1
|
Zuo W, Huang MR, Schmitz F, Boersma AJ. Probing Electrostatic and Hydrophobic Associative Interactions in Cells. J Phys Chem B 2024; 128:10861-10869. [PMID: 39473385 PMCID: PMC11551953 DOI: 10.1021/acs.jpcb.4c05990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024]
Abstract
Weak nonspecific interactions between biomacromolecules determine the cytoplasmic organization. Despite their importance, it is challenging to determine these interactions in the intracellular dense and heterogeneous mixture of biomacromolecules. Here, we develop a method to indicate electrostatic and hydrophobic associative interactions and map these interactions. The method relies on a genetically encoded probe containing a sensing peptide and a circularly permuted green fluorescent protein that provides a ratiometric readout. Inside bacterial and mammalian cells, we see that the cytoplasmic components interact strongly with cationic and hydrophobic probes but not with neutral hydrophilic probes, which remain inert. The Escherichia coli cytoplasm interacts strongly with highly negatively charged hydrophilic probes, but the HEK293T cytoplasm does not. These associative interactions are modulated by ATP depletion. Hence, the nonspecific associative interaction profile in cells is condition- and species-dependent.
Collapse
Affiliation(s)
- Weiyan Zuo
- DWI-Leibniz
Institute for Interactive Materials, Aachen 52074, Germany
- Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Meng-Ruo Huang
- DWI-Leibniz
Institute for Interactive Materials, Aachen 52074, Germany
| | - Fabian Schmitz
- Cellular
Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty
of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Arnold J. Boersma
- Cellular
Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty
of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
2
|
Mostajabi Sarhangi S, Matyushov DV. Remarkable Insensitivity of Protein Diffusion to Protein Charge. J Phys Chem Lett 2024; 15:9502-9508. [PMID: 39259029 DOI: 10.1021/acs.jpclett.4c02062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Friction to translational diffusion of ionic particles in polar liquids should scale linearly with the squared ion charge, according to standard theories. Substantial slowing of translational diffusion is expected for proteins in water. In contrast, our simulations of charge mutants of green fluorescent proteins in water show remarkable insensitivity of the translational diffusion constant to protein's charge in the range of charges between -29 and +35. The friction coefficient is given as a product of the force variance and the memory function relaxation time. We find remarkably accurate equality between the variance of the electrostatic force and the negative cross-correlation of the electrostatic and van der Waals forces. The charge invariance of the diffusion constant is a combined effect of the force variance and relaxation time invariances with the protein charge. The temperature dependence of the protein diffusion constant is highly non-Arrhenius, with a fragile-to-strong crossover at the glass transition.
Collapse
Affiliation(s)
- Setare Mostajabi Sarhangi
- Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona 85287-1504, United States
| | - Dmitry V Matyushov
- School of Molecular Sciences and Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona 85287-1504, United States
| |
Collapse
|
3
|
Hu G, Moon J, Hayashi T. Protein Classes Predicted by Molecular Surface Chemical Features: Machine Learning-Assisted Classification of Cytosol and Secreted Proteins. J Phys Chem B 2024; 128:8423-8436. [PMID: 39185763 PMCID: PMC11382266 DOI: 10.1021/acs.jpcb.4c02461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Chemical structures of protein surfaces govern intermolecular interaction, and protein functions include specific molecular recognition, transport, self-assembly, etc. Therefore, the relationship between the chemical structure and protein functions provides insights into the understanding of the mechanism underlying protein functions and developments of new biomaterials. In this study, we analyze protein surface features, including surface amino acid populations and secondary structure ratios, instead of entire sequences as input for the classifier, intending to provide deeper insights into the determination of protein classes (cytosol or secreted). We employed a random forest-based classifier for the prediction of protein locations. Our training and testing data sets consisting of secreted and cytosol proteins were constructed using filtered information from UniProt and 3D structures from AlphaFold. The classifier achieved a testing accuracy of 93.9% with a feature importance ranking and quantitative boundary values for the top three features. We discuss the significance of these features quantitatively and the hidden rules to determine the protein classes (cytosol or secreted).
Collapse
Affiliation(s)
- Guanghao Hu
- Department of Materials Science and Engineering, School of Materials Science and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa-ken 226-8502, Japan
| | - Jooa Moon
- Department of Materials Science and Engineering, School of Materials Science and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa-ken 226-8502, Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials Science and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa-ken 226-8502, Japan
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| |
Collapse
|
4
|
Choi AA, Zhou CY, Tabo A, Heald R, Xu K. Single-molecule diffusivity quantification in Xenopus egg extracts elucidates physicochemical properties of the cytoplasm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609541. [PMID: 39253443 PMCID: PMC11383024 DOI: 10.1101/2024.08.24.609541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The living cell creates a unique internal molecular environment that is challenging to characterize. By combining single-molecule displacement/diffusivity mapping (SM d M) with physiologically active extracts prepared from Xenopus laevis eggs, we sought to elucidate molecular properties of the cytoplasm. Quantification of the diffusion coefficients of 15 diverse proteins in extract showed that, compared to in water, negatively charged proteins diffused ∼50% slower, while diffusion of positively charged proteins was reduced by ∼80-90%. Adding increasing concentrations of salt progressively alleviated the suppressed diffusion observed for positively charged proteins, signifying electrostatic interactions within a predominately negatively charged macromolecular environment. To investigate the contribution of RNA, an abundant, negatively charged component of cytoplasm, extracts were treated with ribonuclease, which resulted in low diffusivity domains indicative of aggregation, likely due to the liberation of positively charged RNA-binding proteins such as ribosomal proteins, since this effect could be mimicked by adding positively charged polypeptides. Interestingly, negatively charged proteins of different sizes showed similar diffusivity suppression in extract, which are typically prepared under conditions that inhibit actin polymerization. Restoring or enhancing actin polymerization progressively suppressed the diffusion of larger proteins, recapitulating behaviors observed in cells. Together, these results indicate that molecular interactions in the crowded cell are defined by an overwhelmingly negatively charged macromolecular environment containing cytoskeletal networks. Significance Statement The complex intracellular molecular environment is notably challenging to elucidate and recapitulate. Xenopus egg extracts provide a native yet manipulatable cytoplasm model. Through single-molecule microscopy, here we decipher the cytoplasmic environment and molecular interactions by examining the diffusion patterns of diverse proteins in Xenopus egg extracts with strategic manipulations. These experiments reveal an overwhelmingly negatively charged macromolecular environment with crosslinked meshworks, offering new insight into the inner workings of the cell.
