1
|
Burov A, Grigorieva E, Lebedev T, Vedernikova V, Popenko V, Astakhova T, Leonova O, Spirin P, Prassolov V, Karpov V, Morozov A. Multikinase inhibitors modulate non-constitutive proteasome expression in colorectal cancer cells. Front Mol Biosci 2024; 11:1351641. [PMID: 38774235 PMCID: PMC11106389 DOI: 10.3389/fmolb.2024.1351641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/31/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction: Proteasomes are multi-subunit protein complexes responsible for protein degradation in cells. Immunoproteasomes and intermediate proteasomes (together non-constitutive proteasomes) are specific forms of proteasomes frequently associated with immune response, antigen presentation, inflammation and stress. Expression of non-constitutive proteasome subunits has a prognostic value in several types of cancer. Thus, factors that modulate non-constitutive proteasome expression in tumors are of particular interest. Multikinase inhibitors (MKIs) demonstrate promising results in treatment of cancer. At the same time, their immunomodulatory properties and effects on non-constitutive proteasome expression in colorectal cancer cells are poorly investigated. Methods: Proteasome subunit expression in colorectal cancer was evaluated by bioinformatic analysis of available datasets. Two colorectal cancer cell lines, expressing fluorescent non-constitutive proteasomes were treated with multikinase inhibitors: regorafenib and sorafenib. The proteasome subunit expression was assessed by real-time PCR, Western blotting and flow cytometry. The proteasome activity was studied using proteasome activity-based probe and fluorescent substrates. Intracellular proteasome localization was revealed by confocal microscopy. Reactive oxygen species levels following treatment were determined in cells. Combined effect of proteasome inhibition and treatment with MKIs on viability of cells was estimated. Results: Expression of non-constitutive proteasomes is increased in BRAF-mutant colorectal tumors. Regorafenib and sorafenib stimulated the activity and synthesis of non-constitutive proteasomes in examined cell lines. MKIs induced oxidative stress and redistribution of proteasomes within cells. Sorafenib stimulated formation of cytoplasmic aggregates, containing proteolyticaly active non-constitutive proteasomes, while regorafenib had no such effect. MKIs caused no synergistic action when were combined with the proteasome inhibitor. Discussion: Obtained results indicate that MKIs might affect the crosstalk between cancer cells and immune cells via modulation of intracellular proteasome pool. Observed phenomenon should be considered when MKI-based therapy is applied.
Collapse
Affiliation(s)
- Alexander Burov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Grigorieva
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | - Timofey Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Valeria Vedernikova
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Popenko
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Astakhova
- Laboratory of Biochemistry of Ontogenesis Processes, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Leonova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vadim Karpov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Morozov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Jiang Z, Silva EB, Liu C, Fajtová P, Liu LJ, El-Sakkary N, Skinner DE, Syed A, Wang SC, Caffrey CR, O’Donoghue AJ. Development of subunit selective proteasome substrates for Schistosoma species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580161. [PMID: 38405969 PMCID: PMC10888821 DOI: 10.1101/2024.02.13.580161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Schistosomiasis, or bilharzia, is a neglected tropical disease caused by Schistosoma spp. blood flukes that infects over 200 million people worldwide. Just one partially effective drug is available, and new drugs and drug targets would be welcome. The 20S proteasome is a validated drug target for many parasitic infections, including those caused by Plasmodium and Leishmania. We previously showed that anticancer proteasome inhibitors that act through the Schistosoma mansoni 20S proteasome (Sm20S) kill the parasite in vitro. To advance these initial findings, we employed Multiplex Substrate Profiling by Mass Spectrometry (MSP-MS) to define the substrate cleavage specificities of the three catalytic β subunits of purified Sm20S. The profiles in turn were used to design and synthesize subunit-specific optimized substrates that performed two to eight fold better than the equivalent substrates used to measure the activity of the constitutive human proteasome (c20S). These specific substrates also eliminated the need to purify Sm20S from parasite extracts - a single step enrichment was sufficient to accurately measure substrate hydrolysis and its inhibition with proteasome inhibitors. Finally, we show that the substrate and inhibition profiles for the 20S proteasome from the three medically important schistosome species are similar, suggesting that data arising from an inhibitor development campaign that focuses on Sm20S can be extrapolated to the other two targets with consequent time and cost savings.
Collapse
Affiliation(s)
- Zhenze Jiang
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | | | - Chenxi Liu
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Pavla Fajtová
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Lawrence J. Liu
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Nelly El-Sakkary
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Danielle E. Skinner
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Ali Syed
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Steven C Wang
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Anthony J. O’Donoghue
- Center for Discovery and Innovation in Parasitic Disease, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| |
Collapse
|
3
|
Schmalen A, Kammerl IE, Meiners S, Noessner E, Deeg CA, Hauck SM. A Lysine Residue at the C-Terminus of MHC Class I Ligands Correlates with Low C-Terminal Proteasomal Cleavage Probability. Biomolecules 2023; 13:1300. [PMID: 37759700 PMCID: PMC10527444 DOI: 10.3390/biom13091300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The majority of peptides presented by MHC class I result from proteasomal protein turnover. The specialized immunoproteasome, which is induced during inflammation, plays a major role in antigenic peptide generation. However, other cellular proteases can, either alone or together with the proteasome, contribute peptides to MHC class I loading non-canonically. We used an immunopeptidomics workflow combined with prediction software for proteasomal cleavage probabilities to analyze how inflammatory conditions affect the proteasomal processing of immune epitopes presented by A549 cells. The treatment of A549 cells with IFNγ enhanced the proteasomal cleavage probability of MHC class I ligands for both the constitutive proteasome and the immunoproteasome. Furthermore, IFNγ alters the contribution of the different HLA allotypes to the immunopeptidome. When we calculated the HLA allotype-specific proteasomal cleavage probabilities for MHC class I ligands, the peptides presented by HLA-A*30:01 showed characteristics hinting at a reduced C-terminal proteasomal cleavage probability independently of the type of proteasome. This was confirmed by HLA-A*30:01 ligands from the immune epitope database, which also showed this effect. Furthermore, two additional HLA allotypes, namely, HLA-A*03:01 and HLA-A*11:01, presented peptides with a markedly reduced C-terminal proteasomal cleavage probability. The peptides eluted from all three HLA allotypes shared a peptide binding motif with a C-terminal lysine residue, suggesting that this lysine residue impairs proteasome-dependent HLA ligand production and might, in turn, favor peptide generation by other cellular proteases.
Collapse
Affiliation(s)
- Adrian Schmalen
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Martinsried, 82152 Planegg, Germany
- Core Facility—Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 80939 Munich, Germany
| | - Ilona E. Kammerl
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians-University, Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Silke Meiners
- Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, 24118 Kiel, Germany
| | - Elfriede Noessner
- Immunoanalytics Research Group—Tissue Control of Immunocytes, Helmholtz Center Munich, 81377 Munich, Germany
| | - Cornelia A. Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Martinsried, 82152 Planegg, Germany
| | - Stefanie M. Hauck
- Core Facility—Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 80939 Munich, Germany
| |
Collapse
|
4
|
Bruno PM, Timms RT, Abdelfattah NS, Leng Y, Lelis FJN, Wesemann DR, Yu XG, Elledge SJ. High-throughput, targeted MHC class I immunopeptidomics using a functional genetics screening platform. Nat Biotechnol 2023; 41:980-992. [PMID: 36593401 PMCID: PMC10314971 DOI: 10.1038/s41587-022-01566-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/13/2022] [Indexed: 01/03/2023]
Abstract
Identification of CD8+ T cell epitopes is critical for the development of immunotherapeutics. Existing methods for major histocompatibility complex class I (MHC class I) ligand discovery are time intensive, specialized and unable to interrogate specific proteins on a large scale. Here, we present EpiScan, which uses surface MHC class I levels as a readout for whether a genetically encoded peptide is an MHC class I ligand. Predetermined starting pools composed of >100,000 peptides can be designed using oligonucleotide synthesis, permitting large-scale MHC class I screening. We exploit this programmability of EpiScan to uncover an unappreciated role for cysteine that increases the number of predicted ligands by 9-21%, reveal affinity hierarchies by analysis of biased anchor peptide libraries and screen viral proteomes for MHC class I ligands. Using these data, we generate and iteratively refine peptide binding predictions to create EpiScan Predictor. EpiScan Predictor performs comparably to other state-of-the-art MHC class I peptide binding prediction algorithms without suffering from underrepresentation of cysteine-containing peptides. Thus, targeted immunopeptidomics using EpiScan will accelerate CD8+ T cell epitope discovery toward the goal of individual-specific immunotherapeutics.
Collapse
Affiliation(s)
- Peter M Bruno
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Richard T Timms
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Nouran S Abdelfattah
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yumei Leng
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Felipe J N Lelis
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Duane R Wesemann
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
5
|
Mamrosh JL, Sherman DJ, Cohen JR, Johnston JA, Joubert MK, Li J, Lipford JR, Lomenick B, Moradian A, Prabhu S, Sweredoski MJ, Vander Lugt B, Verma R, Deshaies RJ. Quantitative measurement of the requirement of diverse protein degradation pathways in MHC class I peptide presentation. SCIENCE ADVANCES 2023; 9:eade7890. [PMID: 37352349 PMCID: PMC10289651 DOI: 10.1126/sciadv.ade7890] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/17/2023] [Indexed: 06/25/2023]
Abstract
Peptides from degradation of intracellular proteins are continuously displayed by major histocompatibility complex (MHC) class I. To better understand origins of these peptides, we performed a comprehensive census of the class I peptide repertoire in the presence and absence of ubiquitin-proteasome system (UPS) activity upon developing optimized methodology to enrich for and quantify these peptides. Whereas most class I peptides are dependent on the UPS for their generation, a surprising 30%, enriched in peptides of mitochondrial origin, appears independent of the UPS. A further ~10% of peptides were found to be dependent on the proteasome but independent of ubiquitination for their generation. Notably, clinically achievable partial inhibition of the proteasome resulted in display of atypical peptides. Our results suggest that generation of MHC class I•peptide complexes is more complex than previously recognized, with UPS-dependent and UPS-independent components; paradoxically, alternative protein degradation pathways also generate class I peptides when canonical pathways are impaired.
