1
|
Cao J, Zheng Z, Sun D, Chen X, Cheng R, Lv T, An Y, Zheng J, Song J, Wu L, Yang C. Decoder-seq enhances mRNA capture efficiency in spatial RNA sequencing. Nat Biotechnol 2024; 42:1735-1746. [PMID: 38228777 DOI: 10.1038/s41587-023-02086-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
Spatial transcriptomics technologies with high resolution often lack high sensitivity in mRNA detection. Here we report a dendrimeric DNA coordinate barcoding design for spatial RNA sequencing (Decoder-seq), which offers both high sensitivity and high resolution. Decoder-seq combines dendrimeric nanosubstrates with microfluidic coordinate barcoding to generate spatial arrays with a DNA density approximately ten times higher than previously reported methods while maintaining flexibility in resolution. We show that the high RNA capture efficiency of Decoder-seq improved the detection of lowly expressed olfactory receptor (Olfr) genes in mouse olfactory bulbs and contributed to the discovery of a unique layer enrichment pattern for two Olfr genes. The near-cellular resolution provided by Decoder-seq has enabled the construction of a spatial single-cell atlas of the mouse hippocampus, revealing dendrite-enriched mRNAs in neurons. When applying Decoder-seq to human renal cell carcinomas, we dissected the heterogeneous tumor microenvironment across different cancer subtypes and identified spatial gradient-expressed genes related to epithelial-mesenchymal transition with the potential to predict tumor prognosis and progression.
Collapse
Affiliation(s)
- Jiao Cao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Zheng
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Sun
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Chen
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Cheng
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianpeng Lv
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu An
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junhua Zheng
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jia Song
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemical of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| |
Collapse
|
2
|
Rangadurai AK, Ruetz L, Ahmed R, Lo K, Tollinger M, Forman-Kay JD, Kreutz C, Kay LE. Phase Separation Modulates the Thermodynamics and Kinetics of RNA Hybridization. J Am Chem Soc 2024; 146:19686-19689. [PMID: 38991204 DOI: 10.1021/jacs.4c06530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Biomolecular condensates can influence cellular function in a number of ways, including by changing the structural dynamics and conformational equilibria of the molecules partitioned within them. Here we use methyl transverse relaxation optimized spectroscopy (methyl-TROSY) NMR in conjunction with 2'-O-methyl labeling of RNA to characterize the thermodynamics and kinetics of RNA-RNA base pairing in condensates formed by the C-terminal intrinsically disordered region of CAPRIN1, an RNA-binding protein involved in RNA transport, translation, and stability. CAPRIN1 condensates destabilize RNA-RNA base pairing, resulting from a ∼270-fold decrease and a concomitant ∼15-fold increase in the on- and off-rates for duplex formation, respectively. The ∼30-fold slower diffusion of RNA single strands within the condensed phase partially accounts for the reduced on-rate, but the further ∼9-fold reduction likely reflects shedding of CAPRIN1 chains that are interacting with the RNA prior to hybridization. Our study emphasizes the important role of protein solvation in modulating nucleic acid recognition processes inside condensates.
Collapse
Affiliation(s)
- Atul K Rangadurai
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Lisa Ruetz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Rashik Ahmed
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Kristen Lo
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Martin Tollinger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Julie D Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
3
|
Pérez RF, Tezanos P, Peñarroya A, González-Ramón A, Urdinguio RG, Gancedo-Verdejo J, Tejedor JR, Santamarina-Ojeda P, Alba-Linares JJ, Sainz-Ledo L, Roberti A, López V, Mangas C, Moro M, Cintado Reyes E, Muela Martínez P, Rodríguez-Santamaría M, Ortea I, Iglesias-Rey R, Castilla-Silgado J, Tomás-Zapico C, Iglesias-Gutiérrez E, Fernández-García B, Sanchez-Mut JV, Trejo JL, Fernández AF, Fraga MF. A multiomic atlas of the aging hippocampus reveals molecular changes in response to environmental enrichment. Nat Commun 2024; 15:5829. [PMID: 39013876 PMCID: PMC11252340 DOI: 10.1038/s41467-024-49608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Aging involves the deterioration of organismal function, leading to the emergence of multiple pathologies. Environmental stimuli, including lifestyle, can influence the trajectory of this process and may be used as tools in the pursuit of healthy aging. To evaluate the role of epigenetic mechanisms in this context, we have generated bulk tissue and single cell multi-omic maps of the male mouse dorsal hippocampus in young and old animals exposed to environmental stimulation in the form of enriched environments. We present a molecular atlas of the aging process, highlighting two distinct axes, related to inflammation and to the dysregulation of mRNA metabolism, at the functional RNA and protein level. Additionally, we report the alteration of heterochromatin domains, including the loss of bivalent chromatin and the uncovering of a heterochromatin-switch phenomenon whereby constitutive heterochromatin loss is partially mitigated through gains in facultative heterochromatin. Notably, we observed the multi-omic reversal of a great number of aging-associated alterations in the context of environmental enrichment, which was particularly linked to glial and oligodendrocyte pathways. In conclusion, our work describes the epigenomic landscape of environmental stimulation in the context of aging and reveals how lifestyle intervention can lead to the multi-layered reversal of aging-associated decline.
Collapse
Affiliation(s)
- Raúl F Pérez
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Patricia Tezanos
- Departamento de Neurociencia Translacional, Instituto Cajal-Consejo Superior de Investigaciones Científicas (IC-CSIC), 28002, Madrid, Spain
- Programa de Doctorado en Neurociencia, Universidad Autónoma de Madrid-Instituto Cajal, 28002, Madrid, Spain
| | - Alfonso Peñarroya
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
| | - Alejandro González-Ramón
- Laboratory of Functional Epi-Genomics of Aging and Alzheimer's disease, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550, Alicante, Spain
| | - Rocío G Urdinguio
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Javier Gancedo-Verdejo
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Juan Ramón Tejedor
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Pablo Santamarina-Ojeda
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Juan José Alba-Linares
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Lidia Sainz-Ledo
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
| | - Annalisa Roberti
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
| | - Virginia López
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Cristina Mangas
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
| | - María Moro
- Departamento de Neurociencia Translacional, Instituto Cajal-Consejo Superior de Investigaciones Científicas (IC-CSIC), 28002, Madrid, Spain
| | - Elisa Cintado Reyes
- Departamento de Neurociencia Translacional, Instituto Cajal-Consejo Superior de Investigaciones Científicas (IC-CSIC), 28002, Madrid, Spain
- Programa de Doctorado en Neurociencia, Universidad Autónoma de Madrid-Instituto Cajal, 28002, Madrid, Spain
| | - Pablo Muela Martínez
- Departamento de Neurociencia Translacional, Instituto Cajal-Consejo Superior de Investigaciones Científicas (IC-CSIC), 28002, Madrid, Spain
- Programa de Doctorado en Neurociencia, Universidad Autónoma de Madrid-Instituto Cajal, 28002, Madrid, Spain
| | - Mar Rodríguez-Santamaría
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Bioterio y unidad de imagen preclínica, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Ignacio Ortea
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Proteomics Unit, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), 33011, Oviedo, Spain
| | - Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Juan Castilla-Silgado
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Cristina Tomás-Zapico
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Eduardo Iglesias-Gutiérrez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Benjamín Fernández-García
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Jose Vicente Sanchez-Mut
- Laboratory of Functional Epi-Genomics of Aging and Alzheimer's disease, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550, Alicante, Spain
| | - José Luis Trejo
- Departamento de Neurociencia Translacional, Instituto Cajal-Consejo Superior de Investigaciones Científicas (IC-CSIC), 28002, Madrid, Spain
| | - Agustín F Fernández
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| | - Mario F Fraga
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
- Departamento de Biología de Organismos y Sistemas, Área de Fisiología Vegetal, Universidad de Oviedo, 33006, Oviedo, Spain.
| |
Collapse
|
4
|
Gao Y, Wu R, Pei Z, Ke C, Zeng D, Li X, Zhang Y. Cell cycle associated protein 1 associates with immune infiltration and ferroptosis in gastrointestinal cancer. Heliyon 2024; 10:e28794. [PMID: 38586390 PMCID: PMC10998105 DOI: 10.1016/j.heliyon.2024.e28794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Background Cell Cycle-Associated Protein 1 (CAPRIN1) play an important role in cell proliferation, oxidative stress, and inflammatory response. Nonetheless, its role in tumor immunity and ferroptosis is largely unknown in gastrointestinal cancer patients. Methods Through comprehensive bioinformatics, we investigate CAPRIN1 expression patterns and its role in diagnosis, functional signaling pathways, tumor immune infiltration and ferroptosis of different gastrointestinal cancer subtypes. Besides, immunohistochemistry (IHC) and immune blot were used to validate our esophagus cancer clinical data. The ferroptotic features of CAPRIN1 in vitro were assessed through knockdown assays in esophagus cancer cells. Results CAPRIN1 expression was significantly upregulated, correlated with poor prognosis, and served as an independent risk factor for most gastrointestinal cancer. Moreover, CAPRIN1 overexpression positively correlated with gene markers of most infiltrating immune cells, and immune checkpoints. CAPRIN1 knockdown significantly decreased the protein level of major histocompatibility complex class I molecules. We also identified a link between CAPRIN1 and ferroptosis-related genes in gastrointestinal cancer. Knockdown of CAPRIN1 significantly increased the production of lipid reactive oxygen species and malondialdehyde. Inhibition of CAPRIN1 expression promoted ferroptotic cell death induced by RAS-selective lethal 3 and erastin in human esophagus cancer cells. Conclusion Collectively, our results demonstrate that CAPRIN1 is aberrantly expressed in gastrointestinal cancer, is associated with poor prognosis, and could potentially influence immune infiltration and ferroptosis.