Collapse
|
5
|
Yu J, Ramirez LM, Lin Q, Burz DS, Shekhtman A. Ribosome External Electric Field Regulates Metabolic Enzyme Activity: The RAMBO Effect. J Phys Chem B 2024; 128:7002-7021. [PMID: 39012038 DOI: 10.1021/acs.jpcb.4c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Ribosomes bind to many metabolic enzymes and change their activity. A general mechanism for ribosome-mediated amplification of metabolic enzyme activity, RAMBO, was formulated and elucidated for the glycolytic enzyme triosephosphate isomerase, TPI. The RAMBO effect results from a ribosome-dependent electric field-substrate dipole interaction energy that can increase or decrease the ground state of the reactant and product to regulate catalytic rates. NMR spectroscopy was used to determine the interaction surface of TPI binding to ribosomes and to measure the corresponding kinetic rates in the absence and presence of intact ribosome particles. Chemical cross-linking and mass spectrometry revealed potential ribosomal protein binding partners of TPI. Structural results and related changes in TPI energetics and activity show that the interaction between TPI and ribosomal protein L11 mediate the RAMBO effect.
Collapse
Affiliation(s)
- Jianchao Yu
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Lisa M Ramirez
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Qishan Lin
- RNA Epitranscriptomics & Proteomics Resource, University at Albany, State University of New York, Albany, New York 12222, United States
| | - David S Burz
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
6
|
Foster AJ, van den Noort M, Poolman B. Bacterial cell volume regulation and the importance of cyclic di-AMP. Microbiol Mol Biol Rev 2024; 88:e0018123. [PMID: 38856222 PMCID: PMC11332354 DOI: 10.1128/mmbr.00181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYNucleotide-derived second messengers are present in all domains of life. In prokaryotes, most of their functionality is associated with general lifestyle and metabolic adaptations, often in response to environmental fluctuations of physical parameters. In the last two decades, cyclic di-AMP has emerged as an important signaling nucleotide in many prokaryotic lineages, including Firmicutes, Actinobacteria, and Cyanobacteria. Its importance is highlighted by the fact that both the lack and overproduction of cyclic di-AMP affect viability of prokaryotes that utilize cyclic di-AMP, and that it generates a strong innate immune response in eukaryotes. In bacteria that produce the second messenger, most molecular targets of cyclic di-AMP are associated with cell volume control. Besides, other evidence links the second messenger to cell wall remodeling, DNA damage repair, sporulation, central metabolism, and the regulation of glycogen turnover. In this review, we take a biochemical, quantitative approach to address the main cellular processes that are directly regulated by cyclic di-AMP and show that these processes are very connected and require regulation of a similar set of proteins to which cyclic di-AMP binds. Altogether, we argue that cyclic di-AMP is a master regulator of cell volume and that other cellular processes can be connected with cyclic di-AMP through this core function. We further highlight important directions in which the cyclic di-AMP field has to develop to gain a full understanding of the cyclic di-AMP signaling network and why some processes are regulated, while others are not.
Collapse
Affiliation(s)
- Alexander J. Foster
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Marco van den Noort
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
7
|
Losa J, Heinemann M. Contribution of different macromolecules to the diffusion of a 40 nm particle in Escherichia coli. Biophys J 2024; 123:1211-1221. [PMID: 38555507 PMCID: PMC11140462 DOI: 10.1016/j.bpj.2024.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Due to the high concentration of proteins, nucleic acids, and other macromolecules, the bacterial cytoplasm is typically described as a crowded environment. However, the extent to which each of these macromolecules individually affects the mobility of macromolecular complexes, and how this depends on growth conditions, is presently unclear. In this study, we sought to quantify the crowding experienced by an exogenous 40 nm fluorescent particle in the cytoplasm of E. coli under different growth conditions. By performing single-particle tracking measurements in cells selectively depleted of DNA and/or mRNA, we determined the contribution to crowding of mRNA, DNA, and remaining cellular components, i.e., mostly proteins and ribosomes. To estimate this contribution to crowding, we quantified the difference of the particle's diffusion coefficient in conditions with and without those macromolecules. We found that the contributions of the three classes of components were of comparable magnitude, being largest in the case of proteins and ribosomes. We further found that the contributions of mRNA and DNA to crowding were significantly larger than expected based on their volumetric fractions alone. Finally, we found that the crowding contributions change only slightly with the growth conditions. These results reveal how various cellular components partake in crowding of the cytoplasm and the consequences this has for the mobility of large macromolecular complexes.