Collapse
Affiliation(s)
- Jennifer L. Mamrosh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| | - David J. Sherman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| | - Joseph R. Cohen
- Process Development, Amgen Inc., Thousand Oaks, CA 91320, USA
| | | | | | - Jing Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| | | | - Brett Lomenick
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | - Annie Moradian
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Michael J. Sweredoski
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Rati Verma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| | - Raymond J. Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| |
Collapse
|
6
|
Javitt A, Shmueli MD, Kramer MP, Kolodziejczyk AA, Cohen IJ, Radomir L, Sheban D, Kamer I, Litchfield K, Bab-Dinitz E, Zadok O, Neiens V, Ulman A, Wolf-Levy H, Eisenberg-Lerner A, Kacen A, Alon M, Rêgo AT, Stacher-Priehse E, Lindner M, Koch I, Bar J, Swanton C, Samuels Y, Levin Y, da Fonseca PCA, Elinav E, Friedman N, Meiners S, Merbl Y. The proteasome regulator PSME4 modulates proteasome activity and antigen diversity to abrogate antitumor immunity in NSCLC. NATURE CANCER 2023; 4:629-647. [PMID: 37217651 DOI: 10.1038/s43018-023-00557-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 04/10/2023] [Indexed: 05/24/2023]
Abstract
Immunotherapy revolutionized treatment options in cancer, yet the mechanisms underlying resistance in many patients remain poorly understood. Cellular proteasomes have been implicated in modulating antitumor immunity by regulating antigen processing, antigen presentation, inflammatory signaling and immune cell activation. However, whether and how proteasome complex heterogeneity may affect tumor progression and the response to immunotherapy has not been systematically examined. Here, we show that proteasome complex composition varies substantially across cancers and impacts tumor-immune interactions and the tumor microenvironment. Through profiling of the degradation landscape of patient-derived non-small-cell lung carcinoma samples, we find that the proteasome regulator PSME4 is upregulated in tumors, alters proteasome activity, attenuates presented antigenic diversity and associates with lack of response to immunotherapy. Collectively, our approach affords a paradigm by which proteasome composition heterogeneity and function should be examined across cancer types and targeted in the context of precision oncology.
Collapse
Affiliation(s)
- Aaron Javitt
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Merav D Shmueli
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Matthias P Kramer
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ivan J Cohen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lihi Radomir
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Daoud Sheban
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Iris Kamer
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Kevin Litchfield
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Oranit Zadok
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Vanessa Neiens
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum Muenchen, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Adi Ulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Hila Wolf-Levy
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Assaf Kacen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Alon
- Department of Molecular and Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | - Ina Koch
- Member of the German Center for Lung Research (DZL), Munich, Germany
- Asklepios Lung Clinic Munich-Gauting, Gauting, Germany
| | - Jair Bar
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Charles Swanton
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Yardena Samuels
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Yishai Levin
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Paula C A da Fonseca
- Department of Molecular and Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Division of Cancer-Microbiome Research, DKFZ, Heidelberg, Germany
| | - Nir Friedman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum Muenchen, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
- Research Center Borstel, Borstel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, Kiel, Germany
| | - Yifat Merbl
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
7
|
Ielo L, Patamia V, Citarella A, Schirmeister T, Stagno C, Rescifina A, Micale N, Pace V. Selective noncovalent proteasome inhibiting activity of trifluoromethyl-containing gem-quaternary aziridines. Arch Pharm (Weinheim) 2023:e2300174. [PMID: 37119396 DOI: 10.1002/ardp.202300174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
The ubiquitin-proteasome pathway (UPP) represents the principal proteolytic apparatus in the cytosol and nucleus of all eukaryotic cells. Nowadays, proteasome inhibitors (PIs) are well-known as anticancer agents. However, although three of them have been approved by the US Food and Drug Administration (FDA) for treating multiple myeloma and mantel cell lymphoma, they present several side effects and develop resistance. For these reasons, the development of new PIs with better pharmacological characteristics is needed. Recently, noncovalent inhibitors have gained much attention since they are less toxic as compared with covalent ones, providing an alternative mechanism for solid tumors. Herein, we describe a new class of bis-homologated chloromethyl(trifluoromethyl)aziridines as selective noncovalent PIs. In silico and in vitro studies were conducted to elucidate the mechanism of action of such compounds. Human gastrointestinal absorption (HIA) and blood-brain barrier (BBB) penetration were also considered together with absorption, distribution, metabolism, and excretion (ADMET) predictions.
Collapse
Affiliation(s)
- Laura Ielo
- Department of Chemistry, University of Turin, Torino, Italy
| | - Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | - Tanja Schirmeister
- Department of Medicinal Chemistry, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Vittorio Pace
- Department of Chemistry, University of Turin, Torino, Italy
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Fajtova P, Hurysz BM, Miyamoto Y, Serafim M, Jiang Z, Trujillo DF, Liu L, Somani U, Almaliti J, Myers SA, Caffrey CR, Gerwick WH, Kirk CJ, Boura E, Eckmann L, O'Donoghue AJ. Development of subunit selective substrates for Trichomonas vaginalis proteasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535794. [PMID: 37066163 PMCID: PMC10104049 DOI: 10.1101/2023.04.05.535794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The protozoan parasite, Trichomonas vaginalis (Tv) causes trichomoniasis, the most common, non-viral, sexually transmitted infection in the world. Only two closely related drugs are approved for its treatment. The accelerating emergence of resistance to these drugs and lack of alternative treatment options poses an increasing threat to public health. There is an urgent need for novel effective anti-parasitic compounds. The proteasome is a critical enzyme for T. vaginalis survival and was validated as a drug target to treat trichomoniasis. However, to develop potent inhibitors of the T. vaginalis proteasome, it is essential that we understand which subunits should be targeted. Previously, we identified two fluorogenic substrates that were cleaved by T. vaginalis proteasome, however after isolating the enzyme complex and performing an in-depth substrate specificity study, we have now designed three fluorogenic reporter substrates that are each specific for one catalytic subunit. We screened a library of peptide epoxyketone inhibitors against the live parasite and evaluated which subunits are targeted by the top hits. Together we show that targeting of the β5 subunit of T. vaginalis is sufficient to kill the parasite, however, targeting of β5 plus either β1 or β2 results in improved potency.
Collapse
|
9
|
Wang X, Zhang H, Wang Y, Bramasole L, Guo K, Mourtada F, Meul T, Hu Q, Viteri V, Kammerl I, Konigshoff M, Lehmann M, Magg T, Hauck F, Fernandez IE, Meiners S. DNA sensing via the cGAS/STING pathway activates the immunoproteasome and adaptive T-cell immunity. EMBO J 2023; 42:e110597. [PMID: 36912165 PMCID: PMC10106989 DOI: 10.15252/embj.2022110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/14/2023] Open
Abstract
The immunoproteasome is a specialized type of proteasome involved in MHC class I antigen presentation, antiviral adaptive immunity, autoimmunity, and is also part of a broader response to stress. Whether the immunoproteasome is regulated by DNA stress, however, is not known. We here demonstrate that mitochondrial DNA stress upregulates the immunoproteasome and MHC class I antigen presentation pathway via cGAS/STING/type I interferon signaling resulting in cell autonomous activation of CD8+ T cells. The cGAS/STING-induced adaptive immune response is also observed in response to genomic DNA and is conserved in epithelial and mesenchymal cells of mice and men. In patients with idiopathic pulmonary fibrosis, chronic activation of the cGAS/STING-induced adaptive immune response in aberrant lung epithelial cells concurs with CD8+ T-cell activation in diseased lungs. Genetic depletion of the immunoproteasome and specific immunoproteasome inhibitors counteract DNA stress induced cytotoxic CD8+ T-cell activation. Our data thus unravel cytoplasmic DNA sensing via the cGAS/STING pathway as an activator of the immunoproteasome and CD8+ T cells. This represents a novel potential pathomechanism for pulmonary fibrosis that opens new therapeutic perspectives.
Collapse
Affiliation(s)
- Xinyuan Wang
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Huabin Zhang
- Neurosurgical Research, Department of Neurosurgery, University Hospital and Walter-Brendel-Centre of Experimental Medicine, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany.,The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqin Wang
- Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Laylan Bramasole
- Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Kai Guo
- Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Fatima Mourtada
- Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Thomas Meul
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Qianjiang Hu
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Valeria Viteri
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Ilona Kammerl
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Melanie Konigshoff
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany.,Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mareike Lehmann
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Magg
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isis E Fernandez
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany.,Department of Medicine V, University Hospital, LMU Munich, Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany.,Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
10
|
Dafun AS, Živković D, Leon-Icaza SA, Möller S, Froment C, Bonnet D, de Jesus AA, Alric L, Quaranta-Nicaise M, Ferrand A, Cougoule C, Meunier E, Burlet-Schiltz O, Ebstein F, Goldbach-Mansky R, Krüger E, Bousquet MP, Marcoux J. Establishing 20S Proteasome Genetic, Translational and Post-Translational Status from Precious Biological and Patient Samples with Top-Down MS. Cells 2023; 12:cells12060844. [PMID: 36980185 PMCID: PMC10047880 DOI: 10.3390/cells12060844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
The mammalian 20S catalytic core of the proteasome is made of 14 different subunits (α1-7 and β1-7) but exists as different subtypes depending on the cell type. In immune cells, for instance, constitutive catalytic proteasome subunits can be replaced by the so-called immuno-catalytic subunits, giving rise to the immunoproteasome. Proteasome activity is also altered by post-translational modifications (PTMs) and by genetic variants. Immunochemical methods are commonly used to investigate these PTMs whereby protein-tagging is necessary to monitor their effect on 20S assembly. Here, we present a new miniaturized workflow combining top-down and bottom-up mass spectrometry of immunopurified 20S proteasomes that analyze the proteasome assembly status as well as the full proteoform footprint, revealing PTMs, mutations, single nucleotide polymorphisms (SNPs) and induction of immune-subunits in different biological samples, including organoids, biopsies and B-lymphoblastoid cell lines derived from patients with proteasome-associated autoinflammatory syndromes (PRAAS). We emphasize the benefits of using top-down mass spectrometry in preserving the endogenous conformation of protein modifications, while enabling a rapid turnaround (1 h run) and ensuring high sensitivity (1–2 pmol) and demonstrate its capacity to semi-quantify constitutive and immune proteasome subunits.
Collapse
Affiliation(s)
- Angelique Sanchez Dafun
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Dušan Živković
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Stephen Adonai Leon-Icaza
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Sophie Möller
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Carine Froment
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Delphine Bonnet
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Université de Toulouse III—Paul Sabatier (UPS), 31300 Toulouse, France
- Internal Medicine Department of Digestive Disease, Rangueil Hospital, Université de Toulouse III—Paul Sabatier (UPS), 31400 Toulouse, France
| | - Adriana Almeida de Jesus
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laurent Alric
- Internal Medicine Department of Digestive Disease, Rangueil Hospital, Université de Toulouse III—Paul Sabatier (UPS), 31400 Toulouse, France
| | - Muriel Quaranta-Nicaise
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Université de Toulouse III—Paul Sabatier (UPS), 31300 Toulouse, France
| | - Audrey Ferrand
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Université de Toulouse III—Paul Sabatier (UPS), 31300 Toulouse, France
| | - Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Etienne Meunier
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (M.-P.B.); (J.M.)
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (M.-P.B.); (J.M.)
| |
Collapse
|
11
|
Geoffroy K, Araripe Saraiva B, Viens M, Béland D, Bourgeois-Daigneault MC. Increased expression of the immunoproteasome subunits PSMB8 and PSMB9 by cancer cells correlate with better outcomes for triple-negative breast cancers. Sci Rep 2023; 13:2129. [PMID: 36746983 PMCID: PMC9902398 DOI: 10.1038/s41598-023-28940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Proteasome dependency is a feature of many cancers that can be targeted by proteasome inhibitors. For some cancer types, notably breast cancer and triple-negative breast cancer (TNBC), high mRNA expression of a modified form of the proteasome, called the immunoproteasome (ImP), correlates with better outcomes and higher expression of one ImP subunit was associated with slower tumor growth in a small patient cohort. While these findings are in line with an anti-tumoral role of the ImP in breast cancer, studies investigating ImP expression at the protein level in large patient cohorts are lacking. Furthermore, while ImPs can be found in both immune and non-immune cells, the cellular source is often ignored in correlative studies. In order to determine the impact of ImP expression on breast cancer outcomes, we assessed the protein expression and cellular source of the ImP subunits PSMB8 and PSMB9 in a cohort of 2070 patients. Our data show a clear correlation between high ImP expression and better outcomes, most notably for TNBC patients and when tumor cells rather than stromal or immune cells express PSMB8 or PSMB9. Our results therefore suggest that ImP expression by tumor cells could be used as prognostic markers of TNBC outcomes.