Collapse
Affiliation(s)
- Yan Gao
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Ruimin Wu
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhijun Pei
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Changbin Ke
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Daobing Zeng
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaohui Li
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
5
|
Liau WS, Zhao Q, Bademosi A, Gormal RS, Gong H, Marshall PR, Periyakaruppiah A, Madugalle SU, Zajaczkowski EL, Leighton LJ, Ren H, Musgrove M, Davies J, Rauch S, He C, Dickinson BC, Li X, Wei W, Meunier FA, Fernández-Moya SM, Kiebler MA, Srinivasan B, Banerjee S, Clark M, Spitale RC, Bredy TW. Fear extinction is regulated by the activity of long noncoding RNAs at the synapse. Nat Commun 2023; 14:7616. [PMID: 37993455 PMCID: PMC10665438 DOI: 10.1038/s41467-023-43535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) represent a multidimensional class of regulatory molecules that are involved in many aspects of brain function. Emerging evidence indicates that lncRNAs are localized to the synapse; however, a direct role for their activity in this subcellular compartment in memory formation has yet to be demonstrated. Using lncRNA capture-seq, we identified a specific set of lncRNAs that accumulate in the synaptic compartment within the infralimbic prefrontal cortex of adult male C57/Bl6 mice. Among these was a splice variant related to the stress-associated lncRNA, Gas5. RNA immunoprecipitation followed by mass spectrometry and single-molecule imaging revealed that this Gas5 isoform, in association with the RNA binding proteins G3BP2 and CAPRIN1, regulates the activity-dependent trafficking and clustering of RNA granules. In addition, we found that cell-type-specific, activity-dependent, and synapse-specific knockdown of the Gas5 variant led to impaired fear extinction memory. These findings identify a new mechanism of fear extinction that involves the dynamic interaction between local lncRNA activity and RNA condensates in the synaptic compartment.
Collapse
Affiliation(s)
- Wei-Siang Liau
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| | - Qiongyi Zhao
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Adekunle Bademosi
- Single Molecule Neuroscience Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Rachel S Gormal
- Single Molecule Neuroscience Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Hao Gong
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Marshall
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ambika Periyakaruppiah
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Sachithrani U Madugalle
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Esmi L Zajaczkowski
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Laura J Leighton
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Haobin Ren
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Mason Musgrove
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Joshua Davies
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Simone Rauch
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Frédéric A Meunier
- Single Molecule Neuroscience Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Sandra M Fernández-Moya
- Biomedical Centre, Ludwig Maximilian University of Munich, Munich, Germany
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet del Llobregat, 08908, Barcelona, Spain
| | - Michael A Kiebler
- Biomedical Centre, Ludwig Maximilian University of Munich, Munich, Germany
| | | | | | - Michael Clark
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, The University of California, Irvine, CA, USA
| | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
Horio T, Ishikura Y, Ohashi R, Shiina N. Regulation of RNG105/caprin1 dynamics by pathogenic cytoplasmic FUS and TDP-43 in neuronal RNA granules modulates synaptic loss. Heliyon 2023; 9:e17065. [PMID: 37484309 PMCID: PMC10361247 DOI: 10.1016/j.heliyon.2023.e17065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
In neurodegenerative diseases, the condensation of FUS and TDP-43 with RNA granules in neurons is linked to pathology, including synaptic disorders. However, the effects of FUS and TDP-43 on RNA granule factors remain unclear. Here, using primary cultured neurons from the mouse cerebral cortex, we show that excess cytoplasmic FUS and TDP-43 accumulated in dendritic RNA granules, where they increased the dynamics of a scaffold protein RNG105/caprin1 and dissociated it from the granules. This coincided with reduced levels of mRNA and translation around the granules and synaptic loss in dendrites. These defects were suppressed by non-dissociable RNG105, suggesting that RNG105 dissociation mediated the defects. In contrast to the model where FUS and TDP-43 co-aggregate with RNA granule factors to repress their activity, our findings provide a novel pathogenic mechanism whereby FUS and TDP-43 dissociate RNA scaffold proteins from RNA granules which are required for local translation that regulates synapse formation.
Collapse
Affiliation(s)
- Tomoyo Horio
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| | - Yui Ishikura
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| | - Rie Ohashi
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Life Science Research Center, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
7
|
Okano F, Saito T, Minamida Y, Kobayashi S, Ido T, Miyauchi Y, Wasai U, Akazawa D, Kume M, Ishibashi M, Jiang K, Aicher A, Heeschen C, Yonehara T. Identification of Membrane-expressed CAPRIN-1 as a Novel and Universal Cancer Target, and Generation of a Therapeutic Anti-CAPRIN-1 Antibody TRK-950. CANCER RESEARCH COMMUNICATIONS 2023; 3:640-658. [PMID: 37082579 PMCID: PMC10112292 DOI: 10.1158/2767-9764.crc-22-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/22/2022] [Accepted: 03/21/2023] [Indexed: 04/22/2023]
Abstract
Specific targets for cancer treatment are highly desirable, but still remain to be discovered. While previous reports suggested that CAPRIN-1 localizes in the cytoplasm, here we now show that part of this molecule is strongly expressed on the cell membrane surface in most solid cancers, but not normal tissues. Notably, the membrane expression of CAPRIN-1 extended to the subset of highly tumorigenic cancer stem cells and epithelial-mesenchymal transition (EMT)-induced metastatic cancer cells. In addition, we revealed that cancer cells with particularly high CAPRIN-1 surface expression exhibited enhanced tumorigenicity. We generated a therapeutic humanized anti-CAPRIN-1 antibody (TRK-950), which strongly and specifically binds to various cancer cells and shows antitumor effects via engagement of immune cells. TRK-950 was further developed as a new cancer drug and a series of preclinical studies demonstrates its therapeutic potency in tumor-bearing mouse models and safety in a relevant cynomolgus monkey model. Together, our data demonstrate that CAPRIN-1 is a novel and universal target for cancer therapies. A phase I clinical study of TRK-950 has been completed (NCT02990481) and a phase Ib study (combination with approved drugs) is currently underway (NCT03872947) in the United States and France. In parallel, a phase I study in Japan is in progress as well (NCT05423262). Significance Antibody-based cancer therapies have been demonstrated to be effective, but are only approved for a limited number of targets, because the majority of these markers is shared with healthy tissue, which may result in adverse effects. Here, we have successfully identified CAPRIN-1 as a novel truly cancer-specific target, universally expressed on membranes of various cancer cells including cancer stem cells. Clinical studies are underway for the anti-CAPRIN-1 therapeutic antibody TRK-950.
Collapse
Affiliation(s)
- Fumiyoshi Okano
- Toray Industries, Inc., New Frontiers Research Laboratories, Kamakura, Kanagawa, Japan
| | - Takanori Saito
- Toray Industries, Inc., New Frontiers Research Laboratories, Kamakura, Kanagawa, Japan
| | - Yoshitaka Minamida
- Toray Industries, Inc., New Frontiers Research Laboratories, Kamakura, Kanagawa, Japan
| | - Shinichi Kobayashi
- Toray Industries, Inc., New Frontiers Research Laboratories, Kamakura, Kanagawa, Japan
| | - Takayoshi Ido
- Toray Industries, Inc., New Frontiers Research Laboratories, Kamakura, Kanagawa, Japan
| | | | - Ukei Wasai
- Toray Industries, Inc., New Frontiers Research Laboratories, Kamakura, Kanagawa, Japan
| | - Daisuke Akazawa
- Toray Industries, Inc., New Frontiers Research Laboratories, Kamakura, Kanagawa, Japan
| | - Masahiko Kume
- Toray Industries, Inc., New Frontiers Research Laboratories, Kamakura, Kanagawa, Japan
| | - Masaki Ishibashi
- Toray Industries, Inc., New Frontiers Research Laboratories, Kamakura, Kanagawa, Japan
| | - Ke Jiang
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute – FPO – IRCCS, Candiolo, Torino, Italy
- Center for Single-Cell Omics and Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Alexandra Aicher
- Graduate Institute for Biomedical Sciences Precision Immunotherapy Group China Medical University, North District Taichung City, Taiwan
| | - Christopher Heeschen
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute – FPO – IRCCS, Candiolo, Torino, Italy
- Center for Single-Cell Omics and Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Tetsu Yonehara
- Toray Industries, Inc., New Frontiers Research Laboratories, Kamakura, Kanagawa, Japan
| |
Collapse
|
8
|
Yamashita A, Shichino Y, Fujii K, Koshidaka Y, Adachi M, Sasagawa E, Mito M, Nakagawa S, Iwasaki S, Takao K, Shiina N. ILF3 prion-like domain regulates gene expression and fear memory under chronic stress. iScience 2023; 26:106229. [PMID: 36876121 PMCID: PMC9982275 DOI: 10.1016/j.isci.2023.106229] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/11/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The prion-like domain (PrLD) is a class of intrinsically disordered regions. Although its propensity to form condensates has been studied in the context of neurodegenerative diseases, the physiological role of PrLD remains unclear. Here, we investigated the role of PrLD in the RNA-binding protein NFAR2, generated by a splicing variant of the Ilf3 gene. Removal of the PrLD in mice did not impair the function of NFAR2 required for survival, but did affect the responses to chronic water immersion and restraint stress (WIRS). The PrLD was required for WIRS-sensitive nuclear localization of NFAR2 and WIRS-induced changes in mRNA expression and translation in the amygdala, a fear-related brain region. Consistently, the PrLD conferred resistance to WIRS in fear-associated memory formation. Our study provides insights into the PrLD-dependent role of NFAR2 for chronic stress adaptation in the brain.
