden behavioral changes developed gradually. These behavioral changes were not observed if the aggressive encounter happened to a stranger mouse, suggesting that social bonding is a prerequisite for stress incubation in this paradigm. This finding was corroborated by hemisphere-specific morphological changes in cortex regions centering at the anterior cingulate cortex, a cognitive and emotional center. Our non-invasive analytical methods to capture informative behavioral details may have applications beyond laboratory animals.
Collapse
Affiliation(s)
- Ray X. Lee
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
- Biological Physics Theory Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
- *Correspondence: Ray X. Lee,
| | - Greg J. Stephens
- Biological Physics Theory Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
| |
Collapse
|
50
|
Wert-Carvajal C, Reneaux M, Tchumatchenko T, Clopath C. Dopamine and serotonin interplay for valence-based spatial learning. Cell Rep 2022; 39:110645. [PMID: 35417691 DOI: 10.1016/j.celrep.2022.110645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/31/2021] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Dopamine (DA) and serotonin (5-HT) are important neuromodulators of synaptic plasticity that have been linked to learning from positive or negative outcomes or valence-based learning. In the hippocampus, both affect long-term plasticity but play different roles in encoding uncertainty or predicted reward. DA has been related to positive valence, from reward consumption or avoidance behavior, and 5-HT to aversive encoding. We propose DA produces overall LTP while 5-HT elicits LTD. Here, we compare two reward-modulated spike timing-dependent plasticity (R-STDP) rules to describe the action of these neuromodulators. We examined their role in cognitive performance and flexibility for computational models of the Morris water maze task and reversal learning. Our results show that the interplay of DA and 5-HT improves learning performance and can explain experimental evidence. This study reinforces the importance of neuromodulation in determining the direction of plasticity.
Collapse
Affiliation(s)
- Carlos Wert-Carvajal
- Bioengineering Department, Imperial College London, London SW7 2AZ, UK; Theory of Neural Dynamics Group, Max Planck Institute for Brain Research, 60438 Frankfurt, Germany; Institute of Experimental Epileptology and Cognition Research, Life and Brain Center, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Melissa Reneaux
- Bioengineering Department, Imperial College London, London SW7 2AZ, UK
| | - Tatjana Tchumatchenko
- Theory of Neural Dynamics Group, Max Planck Institute for Brain Research, 60438 Frankfurt, Germany; Institute of Experimental Epileptology and Cognition Research, Life and Brain Center, University of Bonn Medical Center, 53127 Bonn, Germany; Institute of Physiological Chemistry, University of Mainz Medical Center, 55131 Mainz, Germany.
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|