Collapse
Affiliation(s)
- Karen Geoffroy
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada.,Institut du Cancer de Montréal, Montreal, Canada
| | - Bruna Araripe Saraiva
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada.,Institut du Cancer de Montréal, Montreal, Canada
| | - Melissa Viens
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada.,Institut du Cancer de Montréal, Montreal, Canada
| | - Delphine Béland
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada.,Institut du Cancer de Montréal, Montreal, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, Canada. .,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada. .,Institut du Cancer de Montréal, Montreal, Canada.
| |
Collapse
|
12
|
Rohweder PJ, Jiang Z, Hurysz BM, O'Donoghue AJ, Craik CS. Multiplex substrate profiling by mass spectrometry for proteases. Methods Enzymol 2022; 682:375-411. [PMID: 36948708 PMCID: PMC10201391 DOI: 10.1016/bs.mie.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Proteolysis is a central regulator of many biological pathways and the study of proteases has had a significant impact on our understanding of both native biology and disease. Proteases are key regulators of infectious disease and misregulated proteolysis in humans contributes to a variety of maladies, including cardiovascular disease, neurodegeneration, inflammatory diseases, and cancer. Central to understanding a protease's biological role, is characterizing its substrate specificity. This chapter will facilitate the characterization of individual proteases and complex, heterogeneous proteolytic mixtures and provide examples of the breadth of applications that leverage the characterization of misregulated proteolysis. Here we present the protocol of Multiplex Substrate Profiling by Mass Spectrometry (MSP-MS), a functional assay that quantitatively characterizes proteolysis using a synthetic library of physiochemically diverse, model peptide substrates, and mass spectrometry. We present a detailed protocol as well as examples of the use of MSP-MS for the study of disease states, for the development of diagnostic and prognostic tests, for the generation of tool compounds, and for the development of protease-targeted drugs.
Collapse
Affiliation(s)
- Peter J Rohweder
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States
| | - Brianna M Hurysz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States.
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
13
|
The dichotomous role of immunoproteasome in cancer: Friend or foe? Acta Pharm Sin B 2022; 13:1976-1989. [DOI: 10.1016/j.apsb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022] Open
|
14
|
Tcyganov EN, Sanseviero E, Marvel D, Beer T, Tang HY, Hembach P, Speicher DW, Zhang Q, Donthireddy LR, Mostafa A, Tsyganova S, Pisarev V, Laufer T, Ignatov D, Ferrone S, Meyer C, Maby-El Hajjami H, Speiser DE, Altiok S, Antonia S, Xu X, Xu W, Zheng C, Schuchter LM, Amaravadi RK, Mitchell TC, Karakousis GC, Yuan Z, Montaner LJ, Celis E, Gabrilovich DI. Peroxynitrite in the tumor microenvironment changes the profile of antigens allowing escape from cancer immunotherapy. Cancer Cell 2022; 40:1173-1189.e6. [PMID: 36220073 PMCID: PMC9566605 DOI: 10.1016/j.ccell.2022.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/12/2022] [Accepted: 08/31/2022] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy often depends on recognition of peptide epitopes by cytotoxic T lymphocytes (CTLs). The tumor microenvironment (TME) is enriched for peroxynitrite (PNT), a potent oxidant produced by infiltrating myeloid cells and some tumor cells. We demonstrate that PNT alters the profile of MHC class I bound peptides presented on tumor cells. Only CTLs specific for PNT-resistant peptides have a strong antitumor effect in vivo, whereas CTLs specific for PNT-sensitive peptides are not effective. Therapeutic targeting of PNT in mice reduces resistance of tumor cells to CTLs. Melanoma patients with low PNT activity in their tumors demonstrate a better clinical response to immunotherapy than patients with high PNT activity. Our data suggest that intratumoral PNT activity should be considered for the design of neoantigen-based therapy and also may be an important immunotherapeutic target.
Collapse
Affiliation(s)
- Evgenii N Tcyganov
- Immunology, Microenvironment, and Metastasis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Douglas Marvel
- Immunology, Microenvironment, and Metastasis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Thomas Beer
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Hsin-Yao Tang
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Peter Hembach
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - David W Speicher
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Qianfei Zhang
- AstraZeneca, ICC, Early Oncology, Gaithersburg, MD 20878, USA
| | | | - Ali Mostafa
- AstraZeneca, ICC, Early Oncology, Gaithersburg, MD 20878, USA
| | - Sabina Tsyganova
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir Pisarev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; Central Institute of Epidemiology, 111123 Moscow, Russia
| | - Terri Laufer
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dmitriy Ignatov
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117 Berlin, Germany
| | - Soldano Ferrone
- Department of Surgery, Harvard University, Boston, MA 02114, USA
| | - Christiane Meyer
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | | | - Daniel E Speiser
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | | | | | - Xiaowei Xu
- Abramson Cancer Center, Department of Pathology and Molecular Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Wei Xu
- Abramson Cancer Center, Department of Pathology and Molecular Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Cathy Zheng
- Abramson Cancer Center, Department of Pathology and Molecular Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Lynn M Schuchter
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Ravi K Amaravadi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Tara C Mitchell
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Giorgos C Karakousis
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Zhe Yuan
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Luis J Montaner
- Immunology, Microenvironment, and Metastasis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Esteban Celis
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | | |
Collapse
|
15
|
Podvin S, Jiang Z, Boyarko B, Rossitto LA, O’Donoghue A, Rissman RA, Hook V. Dysregulation of Neuropeptide and Tau Peptide Signatures in Human Alzheimer's Disease Brain. ACS Chem Neurosci 2022; 13:1992-2005. [PMID: 35758417 PMCID: PMC9264367 DOI: 10.1021/acschemneuro.2c00222] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Synaptic dysfunction and loss occur in Alzheimer's disease (AD) brains, which results in cognitive deficits and brain neurodegeneration. Neuropeptides comprise the major group of synaptic neurotransmitters in the nervous system. This study evaluated neuropeptide signatures that are hypothesized to differ in human AD brain compared to age-matched controls, achieved by global neuropeptidomics analysis of human brain cortex synaptosomes. Neuropeptidomics demonstrated distinct profiles of neuropeptides in AD compared to controls consisting of neuropeptides derived from chromogranin A (CHGA) and granins, VGF (nerve growth factor inducible), cholecystokinin, and others. The differential neuropeptide signatures indicated differences in proteolytic processing of their proneuropeptides. Analysis of cleavage sites showed that dibasic residues at the N-termini and C-termini of neuropeptides were the main sites for proneuropeptide processing, and data also showed that the AD group displayed differences in preferred residues adjacent to the cleavage sites. Notably, tau peptide signatures differed in the AD compared to age-matched control human brain cortex synaptosomes. Unique tau peptides were derived from the tau protein through proteolysis using similar and differential cleavage sites in the AD brain cortex compared to the control. Protease profiles differed in the AD compared to control, indicated by proteomics data. Overall, these results demonstrate that dysregulation of neuropeptides and tau peptides occurs in AD brain cortex synaptosomes compared to age-matched controls, involving differential cleavage site properties for proteolytic processing of precursor proteins. These dynamic changes in neuropeptides and tau peptide signatures may be associated with the severe cognitive deficits of AD.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Zhenze Jiang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Ben Boyarko
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Leigh-Ana Rossitto
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Anthony O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Robert A. Rissman
- Department
of Neurosciences, University of California
San Diego, La Jolla, California 92093, United States
- Veterans
Affairs San Diego Health System, La Jolla, California 92093, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
16
|
Del Rio Oliva M, Kirk CJ, Groettrup M, Basler M. Effective therapy of polymyositis in mice via selective inhibition of the immunoproteasome. Eur J Immunol 2022; 52:1510-1522. [PMID: 35733374 DOI: 10.1002/eji.202249851] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/16/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022]
Abstract
Polymyositis (PM) is a chronic autoimmune inflammatory myopathy resulting in muscle weakness. The limited approved therapies and their poor efficacy contribute to its comorbidity. We investigated the therapeutic use of ONX 0914 and KZR-616, selective inhibitors of the immunoproteasome, in C protein-induced myositis (CIM), a mouse model of PM that closely resembles the human disease. Diseased mice (day 13 post-immunization) were treated with 10 mg/kg ONX 0914 or KZR-616 or vehicle on alternate days until day 28. Endpoints included muscle strength assessed by a grip strength meter, serum creatine kinase activity, histology, and immunohistochemistry analysis. Treatment with ONX 0914 or KZR-616 prevented the loss of grip strength in mice after CIM induction, while vehicle-treated animals displayed progressive muscle weakness. Immunoproteasome inhibition lowered PM-associated leukocyte infiltration of the muscle and prevented increased serum creatine kinase levels. LMP7-deficient mice were resistant to CIM induction as they depicted no alteration in the grip strength, creatine kinase (CK) levels, nor showed muscular alterations. In conclusion, selective inhibition of the immunoproteasome displays therapeutic efficacy in a pre-clinical mouse model of PM with suppression of muscle inflammation and preservation of muscle strength. Positive results from this study support the rationale for using KZR-616 in clinical studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marta Del Rio Oliva
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
17
|
Cao Y, Tu Y, Fu L, Yu Q, Gao L, Zhang M, Zeng L, Zhang C, Shao J, Zhu H, Zhou Y, Li J, Zhang J. Metabolism guided optimization of peptidomimetics as non-covalent proteasome inhibitors for cancer treatment. Eur J Med Chem 2022; 233:114211. [PMID: 35218994 DOI: 10.1016/j.ejmech.2022.114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 02/17/2022] [Indexed: 11/04/2022]
Abstract
A series of novel non-covalent peptidomimetic proteasome inhibitors possessing bulky group at the C-terminus and N-alkylation at the N-terminus were designed with the aim to increase metabolic stabilities in vivo. All the target compounds were screened for their inhibitory activities against human 20S proteasome, and most analogs exhibited notable potency compared with the positive control bortezomib with IC50 values lower than 10 nM, which also displayed potent cytotoxic activities against multiple myeloma (MM) cell lines and human acute myeloid leukemia (AML) cells. Furthermore, whole blood stability and in vivo proteasome inhibitory activity experiments of selected compounds were conducted for further evaluation, and the representative compound 43 (IC50 = 8.39 ± 2.32 nM, RPMI-8226: IC50 = 15.290 ± 2.281 nM, MM-1S: IC50 = 9.067 ± 3.103 nM, MV-4-11: IC50 = 2.464 ± 0.713 nM) revealed a half-life extension of greater than 9-fold (329.21 min VS 36.79 min) and potent proteasome inhibitory activity in vivo. The positive results confirmed the reliability of the metabolism guided optimization strategy, and the analogs discovered are potential leads for exploring new anti-MM drugs.