Collapse
Affiliation(s)
- Akira Yamashita
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Kazuki Fujii
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama 930-0194, Japan
| | - Yumie Koshidaka
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Mayumi Adachi
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Eri Sasagawa
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo Hokkaido 060-0812, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama 930-0194, Japan
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Corresponding author
| |
Collapse
|
9
|
Gao Y, Yuan L, Ke C, Pei Z, Liu X, Wu R, Kui X, Zhang Y. Caprin-1 plays a role in cell proliferation and Warburg metabolism of esophageal carcinoma by regulating METTL3 and WTAP. J Transl Med 2023; 21:159. [PMID: 36855123 PMCID: PMC9976378 DOI: 10.1186/s12967-023-04001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Cytoplasmic activation/proliferation-associated protein-1 (Caprin-1) is implicated in cancer cell proliferation and tumorigenesis; however, its role in the development of esophageal carcinoma (ESCA) has not been examined. METHODS Biological methods and data analysis were used to investigate the expression of Caprin-1 in ESCA tissue and cell lines. We comprehensively analyzed the mRNA expression and prognostic values, signalling pathways of CAPRIN1 in ESCA using public databases online. Biological functions of CAPRIN1 were performed by clorimetric growth assay, EdU staining, colony formation, flow cytometry, apoptosis analysis, Western blot, lactate detection assay, extracellular acidification rates. The underlying mechanism was determined via flow cytometric analysis, Western blot and rescue experiments. In addition, xenograft tumor model was constructed to verify the phenotypes upon CAPRIN1 silencing. RESULTS Caprin-1 expression was significantly elevated in both ESCA tumor tissues and cell lines compared with that in normal adjacent tissues and fibroblasts. Increased CAPRIN1 mRNA expression was significantly associated with clinical prognosis and diagnostic accuracy. The GO enrichment and KEGG pathway analysis CAPRIN1 might be related to immune-related terms, protein binding processes, and metabolic pathways. A significant positive correlation was observed between high Caprin-1 protein levels and lymph node metastasis (P = 0.031), ki-67 (P = 0.023), and 18F- FDG PET/CT parameters (SUVmax (P = 0.002) and SUV mean (P = 0.005)) in 55 ESCA patients. At cut-off values of SUVmax 17.71 and SUVmean 10.14, 18F- FDG PET/CT imaging predicted Caprin-1 expression in ESCA samples with 70.8% sensitivity and 77.4% specificity. In vitro and in vivo assays showed that Caprin-1 knockdown affected ESCA tumor growth. Silencing Caprin-1 inhibited ESCA cell proliferation and glycolysis, and decreased the expression of methyltransferase-like 3 (METTL3) and Wilms' tumor 1-associating protein (WTAP). However, this effect could be partially reversed by the restoration of METTL3 and WTAP expression. CONCLUSIONS Our data suggest that Caprin-1 could serve as a prognostic biomarker and has an oncogenic role in ESCA.
Collapse
Affiliation(s)
- Yan Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Lingling Yuan
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Changbin Ke
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Zhijun Pei
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Xiaobo Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Ruimin Wu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Xueyan Kui
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
10
|
Pavinato L, Delle Vedove A, Carli D, Ferrero M, Carestiato S, Howe JL, Agolini E, Coviello DA, van de Laar I, Au PYB, Di Gregorio E, Fabbiani A, Croci S, Mencarelli MA, Bruno LP, Renieri A, Veltra D, Sofocleous C, Faivre L, Mazel B, Safraou H, Denommé-Pichon AS, van Slegtenhorst MA, Giesbertz N, van Jaarsveld RH, Childers A, Rogers RC, Novelli A, De Rubeis S, Buxbaum JD, Scherer SW, Ferrero GB, Wirth B, Brusco A. CAPRIN1 haploinsufficiency causes a neurodevelopmental disorder with language impairment, ADHD and ASD. Brain 2023; 146:534-548. [PMID: 35979925 PMCID: PMC10169411 DOI: 10.1093/brain/awac278] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/12/2022] Open
Abstract
We describe an autosomal dominant disorder associated with loss-of-function variants in the Cell cycle associated protein 1 (CAPRIN1; MIM*601178). CAPRIN1 encodes a ubiquitous protein that regulates the transport and translation of neuronal mRNAs critical for synaptic plasticity, as well as mRNAs encoding proteins important for cell proliferation and migration in multiple cell types. We identified 12 cases with loss-of-function CAPRIN1 variants, and a neurodevelopmental phenotype characterized by language impairment/speech delay (100%), intellectual disability (83%), attention deficit hyperactivity disorder (82%) and autism spectrum disorder (67%). Affected individuals also had respiratory problems (50%), limb/skeletal anomalies (50%), developmental delay (42%) feeding difficulties (33%), seizures (33%) and ophthalmologic problems (33%). In patient-derived lymphoblasts and fibroblasts, we showed a monoallelic expression of the wild-type allele, and a reduction of the transcript and protein compatible with a half dose. To further study pathogenic mechanisms, we generated sCAPRIN1+/- human induced pluripotent stem cells via CRISPR-Cas9 mutagenesis and differentiated them into neuronal progenitor cells and cortical neurons. CAPRIN1 loss caused reduced neuronal processes, overall disruption of the neuronal organization and an increased neuronal degeneration. We also observed an alteration of mRNA translation in CAPRIN1+/- neurons, compatible with its suggested function as translational inhibitor. CAPRIN1+/- neurons also showed an impaired calcium signalling and increased oxidative stress, two mechanisms that may directly affect neuronal networks development, maintenance and function. According to what was previously observed in the mouse model, measurements of activity in CAPRIN1+/- neurons via micro-electrode arrays indicated lower spike rates and bursts, with an overall reduced activity. In conclusion, we demonstrate that CAPRIN1 haploinsufficiency causes a novel autosomal dominant neurodevelopmental disorder and identify morphological and functional alterations associated with this disorder in human neuronal models.
Collapse
Affiliation(s)
- Lisa Pavinato
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.,Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases Cologne, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Andrea Delle Vedove
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases Cologne, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Diana Carli
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy.,Pediatric Onco-Hematology, Stem Cell Transplantation and Cell Therapy Division, Regina Margherita Children's Hospital, Città Della Salute e Della Scienza di Torino, 10126 Turin, Italy
| | - Marta Ferrero
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.,Experimental Zooprophylactic Institute of Piedmont, Liguria e Valle d'Aosta, 10154 Turin, Italy
| | - Silvia Carestiato
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Jennifer L Howe
- The Centre for Applied Genomics, Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Emanuele Agolini
- Laboratory of Medical Genetics, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Domenico A Coviello
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Ingrid van de Laar
- Clinical Genetics, Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Ping Yee Billie Au
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Eleonora Di Gregorio
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Alessandra Fabbiani
- Medical Genetics Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy.,Medical Genetics, University of Siena, 53100 Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Susanna Croci
- Medical Genetics, University of Siena, 53100 Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | | | - Lucia P Bruno
- Medical Genetics, University of Siena, 53100 Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Alessandra Renieri
- Medical Genetics Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy.,Medical Genetics, University of Siena, 53100 Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Danai Veltra
- Laboratory of Medical Genetics, School of Medicine, National & Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, 11527 Athens, Greece
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, School of Medicine, National & Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, 11527 Athens, Greece
| | - Laurence Faivre
- Centre de référence Anomalies du Développement et Syndromes Malformatifs, Fédération Hospitalo-Universitaire TRANSLAD, CHU Dijon, 21079 Dijon, France.,UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, 21078 Dijon, France
| | - Benoit Mazel
- Centre de référence Anomalies du Développement et Syndromes Malformatifs, Fédération Hospitalo-Universitaire TRANSLAD, CHU Dijon, 21079 Dijon, France
| | - Hana Safraou
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, 21078 Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU TRANSLAD, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Anne-Sophie Denommé-Pichon
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, 21078 Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU TRANSLAD, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Marjon A van Slegtenhorst
- Clinical Genetics, Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Noor Giesbertz
- Department of Genetics, University Medical Centre Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Richard H van Jaarsveld
- Department of Genetics, University Medical Centre Utrecht, 3584 CX, Utrecht, The Netherlands
| | | | | | - Antonio Novelli
- Laboratory of Medical Genetics, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen W Scherer
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,McLaughlin Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases Cologne, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.,Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| |
Collapse
|
11
|
Zhang Y, Kang JY, Liu M, Huang Y. Diverse roles of biomolecular condensation in eukaryotic translational regulation. RNA Biol 2023; 20:893-907. [PMID: 37906632 PMCID: PMC10730148 DOI: 10.1080/15476286.2023.2275108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
Biomolecular condensates, forming membrane-less organelles, orchestrate the sub-cellular compartment to execute designated biological processes. An increasing body of evidence demonstrates the involvement of these biomolecular condensates in translational regulation. This review summarizes recent discoveries concerning biomolecular condensates associated with translational regulation, including their composition, assembly, and functions. Furthermore, we discussed the common features among these biomolecular condensates and the critical questions in the translational regulation areas. These emerging discoveries shed light on the enigmatic translational machinery, refine our understanding of translational regulation, and put forth potential therapeutic targets for diseases born out of translation dysregulation.