Collapse
Affiliation(s)
- José Losa
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
8
|
Linnik D, Maslov I, Punter CM, Poolman B. Dynamic structure of E. coli cytoplasm: supramolecular complexes and cell aging impact spatial distribution and mobility of proteins. Commun Biol 2024; 7:508. [PMID: 38678067 PMCID: PMC11055878 DOI: 10.1038/s42003-024-06216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Protein diffusion is a critical factor governing the functioning and organization of a cell's cytoplasm. In this study, we investigate the influence of (poly)ribosome distribution, cell aging, protein aggregation, and biomolecular condensate formation on protein mobility within the E. coli cytoplasm. We employ nanoscale single-molecule displacement mapping (SMdM) to determine the spatial distribution of the proteins and to meticulously track their diffusion. We show that the distribution of polysomes does not impact the lateral diffusion coefficients of proteins. However, the degradation of mRNA induced by rifampicin treatment leads to an increase in protein mobility within the cytoplasm. Additionally, we establish a significant correlation between cell aging, the asymmetric localization of protein aggregates and reduced diffusion coefficients at the cell poles. Notably, we observe variations in the hindrance of diffusion at the poles and the central nucleoid region for small and large proteins, and we reveal differences between the old and new pole of the cell. Collectively, our research highlights cellular processes and mechanisms responsible for spatially organizing the bacterial cytoplasm into domains with different structural features and apparent viscosity.
Collapse
Affiliation(s)
- Dmitrii Linnik
- Department of Biochemistry, University of Groningen, Groningen, Nijenborgh 4, 9747 AG, the Netherlands
| | - Ivan Maslov
- Department of Biochemistry, University of Groningen, Groningen, Nijenborgh 4, 9747 AG, the Netherlands
| | - Christiaan Michiel Punter
- Department of Biochemistry, University of Groningen, Groningen, Nijenborgh 4, 9747 AG, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Groningen, Nijenborgh 4, 9747 AG, the Netherlands.
| |
Collapse
|
9
|
Thappeta Y, Cañas-Duarte SJ, Kallem T, Fragasso A, Xiang Y, Gray W, Lee C, Cegelski L, Jacobs-Wagner C. Glycogen phase separation drives macromolecular rearrangement and asymmetric division in E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590186. [PMID: 38659787 PMCID: PMC11042326 DOI: 10.1101/2024.04.19.590186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Bacteria often experience nutrient limitation in nature and the laboratory. While exponential and stationary growth phases are well characterized in the model bacterium Escherichia coli, little is known about what transpires inside individual cells during the transition between these two phases. Through quantitative cell imaging, we found that the position of nucleoids and cell division sites becomes increasingly asymmetric during transition phase. These asymmetries were coupled with spatial reorganization of proteins, ribosomes, and RNAs to nucleoid-centric localizations. Results from live-cell imaging experiments, complemented with genetic and 13C whole-cell nuclear magnetic resonance spectroscopy studies, show that preferential accumulation of the storage polymer glycogen at the old cell pole leads to the observed rearrangements and asymmetric divisions. In vitro experiments suggest that these phenotypes are likely due to the propensity of glycogen to phase separate in crowded environments, as glycogen condensates exclude fluorescent proteins under physiological crowding conditions. Glycogen-associated differences in cell sizes between strains and future daughter cells suggest that glycogen phase separation allows cells to store large glucose reserves without counting them as cytoplasmic space.
Collapse
Affiliation(s)
- Yashna Thappeta
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Silvia J. Cañas-Duarte
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, USA
| | - Till Kallem
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Alessio Fragasso
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yingjie Xiang
- Mechanical Engineering and Materials Science, Yale University, New Haven, CT
| | - William Gray
- Mechanical Engineering and Materials Science, Yale University, New Haven, CT
| | - Cheyenne Lee
- Mechanical Engineering and Materials Science, Yale University, New Haven, CT
| | | | - Christine Jacobs-Wagner
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, USA
| |
Collapse
|
10
|
Choi AA, Xu K. Single-Molecule Diffusivity Quantification Unveils Ubiquitous Net Charge-Driven Protein-Protein Interaction. J Am Chem Soc 2024; 146:10973-10978. [PMID: 38576203 PMCID: PMC11023747 DOI: 10.1021/jacs.4c02475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Recent microscopy and nuclear magnetic resonance (NMR) studies have noticed substantial suppression of intracellular diffusion for positively charged proteins, suggesting an overlooked role of electrostatic attraction in nonspecific protein interactions in a predominantly negatively charged intracellular environment. Utilizing single-molecule detection and statistics, here, we quantify in aqueous solutions how protein diffusion, in the limit of low diffuser concentration to avoid aggregate/coacervate formation, is modulated by differently charged interactor proteins over wide concentration ranges. We thus report substantially suppressed diffusion when oppositely charged interactors are added at parts per million levels, yet unvaried diffusivities when same-charge interactors are added beyond 1%. The electrostatic attraction-driven suppression of diffusion is sensitive to the protein net charge states, as probed by varying the solution pH and ionic strength or chemically modifying the proteins and is robust across different diffuser-interactor pairs. By converting the measured diffusivities to diffuser diameters, we further show that in the limit of excess interactors, a positively charged diffuser molecule effectively drags along just one monolayer of negatively charged interactors, where further interactions stop. We thus unveil ubiquitous, net charge-driven protein-protein interactions and shed new light on the mechanism of charge-based diffusion suppression in living cells.