Collapse
Affiliation(s)
- Yu Cao
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yutong Tu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liping Fu
- Department of Pharmacy, Shaoxing TCM Hospital Affiliated to Zhejiang Chinese Medical University, Shaoxing, 312000, China
| | - Qian Yu
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lixin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
| | - Mengmeng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Chong Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Jiaan Shao
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Metria Medica, Chinese Academy of Sciences, Guangdong, 528400, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Metria Medica, Chinese Academy of Sciences, Guangdong, 528400, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
| |
Collapse
|
18
|
Yoon MC, Ames J, Mosier C, Jiang Z, Podvin S, O’Donoghue AJ, Hook V. Distinct Dibasic Cleavage Specificities of Neuropeptide-Producing Cathepsin L and Cathepsin V Cysteine Proteases Compared to PC1/3 and PC2 Serine Proteases. ACS Chem Neurosci 2022; 13:245-256. [PMID: 34986304 DOI: 10.1021/acschemneuro.1c00653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuropeptides, functioning as peptide neurotransmitters and hormones, are generated from proneuropeptide precursors by proteolytic processing at dibasic residue sites (i.e., KR, RK, KK, RR). The cysteine proteases cathepsin L and cathepsin V, combined with the serine proteases proprotein convertases 1 and 2 (PC1/3 and PC2), participate in proneuropeptide processing to generate active neuropeptides. To compare the dibasic cleavage properties of these proteases, this study conducted global, unbiased substrate profiling of these processing proteases using a diverse peptide library in multiplex substrate profiling by mass spectrometry (MSP-MS) assays. MSP-MS utilizes a library of 228 14-mer peptides designed to contain all possible protease cleavage sites, including the dibasic residue sites of KR, RK, KK, and RR. The comprehensive MSP-MS analyses demonstrated that cathepsin L and cathepsin V cleave at the N-terminal side and between the dibasic residues (e.g., ↓K↓R, ↓R↓K, and K↓K), with a preference for hydrophobic residues at the P2 position of the cleavage site. In contrast, the serine proteases PC1/3 and PC2 displayed cleavage at the C-terminal side of dibasic residues of a few peptide substrates. Further analyses with a series of dipeptide-AMC and tripeptide-AMC substrates containing variant dibasic sites with hydrophobic P2 residues indicated the preferences of cathepsin L and cathepsin V to cleave between dibasic residue sites with preferences for flanking hydrophobic residues at the P2 position consisting of Leu, Trp, Phe, and Tyr. Such hydrophobic amino acids reside in numerous proneuropeptides such as pro-NPY and proenkephalin that are known to be processed by cathepsin L. Notably, cathepsin L displayed the highest specific activity that was 10-, 64-, and 1268-fold greater than cathepsin V, PC1/3, and PC2, respectively. Peptide-AMC substrates with dibasic residues confirmed that PC1/3 and P2 cleaved almost exclusively at the C-terminal side of dibasic residues. These data demonstrate distinct dibasic cleavage site properties and a broad range of proteolytic activities of cathepsin L and cathepsin V, compared to PC1/3 and PC2, which participate in producing neuropeptides for cell-cell communication.
Collapse
Affiliation(s)
- Michael C. Yoon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr. MC0657, La Jolla, California 92093, United States
| | - Janneca Ames
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr. MC0657, La Jolla, California 92093, United States
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr. MC0657, La Jolla, California 92093, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr. MC0657, La Jolla, California 92093, United States
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr. MC0657, La Jolla, California 92093, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr. MC0657, La Jolla, California 92093, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr. MC0657, La Jolla, California 92093, United States
- Department of Neurosciences and Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
19
|
Tripathi SC, Vedpathak D, Ostrin EJ. The Functional and Mechanistic Roles of Immunoproteasome Subunits in Cancer. Cells 2021; 10:cells10123587. [PMID: 34944095 PMCID: PMC8700164 DOI: 10.3390/cells10123587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cell-mediated immunity is driven by antigenic peptide presentation on major histocompatibility complex (MHC) molecules. Specialized proteasome complexes called immunoproteasomes process viral, bacterial, and tumor antigens for presentation on MHC class I molecules, which can induce CD8 T cells to mount effective immune responses. Immunoproteasomes are distinguished by three subunits that alter the catalytic activity of the proteasome and are inducible by inflammatory stimuli such as interferon-γ (IFN-γ). This inducible activity places them in central roles in cancer, autoimmunity, and inflammation. While accelerated proteasomal degradation is an important tumorigenic mechanism deployed by several cancers, there is some ambiguity regarding the role of immunoproteasome induction in neoplastic transformation. Understanding the mechanistic and functional relevance of the immunoproteasome provides essential insights into developing targeted therapies, including overcoming resistance to standard proteasome inhibition and immunomodulation of the tumor microenvironment. In this review, we discuss the roles of the immunoproteasome in different cancers.
Collapse
Affiliation(s)
- Satyendra Chandra Tripathi
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
- Correspondence: (S.C.T.); (E.J.O.)
| | - Disha Vedpathak
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
| | - Edwin Justin Ostrin
- Department of General Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (S.C.T.); (E.J.O.)
| |
Collapse
|
20
|
The Function of Immunoproteasomes-An Immunologists' Perspective. Cells 2021; 10:cells10123360. [PMID: 34943869 PMCID: PMC8699091 DOI: 10.3390/cells10123360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023] Open
Abstract
Proteasomes are responsible for intracellular proteolysis and play an important role in cellular protein homeostasis. Cells of the immune system assemble a specialized form of proteasomes, known as immunoproteasomes, in which the constitutive catalytic sites are replaced for cytokine-inducible homologues. While immunoproteasomes may fulfill all standard proteasome’ functions, they seem specially adapted for a role in MHC class I antigen processing and CD8+ T-cell activation. In this way, they may contribute to CD8+ T-cell-mediated control of intracellular infections, but also to the immunopathogenesis of autoimmune diseases. Starting at the discovery of its catalytic subunits in the genome, here, we review the observations shaping our current understanding of immunoproteasome function, and the consequential novel opportunities for immune intervention.
Collapse
|
21
|
On the Role of the Immunoproteasome in Protein Homeostasis. Cells 2021; 10:cells10113216. [PMID: 34831438 PMCID: PMC8621243 DOI: 10.3390/cells10113216] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022] Open
Abstract
Numerous cellular processes are controlled by the proteasome, a multicatalytic protease in the cytosol and nucleus of all eukaryotic cells, through regulated protein degradation. The immunoproteasome is a special type of proteasome which is inducible under inflammatory conditions and constitutively expressed in hematopoietic cells. MECL-1 (β2i), LMP2 (β1i), and LMP7 (β5i) are the proteolytically active subunits of the immunoproteasome (IP), which is known to shape the antigenic repertoire presented on major histocompatibility complex (MHC) class I molecules. Furthermore, the immunoproteasome is involved in T cell expansion and inflammatory diseases. In recent years, targeting the immunoproteasome in cancer, autoimmune diseases, and transplantation proved to be therapeutically effective in preclinical animal models. However, the prime function of standard proteasomes and immunoproteasomes is the control of protein homeostasis in cells. To maintain protein homeostasis in cells, proteasomes remove proteins which are not properly folded, which are damaged by stress conditions such as reactive oxygen species formation, or which have to be degraded on the basis of regular protein turnover. In this review we summarize the latest insights on how the immunoproteasome influences protein homeostasis.
Collapse
|
22
|
A Cell-Based Platform for the Investigation of Immunoproteasome Subunit β5i Expression and Biology of β5i-Containing Proteasomes. Cells 2021; 10:cells10113049. [PMID: 34831272 PMCID: PMC8616536 DOI: 10.3390/cells10113049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/24/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
The degradation of most intracellular proteins is a dynamic and tightly regulated process performed by proteasomes. To date, different forms of proteasomes have been identified. Currently the role of non-constitutive proteasomes (immunoproteasomes (iPs) and intermediate proteasomes (intPs)) has attracted special attention. Here, using a CRISPR-Cas9 nickase technology, four cell lines: histiocytic lymphoma, colorectal adenocarcinoma, cervix adenocarcinoma, and hepatocarcinoma were modified to express proteasomes with mCherry-tagged β5i subunit, which is a catalytic subunit of iPs and intPs. Importantly, the expression of the chimeric gene in modified cells is under the control of endogenous regulatory mechanisms and is increased following IFN-γ and/or TNF-α stimulation. Fluorescent proteasomes retain catalytic activity and are distributed within the nucleus and cytoplasm. RNAseq reveals marginal differences in gene expression profiles between the modified and wild-type cell lines. Predominant metabolic pathways and patterns of expressed receptors were identified for each cell line. Using established cell lines, we demonstrated that anti-cancer drugs Ruxolitinib, Vincristine and Gefitinib stimulated the expression of β5i-containing proteasomes, which might affect disease prognosis. Taken together, obtained cell lines can be used as a platform for real-time studies of immunoproteasome gene expression, localization of iPs and intPs, interaction of non-constitutive proteasomes with other proteins, proteasome trafficking and many other aspects of proteasome biology in living cells. Moreover, the established platform might be especially useful for fast and large-scale experiments intended to evaluate the effects of different conditions including treatment with various drugs and compounds on the proteasome pool.
Collapse
|
23
|
Abstract
All living organisms depend on tightly regulated cellular networks to control biological functions. Proteolysis is an important irreversible post-translational modification that regulates most, if not all, cellular processes. Proteases are a large family of enzymes that perform hydrolysis of protein substrates, leading to protein activation or degradation. The 473 known and 90 putative human proteases are divided into 5 main mechanistic groups: metalloproteases, serine proteases, cysteine proteases, threonine proteases, and aspartic acid proteases. Proteases are fundamental to all biological systems, and when dysregulated they profoundly influence disease progression. Inhibiting proteases has led to effective therapies for viral infections, cardiovascular disorders, and blood coagulation just to name a few. Between 5 and 10% of all pharmaceutical targets are proteases, despite limited knowledge about their biological roles. More than 50% of all human proteases have no known substrates. We present here a comprehensive list of all current known human proteases. We also present current and novel biochemical tools to characterize protease functions in vitro, in vivo, and ex vivo. These tools make it achievable to define both beneficial and detrimental activities of proteases in health and disease.