Collapse
Grants
- 32171186 AND 91940302 National Natural Science Foundation of China
- 91940305, 31830109, 31821004, 31961133022, 91640201, 32170815, AND 32101037 TO M.L., AND 32201058 National Natural Science Foundation of China
- 2022YFC2702600 National Key R&D Program of China
- 17JC1420100, 2017SHZDZX01, 19JC1410200, 21ZR1470200, 21PJ1413800, 21YF1452700, AND 21ZR1470500 Science and Technology Commission of Shanghai Municipality
- 2022YFC2702600 National Key R&D Program of China
- 2022T150425 China Postdoctoral Science Foundation
Collapse
Affiliation(s)
- Yuhan Zhang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun-Yan Kang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mofang Liu
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ying Huang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Viegas JO, Azad GK, Lv Y, Fishman L, Paltiel T, Pattabiraman S, Park JE, Kaganovich D, Sze SK, Rabani M, Esteban MA, Meshorer E. RNA degradation eliminates developmental transcripts during murine embryonic stem cell differentiation via CAPRIN1-XRN2. Dev Cell 2022; 57:2731-2744.e5. [PMID: 36495875 PMCID: PMC9796812 DOI: 10.1016/j.devcel.2022.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 08/20/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022]
Abstract
Embryonic stem cells (ESCs) are self-renewing and pluripotent. In recent years, factors that control pluripotency, mostly nuclear, have been identified. To identify non-nuclear regulators of ESCs, we screened an endogenously labeled fluorescent fusion-protein library in mouse ESCs. One of the more compelling hits was the cell-cycle-associated protein 1 (CAPRIN1). CAPRIN1 knockout had little effect in ESCs, but it significantly altered differentiation and gene expression programs. Using RIP-seq and SLAM-seq, we found that CAPRIN1 associates with, and promotes the degradation of, thousands of RNA transcripts. CAPRIN1 interactome identified XRN2 as the likely ribonuclease. Upon early ESC differentiation, XRN2 is located in the nucleus and colocalizes with CAPRIN1 in small RNA granules in a CAPRIN1-dependent manner. We propose that CAPRIN1 regulates an RNA degradation pathway operating during early ESC differentiation, thus eliminating undesired spuriously transcribed transcripts in ESCs.
Collapse
Affiliation(s)
- Juliane O. Viegas
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Gajendra Kumar Azad
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel,Department of Zoology, Patna University, Patna, Bihar 800005, India
| | - Yuan Lv
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lior Fishman
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Tal Paltiel
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | | | - Jung Eun Park
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Daniel Kaganovich
- School of Biological Sciences, University of Southampton, Southampton SO171BJ, UK,Wren Therapeutics, Cambridge CB21EW, UK
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore,Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Michal Rabani
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Miguel A. Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Eran Meshorer
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel,Corresponding author
| |
Collapse
|
13
|
Delle Vedove A, Natarajan J, Zanni G, Eckenweiler M, Muiños-Bühl A, Storbeck M, Guillén Boixet J, Barresi S, Pizzi S, Hölker I, Körber F, Franzmann TM, Bertini ES, Kirschner J, Alberti S, Tartaglia M, Wirth B. CAPRIN1 P512L causes aberrant protein aggregation and associates with early-onset ataxia. Cell Mol Life Sci 2022; 79:526. [PMID: 36136249 PMCID: PMC9499908 DOI: 10.1007/s00018-022-04544-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 12/26/2022]
Abstract
CAPRIN1 is a ubiquitously expressed protein, abundant in the brain, where it regulates the transport and translation of mRNAs of genes involved in synaptic plasticity. Here we describe two unrelated children, who developed early-onset ataxia, dysarthria, cognitive decline and muscle weakness. Trio exome sequencing unraveled the identical de novo c.1535C > T (p.Pro512Leu) missense variant in CAPRIN1, affecting a highly conserved residue. In silico analyses predict an increased aggregation propensity of the mutated protein. Indeed, overexpressed CAPRIN1P512L forms insoluble ubiquitinated aggregates, sequestrating proteins associated with neurodegenerative disorders (ATXN2, GEMIN5, SNRNP200 and SNCA). Moreover, the CAPRIN1P512L mutation in isogenic iPSC-derived cortical neurons causes reduced neuronal activity and altered stress granule dynamics. Furthermore, nano-differential scanning fluorimetry reveals that CAPRIN1P512L aggregation is strongly enhanced by RNA in vitro. These findings associate the gain-of-function Pro512Leu mutation to early-onset ataxia and neurodegeneration, unveiling a critical residue of CAPRIN1 and a key role of RNA–protein interactions.
Collapse
Affiliation(s)
- Andrea Delle Vedove
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, 50931, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany.,Institute for Genetics, University of Cologne, 50674, Cologne, Germany
| | - Janani Natarajan
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany
| | - Ginevra Zanni
- Genetics and Rare Diseases Research Division and Unit of Muscular and Neurodegenerative Disorders - the Department of Neurosciences of the Bambino Gesù Childrens' Hospital, IRCCS, Rome, Italy
| | - Matthias Eckenweiler
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, 79106, Freiburg, Germany
| | - Anixa Muiños-Bühl
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, 50931, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany.,Institute for Genetics, University of Cologne, 50674, Cologne, Germany
| | - Markus Storbeck
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, 50931, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany.,Institute for Genetics, University of Cologne, 50674, Cologne, Germany
| | - Jordina Guillén Boixet
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany
| | - Sabina Barresi
- Genetics and Rare Diseases Research Division and Unit of Muscular and Neurodegenerative Disorders - the Department of Neurosciences of the Bambino Gesù Childrens' Hospital, IRCCS, Rome, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division and Unit of Muscular and Neurodegenerative Disorders - the Department of Neurosciences of the Bambino Gesù Childrens' Hospital, IRCCS, Rome, Italy
| | - Irmgard Hölker
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, 50931, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany.,Institute for Genetics, University of Cologne, 50674, Cologne, Germany
| | - Friederike Körber
- Institute of Diagnostic and Interventional Radiology, 50937, Cologne, Germany
| | - Titus M Franzmann
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany
| | - Enrico S Bertini
- Genetics and Rare Diseases Research Division and Unit of Muscular and Neurodegenerative Disorders - the Department of Neurosciences of the Bambino Gesù Childrens' Hospital, IRCCS, Rome, Italy
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, 79106, Freiburg, Germany
| | - Simon Alberti
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division and Unit of Muscular and Neurodegenerative Disorders - the Department of Neurosciences of the Bambino Gesù Childrens' Hospital, IRCCS, Rome, Italy
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany. .,Institute for Genetics, University of Cologne, 50674, Cologne, Germany. .,Center for Rare Diseases, University Hospital of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
14
|
Mapping the per-residue surface electrostatic potential of CAPRIN1 along its phase-separation trajectory. Proc Natl Acad Sci U S A 2022; 119:e2210492119. [PMID: 36040869 PMCID: PMC9457416 DOI: 10.1073/pnas.2210492119] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electrostatic interactions and charge balance are important for the formation of biomolecular condensates involving proteins and nucleic acids. However, a detailed, atomistic picture of the charge distribution around proteins during the phase-separation process is lacking. Here, we use solution NMR spectroscopy to measure residue-specific near-surface electrostatic potentials (ϕENS) of the positively charged carboxyl-terminal intrinsically disordered 103 residues of CAPRIN1, an RNA-binding protein localized to membraneless organelles playing an important role in messenger RNA (mRNA) storage and translation. Measured ϕENS values have been mapped along the adenosine triphosphate (ATP)-induced phase-separation trajectory. In the absence of ATP, ϕENS values for the mixed state of CAPRIN1 are positive and large and progressively decrease as ATP is added. This is coupled to increasing interchain interactions, particularly between aromatic-rich and arginine-rich regions of the protein. Upon phase separation, CAPRIN1 molecules in the condensed phase are neutral (ϕENS [Formula: see text] 0 mV), with ∼five molecules of ATP associated with each CAPRIN1 chain. Increasing the ATP concentration further inverts the CAPRIN1 electrostatic potential, so that molecules become negatively charged, especially in aromatic-rich regions, leading to re-entrance into a mixed phase. Our results collectively show that a subtle balance between electrostatic repulsion and interchain attractive interactions regulates CAPRIN1 phase separation and provides insight into how nucleotides, such as ATP, can induce formation of and subsequently dissolve protein condensates.
Collapse
|
15
|
Kipper K, Mansour A, Pulk A. Neuronal RNA granules are ribosome complexes stalled at the pre-translocation state. J Mol Biol 2022; 434:167801. [PMID: 36038000 DOI: 10.1016/j.jmb.2022.167801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
The polarized cell morphology of neurons dictates many neuronal processes, including the axodendridic transport of specific mRNAs and subsequent translation. mRNAs together with ribosomes and RNA-binding proteins form RNA granules that are targeted to axodendrites for localized translation in neurons. It has been established that localized protein synthesis in neurons is essential for long-term memory formation, synaptic plasticity, and neurodegeneration. We have used proteomics and electron microscopy to characterize neuronal RNA granules (nRNAg) isolated from rat brain tissues or human neuroblastoma. We show that ribosome containing RNA granules are morula-like structures when visualized by electron microscopy. Crosslinking-coupled mass-spectrometry identified potential G3BP2 binding site on the ribosome near the eIF3d-binding site on the 40S ribosomal subunit. We used cryo-EM to resolve the structure of the ribosome-component of nRNAg. The cryo-EM reveals that predominant particles in nRNAg are 80S ribosomes, resembling the pre-translocation state where tRNA's are in the hybrid A/P and P/E site. We also describe a new kind of principal motion of the ribosome, which we call the rocking motion.