Collapse
Affiliation(s)
- Alexander A. Choi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Valverde-Mendez D, Sunol AM, Bratton BP, Delarue M, Hofmann JL, Sheehan JP, Gitai Z, Holt LJ, Shaevitz JW, Zia RN. Macromolecular interactions and geometrical confinement determine the 3D diffusion of ribosome-sized particles in live Escherichia coli cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587083. [PMID: 38585850 PMCID: PMC10996671 DOI: 10.1101/2024.03.27.587083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The crowded bacterial cytoplasm is comprised of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial Genetically Encoded Multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-2160 to +1800 e) in live Escherichia coli cells. To probe intermolecular details at spatial and temporal resolutions beyond experimental limits, we also developed a colloidal whole-cell model that explicitly represents the size and charge of cytoplasmic macromolecules and the porous structure of the bacterial nucleoid. Combining these techniques, we show that bGEMs spatially segregate by size, with small 20-nm particles enriched inside the nucleoid, and larger and/or positively charged particles excluded from this region. Localization is driven by entropic and electrostatic forces arising from cytoplasmic polydispersity, nucleoid structure, geometrical confinement, and interactions with other biomolecules including ribosomes and DNA. We observe that at the timescales of traditional single molecule tracking experiments, motion appears sub-diffusive for all particle sizes and charges. However, using computer simulations with higher temporal resolution, we find that the apparent anomalous exponents are governed by the region of the cell in which bGEMs are located. Molecular motion does not display anomalous diffusion on short time scales and the apparent sub-diffusion arises from geometrical confinement within the nucleoid and by the cell boundary.
Collapse
Affiliation(s)
- Diana Valverde-Mendez
- Department of Physics, Princeton University, Princeton, NJ 08540, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Alp M. Sunol
- Department of Chemical Engineering, Stanford University, , Stanford, CA 94305, USA
| | - Benjamin P. Bratton
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Department of Pathology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37235, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute for Infection, Inflammation and Immunology, Vanderbilt University, Nashville, TN 37235, USA
| | - Morgan Delarue
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Jennifer L. Hofmann
- Department of Chemical Engineering, Stanford University, , Stanford, CA 94305, USA
| | - Joseph P. Sheehan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Liam J. Holt
- Institute for Systems Genetics, New York University School of Medicine, 435 E 30th St, NY 10016, USA
| | - Joshua W. Shaevitz
- Department of Physics, Princeton University, Princeton, NJ 08540, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Roseanna N. Zia
- Department of Chemical Engineering, Stanford University, , Stanford, CA 94305, USA
| |
Collapse
|
12
|
Pemberton JG, Tenkova T, Felgner P, Zimmerberg J, Balla T, Heuser J. Defining the EM-signature of successful cell-transfection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583927. [PMID: 38496608 PMCID: PMC10942431 DOI: 10.1101/2024.03.07.583927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In this report, we describe the architecture of Lipofectamine 2000 and 3000 transfection- reagents, as they appear inside of transfected cells, using classical transmission electron microscopy (EM). We also demonstrate that they provoke consistent structural changes after they have entered cells, changes that not only provide new insights into the mechanism of action of these particular transfection-reagents, but also provide a convenient and robust method for identifying by EM which cells in any culture have been successfully transfected. This also provides clues to the mechanism(s) of their toxic effects, when they are applied in excess. We demonstrate that after being bulk-endocytosed by cells, the cationic spheroids of Lipofectamine remain intact throughout the entire time of culturing, but escape from their endosomes and penetrate directly into the cytoplasm of the cell. In so doing, they provoke a stereotypical recruitment and rearrangement of endoplasmic reticulum (ER), and they ultimately end up escaping into the cytoplasm and forming unique 'inclusion-bodies.' Once free in the cytoplasm, they also invariably develop dense and uniform coatings of cytoplasmic ribosomes on their surfaces, and finally, they become surrounded by 'annulate' lamellae' of the ER. In the end, these annulate-lamellar enclosures become the ultrastructural 'signatures' of these inclusion-bodies, and serve to positively and definitively identify all cells that have been effectively transfected. Importantly, these new EM-observations define several new and unique properties of these classical Lipofectamines, and allow them to be discriminated from other lipoidal or particulate transfection-reagents, which we find do not physically break out of endosomes or end up in inclusion bodies, and in fact, provoke absolutely none of these 'signature' cytoplasmic reactions.
Collapse
|
13
|
Monterroso B, Margolin W, Boersma AJ, Rivas G, Poolman B, Zorrilla S. Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions. Chem Rev 2024; 124:1899-1949. [PMID: 38331392 PMCID: PMC10906006 DOI: 10.1021/acs.chemrev.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
Macromolecular crowding affects the activity of proteins and functional macromolecular complexes in all cells, including bacteria. Crowding, together with physicochemical parameters such as pH, ionic strength, and the energy status, influences the structure of the cytoplasm and thereby indirectly macromolecular function. Notably, crowding also promotes the formation of biomolecular condensates by phase separation, initially identified in eukaryotic cells but more recently discovered to play key functions in bacteria. Bacterial cells require a variety of mechanisms to maintain physicochemical homeostasis, in particular in environments with fluctuating conditions, and the formation of biomolecular condensates is emerging as one such mechanism. In this work, we connect physicochemical homeostasis and macromolecular crowding with the formation and function of biomolecular condensates in the bacterial cell and compare the supramolecular structures found in bacteria with those of eukaryotic cells. We focus on the effects of crowding and phase separation on the control of bacterial chromosome replication, segregation, and cell division, and we discuss the contribution of biomolecular condensates to bacterial cell fitness and adaptation to environmental stress.