Collapse
Affiliation(s)
- Longxiang Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kimberly Main
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada.,McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Henry Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Antoine Dufour
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada.,McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
24
|
Reboud-Ravaux M. [The proteasome - structural aspects and inhibitors: a second life for a validated drug target]. Biol Aujourdhui 2021; 215:1-23. [PMID: 34397372 DOI: 10.1051/jbio/2021005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 02/06/2023]
Abstract
The proteasome is the central component of the adaptable ubiquitin proteasome system (UPS) discovered in the 1980's. It sustains protein homeostasis (proteostasis) under a large variety of physiological and pathological conditions. Its dysregulation has been often associated to various human diseases. Its potential regulation by modulators has emerged as promising avenue to develop treatments of various pathologies. The FDA approval in 2003 of the proteasome inhibitor bortezomib to treat multiple myeloma, then mantle lymphoma in 2006, has considerably increased the clinical interest of proteasome inhibition. Second-generation proteasome inhibitors (carfilzomib and ixazomib) have been approved to overcome bortezomib resistance and improved toxicity profile and route of administration. Selective inhibition of immunoproteasome is a promising approach towards the development of immunomodulatory drugs. The design of these drugs relies greatly on the elucidation of high-resolution structures of the targeted proteasomes. The ATPase-dependent 26S proteasome (2.4 MDa) consists of a 20S proteolytic core and one or two 19S regulatory particles. The 20S core contains three types of catalytic sites. In recent years, due to technical advances especially in atomic cryo-electron microscopy, significant progress has been made in the understanding of 26S proteasome structure and its dynamics. Stepwise conformational changes of the 19S particle induced by ATP hydrolysis lead to substrate translocation, 20S pore opening and processive protein degradation by the 20S proteolytic subunits (2β1, 2β2 and 2β5). A large variety of structurally different inhibitors, both natural products or synthetic compounds targeting immuno- and constitutive proteasomes, has been discovered. The latest advances in this drug discovery are presented. Knowledge about structures, inhibition mechanism and detailed biological regulations of proteasomes can guide strategies for the development of next-generation inhibitors to treat human diseases, especially cancers, immune disorders and pathogen infections. Proteasome activators are also potentially applicable to the reduction of proteotoxic stresses in neurodegeneration and aging.
Collapse
Affiliation(s)
- Michèle Reboud-Ravaux
- Sorbonne Université, Institut de Biologie Paris Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| |
Collapse
|
25
|
Gatekeepers of the Gut: The Roles of Proteasomes at the Gastrointestinal Barrier. Biomolecules 2021; 11:biom11070989. [PMID: 34356615 PMCID: PMC8301830 DOI: 10.3390/biom11070989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
The gut epithelial barrier provides the first line of defense protecting the internal milieu from the environment. To circumvent the exposure to constant challenges such as pathogenic infections and commensal bacteria, epithelial and immune cells at the gut barrier require rapid and efficient means to dynamically sense and respond to stimuli. Numerous studies have highlighted the importance of proteolysis in maintaining homeostasis and adapting to the dynamic changes of the conditions in the gut environment. Primarily, proteolytic activities that are involved in immune regulation and inflammation have been examined in the context of the lysosome and inflammasome activation. Yet, the key to cellular and tissue proteostasis is the ubiquitin–proteasome system, which tightly regulates fundamental aspects of inflammatory signaling and protein quality control to provide rapid responses and protect from the accumulation of proteotoxic damage. In this review, we discuss proteasome-dependent regulation of the gut and highlight the pathophysiological consequences of the disarray of proteasomal control in the gut, in the context of aberrant inflammatory disorders and tumorigenesis.
Collapse
|
26
|
Salcedo EC, Winter MB, Khuri N, Knudsen GM, Sali A, Craik CS. Global Protease Activity Profiling Identifies HER2-Driven Proteolysis in Breast Cancer. ACS Chem Biol 2021; 16:712-723. [PMID: 33765766 DOI: 10.1021/acschembio.0c01000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Differential expression of extracellular proteases and endogenous protease inhibitors has been associated with distinct molecular subtypes of breast cancer. However, due to the tight post-translational regulation of protease activity, protease expression-level data alone are not sufficient to understand the role of proteases in malignant transformation. Therefore, we hypothesized that global profiles of extracellular protease activity could more completely reflect differences observed at the transcriptional level in breast cancer and that subtype-associated protease activity may be leveraged to identify specific proteases that play a functional role in cancer signaling. Here, we used a global peptide library-based approach to profile the activities of proteases within distinct breast cancer subtypes. Analysis of 3651 total peptide cleavages from a panel of well-characterized breast cancer cell lines demonstrated differences in proteolytic signatures between cell lines. Cell line clustering based on protease cleavages within the peptide library expanded upon the expected classification derived from transcriptional profiling. An isogenic cell line model developed to further interrogate proteolysis in the HER2 subtype revealed a proteolytic signature consistent with activation of TGF-β signaling. Specifically, we determined that a metalloprotease involved in TGF-β signaling, BMP1, was upregulated at both the protein (2-fold, P = 0.001) and activity (P = 0.0599) levels. Inhibition of BMP1 and HER2 suppressed invasion of HER2-expressing cells by 35% (P < 0.0001), compared to 15% (P = 0.0086) observed in cells where only HER2 was inhibited. In summary, through global identification of extracellular proteolysis in breast cancer cell lines, we demonstrate subtype-specific differences in protease activity and elucidate proteolysis associated with HER2-mediated signaling.
Collapse
|
27
|
Xu H, Van der Jeught K, Zhou Z, Zhang L, Yu T, Sun Y, Li Y, Wan C, So KM, Liu D, Frieden M, Fang Y, Mosley AL, He X, Zhang X, Sandusky GE, Liu Y, Meroueh SO, Zhang C, Wijeratne AB, Huang C, Ji G, Lu X. Atractylenolide I enhances responsiveness to immune checkpoint blockade therapy by activating tumor antigen presentation. J Clin Invest 2021; 131:146832. [PMID: 33830945 DOI: 10.1172/jci146832] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
One of the primary mechanisms of tumor cell immune evasion is the loss of antigenicity, which arises due to lack of immunogenic tumor antigens as well as dysregulation of the antigen processing machinery. In a screen for small-molecule compounds from herbal medicine that potentiate T cell-mediated cytotoxicity, we identified atractylenolide I (ATT-I), which substantially promotes tumor antigen presentation of both human and mouse colorectal cancer (CRC) cells and thereby enhances the cytotoxic response of CD8+ T cells. Cellular thermal shift assay (CETSA) with multiplexed quantitative mass spectrometry identified the proteasome 26S subunit non-ATPase 4 (PSMD4), an essential component of the immunoproteasome complex, as a primary target protein of ATT-I. Binding of ATT-I with PSMD4 augments the antigen-processing activity of immunoproteasome, leading to enhanced MHC-I-mediated antigen presentation on cancer cells. In syngeneic mouse CRC models and human patient-derived CRC organoid models, ATT-I treatment promotes the cytotoxicity of CD8+ T cells and thus profoundly enhances the efficacy of immune checkpoint blockade therapy. Collectively, we show here that targeting the function of immunoproteasome with ATT-I promotes tumor antigen presentation and empowers T cell cytotoxicity, thus elevating the tumor response to immunotherapy.
Collapse
Affiliation(s)
- Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Medical and Molecular Genetics
| | | | | | - Lu Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Medical and Molecular Genetics
| | - Tao Yu
- Department of Medical and Molecular Genetics
| | - Yifan Sun
- Department of Medical and Molecular Genetics
| | - Yujing Li
- Department of Medical and Molecular Genetics
| | - Changlin Wan
- Center for Computational Biology and Bioinformatics
| | - Ka Man So
- Center for Computational Biology and Bioinformatics
| | - Degang Liu
- Department of Biochemistry and Molecular Biology, and
| | | | | | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, and.,Proteomics Core Facility, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Xinna Zhang
- Department of Medical and Molecular Genetics.,Melvin and Bren Simon Cancer Center and
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics.,Center for Computational Biology and Bioinformatics.,Melvin and Bren Simon Cancer Center and
| | | | - Chi Zhang
- Department of Medical and Molecular Genetics.,Center for Computational Biology and Bioinformatics.,Melvin and Bren Simon Cancer Center and
| | - Aruna B Wijeratne
- Department of Biochemistry and Molecular Biology, and.,Proteomics Core Facility, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Cheng Huang
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics.,Center for Computational Biology and Bioinformatics.,Melvin and Bren Simon Cancer Center and
| |
Collapse
|
28
|
Carré A, Mallone R. Making Insulin and Staying Out of Autoimmune Trouble: The Beta-Cell Conundrum. Front Immunol 2021; 12:639682. [PMID: 33854508 PMCID: PMC8039383 DOI: 10.3389/fimmu.2021.639682] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/12/2021] [Indexed: 12/28/2022] Open
Abstract
Autoimmune type 1 diabetes (T1D) results from the intricate crosstalk of various immune cell types. CD8+ T cells dominate the pro-inflammatory milieu of islet infiltration (insulitis), and are considered as key effectors of beta-cell destruction, through the recognition of MHC Class I-peptide complexes. The pathways generating MHC Class I-restricted antigens in beta cells are poorly documented. Given their specialized insulin secretory function, the associated granule processing and degradation pathways, basal endoplasmic reticulum stress and susceptibility to additional stressors, alternative antigen processing and presentation (APP) pathways are likely to play a significant role in the generation of the beta-cell immunopeptidome. As direct evidence is missing, we here intersect the specificities of beta-cell function and the literature about APP in other cellular models to generate some hypotheses on APPs relevant to beta cells. We further elaborate on the potential role of these pathways in T1D pathogenesis, based on the current knowledge of antigens presented by beta cells. A better understanding of these pathways may pinpoint novel mechanisms amenable to therapeutic targeting to modulate the immunogenicity of beta cells.
Collapse
Affiliation(s)
- Alexia Carré
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Roberto Mallone
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France.,Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| |
Collapse
|
29
|
Puig M, Ananthula S, Venna R, Kumar Polumuri S, Mattson E, Walker LM, Cardone M, Takahashi M, Su S, Boyd LF, Natarajan K, Abdoulaeva G, Wu WW, Roderiquez G, Hildebrand WH, Beaucage SL, Li Z, Margulies DH, Norcross MA. Alterations in the HLA-B*57:01 Immunopeptidome by Flucloxacillin and Immunogenicity of Drug-Haptenated Peptides. Front Immunol 2021; 11:629399. [PMID: 33633747 PMCID: PMC7900192 DOI: 10.3389/fimmu.2020.629399] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Neoantigen formation due to the interaction of drug molecules with human leukocyte antigen (HLA)-peptide complexes can lead to severe hypersensitivity reactions. Flucloxacillin (FLX), a β-lactam antibiotic for narrow-spectrum gram-positive bacterial infections, has been associated with severe immune-mediated drug-induced liver injury caused by an influx of T-lymphocytes targeting liver cells potentially recognizing drug-haptenated peptides in the context of HLA-B*57:01. To identify immunopeptidome changes that could lead to drug-driven immunogenicity, we used mass spectrometry to characterize the proteome and immunopeptidome of B-lymphoblastoid cells solely expressing HLA-B*57:01 as MHC-I molecules. Selected drug-conjugated peptides identified in these cells were synthesized and tested for their immunogenicity in HLA-B*57:01-transgenic mice. T cell responses were evaluated in vitro by immune assays. The immunopeptidome of FLX-treated cells was more diverse than that of untreated cells, enriched with peptides containing carboxy-terminal tryptophan and FLX-haptenated lysine residues on peptides. Selected FLX-modified peptides with drug on P4 and P6 induced drug-specific CD8+ T cells in vivo. FLX was also found directly linked to the HLA K146 that could interfere with KIR-3DL or peptide interactions. These studies identify a novel effect of antibiotics to alter anchor residue frequencies in HLA-presented peptides which may impact drug-induced inflammation. Covalent FLX-modified lysines on peptides mapped drug-specific immunogenicity primarily at P4 and P6 suggesting these peptide sites as drivers of off-target adverse reactions mediated by FLX. FLX modifications on HLA-B*57:01-exposed lysines may also impact interactions with KIR or TCR and subsequent NK and T cell function.