Collapse
Affiliation(s)
- Kalle Kipper
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Abbas Mansour
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Arto Pulk
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia.
| |
Collapse
|
16
|
Wei A, Wang L. Prediction of Synaptically Localized RNAs in Human Neurons Using Developmental Brain Gene Expression Data. Genes (Basel) 2022; 13:1488. [PMID: 36011399 PMCID: PMC9408096 DOI: 10.3390/genes13081488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
In the nervous system, synapses are special and pervasive structures between axonal and dendritic terminals, which facilitate electrical and chemical communications among neurons. Extensive studies have been conducted in mice and rats to explore the RNA pool at synapses and investigate RNA transport, local protein synthesis, and synaptic plasticity. However, owing to the experimental difficulties of studying human synaptic transcriptomes, the full pool of human synaptic RNAs remains largely unclear. We developed a new machine learning method, called PredSynRNA, to predict the synaptic localization of human RNAs. Training instances of dendritically localized RNAs were compiled from previous rodent studies, overcoming the shortage of empirical instances of human synaptic RNAs. Using RNA sequence and gene expression data as features, various models with different learning algorithms were constructed and evaluated. Strikingly, the models using the developmental brain gene expression features achieved superior performance for predicting synaptically localized RNAs. We examined the relevant expression features learned by PredSynRNA and used an independent test dataset to further validate the model performance. PredSynRNA models were then applied to the prediction and prioritization of candidate RNAs localized to human synapses, providing valuable targets for experimental investigations into neuronal mechanisms and brain disorders.
Collapse
Affiliation(s)
- Anqi Wei
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| |
Collapse
|
17
|
Toyama Y, Rangadurai AK, Kay LE. Measurement of 1H α transverse relaxation rates in proteins: application to solvent PREs. JOURNAL OF BIOMOLECULAR NMR 2022; 76:137-152. [PMID: 36018482 DOI: 10.1007/s10858-022-00401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
It has recently been demonstrated that accurate near surface electrostatic potentials can be calculated for proteins from solvent paramagnetic relaxation enhancements (PREs) of amide protons measured using spin labels of similar structures but different charges (Yu et al. in Proc Natl Acad Sci 118(25):e2104020118, 2021). Here we develop methodology for extending such measurements to intrinsically disordered proteins at neutral pH where amide spectra are of very poor quality. Under these conditions it is shown that accurate PRE values can be measured using the haCONHA experiment that has been modified for recording 1Hα transverse relaxation rates. The optimal pulse scheme includes a spin-lock relaxation element for suppression of homonuclear scalar coupled evolution for all 1Hα protons, except those derived from Ser and Thr residues, and minimizes the radiation damping field from water magnetization that would otherwise increase measured relaxation rates. The robustness of the experiment is verified by developing a second approach using a band selective adiabatic decoupling scheme for suppression of scalar coupling modulations during 1Hα relaxation and showing that the measured PRE values from the two methods are in excellent agreement. The near surface electrostatic potential of a 103-residue construct comprising the C-terminal intrinsically disordered region of the RNA-binding protein CAPRIN1 is obtained at pH 5.5 using both 1HN and 1Hα-based relaxation rates, and at pH 7.4 where only 1Hα rates can be quantified, with very good agreement between potentials obtained under all experimental conditions.
Collapse
Affiliation(s)
- Yuki Toyama
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Atul Kaushik Rangadurai
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
18
|
Nolan LS, Chen J, Gonçalves AC, Bullen A, Towers ER, Steel KP, Dawson SJ, Gale JE. Targeted deletion of the RNA-binding protein Caprin1 leads to progressive hearing loss and impairs recovery from noise exposure in mice. Sci Rep 2022; 12:2444. [PMID: 35165318 PMCID: PMC8844073 DOI: 10.1038/s41598-022-05657-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022] Open
Abstract
Cell cycle associated protein 1 (Caprin1) is an RNA-binding protein that can regulate the cellular post-transcriptional response to stress. It is a component of both stress granules and neuronal RNA granules and is implicated in neurodegenerative disease, synaptic plasticity and long-term memory formation. Our previous work suggested that Caprin1 also plays a role in the response of the cochlea to stress. Here, targeted inner ear-deletion of Caprin1 in mice leads to an early onset, progressive hearing loss. Auditory brainstem responses from Caprin1-deficient mice show reduced thresholds, with a significant reduction in wave-I amplitudes compared to wildtype. Whilst hair cell structure and numbers were normal, the inner hair cell-spiral ganglion neuron (IHC-SGN) synapse revealed abnormally large post-synaptic GluA2 receptor puncta, a defect consistent with the observed wave-I reduction. Unlike wildtype mice, mild-noise-induced hearing threshold shifts in Caprin1-deficient mice did not recover. Oxidative stress triggered TIA-1/HuR-positive stress granule formation in ex-vivo cochlear explants from Caprin1-deficient mice, showing that stress granules could still be induced. Taken together, these findings suggest that Caprin1 plays a key role in maintenance of auditory function, where it regulates the normal status of the IHC-SGN synapse.
Collapse
Affiliation(s)
- Lisa S Nolan
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Jing Chen
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | | | - Anwen Bullen
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | - Emily R Towers
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Sally J Dawson
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.
| | - Jonathan E Gale
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.
| |
Collapse
|
19
|
Kuffner MTC, Koch SP, Kirchner M, Mueller S, Lips J, An J, Mertins P, Dirnagl U, Endres M, Boehm-Sturm P, Harms C, Hoffmann CJ. Paracrine Interleukin 6 Induces Cerebral Remodeling at Early Stages After Unilateral Common Carotid Artery Occlusion in Mice. Front Cardiovasc Med 2022; 8:805095. [PMID: 35155612 PMCID: PMC8830347 DOI: 10.3389/fcvm.2021.805095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Aims Carotid artery disease is frequent and can result in chronic modest hypoperfusion of the brain. If no transient ischemic attack or stroke occur, it is classified asymptomatic. In the long-term, though, it can lead to cognitive impairment. Fostering cerebral remodeling after carotid artery occlusion might be a new concept of treatment. Paracrine Interleukin 6 (IL-6) can induce such remodeling processes at early stages. However, it has neurodegenerative long-term effects. With this exploratory study, we investigated the effect of paracrine IL-6 on cerebral remodeling in early stages after asymptomatic carotid artery occlusion to identify new treatment targets. Methods and Results To mimic a human asymptomatic carotid artery disease, we used a mouse model of unilateral common carotid artery (CCA) occlusion. We developed a mouse model for inducible paracrine cerebral IL-6 expression (Cx30-Cre-ERT2;FLEX-IL6) and induced IL-6 2 days after CCA occlusion. We studied the effects of paracrine IL-6 after CCA occlusion on neuronal connectivity using diffusion tensor imaging and on local proteome regulations of the hypo-perfused striatum and contralateral motor cortex using mass spectrometry of laser capture micro-dissected tissues. Paracrine IL-6 induced cerebral remodeling leading to increased inter-hemispheric connectivity and changes in motor system connectivity. We identified changes in local protein abundance which might have adverse effects on functional outcome such as upregulation of Synuclein gamma (Sncg) or downregulation of Proline Dehydrogenase 1 (Prodh). However, we also identified changes in local protein abundance having potentially beneficial effects such as upregulation of Caprin1 or downregulation of GABA transporter 1 (Gat1). Conclusions Paracrine cerebral IL-6 at early stages induces changes in motor system connectivity and the proteome after asymptomatic CCA occlusion. Our results may help to distinguish unfavorable from beneficial IL-6 dependent protein regulations. Focusing on these targets might generate new treatments to improve long-term outcome in patients with carotid artery disease.
Collapse
Affiliation(s)
- Melanie T. C. Kuffner
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Stefan P. Koch
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité- Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Susanne Mueller
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Janet Lips
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Jeehye An
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité- Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ulrich Dirnagl
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Partner Site Berlin, Berlin, Germany
- Einstein Center for Neuroscience, Berlin, Germany
- QUEST Quality, Ethics, Open Science, Translation, Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
| | - Matthias Endres
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Partner Site Berlin, Berlin, Germany
- Einstein Center for Neuroscience, Berlin, Germany
| | - Philipp Boehm-Sturm
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Harms
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Einstein Center for Neuroscience, Berlin, Germany
- Christoph Harms
| | - Christian J. Hoffmann
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Christian J. Hoffmann
| |
Collapse
|
20
|
Swarnkar S, Avchalumov Y, Espadas I, Grinman E, Liu XA, Raveendra BL, Zucca A, Mediouni S, Sadhu A, Valente S, Page D, Miller K, Puthanveettil SV. Molecular motor protein KIF5C mediates structural plasticity and long-term memory by constraining local translation. Cell Rep 2021; 36:109369. [PMID: 34260917 PMCID: PMC8319835 DOI: 10.1016/j.celrep.2021.109369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/16/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Synaptic structural plasticity, key to long-term memory storage, requires translation of localized RNAs delivered by long-distance transport from the neuronal cell body. Mechanisms and regulation of this system remain elusive. Here, we explore the roles of KIF5C and KIF3A, two members of kinesin superfamily of molecular motors (Kifs), and find that loss of function of either kinesin decreases dendritic arborization and spine density whereas gain of function of KIF5C enhances it. KIF5C function is a rate-determining component of local translation and is associated with ∼650 RNAs, including EIF3G, a regulator of translation initiation, and plasticity-associated RNAs. Loss of function of KIF5C in dorsal hippocampal CA1 neurons constrains both spatial and contextual fear memory, whereas gain of function specifically enhances spatial memory and extinction of contextual fear. KIF5C-mediated long-distance transport of local translation substrates proves a key mechanism underlying structural plasticity and memory.