Collapse
Affiliation(s)
- Begoña Monterroso
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - William Margolin
- Department
of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth-Houston, Houston, Texas 77030, United States
| | - Arnold J. Boersma
- Cellular
Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty
of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Germán Rivas
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - Bert Poolman
- Department
of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Silvia Zorrilla
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
14
|
Caviglia B, Di Bari D, Timr S, Guiral M, Giudici-Orticoni MT, Petrillo C, Peters J, Sterpone F, Paciaroni A. Decoding the Role of the Global Proteome Dynamics for Cellular Thermal Stability. J Phys Chem Lett 2024; 15:1435-1441. [PMID: 38291814 DOI: 10.1021/acs.jpclett.3c03351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Molecular mechanisms underlying the thermal response of cells remain elusive. On the basis of the recent result that the short-time diffusive dynamics of the Escherichia coli proteome is an excellent indicator of temperature-dependent bacterial metabolism and death, we used neutron scattering (NS) spectroscopy and molecular dynamics (MD) simulations to investigate the sub-nanosecond proteome mobility in psychro-, meso-, and hyperthermophilic bacteria over a wide temperature range. The magnitude of thermal fluctuations, measured by atomic mean square displacements, is similar among all studied bacteria at their respective thermal cell death. Global roto-translational motions turn out to be the main factor distinguishing the bacterial dynamical properties. We ascribe this behavior to the difference in the average proteome net charge, which becomes less negative for increasing bacterial thermal stability. We propose that the chemical-physical properties of the cytoplasm and the global dynamics of the resulting proteome are fine-tuned by evolution to uphold optimal thermal stability conditions.
Collapse
Affiliation(s)
- Beatrice Caviglia
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
- Laboratoire de Biochimie Théorique (UPR 9080), Centre National de la Recherche Scientifique (CNRS), Université de Paris Cité, 75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Daniele Di Bari
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Stepan Timr
- Laboratoire de Biochimie Théorique (UPR 9080), Centre National de la Recherche Scientifique (CNRS), Université de Paris Cité, 75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic
| | - Marianne Guiral
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, 13400 Marseille, France
| | - Marie-Thérèse Giudici-Orticoni
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, 13400 Marseille, France
| | - Caterina Petrillo
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Judith Peters
- Laboratoire Interdisciplinaire de Physique, Centre National de la Recherche Scientifique (CNRS), Univ. Grenoble Alpes, 140 Rue de la Physique, 38402 Saint-Martin-d'Hères, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble, France
- Institut Universitaire de France, 75231 Paris, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique (UPR 9080), Centre National de la Recherche Scientifique (CNRS), Université de Paris Cité, 75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Alessandro Paciaroni
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| |
Collapse
|
15
|
Hilditch AT, Romanyuk A, Cross SJ, Obexer R, McManus JJ, Woolfson DN. Assembling membraneless organelles from de novo designed proteins. Nat Chem 2024; 16:89-97. [PMID: 37710047 PMCID: PMC10774119 DOI: 10.1038/s41557-023-01321-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
Recent advances in de novo protein design have delivered a diversity of discrete de novo protein structures and complexes. A new challenge for the field is to use these designs directly in cells to intervene in biological processes and augment natural systems. The bottom-up design of self-assembled objects such as microcompartments and membraneless organelles is one such challenge. Here we describe the design of genetically encoded polypeptides that form membraneless organelles in Escherichia coli. To do this, we combine de novo α-helical sequences, intrinsically disordered linkers and client proteins in single-polypeptide constructs. We tailor the properties of the helical regions to shift protein assembly from arrested assemblies to dynamic condensates. The designs are characterized in cells and in vitro using biophysical methods and soft-matter physics. Finally, we use the designed polypeptide to co-compartmentalize a functional enzyme pair in E. coli, improving product formation close to the theoretical limit.
Collapse
Affiliation(s)
- Alexander T Hilditch
- School of Chemistry, University of Bristol, Bristol, UK
- School of Biochemistry, University of Bristol, Bristol, UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, UK
| | - Andrey Romanyuk
- School of Chemistry, University of Bristol, Bristol, UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, UK
| | - Stephen J Cross
- Wolfson Bioimaging Facility, University of Bristol, Bristol, UK
| | - Richard Obexer
- School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, UK.
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| | - Jennifer J McManus
- HH Wills Physics Laboratory, School of Physics, University of Bristol, Bristol, UK.
- Bristol BioDesign Institute, School of Chemistry, University of Bristol, Bristol, UK.
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, UK.
- School of Biochemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, UK.
- Bristol BioDesign Institute, School of Chemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
16
|
Bonucci M, Shu T, Holt LJ. How it feels in a cell. Trends Cell Biol 2023; 33:924-938. [PMID: 37286396 PMCID: PMC10592589 DOI: 10.1016/j.tcb.2023.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Life emerges from thousands of biochemical processes occurring within a shared intracellular environment. We have gained deep insights from in vitro reconstitution of isolated biochemical reactions. However, the reaction medium in test tubes is typically simple and diluted. The cell interior is far more complex: macromolecules occupy more than a third of the space, and energy-consuming processes agitate the cell interior. Here, we review how this crowded, active environment impacts the motion and assembly of macromolecules, with an emphasis on mesoscale particles (10-1000 nm diameter). We describe methods to probe and analyze the biophysical properties of cells and highlight how changes in these properties can impact physiology and signaling, and potentially contribute to aging, and diseases, including cancer and neurodegeneration.