Collapse
Affiliation(s)
- Montserrat Puig
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Suryatheja Ananthula
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Ramesh Venna
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Swamy Kumar Polumuri
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Elliot Mattson
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Lacey M Walker
- Division of Applied Regulatory Science, Office of Translational Science, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Marco Cardone
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Mayumi Takahashi
- Laboratory of Biological Chemistry, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Shan Su
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Galina Abdoulaeva
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Wells W Wu
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Gregory Roderiquez
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - William H Hildebrand
- Department of Microbiology and Immunology, School of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Serge L Beaucage
- Laboratory of Biological Chemistry, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Zhihua Li
- Division of Applied Regulatory Science, Office of Translational Science, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael A Norcross
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
30
|
Maurits E, Degeling CG, Kisselev AF, Florea BI, Overkleeft HS. Structure-Based Design of Fluorogenic Substrates Selective for Human Proteasome Subunits. Chembiochem 2020; 21:3220-3224. [PMID: 32598532 PMCID: PMC7754458 DOI: 10.1002/cbic.202000375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Indexed: 11/07/2022]
Abstract
Proteasomes are established therapeutic targets for hematological cancers and promising targets for autoimmune diseases. In the past, we have designed and synthesized mechanism-based proteasome inhibitors that are selective for the individual catalytic activities of human constitutive proteasomes and immunoproteasomes: β1c, β1i, β2c, β2i, β5c and β5i. We show here that by taking the oligopeptide recognition element and substituting the electrophile for a fluorogenic leaving group, fluorogenic substrates are obtained that report on the proteasome catalytic activity also targeted by the parent inhibitor. Though not generally applicable (β5c and β2i substrates showing low activity), effective fluorogenic substrates reporting on the individual activity of β1c, β1i, β2c and β5i subunits in Raji (human B cell) lysates and purified 20S proteasome were identified in this manner. Our work thus adds to the expanding proteasome research toolbox through the identification of new and/or more effective subunit-selective fluorogenic substrates.
Collapse
Affiliation(s)
- Elmer Maurits
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Christian G. Degeling
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Alexei F. Kisselev
- Department of Drug Discovery and DevelopmentHarrison School of PharmacyAuburn UniversityAuburnAL 36849USA
| | - Bogdan I. Florea
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
31
|
Reduced Proteasome Activity and Enhanced Autophagy in Blood Cells of Psoriatic Patients. Int J Mol Sci 2020; 21:ijms21207608. [PMID: 33066703 PMCID: PMC7589048 DOI: 10.3390/ijms21207608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a skin disease that is accompanied by oxidative stress resulting in modification of cell components, including proteins. Therefore, we investigated the relationship between the intensity of oxidative stress and the expression and activity of the proteasomal system as well as autophagy, responsible for the degradation of oxidatively modified proteins in the blood cells of patients with psoriasis. Our results showed that the caspase-like, trypsin-like, and chymotrypsin-like activity of the 20S proteasome in lymphocytes, erythrocytes, and granulocytes was lower, while the expression of constitutive proteasome and immunoproteasome subunits in lymphocytes was increased cells of psoriatic patients compared to healthy subjects. Conversely, the expression of constitutive subunits in erythrocytes, and both constitutive and immunoproteasomal subunits in granulocytes were reduced. However, a significant increase in the autophagy flux (assessed using LC3BII/LC3BI ratio) independent of the AKT pathway was observed. The levels of 4-HNE, 4-HNE-protein adducts, and proteins carbonyl groups were significantly higher in the blood cells of psoriatic patients. The decreased activity of the 20S proteasome together with the increased autophagy and the significantly increased level of proteins carbonyl groups and 4-HNE-protein adducts indicate a proteostatic imbalance in the blood cells of patients with psoriasis.
Collapse
|
32
|
Lohse MB, Brenes LR, Ziv N, Winter MB, Craik CS, Johnson AD. An Opaque Cell-Specific Expression Program of Secreted Proteases and Transporters Allows Cell-Type Cooperation in Candida albicans. Genetics 2020; 216:409-429. [PMID: 32839241 PMCID: PMC7536846 DOI: 10.1534/genetics.120.303613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/20/2020] [Indexed: 11/18/2022] Open
Abstract
An unusual feature of the opportunistic pathogen Candida albicans is its ability to switch stochastically between two distinct, heritable cell types called white and opaque. Here, we show that only opaque cells, in response to environmental signals, massively upregulate a specific group of secreted proteases and peptide transporters, allowing exceptionally efficient use of proteins as sources of nitrogen. We identify the specific proteases [members of the secreted aspartyl protease (SAP) family] needed for opaque cells to proliferate under these conditions, and we identify four transcriptional regulators of this specialized proteolysis and uptake program. We also show that, in mixed cultures, opaque cells enable white cells to also proliferate efficiently when proteins are the sole nitrogen source. Based on these observations, we suggest that one role of white-opaque switching is to create mixed populations where the different phenotypes derived from a single genome are shared between two distinct cell types.
Collapse
Affiliation(s)
- Matthew B Lohse
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Lucas R Brenes
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Naomi Ziv
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Michael B Winter
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| |
Collapse
|
33
|
Paes W, Leonov G, Partridge T, Nicastri A, Ternette N, Borrow P. Elucidation of the Signatures of Proteasome-Catalyzed Peptide Splicing. Front Immunol 2020; 11:563800. [PMID: 33072102 PMCID: PMC7541919 DOI: 10.3389/fimmu.2020.563800] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/26/2020] [Indexed: 01/10/2023] Open
Abstract
Proteasomes catalyze the degradation of endogenous proteins into oligopeptides, but can concurrently create spliced oligopeptides through ligation of previously non-contiguous peptide fragments. Recent studies have uncovered a formerly unappreciated role for proteasome-catalyzed peptide splicing (PCPS) in the generation of non-genomically templated human leukocyte antigen class I (HLA-I)-bound cis-spliced peptides that can be targeted by CD8+ T cells in cancer and infection. However, the mechanisms defining PCPS reactions are poorly understood. Here, we experimentally define the biochemical constraints of proteasome-catalyzed cis-splicing reactions by examination of in vitro proteasomal digests of a panel of viral- and self-derived polypeptide substrates using a tailored mass-spectrometry-based de novo sequencing workflow. We show that forward and reverse PCPS reactions display unique splicing signatures, defined by preferential fusion of distinct amino acid residues with stringent peptide length distributions, suggesting sequence- and size-dependent accessibility of splice reactants for proteasomal substrate binding pockets. Our data provide the basis for a more informed mechanistic understanding of PCPS that will facilitate future prediction of spliced peptides from protein sequences.
Collapse
Affiliation(s)
- Wayne Paes
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - German Leonov
- York Cross-Disciplinary Center for Systems Analysis, University of York, York, United Kingdom
| | - Thomas Partridge
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Annalisa Nicastri
- Nuffield Department of Clinical Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Nicola Ternette
- Nuffield Department of Clinical Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Chen S, Yim JJ, Bogyo M. Synthetic and biological approaches to map substrate specificities of proteases. Biol Chem 2020; 401:165-182. [PMID: 31639098 DOI: 10.1515/hsz-2019-0332] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
Proteases are regulators of diverse biological pathways including protein catabolism, antigen processing and inflammation, as well as various disease conditions, such as malignant metastasis, viral infection and parasite invasion. The identification of substrates of a given protease is essential to understand its function and this information can also aid in the design of specific inhibitors and active site probes. However, the diversity of putative protein and peptide substrates makes connecting a protease to its downstream substrates technically difficult and time-consuming. To address this challenge in protease research, a range of methods have been developed to identify natural protein substrates as well as map the overall substrate specificity patterns of proteases. In this review, we highlight recent examples of both synthetic and biological methods that are being used to define the substrate specificity of protease so that new protease-specific tools and therapeutic agents can be developed.
Collapse
Affiliation(s)
- Shiyu Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua J Yim
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
35
|
Zerfas BL, Trader DJ. Synthesis and Application of an Activity-Based Peptide-Peptoid Hybrid Probe for the Immunoproteasome. ACTA ACUST UNITED AC 2020; 11:e76. [PMID: 31860787 DOI: 10.1002/cpch.76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The immunoproteasome (iCP), a specific isoform of the proteasome's catalytic particle, is becoming an important protein complex of interest in various diseases. However, there is still much left to be learned about its activity in cells and how this can be altered by various endogenous conditions or with treatment with small molecules. Current strategies to investigate the iCP lack in their ability to be used in live, intact cells, limiting them to use in endpoint experiments. The iCP-selective probe presented here has been shown to be compatible with various live-cell assays, including monitoring iCP activity kinetically in a plate reader-based assay and observing single cells with confocal microscopy. A well-studied iCP-selective inhibitor, ONX-0914, has also been demonstrated to decrease the fluorescence signal of the iCP probe in both of these assays, showing its potential function in investigating small-molecule modulators of the iCP. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Synthesis of an immunoproteasome-selective peptide-peptoid hybrid probe Basic Protocol 2: Expression of the immunoproteasome in A549 cells Basic Protocol 3: Using the immunoproteasome probe to monitor activity in live cells with a fluorescence plate reader Basic Protocol 4: Using the immunoproteasome probe to monitor activity in live cells with confocal microscopy.
Collapse
Affiliation(s)
- Breanna L Zerfas
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| |
Collapse
|
36
|
Croft NP. Peptide Presentation to T Cells: Solving the Immunogenic Puzzle: Systems Immunology Profiling of Antigen Presentation for Prediction of CD8 + T Cell Immunogenicity. Bioessays 2020; 42:e1900200. [PMID: 31958157 DOI: 10.1002/bies.201900200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/18/2019] [Indexed: 02/02/2023]
Abstract
The vertebrate immune system uses an impressive arsenal of mechanisms to combat harmful cellular states such as infection. One way is via cells delivering real-time snapshots of their protein content to the cell surface in the form of short peptides. Specialized immune cells (T cells) sample these peptides and assess whether they are foreign, warranting an action such as destruction of the infected cell. The delivery of peptides to the cell surface is termed antigen processing and presentation, and decades of research have provided unprecedented understanding of this process. However, predicting the capacity for a given peptide to be immunogenic-to elicit a T cell response-has remained both enigmatic and a long sought-after goal. In the era of big data, a point is being approached where the steps of antigen processing and presentation can be quantified and assessed against peptide immunogenicity in order to build predictive models. This review presents new findings in this area and contemplates challenges ahead.
Collapse
Affiliation(s)
- Nathan P Croft
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
37
|
Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist Updat 2020; 48:100663. [DOI: 10.1016/j.drup.2019.100663] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 02/07/2023]
|
38
|
Lessons Learned from Proteasome Inhibitors, the Paradigm for Targeting Protein Homeostasis in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:147-162. [PMID: 32297217 DOI: 10.1007/978-3-030-40204-4_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Targeting aberrant protein homeostasis (proteostasis) in cancer is an attractive therapeutic strategy. However, this approach has thus far proven difficult to bring to clinical practice, with one major exception: proteasome inhibition. These small molecules have dramatically transformed outcomes for patients with the blood cancer multiple myeloma. However, these agents have failed to make an impact in more common solid tumors. Major questions remain about whether this therapeutic strategy can be extended to benefit even more patients. Here we discuss the role of the proteasome in normal and tumor cells, the basic, preclinical, and clinical development of proteasome inhibitors, and mechanisms proposed to govern both intrinsic and acquired resistance to these drugs. Years of study of both the mechanism of action and modes of resistance to proteasome inhibitors reveal these processes to be surprisingly complex. Here, we attempt to draw lessons from experience with proteasome inhibitors that may be relevant for other compounds targeting proteostasis in cancer, as well as extending the reach of proteasome inhibitors beyond blood cancers.