Collapse
Affiliation(s)
- Supriya Swarnkar
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Yosef Avchalumov
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Isabel Espadas
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Eddie Grinman
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Xin-An Liu
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Bindu L Raveendra
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Aya Zucca
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Sonia Mediouni
- Department of Immunology and Microbiology, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Abhishek Sadhu
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Susana Valente
- Department of Immunology and Microbiology, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Damon Page
- Department of Neuroscience, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Kyle Miller
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
21
|
Jishi A, Qi X, Miranda HC. Implications of mRNA translation dysregulation for neurological disorders. Semin Cell Dev Biol 2021; 114:11-19. [PMID: 34024497 PMCID: PMC8144541 DOI: 10.1016/j.semcdb.2020.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/30/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
The translation of information encoded in the DNA into functional proteins is one of the tenets of cellular biology. Cell survival and function depend on the tightly controlled processes of transcription and translation. Growing evidence suggests that dysregulation in mRNA translation plays an important role in the pathogenesis of several neurodevelopmental diseases, such as autism spectrum disorder (ASD) and fragile X syndrome (FXS) as well as neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). In this review, we provide an overview of mRNA translation and its modes of regulation that have been implicated in neurological disease.
Collapse
Affiliation(s)
- Aya Jishi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Qi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Helen C Miranda
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Neurosciences, School of Medicine Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
22
|
Interaction hot spots for phase separation revealed by NMR studies of a CAPRIN1 condensed phase. Proc Natl Acad Sci U S A 2021; 118:2104897118. [PMID: 34074792 DOI: 10.1073/pnas.2104897118] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of biomolecular condensates in regulating biological function and the importance of dynamic interactions involving intrinsically disordered protein regions (IDRs) in their assembly are increasingly appreciated. While computational and theoretical approaches have provided significant insights into IDR phase behavior, establishing the critical interactions that govern condensation with atomic resolution through experiment is more difficult, given the lack of applicability of standard structural biological tools to study these highly dynamic large-scale associated states. NMR can be a valuable method, but the dynamic and viscous nature of condensed IDRs presents challenges. Using the C-terminal IDR (607 to 709) of CAPRIN1, an RNA-binding protein found in stress granules, P bodies, and messenger RNA transport granules, we have developed and applied a variety of NMR methods for studies of condensed IDR states to provide insights into interactions driving and modulating phase separation. We identify ATP interactions with CAPRIN1 that can enhance or reduce phase separation. We also quantify specific side-chain and backbone interactions within condensed CAPRIN1 that define critical sequences for phase separation and that are reduced by O-GlcNAcylation known to occur during cell cycle and stress. This expanded NMR toolkit that has been developed for characterizing IDR condensates has generated detailed interaction information relevant for understanding CAPRIN1 biology and informing general models of phase separation, with significant potential future applications to illuminate dynamic structure-function relationships in other biological condensates.
Collapse
|
23
|
Gindina S, Botsford B, Cowansage K, LeDoux J, Klann E, Hoeffer C, Ostroff L. Upregulation of eIF4E, but not other translation initiation factors, in dendritic spines during memory formation. J Comp Neurol 2021; 529:3112-3126. [PMID: 33864263 DOI: 10.1002/cne.25158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/27/2021] [Accepted: 04/11/2021] [Indexed: 11/09/2022]
Abstract
Local translation can provide a rapid, spatially targeted supply of new proteins in distal dendrites to support synaptic changes that underlie learning. Learning and memory are especially sensitive to manipulations of translational control mechanisms, particularly those that target the initiation step, and translation initiation at synapses could be a means of maintaining synapse specificity during plasticity. Initiation predominantly occurs via recruitment of ribosomes to the 5' mRNA cap by complexes of eukaryotic initiation factors (eIFs), and the interaction between eIF4E and eIF4G1 is a particularly important target of translational control pathways. Pharmacological inhibition of eIF4E-eIF4G1 binding impairs formation of memory for aversive Pavlovian conditioning as well as the accompanying increase in polyribosomes in the heads of dendritic spines in the lateral amygdala (LA). This is consistent with a role for initiation at synapses in memory formation, but whether eIFs are even present near synapses is unknown. To determine whether dendritic spines contain eIFs and whether eIF distribution is affected by learning, we combined immunolabeling with serial section transmission electron microscopy (ssTEM) volume reconstructions of LA dendrites after Pavlovian conditioning. Labeling for eIF4E, eIF4G1, and eIF2α-another key target of regulation-occurred in roughly half of dendritic spines, but learning effects were only found for eIF4E, which was upregulated in the heads of dendritic spines. Our results support the possibility of regulated translation initiation as a means of synapse-specific protein targeting during learning and are consistent with the model of eIF4E availability as a central point of control.
Collapse
Affiliation(s)
- Sofya Gindina
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Benjamin Botsford
- Center for Neural Science, New York University, New York, New York, USA
| | - Kiriana Cowansage
- Center for Neural Science, New York University, New York, New York, USA
| | - Joseph LeDoux
- Center for Neural Science, New York University, New York, New York, USA.,Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, New York, USA
| | - Charles Hoeffer
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA
| | - Linnaea Ostroff
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
24
|
Wang R, Cao L, Thorne RF, Zhang XD, Li J, Shao F, Zhang L, Wu M. LncRNA GIRGL drives CAPRIN1-mediated phase separation to suppress glutaminase-1 translation under glutamine deprivation. SCIENCE ADVANCES 2021; 7:7/13/eabe5708. [PMID: 33762340 PMCID: PMC7990344 DOI: 10.1126/sciadv.abe5708] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/04/2021] [Indexed: 05/03/2023]
Abstract
Glutamine constitutes an essential source of both carbon and nitrogen for numerous biosynthetic processes. The first and rate-limiting step of glutaminolysis involves the generation of glutamate from glutamine, catalyzed by glutaminase-1 (GLS1). Shortages of glutamine result in reductions in GLS1, but the underlying mechanisms are not fully known. Here, we characterize a long noncoding RNA, GIRGL (glutamine insufficiency regulator of glutaminase lncRNA), that is induced upon glutamine starvation. Manipulating GIRGL revealed a relationship between its expression and the translational suppression of GLS1. Cellular GIRGL levels are balanced by a combination of transactivation by c-JUN together with negative stability regulation via HuR/Ago2. Increased levels of GIRGL in the absence of glutamine drive formation of a complex between dimers of CAPRIN1 and GLS1 mRNA, serving to promote liquid-liquid phase separation of CAPRIN1 and inducing stress granule formation. Suppressing GLS1 mRNA translation enables cancer cells to survive under prolonged glutamine deprivation stress.
Collapse
Affiliation(s)
- Ruijie Wang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China
| | - Leixi Cao
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China
| | - Rick Francis Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2258, Australia
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jinming Li
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China
| | - Fengmin Shao
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China.
| | - Lirong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China.
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China.
- School of Clinical Medicine, Henan University, Zhengzhou 450003, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Centre for Excellence in Molecular Cell Science, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
25
|
Liau WS, Samaddar S, Banerjee S, Bredy TW. On the functional relevance of spatiotemporally-specific patterns of experience-dependent long noncoding RNA expression in the brain. RNA Biol 2021; 18:1025-1036. [PMID: 33397182 DOI: 10.1080/15476286.2020.1868165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The majority of transcriptionally active RNA derived from the mammalian genome does not code for protein. Long noncoding RNA (lncRNA) is the most abundant form of noncoding RNA found in the brain and is involved in many aspects of cellular metabolism. Beyond their fundamental role in the nucleus as decoys for RNA-binding proteins associated with alternative splicing or as guides for the epigenetic regulation of protein-coding gene expression, recent findings indicate that activity-induced lncRNAs also regulate neural plasticity. In this review, we discuss how lncRNAs may exert molecular control over brain function beyond their known roles in the nucleus. We propose that subcellular localization is a critical feature of experience-dependent lncRNA activity in the brain, and that lncRNA-mediated control over RNA metabolism at the synapse serves to regulate local mRNA stability and translation, thereby influencing neuronal function, learning and memory.
Collapse
Affiliation(s)
- Wei-Siang Liau
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | | | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
26
|
Lai A, Valdez-Sinon AN, Bassell GJ. Regulation of RNA granules by FMRP and implications for neurological diseases. Traffic 2020; 21:454-462. [PMID: 32374065 PMCID: PMC7377269 DOI: 10.1111/tra.12733] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
RNA granule formation, which can be regulated by RNA-binding proteins (RBPs) such as fragile X mental retardation protein (FMRP), acts as a mechanism to control both the repression and subcellular localization of translation. Dysregulated assembly of RNA granules has been implicated in multiple neurological disorders, such as amyotrophic lateral sclerosis. Thus, it is crucial to understand the cellular pathways impinging upon granule assembly or disassembly. The goal of this review is to summarize recent advances in our understanding of the role of the RBP, FMRP, in translational repression underlying RNA granule dynamics, mRNA transport and localized. We summarize the known mechanisms of translational regulation by FMRP, the role of FMRP in RNA transport granules, fragile X granules and stress granules. Focusing on the emerging link between FMRP and stress granules, we propose a model for how hyperassembly and hypoassembly of RNA granules may contribute to neurological diseases.