Collapse
Affiliation(s)
- Martina Bonucci
- Institute for Systems Genetics, New York University Langone Medical Center, 435 E 30th Street, New York, NY 10016, USA
| | - Tong Shu
- Institute for Systems Genetics, New York University Langone Medical Center, 435 E 30th Street, New York, NY 10016, USA
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical Center, 435 E 30th Street, New York, NY 10016, USA.
| |
Collapse
|
17
|
Mantovanelli L, Linnik DS, Punter M, Kojakhmetov HJ, Śmigiel WM, Poolman B. Simulation-based Reconstructed Diffusion unveils the effect of aging on protein diffusion in Escherichia coli. PLoS Comput Biol 2023; 19:e1011093. [PMID: 37695774 PMCID: PMC10513214 DOI: 10.1371/journal.pcbi.1011093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/21/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
We have developed Simulation-based Reconstructed Diffusion (SbRD) to determine diffusion coefficients corrected for confinement effects and for the bias introduced by two-dimensional models describing a three-dimensional motion. We validate the method on simulated diffusion data in three-dimensional cell-shaped compartments. We use SbRD, combined with a new cell detection method, to determine the diffusion coefficients of a set of native proteins in Escherichia coli. We observe slower diffusion at the cell poles than in the nucleoid region of exponentially growing cells, which is independent of the presence of polysomes. Furthermore, we show that the newly formed pole of dividing cells exhibits a faster diffusion than the old one. We hypothesize that the observed slowdown at the cell poles is caused by the accumulation of aggregated or damaged proteins, and that the effect is asymmetric due to cell aging.
Collapse
Affiliation(s)
- Luca Mantovanelli
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Dmitrii S. Linnik
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Michiel Punter
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | | | - Wojciech M. Śmigiel
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
18
|
Vallina Estrada E, Zhang N, Wennerström H, Danielsson J, Oliveberg M. Diffusive intracellular interactions: On the role of protein net charge and functional adaptation. Curr Opin Struct Biol 2023; 81:102625. [PMID: 37331204 DOI: 10.1016/j.sbi.2023.102625] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
A striking feature of nucleic acids and lipid membranes is that they all carry net negative charge and so is true for the majority of intracellular proteins. It is suggested that the role of this negative charge is to assure a basal intermolecular repulsion that keeps the cytosolic content suitably 'fluid' for function. We focus in this review on the experimental, theoretical and genetic findings which serve to underpin this idea and the new questions they raise. Unlike the situation in test tubes, any functional protein-protein interaction in the cytosol is subject to competition from the densely crowded background, i.e. surrounding stickiness. At the nonspecific limit of this stickiness is the 'random' protein-protein association, maintaining profuse populations of transient and constantly interconverting complexes at physiological protein concentrations. The phenomenon is readily quantified in studies of the protein rotational diffusion, showing that the more net negatively charged a protein is the less it is retarded by clustering. It is further evident that this dynamic protein-protein interplay is under evolutionary control and finely tuned across organisms to maintain optimal physicochemical conditions for the cellular processes. The emerging picture is then that specific cellular function relies on close competition between numerous weak and strong interactions, and where all parts of the protein surfaces are involved. The outstanding challenge is now to decipher the very basics of this many-body system: how the detailed patterns of charged, polar and hydrophobic side chains not only control protein-protein interactions at close- and long-range but also the collective properties of the cellular interior as a whole.
Collapse
Affiliation(s)
- Eloy Vallina Estrada
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Nannan Zhang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Håkan Wennerström
- Division of Physical Chemistry, Department of Chemistry, Lund University, Box 124, 22100 Lund, Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
19
|
Trosel Y, Gregory LP, Booth VK, Yethiraj A. Diffusion NMR and Rheology of a Model Polymer in Bacterial Cell Lysate Crowders. Biomacromolecules 2023. [PMID: 37216308 DOI: 10.1021/acs.biomac.2c01534] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The intracellular milieu is crowded and heterogeneous, and this can have profound consequences for biomolecule motions and biochemical kinetics. Macromolecular crowding has been traditionally studied in artificial crowders like Ficoll and dextran or globular proteins such as bovine serum albumin. It is, however, not clear if the effects of artificial crowders on such phenomena are the same as the crowding that is experienced in a heterogeneous biological environment. Bacterial cells, for example, are composed of heterogeneous biomolecules with different sizes, shapes, and charges. Using crowders composed of one of three different pretreatments of bacterial cell lysate (unmanipulated, ultracentrifuged, and anion exchanged), we examine the effects of crowding on the diffusivity of a model polymer. We measure the translational diffusivity, via diffusion NMR, of the test polymer polyethylene glycol (PEG) in these bacterial cell lysates. We show that the small (Rg ∼ 5 nm) test polymer shows a modest decrease in self-diffusivity with increasing crowder concentration for all lysate treatments. The corresponding self-diffusivity decrease in the artificial Ficoll crowder is much more pronounced. Moreover, a comparison of the rheological response of biological and artificial crowders shows that while the artificial crowder Ficoll exhibits a Newtonian response even at high concentrations, the bacterial cell lysate is markedly non-Newtonian; it behaves like a shear-thinning fluid with a yield stress. While at any concentration the rheological properties are sensitive to both lysate pretreatment and batch-to-batch variations, the PEG diffusivity is nearly unaffected by the type of lysate pretreatment.