Collapse
|
39
|
Zerfas BL, Maresh ME, Trader DJ. The Immunoproteasome: An Emerging Target in Cancer and Autoimmune and Neurological Disorders. J Med Chem 2019; 63:1841-1858. [PMID: 31670954 DOI: 10.1021/acs.jmedchem.9b01226] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immunoproteasome (iCP) is an isoform of the 20S proteasome that is expressed when cells are stressed or receive an inflammatory signal. The primary role of the iCP is to hydrolyze proteins into peptides that are compatible with being loaded into a MHC-I complex. When the activity of the iCP is dysregulated or highly expressed, it can lead to unwanted cell death. Some cancer types express the iCP rather than the standard proteasome, and selective inhibitors have been developed to exploit this difference. Here, we describe diseases known to be influenced by iCP activity and the current status for targeting the iCP to elicit a therapeutic response. We also describe a variety of chemical tools that have been developed to monitor the activity of the iCP in cells. Finally, we present the future outlook for targeting the iCP in a variety of disease types and with mechanisms besides inhibition.
Collapse
Affiliation(s)
- Breanna L Zerfas
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Marianne E Maresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
40
|
Kam A, Loo S, Fan JS, Sze SK, Yang D, Tam JP. Roseltide rT7 is a disulfide-rich, anionic, and cell-penetrating peptide that inhibits proteasomal degradation. J Biol Chem 2019; 294:19604-19615. [PMID: 31727740 DOI: 10.1074/jbc.ra119.010796] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/02/2019] [Indexed: 12/21/2022] Open
Abstract
Disulfide-rich plant peptides with molecular masses of 2-6 kDa represent an expanding class of peptidyl-type natural products with diverse functions. They are structurally compact, hyperstable, and underexplored as cell-penetrating agents that inhibit intracellular functions. Here, we report the discovery of an anionic, 34-residue peptide, the disulfide-rich roseltide rT7 from Hibiscus sabdariffa (of the Malvaceae family) that penetrates cells and inhibits their proteasomal activities. Combined proteomics and NMR spectroscopy revealed that roseltide rT7 is a cystine-knotted, six-cysteine hevein-like cysteine-rich peptide. A pair-wise comparison indicated that roseltide rT7 is >100-fold more stable against protease degradation than its S-alkylated analog. Confocal microscopy studies and cell-based assays disclosed that after roseltide rT7 penetrates cells, it causes accumulation of ubiquitinated proteins, inhibits human 20S proteasomes, reduces tumor necrosis factor-induced IκBα degradation, and decreases expression levels of intercellular adhesion molecule-1. Structure-activity studies revealed that roseltide rT7 uses a canonical substrate-binding mechanism for proteasomal inhibition enabled by an IIML motif embedded in its proline-rich and exceptionally long intercysteine loop 4. Taken together, our results provide mechanistic insights into a novel disulfide-rich, anionic, and cell-penetrating peptide, representing a potential lead for further development as a proteasomal inhibitor in anti-cancer or anti-inflammatory therapies.
Collapse
Affiliation(s)
- Antony Kam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Shining Loo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
41
|
20S Proteasome as a Drug Target in Trichomonas vaginalis. Antimicrob Agents Chemother 2019; 63:AAC.00448-19. [PMID: 31451503 DOI: 10.1128/aac.00448-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Trichomoniasis is a sexually transmitted disease with hundreds of millions of annual cases worldwide. Approved treatment options are limited to two related nitro-heterocyclic compounds, yet resistance to these drugs is an increasing concern. New antimicrobials against the causative agent, Trichomonas vaginalis, are urgently needed. We show here that clinically approved anticancer drugs that inhibit the proteasome, a large protease complex with a critical role in degrading intracellular proteins in eukaryotes, have submicromolar activity against the parasite in vitro and on-target activity against the enriched T. vaginalis proteasome in cell-free assays. Proteomic analysis confirmed that the parasite has all seven α and seven β subunits of the eukaryotic proteasome although they have only modest sequence identities, ranging from 28 to 52%, relative to the respective human proteasome subunits. A screen of proteasome inhibitors derived from a marine natural product, carmaphycin, revealed one derivative, carmaphycin-17, with greater activity against T. vaginalis than the reference drug metronidazole, the ability to overcome metronidazole resistance, and reduced human cytotoxicity compared to that of the anticancer proteasome inhibitors. The increased selectivity of carmaphycin-17 for T. vaginalis was related to its >5-fold greater potency against the β1 and β5 catalytic subunits of the T. vaginalis proteasome than against the human proteasome subunits. In a murine model of vaginal trichomonad infection, proteasome inhibitors eliminated or significantly reduced parasite burden upon topical treatment without any apparent adverse effects. Together, these findings validate the proteasome of T. vaginalis as a therapeutic target for development of a novel class of trichomonacidal agents.
Collapse
|
42
|
Chen D, Geis-Asteggiante L, Gomes FP, Ostrand-Rosenberg S, Fenselau C. Top-Down Proteomic Characterization of Truncated Proteoforms. J Proteome Res 2019; 18:4013-4019. [PMID: 31545043 DOI: 10.1021/acs.jproteome.9b00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A top-down proteomic strategy with semiautomated analysis of data sets has proven successful for the global identification of truncated proteins without the use of chemical derivatization, enzymatic manipulation, immunoprecipitation, or other enrichment. This approach provides the reliable identification of internal polypeptides formed from precursor gene products by proteolytic cleavage of both the N- and C-termini, as well as truncated proteoforms that retain one or the other termini. The strategy has been evaluated by application to the immunosuppressive extracellular vesicles released by myeloid-derived suppressor cells. More than 1000 truncated proteoforms have been identified, from which binding motifs are derived to allow characterization of the putative proteases responsible for truncation.
Collapse
Affiliation(s)
- Dapeng Chen
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Lucia Geis-Asteggiante
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Fabio P Gomes
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , Maryland 21250 , United States
| | - Catherine Fenselau
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
43
|
Zhuang Q, Holt BA, Kwong GA, Qiu P. Deconvolving multiplexed protease signatures with substrate reduction and activity clustering. PLoS Comput Biol 2019; 15:e1006909. [PMID: 31479443 PMCID: PMC6743790 DOI: 10.1371/journal.pcbi.1006909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 09/13/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
Proteases are multifunctional, promiscuous enzymes that degrade proteins as well as peptides and drive important processes in health and disease. Current technology has enabled the construction of libraries of peptide substrates that detect protease activity, which provides valuable biological information. An ideal library would be orthogonal, such that each protease only hydrolyzes one unique substrate, however this is impractical due to off-target promiscuity (i.e., one protease targets multiple different substrates). Therefore, when a library of probes is exposed to a cocktail of proteases, each protease activates multiple probes, producing a convoluted signature. Computational methods for parsing these signatures to estimate individual protease activities primarily use an extensive collection of all possible protease-substrate combinations, which require impractical amounts of training data when expanding to search for more candidate substrates. Here we provide a computational method for estimating protease activities efficiently by reducing the number of substrates and clustering proteases with similar cleavage activities into families. We envision that this method will be used to extract meaningful diagnostic information from biological samples. The activity of enzymatic proteins, which are called proteases, drives numerous important processes in health and disease: including cancer, immunity, and infectious disease. Many labs have developed useful diagnostics by designing sensors that measure the activity of these proteases. However, if we want to detect multiple proteases at the same time, it becomes impractical to design sensors that only detect one protease. This is due to a phenomenon called protease promiscuity, which means that proteases will activate multiple different sensors. Computational methods have been created to solve this problem, but the challenge is that these often require large amounts of training data. Further, completely different proteases may be detected by the same subset of sensors. In this work, we design a computational method to overcome this problem by clustering similar proteases into "subfamilies", which increases estimation accuracy. Further, our method tests multiple combinations of sensors to maintain accuracy while minimizing the number of sensors used. Together, we envision that this work will increase the amount of useful information we can extract from biological samples, which may lead to better clinical diagnostics.
Collapse
Affiliation(s)
- Qinwei Zhuang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Brandon Alexander Holt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Gabriel A. Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, Georgia, United States of America
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Georgia ImmunoEngineering Consortium, Georgia Tech and Emory University, Atlanta, Georgia, United States of America
- * E-mail: (GAK); (PQ)
| | - Peng Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, Georgia, United States of America
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail: (GAK); (PQ)
| |
Collapse
|
44
|
Morozov AV, Karpov VL. Proteasomes and Several Aspects of Their Heterogeneity Relevant to Cancer. Front Oncol 2019; 9:761. [PMID: 31456945 PMCID: PMC6700291 DOI: 10.3389/fonc.2019.00761] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/29/2019] [Indexed: 01/19/2023] Open
Abstract
The life of every organism is dependent on the fine-tuned mechanisms of protein synthesis and breakdown. The degradation of most intracellular proteins is performed by the ubiquitin proteasome system (UPS). Proteasomes are central elements of the UPS and represent large multisubunit protein complexes directly responsible for the protein degradation. Accumulating data indicate that there is an intriguing diversity of cellular proteasomes. Different proteasome forms, containing different subunits and attached regulators have been described. In addition, proteasomes specific for a particular tissue were identified. Cancer cells are highly dependent on the proper functioning of the UPS in general, and proteasomes in particular. At the same time, the information regarding the role of different proteasome forms in cancer is limited. This review describes the functional and structural heterogeneity of proteasomes, their association with cancer as well as several established and novel proteasome-directed therapeutic strategies.
Collapse
Affiliation(s)
- Alexey V. Morozov
- Laboratory of Regulation of Intracellular Proteolysis, W.A. Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | | |
Collapse
|
45
|
Javitt A, Merbl Y. Global views of proteasome-mediated degradation by mass spectrometry. Expert Rev Proteomics 2019; 16:711-716. [PMID: 31387416 DOI: 10.1080/14789450.2019.1651979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Degradation of proteins by cellular proteasomes is critical for the fidelity of protein homeostasis and proper cell function. Indeed, perturbations in proteasome function, as well as the degradation of specific substrates, are associated with a variety of human diseases. Yet, monitoring and analyzing protein degradation in a high throughput manner in physiology and pathology remains limited. Areas covered: Here we discuss several of the recently developed mass spectrometry-based methods for studying proteasome-mediated cellular degradation and discuss their advantages and limitations. We highlight Mass Spectrometry Analysis of Proteolytic Peptides (MAPP), a method designed to purify and identify proteasome-cleaved cellular proteins as a novel approach in molecular and clinical profiling of human disease. Expert opinion: The recent improvement of proteomics technologies now offers an unprecedented ability to study disease in clinical settings. Expanding clinical studies to include the degradation landscape will provide a new resolution to complement the cellular proteome. In turn, this holds promise to provide both new disease targets and novel peptide biomarkers which will further enhance personalized proteomics.