Collapse
Affiliation(s)
- Austin Lai
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
27
|
Protein changes in synaptosomes of Huntington's disease knock-in mice are dependent on age and brain region. Neurobiol Dis 2020; 141:104950. [PMID: 32439598 DOI: 10.1016/j.nbd.2020.104950] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/19/2020] [Accepted: 05/16/2020] [Indexed: 12/15/2022] Open
Abstract
Molecular changes at synapses are thought to underly the deficits in motor and cognitive dysfunction seen in Huntington's disease (HD). Previously we showed in synaptosome preparations age dependent changes in levels of selected proteins examined by western blot assay in the striatum of Q140/Q140 HD mice. To assess if CAG repeat length influenced protein changes at the synapse, we examined synaptosomes from 6-month old heterozygote HD mice with CAG repeat lengths ranging from 50 to 175. Analysis of 19 selected proteins showed that increasing CAG repeat length in huntingtin (HTT) increased the number of affected proteins in HD striatal synaptosomes. Moreover, SDS-soluble total HTT (WT plus mutant HTT) and pThr3 HTT were reduced with increasing CAG repeat length, and there was no pSer421 mutant HTT detected in any HD mice. A LC-MS/MS and bioinfomatics study of synaptosomes from 2 and 6-month old striatum and cortex of Q140/Q7 HD mice showed enrichment of synaptic proteins and an influence of age, gender and brain region on the number of protein changes. HD striatum at 6 months had the most protein changes that included many HTT protein interactors, followed by 2-month old HD striatum, 2-month old HD cortex and 6-month HD cortex. SDS-insoluble mutant HTT was detected in HD striatal synaptosomes consistent with the presence of aggregates. Proteins changed in cortex differed from those in striatum. Pathways affected in HD striatal synaptosomes that were not identified in whole striatal lysates of the same HD mouse model included axon guidance, focal adhesion, neurotrophin signaling, regulation of actin cytoskeleton, endocytosis, and synaptic vesicle cycle. Results suggest that synaptosomes prepared from HD mice are highly informative for monitoring protein changes at the synapse and may be preferred for assessing the effects of experimental therapies on synaptic function in HD.
Collapse
|
28
|
Valdez-Sinon AN, Lai A, Shi L, Lancaster CL, Gokhale A, Faundez V, Bassell GJ. Cdh1-APC Regulates Protein Synthesis and Stress Granules in Neurons through an FMRP-Dependent Mechanism. iScience 2020; 23:101132. [PMID: 32434143 PMCID: PMC7236060 DOI: 10.1016/j.isci.2020.101132] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/22/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Maintaining a balance between protein degradation and protein synthesis is necessary for neurodevelopment. Although the E3 ubiquitin ligase anaphase promoting complex and its regulatory subunit Cdh1 (Cdh1-APC) has been shown to regulate learning and memory, the underlying mechanisms are unclear. Here, we have identified a role of Cdh1-APC as a regulator of protein synthesis in neurons. Proteomic profiling revealed that Cdh1-APC interacts with known regulators of translation, including stress granule proteins. Inhibition of Cdh1-APC activity caused an increase in stress granule formation that is dependent on fragile X mental retardation protein (FMRP). We propose a model in which Cdh1-APC targets stress granule proteins, such as FMRP, and inhibits the formation of stress granules, leading to protein synthesis. Elucidation of a role for Cdh1-APC in regulation of stress granules and protein synthesis in neurons has implications for how Cdh1-APC can regulate protein-synthesis-dependent synaptic plasticity underlying learning and memory.
Collapse
Affiliation(s)
| | - Austin Lai
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Liang Shi
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Carly L. Lancaster
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Avanti Gokhale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA,Corresponding author
| |
Collapse
|
29
|
Cataloguing and Selection of mRNAs Localized to Dendrites in Neurons and Regulated by RNA-Binding Proteins in RNA Granules. Biomolecules 2020; 10:biom10020167. [PMID: 31978946 PMCID: PMC7072219 DOI: 10.3390/biom10020167] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Spatiotemporal translational regulation plays a key role in determining cell fate and function. Specifically, in neurons, local translation in dendrites is essential for synaptic plasticity and long-term memory formation. To achieve local translation, RNA-binding proteins in RNA granules regulate target mRNA stability, localization, and translation. To date, mRNAs localized to dendrites have been identified by comprehensive analyses. In addition, mRNAs associated with and regulated by RNA-binding proteins have been identified using various methods in many studies. However, the results obtained from these numerous studies have not been compiled together. In this review, we have catalogued mRNAs that are localized to dendrites and are associated with and regulated by the RNA-binding proteins fragile X mental retardation protein (FMRP), RNA granule protein 105 (RNG105, also known as Caprin1), Ras-GAP SH3 domain binding protein (G3BP), cytoplasmic polyadenylation element binding protein 1 (CPEB1), and staufen double-stranded RNA binding proteins 1 and 2 (Stau1 and Stau2) in RNA granules. This review provides comprehensive information on dendritic mRNAs, the neuronal functions of mRNA-encoded proteins, the association of dendritic mRNAs with RNA-binding proteins in RNA granules, and the effects of RNA-binding proteins on mRNA regulation. These findings provide insights into the mechanistic basis of protein-synthesis-dependent synaptic plasticity and memory formation and contribute to future efforts to understand the physiological implications of local regulation of dendritic mRNAs in neurons.
Collapse
|
30
|
Wong LE, Kim TH, Muhandiram DR, Forman-Kay JD, Kay LE. NMR Experiments for Studies of Dilute and Condensed Protein Phases: Application to the Phase-Separating Protein CAPRIN1. J Am Chem Soc 2020; 142:2471-2489. [DOI: 10.1021/jacs.9b12208] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Leo E. Wong
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tae Hun Kim
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - D. Ranjith Muhandiram
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Julie D. Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - Lewis E. Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
31
|
Roy R, Shiina N, Wang DO. More dynamic, more quantitative, unexpectedly intricate: Advanced understanding on synaptic RNA localization in learning and memory. Neurobiol Learn Mem 2019; 168:107149. [PMID: 31881355 DOI: 10.1016/j.nlm.2019.107149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/25/2019] [Accepted: 12/23/2019] [Indexed: 01/13/2023]
Abstract
Synaptic signaling exhibits great diversity, complexity, and plasticity which necessitates maintenance and rapid modification of a local proteome. One solution neurons actively exploit to meet such demands is the strategic deposition of mRNAs encoding proteins for both basal and experience-driven activities into ribonucleoprotein complexes at the synapse. Transcripts localized in this manner can be rapidly accessed for translation in response to a diverse range of stimuli in a temporal- and spatially-restricted manner. Here we review recent findings on localized RNAs and RNA binding proteins in the context of learning and memory, as revealed by cutting-edge in-vitro and in-vivo technologies capable of yielding quantitative and dynamic information. The new technologies include proteomic and transcriptomic analyses, high-resolution multiplexed RNA imaging, single-molecule RNA tracking in living neurons, animal models and human neuron cell models. Among many recent advances in the field, RNA chemical modification has emerged as one of the new regulatory layers of gene expression at synapse that is complex and yet largely unexplored. These exciting new discoveries have enhanced our understanding of the modulation mechanisms of synaptic gene expression and their roles in cognition.
Collapse
Affiliation(s)
- Rohini Roy
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan; Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, SOKENDAI, Okazaki, Japan; Exploratory Research Center on Life and Living Systems, Okazaki, Japan.
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Liaoning, China; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan; The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto University, Kyoto, Japan.
| |
Collapse
|
32
|
Inducible degradation of lncRNA Sros1 promotes IFN-γ-mediated activation of innate immune responses by stabilizing Stat1 mRNA. Nat Immunol 2019; 20:1621-1630. [PMID: 31740800 DOI: 10.1038/s41590-019-0542-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Interferon-γ (IFN-γ) is essential for the innate immune response to intracellular bacteria. Noncoding RNAs and RNA-binding proteins (RBPs) need to be further considered in studies of regulation of the IFN-γ-activated signaling pathway in macrophages. In the present study, we found that the microRNA miR-1 promoted IFN-γ-mediated clearance of Listeria monocytogenes in macrophages by indirectly stabilizing the Stat1 messenger RNA through the degradation of the cytoplasmic long noncoding RNA Sros1. Inducible degradation or genetic loss of Sros1 led to enhanced IFN-γ-dependent activation of the innate immune response. Mechanistically, Sros1 blocked the binding of Stat1 mRNA to the RBP CAPRIN1, which stabilized the Stat1 mRNA and, consequently, promoted IFN-γ-STAT1-mediated innate immunity. These observations shed light on the complex RNA-RNA regulatory networks involved in cytokine-initiated innate responses in host-pathogen interactions.
Collapse
|
33
|
Saini H, Bicknell AA, Eddy SR, Moore MJ. Free circular introns with an unusual branchpoint in neuronal projections. eLife 2019; 8:e47809. [PMID: 31697236 PMCID: PMC6879206 DOI: 10.7554/elife.47809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
The polarized structure of axons and dendrites in neuronal cells depends in part on RNA localization. Previous studies have looked at which polyadenylated RNAs are enriched in neuronal projections or at synapses, but less is known about the distribution of non-adenylated RNAs. By physically dissecting projections from cell bodies of primary rat hippocampal neurons and sequencing total RNA, we found an unexpected set of free circular introns with a non-canonical branchpoint enriched in neuronal projections. These introns appear to be tailless lariats that escape debranching. They lack ribosome occupancy, sequence conservation, and known localization signals, and their function, if any, is not known. Nonetheless, their enrichment in projections has important implications for our understanding of the mechanisms by which RNAs reach distal compartments of asymmetric cells.