Collapse
Affiliation(s)
- Yanitza Trosel
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - Liam P Gregory
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - Valerie K Booth
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - Anand Yethiraj
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| |
Collapse
|
20
|
Boeynaems S, Ma XR, Yeong V, Ginell GM, Chen JH, Blum JA, Nakayama L, Sanyal A, Briner A, Haver DV, Pauwels J, Ekman A, Schmidt HB, Sundararajan K, Porta L, Lasker K, Larabell C, Hayashi MAF, Kundaje A, Impens F, Obermeyer A, Holehouse AS, Gitler AD. Aberrant phase separation is a common killing strategy of positively charged peptides in biology and human disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531820. [PMID: 36945394 PMCID: PMC10028949 DOI: 10.1101/2023.03.09.531820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Positively charged repeat peptides are emerging as key players in neurodegenerative diseases. These peptides can perturb diverse cellular pathways but a unifying framework for how such promiscuous toxicity arises has remained elusive. We used mass-spectrometry-based proteomics to define the protein targets of these neurotoxic peptides and found that they all share similar sequence features that drive their aberrant condensation with these positively charged peptides. We trained a machine learning algorithm to detect such sequence features and unexpectedly discovered that this mode of toxicity is not limited to human repeat expansion disorders but has evolved countless times across the tree of life in the form of cationic antimicrobial and venom peptides. We demonstrate that an excess in positive charge is necessary and sufficient for this killer activity, which we name 'polycation poisoning'. These findings reveal an ancient and conserved mechanism and inform ways to leverage its design rules for new generations of bioactive peptides.
Collapse
Affiliation(s)
- Steven Boeynaems
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA
- Center for Alzheimer’s and Neurodegenerative Diseases (CAND), Texas Children’s Hospital, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center (DLDCCC), Baylor College of Medicine, Houston, TX 77030, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - X. Rosa Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vivian Yeong
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Garrett M. Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO 63130, USA
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Jacob A. Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lisa Nakayama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anushka Sanyal
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adam Briner
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Delphi Van Haver
- VIB-UGent Center for Medical Biotechnology, 9000 Gent, Belgium
- VIB Proteomics Core, 9000 Gent, Belgium
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, 9000 Gent, Belgium
- VIB Proteomics Core, 9000 Gent, Belgium
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Axel Ekman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - H. Broder Schmidt
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kousik Sundararajan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lucas Porta
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Keren Lasker
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Mirian A. F. Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, 9000 Gent, Belgium
- VIB Proteomics Core, 9000 Gent, Belgium
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Allie Obermeyer
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO 63130, USA
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
21
|
Xiang L, Yan R, Chen K, Li W, Xu K. Single-Molecule Displacement Mapping Unveils Sign-Asymmetric Protein Charge Effects on Intraorganellar Diffusion. NANO LETTERS 2023; 23:1711-1716. [PMID: 36802676 PMCID: PMC10044514 DOI: 10.1021/acs.nanolett.2c04379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Using single-molecule displacement/diffusivity mapping (SMdM), an emerging super-resolution microscopy method, here we quantify, at nanoscale resolution, the diffusion of a typical fluorescent protein (FP) in the endoplasmic reticulum (ER) and mitochondrion of living mammalian cells. We thus show that the diffusion coefficients D in both organelles are ∼40% of that in the cytoplasm, with the latter exhibiting higher spatial inhomogeneities. Moreover, we unveil that diffusions in the ER lumen and the mitochondrial matrix are markedly impeded when the FP is given positive, but not negative, net charges. Calculation shows most intraorganellar proteins as negatively charged, hence a mechanism to impede the diffusion of positively charged proteins. However, we further identify the ER protein PPIB as an exception with a positive net charge and experimentally show that the removal of this positive charge elevates its intra-ER diffusivity. We thus unveil a sign-asymmetric protein charge effect on the nanoscale intraorganellar diffusion.
Collapse
Affiliation(s)
- Limin Xiang
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA, 94720
- College of Chemistry and Molecular Sciences & TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Rui Yan
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA, 94720
| | - Kun Chen
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA, 94720
| | - Wan Li
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA, 94720
| | - Ke Xu
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA, 94720
| |
Collapse
|
22
|
Xiang L, Yan R, Chen K, Li W, Xu K. Single-molecule displacement mapping unveils sign-asymmetric protein charge effects on intraorganellar diffusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525611. [PMID: 36747807 PMCID: PMC9900983 DOI: 10.1101/2023.01.26.525611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Using single-molecule displacement/diffusivity mapping (SM d M), an emerging super-resolution microscopy method, here we quantify, at nanoscale resolution, the diffusion of a typical fluorescent protein (FP) in the endoplasmic reticulum (ER) and mitochondrion of living mammalian cells. We thus show that the diffusion coefficients D in both organelles are ~40% of that in the cytoplasm, with the latter exhibiting higher spatial inhomogeneities. Moreover, we unveil that diffusions in the ER lumen and the mitochondrial matrix are markedly impeded when the FP is given positive, but not negative, net charges. Calculation shows most intraorganellar proteins as negatively charged, thus a mechanism to impede the diffusion of positively charged proteins. However, we further identify the ER protein PPIB as an exception with a positive net charge, and experimentally show that the removal of this positive charge elevates its intra-ER diffusivity. We thus unveil a sign-asymmetric protein charge effect on the nanoscale intraorganellar diffusion.