Collapse
Affiliation(s)
- Aaron Javitt
- Department of Immunology, Weizmann Institute of Science , Rehovot , Israel
| | - Yifat Merbl
- Department of Immunology, Weizmann Institute of Science , Rehovot , Israel
| |
Collapse
|
46
|
Hoffmann PR, Hoffmann FW, Premeaux TA, Fujita T, Soprana E, Panigada M, Chew GM, Richard G, Hindocha P, Menor M, Khadka VS, Deng Y, Moise L, Ndhlovu LC, Siccardi A, Weinberg AD, De Groot AS, Bertino P. Multi-antigen Vaccination With Simultaneous Engagement of the OX40 Receptor Delays Malignant Mesothelioma Growth and Increases Survival in Animal Models. Front Oncol 2019; 9:720. [PMID: 31428586 PMCID: PMC6688537 DOI: 10.3389/fonc.2019.00720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/19/2019] [Indexed: 01/09/2023] Open
Abstract
Malignant Mesothelioma (MM) is a rare and highly aggressive cancer that develops from mesothelial cells lining the pleura and other internal cavities, and is often associated with asbestos exposure. To date, no effective treatments have been made available for this pathology. Herein, we propose a novel immunotherapeutic approach based on a unique vaccine targeting a series of antigens that we found expressed in different MM tumors, but largely undetectable in normal tissues. This vaccine, that we term p-Tvax, is comprised of a series of immunogenic peptides presented by both MHC-I and -II to generate robust immune responses. The peptides were designed using in silico algorithms that discriminate between highly immunogenic T cell epitopes and other harmful epitopes, such as suppressive regulatory T cell epitopes and autoimmune epitopes. Vaccination of mice with p-Tvax led to antigen-specific immune responses that involved both CD8+ and CD4+ T cells, which exhibited cytolytic activity against MM cells in vitro. In mice carrying MM tumors, p-Tvax increased tumor infiltration of CD4+ T cells. Moreover, combining p-Tvax with an OX40 agonist led to decreased tumor growth and increased survival. Mice treated with this combination immunotherapy displayed higher numbers of tumor-infiltrating CD8+ and CD4+ T cells and reduced T regulatory cells in tumors. Collectively, these data suggest that the combination of p-Tvax with an OX40 agonist could be an effective strategy for MM treatment.
Collapse
Affiliation(s)
- Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Fukun W Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Thomas A Premeaux
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Tsuyoshi Fujita
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Elisa Soprana
- Department of Molecular Immunology, San Raffaele University and Research Institute, Milan, Italy
| | - Maddalena Panigada
- Department of Molecular Immunology, San Raffaele University and Research Institute, Milan, Italy
| | - Glen M Chew
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | | | | | - Mark Menor
- Bioinformatics Core, Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Vedbar S Khadka
- Bioinformatics Core, Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Youping Deng
- Bioinformatics Core, Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Lenny Moise
- EpiVax, Inc., Providence, RI, United States.,Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Lishomwa C Ndhlovu
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Antonio Siccardi
- Department of Molecular Immunology, San Raffaele University and Research Institute, Milan, Italy
| | - Andrew D Weinberg
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Anne S De Groot
- EpiVax, Inc., Providence, RI, United States.,Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Pietro Bertino
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| |
Collapse
|
47
|
Pletinckx K, Vaßen S, Schlusche I, Nordhoff S, Bahrenberg G, Dunkern TR. Inhibiting the immunoproteasome's β5i catalytic activity affects human peripheral blood-derived immune cell viability. Pharmacol Res Perspect 2019; 7:e00482. [PMID: 31236277 PMCID: PMC6581949 DOI: 10.1002/prp2.482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/01/2018] [Accepted: 04/05/2019] [Indexed: 01/03/2023] Open
Abstract
Small molecule inhibitors selectively targeting the immunoproteasome subunit β5i are currently being developed for the treatment of autoimmune disorders. However, patients carrying loss-of-function mutations in the gene encoding β5i (Psmb8) suffer from the proteasome-associated autoinflammatory syndromes (PRAAS) emphasizing the need to study pharmacological inhibition of immunoproteasome function in human cells. Here, we characterized the immunomodulatory potential of the selective β5i inhibitor ONX 0914 and Bortezomib, a pan-proteasome inhibitor, in human peripheral blood mononuclear cells (PBMCs). Both compounds efficiently blocked pro-inflammatory cytokine secretion in human whole blood and PBMC cultures stimulated with toll-like receptor (TLR) agonists. Furthermore, the compounds inhibited T cell cytokine production induced by recall antigen CMVpp65 or by polyclonal stimulation. The viability of PBMCs, however, was rapidly decreased in the presence of ONX 0914 and Bortezomib demonstrated by decreased residual cytosolic ATP and increased Annexin V surface binding. Interestingly, HLA-DR + monocytes were rapidly depleted from the cultures in the presence of ONX 0914 as a β5i-selective inhibitor and Bortezomib. In conclusion, the anti-inflammatory potential of β5i-selective inhibitors is correlating with a cytotoxicity increase in human PBMC subsets ex vivo. Our results provide important insights into the anti-inflammatory mechanism of action of β5i-inhibitors which currently hold the promise as a novel therapy for autoinflammatory diseases.
Collapse
|
48
|
Lapek JD, Jiang Z, Wozniak JM, Arutyunova E, Wang SC, Lemieux MJ, Gonzalez DJ, O'Donoghue AJ. Quantitative Multiplex Substrate Profiling of Peptidases by Mass Spectrometry. Mol Cell Proteomics 2019; 18:968-981. [PMID: 30705125 DOI: 10.1074/mcp.tir118.001099] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/31/2018] [Indexed: 12/14/2022] Open
Abstract
Proteolysis is an integral component of life and has been implicated in many disease processes. To improve our understanding of peptidase function, it is imperative to develop tools to uncover substrate specificity and cleavage efficiency. Here, we combine the quantitative power of tandem mass tags (TMTs) with an established peptide cleavage assay to yield quantitative Multiplex Substrate Profiling by Mass Spectrometry (qMSP-MS). This assay was validated with papain, a well-characterized cysteine peptidase, to generate cleavage efficiency values for hydrolysis of 275 unique peptide bonds in parallel. To demonstrate the breath of this assay, we show that qMSP-MS can uncover the substrate specificity of minimally characterized intramembrane rhomboid peptidases, as well as define hundreds of proteolytic activities in complex biological samples, including secretions from lung cancer cell lines. Importantly, our qMSP-MS library uses synthetic peptides whose termini are unmodified, allowing us to characterize not only endo- but also exo-peptidase activity. Each cleaved peptide sequence can be ranked by turnover rate, and the amino acid sequence of the best substrates can be used for designing fluorescent reporter substrates. Discovery of peptide substrates that are selectively cleaved by peptidases which are active at the site of disease highlights the potential for qMSP-MS to guide the development of peptidase-activating drugs for cancer and infectious disease.
Collapse
Affiliation(s)
- John D Lapek
- From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093
| | - Zhenze Jiang
- §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; ¶Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093
| | - Jacob M Wozniak
- From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093
| | - Elena Arutyunova
- ‖Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Steven C Wang
- §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; **Division of Biological Sciences, University of California, San Diego, 9500, Gilman Drive, La Jolla, California 92093
| | - M Joanne Lemieux
- ‖Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - David J Gonzalez
- From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;.
| | - Anthony J O'Donoghue
- §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;.
| |
Collapse
|
49
|
Downey-Kopyscinski S, Daily EW, Gautier M, Bhatt A, Florea BI, Mitsiades CS, Richardson PG, Driessen C, Overkleeft HS, Kisselev AF. An inhibitor of proteasome β2 sites sensitizes myeloma cells to immunoproteasome inhibitors. Blood Adv 2018; 2:2443-2451. [PMID: 30266819 PMCID: PMC6177641 DOI: 10.1182/bloodadvances.2018016360] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/18/2018] [Indexed: 12/22/2022] Open
Abstract
Proteasome inhibitors bortezomib, carfilzomib and ixazomib (approved by the US Food and Drug Administration [FDA]) induce remissions in patients with multiple myeloma (MM), but most patients eventually become resistant. MM and other hematologic malignancies express ubiquitous constitutive proteasomes and lymphoid tissue-specific immunoproteasomes; immunoproteasome expression is increased in resistant patients. Immunoproteasomes contain 3 distinct pairs of active sites, β5i, β1i, and β2i, which are different from their constitutive β5c, β1c, and β2c counterparts. Bortezomib and carfilzomib block β5c and β5i sites. We report here that pharmacologically relevant concentrations of β5i-specific inhibitor ONX-0914 show cytotoxicity in MM cell lines similar to that of carfilzomib and bortezomib. In addition, increasing immunoproteasome expression by interferon-γ increases sensitivity to ONX-0914 but not to carfilzomib. LU-102, an inhibitor of β2 sites, dramatically sensitizes MM cell lines and primary cells to ONX-0914. ONX-0914 synergizes with all FDA-approved proteasome inhibitors in MM in vitro and in vivo. Thus, immunoproteasome inhibitors, currently in clinical trials for the treatment of autoimmune diseases, should also be considered for the treatment of MM.
Collapse
Affiliation(s)
- Sondra Downey-Kopyscinski
- Program in Experimental and Molecular Medicine and
- Department of Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH
- Dana-Farber Cancer Institute, Boston MA
| | - Ellen W Daily
- Department of Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Marc Gautier
- Department of Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Ananta Bhatt
- Department of Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Bogdan I Florea
- Leiden Institute of Chemistry and Netherlands Proteomics Centre, Leiden University, Leiden, The Netherlands
| | | | | | - Christoph Driessen
- Department of Hematology and Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland; and
| | - Herman S Overkleeft
- Leiden Institute of Chemistry and Netherlands Proteomics Centre, Leiden University, Leiden, The Netherlands
| | - Alexei F Kisselev
- Department of Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH
- Veterans Affairs Medical Center, White River Junction, VT
| |
Collapse
|
50
|
Bastola P, Oien DB, Cooley M, Chien J. Emerging Cancer Therapeutic Targets in Protein Homeostasis. AAPS JOURNAL 2018; 20:94. [PMID: 30151644 DOI: 10.1208/s12248-018-0254-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022]
Abstract
Genomic aberrations inside malignant cells through copy number alterations, aneuploidy, and mutations can exacerbate misfolded and unfolded protein burden resulting in increased proteotoxic stress. Increased proteotoxic stress can be deleterious to malignant cells; therefore, these cells rely heavily on the protein quality control mechanisms for survival and proliferation. Components of the protein quality control, such as the unfolded protein response, heat shock proteins, autophagy, and the ubiquitin proteasome system, orchestrate a cascade of downstream events that allow the mitigation of the proteotoxic stress. This dependency makes components of the protein quality control mechanisms attractive targets in cancer therapeutics. In this review, we explore the components of the protein homeostasis especially focusing on the emerging cancer therapeutic agents/targets that are being actively pursued actively.
Collapse
Affiliation(s)
- Prabhakar Bastola
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM, 87131, USA.,Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66130, USA
| | - Derek B Oien
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM, 87131, USA
| | - Megan Cooley
- Methods Development, Small Molecules, PRA Health Sciences, Lenexa, KS, 66215, USA
| | - Jeremy Chien
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM, 87131, USA.
| |
Collapse
|