Collapse
Affiliation(s)
- Harleen Saini
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterUnited States
- Department of Molecular and Cellular BiologyHoward Hughes Medical Institute, Harvard UniversityCambridgeUnited States
| | - Alicia A Bicknell
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Sean R Eddy
- Department of Molecular and Cellular BiologyHoward Hughes Medical Institute, Harvard UniversityCambridgeUnited States
- John A Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeUnited States
| | - Melissa J Moore
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterUnited States
| |
Collapse
|
34
|
Farris S, Ward JM, Carstens KE, Samadi M, Wang Y, Dudek SM. Hippocampal Subregions Express Distinct Dendritic Transcriptomes that Reveal Differences in Mitochondrial Function in CA2. Cell Rep 2019; 29:522-539.e6. [PMID: 31597108 PMCID: PMC6894405 DOI: 10.1016/j.celrep.2019.08.093] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022] Open
Abstract
RNA localization is one mechanism neurons use to spatially and temporally regulate gene expression at synapses. Here, we test the hypothesis that cells exhibiting distinct forms of synaptic plasticity will have differences in dendritically localized RNAs. Indeed, we discover that each major subregion of the adult mouse hippocampus expresses a unique complement of dendritic RNAs. Specifically, we describe more than 1,000 differentially expressed dendritic RNAs, suggesting that RNA localization and local translation are regulated in a cell type-specific manner. Furthermore, by focusing Gene Ontology analyses on the plasticity-resistant CA2, we identify an enrichment of mitochondria-associated pathways in CA2 cell bodies and dendrites, and we provide functional evidence that these pathways differentially influence plasticity and mitochondrial respiration in CA2. These data indicate that differences in dendritic transcriptomes may regulate cell type-specific properties important for learning and memory and may influence region-specific differences in disease pathology.
Collapse
Affiliation(s)
- Shannon Farris
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - James M Ward
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Kelly E Carstens
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Mahsa Samadi
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Yu Wang
- Cellular and Molecular Pathology, National Toxicology Program, NIH, Research Triangle Park, NC 27709, USA
| | - Serena M Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
35
|
Liao YC, Fernandopulle MS, Wang G, Choi H, Hao L, Drerup CM, Patel R, Qamar S, Nixon-Abell J, Shen Y, Meadows W, Vendruscolo M, Knowles TPJ, Nelson M, Czekalska MA, Musteikyte G, Gachechiladze MA, Stephens CA, Pasolli HA, Forrest LR, St George-Hyslop P, Lippincott-Schwartz J, Ward ME. RNA Granules Hitchhike on Lysosomes for Long-Distance Transport, Using Annexin A11 as a Molecular Tether. Cell 2019; 179:147-164.e20. [PMID: 31539493 PMCID: PMC6890474 DOI: 10.1016/j.cell.2019.08.050] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/21/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Abstract
Long-distance RNA transport enables local protein synthesis at metabolically-active sites distant from the nucleus. This process ensures an appropriate spatial organization of proteins, vital to polarized cells such as neurons. Here, we present a mechanism for RNA transport in which RNA granules "hitchhike" on moving lysosomes. In vitro biophysical modeling, live-cell microscopy, and unbiased proximity labeling proteomics reveal that annexin A11 (ANXA11), an RNA granule-associated phosphoinositide-binding protein, acts as a molecular tether between RNA granules and lysosomes. ANXA11 possesses an N-terminal low complexity domain, facilitating its phase separation into membraneless RNA granules, and a C-terminal membrane binding domain, enabling interactions with lysosomes. RNA granule transport requires ANXA11, and amyotrophic lateral sclerosis (ALS)-associated mutations in ANXA11 impair RNA granule transport by disrupting their interactions with lysosomes. Thus, ANXA11 mediates neuronal RNA transport by tethering RNA granules to actively-transported lysosomes, performing a critical cellular function that is disrupted in ALS.
Collapse
Affiliation(s)
| | | | - Guozhen Wang
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - Heejun Choi
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | | | | | | | - Seema Qamar
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - Jonathon Nixon-Abell
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - Yi Shen
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - William Meadows
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | | | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| | | | | | - Greta Musteikyte
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | | | | | | | | - Peter St George-Hyslop
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine (Division of Neurology), University of Toronto and University Health Network, Toronto, Ontario M5S 3H2, Canada
| | | | | |
Collapse
|
36
|
Kim TH, Tsang B, Vernon RM, Sonenberg N, Kay LE, Forman-Kay JD. Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylation. Science 2019; 365:825-829. [DOI: 10.1126/science.aax4240] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
Abstract
Membraneless organelles involved in RNA processing are biomolecular condensates assembled by phase separation. Despite the important role of intrinsically disordered protein regions (IDRs), the specific interactions underlying IDR phase separation and its functional consequences remain elusive. To address these questions, we used minimal condensates formed from the C-terminal disordered regions of two interacting translational regulators, FMRP and CAPRIN1. Nuclear magnetic resonance spectroscopy of FMRP-CAPRIN1 condensates revealed interactions involving arginine-rich and aromatic-rich regions. We found that different FMRP serine/threonine and CAPRIN1 tyrosine phosphorylation patterns control phase separation propensity with RNA, including subcompartmentalization, and tune deadenylation and translation rates in vitro. The resulting evidence for residue-specific interactions underlying co–phase separation, phosphorylation-modulated condensate architecture, and enzymatic activity within condensates has implications for how the integration of signaling pathways controls RNA processing and translation.
Collapse
|
37
|
Shiina N. Liquid- and solid-like RNA granules form through specific scaffold proteins and combine into biphasic granules. J Biol Chem 2019; 294:3532-3548. [PMID: 30606735 DOI: 10.1074/jbc.ra118.005423] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/24/2018] [Indexed: 11/06/2022] Open
Abstract
RNA granules consist of membrane-less RNA-protein assemblies and contain dynamic liquid-like shells and stable solid-like cores, which are thought to function in numerous processes in mRNA sorting and translational regulation. However, how these distinct substructures are formed, whether they are assembled by different scaffolds, and whether different RNA granule scaffolds induce these different substructures remains unknown. Here, using fluorescence microscopy-based morphological and molecular-dynamics analyses, we demonstrate that RNA granule scaffold proteins (scaffolds) can be largely classified into two groups, liquid and solid types, which induce the formation of liquid-like and solid-like granules, respectively, when expressed separately in cultured cells. We found that when co-expressed, the liquid-type and solid-type scaffolds combine and form liquid- and solid-like substructures in the same granules, respectively. The combination of the different types of scaffolds reduced the immobile fractions of the solid-type scaffolds and their dose-dependent ability to decrease nascent polypeptides in granules, but had little effect on the dynamics of the liquid-type scaffolds or their dose-dependent ability to increase nascent polypeptides in granules. These results suggest that solid- and liquid-type scaffolds form different substructures in RNA granules and differentially affect each other. Our findings provide detailed insight into the assembly mechanism and distinct dynamics and functions of core and shell substructures in RNA granules.
Collapse
Affiliation(s)
- Nobuyuki Shiina
- From the Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, .,the Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Aichi 444-8585, and.,the Department of Basic Biology, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
38
|
Chen YC, Chang YW, Huang YS. Dysregulated Translation in Neurodevelopmental Disorders: An Overview of Autism-Risk Genes Involved in Translation. Dev Neurobiol 2018; 79:60-74. [PMID: 30430754 DOI: 10.1002/dneu.22653] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/17/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023]
Abstract
Regulated local translation-whereby specific mRNAs are transported and localized in subcellular domains where they are translated in response to regional signals-allows for remote control of gene expression to concentrate proteins in subcellular compartments. Neurons are highly polarized cells with unique features favoring local control for axonal pathfinding and synaptic plasticity, which are key processes involved in constructing functional circuits in the developing brain. Neurodevelopmental disorders are caused by genetic or environmental factors that disturb the nervous system's development during prenatal and early childhood periods. The growing list of genetic mutations that affect mRNA translation raises the question of whether aberrant translatomes in individuals with neurodevelopmental disorders share common molecular features underlying their stereotypical phenotypes and, vice versa, cause a certain degree of phenotypic heterogeneity. Here, we briefly give an overview of the role of local translation during neuronal development. We take the autism-risk gene list and discuss the molecules that (perhaps) are involved in mRNA transport and translation. Both exaggerated and suppressed translation caused by mutations in those genes have been identified or suggested. Finally, we discuss some proof-of-principle regimens for use in autism mouse models to correct dysregulated translation.
Collapse
Affiliation(s)
- Yan-Chu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Wei Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
39
|
Gallagher C, Ramos A. Joining the dots - protein-RNA interactions mediating local mRNA translation in neurons. FEBS Lett 2018; 592:2932-2947. [PMID: 29856909 DOI: 10.1002/1873-3468.13121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 01/26/2023]
Abstract
Establishing and maintaining the complex network of connections required for neuronal communication requires the transport and in situ translation of large groups of mRNAs to create local proteomes. In this Review, we discuss the regulation of local mRNA translation in neurons and the RNA-binding proteins that recognise RNA zipcode elements and connect the mRNAs to the cellular transport networks, as well as regulate their translation control. However, mRNA recognition by the regulatory proteins is mediated by the combinatorial action of multiple RNA-binding domains. This increases the specificity and affinity of the interaction, while allowing the protein to recognise a diverse set of targets and mediate a range of mechanisms for translational regulation. The structural and molecular understanding of the interactions can be used together with novel microscopy and transcriptome-wide data to build a mechanistic framework for the regulation of local mRNA translation.
Collapse
Affiliation(s)
- Christopher Gallagher
- Institute of Structural and Molecular Biology, University College London, UK.,The Francis Crick Institute, London, UK
| | - Andres Ramos
- Institute of Structural and Molecular Biology, University College London, UK
| |
Collapse
|