Collapse
|
23
|
Victor-Lovelace TW, Miller LM. The development and use of metal-based probes for X-ray fluorescence microscopy. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6852953. [PMID: 36537552 DOI: 10.1093/mtomcs/mfac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
X-ray fluorescence microscopy (XFM) has become a widely used technique for imaging the concentration and distribution of metal ions in cells and tissues. Recent advances in synchrotron sources, optics, and detectors have improved the spatial resolution of the technique to <10 nm with attogram detection sensitivity. However, to make XFM most beneficial for bioimaging-especially at the nanoscale-the metal ion distribution must be visualized within the subcellular context of the cell. Over the years, a number of approaches have been taken to develop X-ray-sensitive tags that permit the visualization of specific organelles or proteins using XFM. In this review, we examine the types of X-ray fluorophore used, including nanomaterials and metal ions, and the approaches used to incorporate the metal into their target binding site via antibodies, genetically encoded metal-binding peptides, affinity labeling, or cell-specific peptides. We evaluate their advantages and disadvantages, review the scientific findings, and discuss the needs for future development.
Collapse
Affiliation(s)
| | - Lisa M Miller
- N ational Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973,USA.,Department of Chemistry, Stony Brook University, Stony Brook, NY 11794,USA
| |
Collapse
|
24
|
Śmigiel WM, Mantovanelli L, Linnik DS, Punter M, Silberberg J, Xiang L, Xu K, Poolman B. Protein diffusion in Escherichia coli cytoplasm scales with the mass of the complexes and is location dependent. SCIENCE ADVANCES 2022; 8:eabo5387. [PMID: 35960807 PMCID: PMC9374337 DOI: 10.1126/sciadv.abo5387] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/28/2022] [Indexed: 05/30/2023]
Abstract
We analyze the structure of the cytoplasm by performing single-molecule displacement mapping on a diverse set of native cytoplasmic proteins in exponentially growing Escherichia coli. We evaluate the method for application in small compartments and find that confining effects of the cell membrane affect the diffusion maps. Our analysis reveals that protein diffusion at the poles is consistently slower than in the center of the cell, i.e., to an extent greater than the confining effect of the cell membrane. We also show that the diffusion coefficient scales with the mass of the used probes, taking into account the oligomeric state of the proteins, while parameters such as native protein abundance or the number of protein-protein interactions do not correlate with the mobility of the proteins. We argue that our data paint the prokaryotic cytoplasm as a compartment with subdomains in which the diffusion of macromolecules changes with the perceived viscosity.
Collapse
Affiliation(s)
- Wojciech M. Śmigiel
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Luca Mantovanelli
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Dmitrii S. Linnik
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Michiel Punter
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Jakob Silberberg
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Limin Xiang
- Department of Chemistry, UC Berkeley, Stanley Hall, Berkeley, CA 94720, USA
| | - Ke Xu
- Department of Chemistry, UC Berkeley, Stanley Hall, Berkeley, CA 94720, USA
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| |
Collapse
|
25
|
Abstract
The hypervariable residues that compose the major part of proteins’ surfaces are generally considered outside evolutionary control. Yet, these “nonconserved” residues determine the outcome of stochastic encounters in crowded cells. It has recently become apparent that these encounters are not as random as one might imagine, but carefully orchestrated by the intracellular electrostatics to optimize protein diffusion, interactivity, and partner search. The most influential factor here is the protein surface-charge density, which takes different optimal values across organisms with different intracellular conditions. In this study, we examine how far the net-charge density and other physicochemical properties of proteomes will take us in terms of distinguishing organisms in general. The results show that these global proteome properties not only follow the established taxonomical hierarchy, but also provide clues to functional adaptation. In many cases, the proteome–property divergence is even resolved at species level. Accordingly, the variable parts of the genes are not as free to drift as they seem in sequence alignment, but present a complementary tool for functional, taxonomic, and evolutionary assignment.
Collapse
|
26
|
Ludwig T, Krizsan A, Mohammed GK, Hoffmann R. Antimicrobial Activity and 70S Ribosome Binding of Apidaecin-Derived Api805 with Increased Bacterial Uptake Rate. Antibiotics (Basel) 2022; 11:antibiotics11040430. [PMID: 35453182 PMCID: PMC9025336 DOI: 10.3390/antibiotics11040430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
In view of the global spread of multiresistant bacteria and the occurrence of panresistant bacteria, there is an urgent need for antimicrobials with novel modes of action. A promising class is antimicrobial peptides (AMPs), including them proline-rich AMPs (PrAMPs), which target the 70S ribosome to inhibit protein translation. Here, we present a new designer peptide, Api805, combining the N- and C-terminal sequences of PrAMPs Api137 and drosocin, respectively. Api805 was similarly active against two Escherichia coli B strains but was inactive against E. coli K12 strain BW25113. These different activities could not be explained by the dissociation constants measured for 70S ribosome preparations from E. coli K12 and B strains. Mutations in the SbmA transporter that PrAMPs use to pass the inner membrane or proteolytic degradation of Api805 by lysate proteases could not explain this either. Interestingly, Api805 seems not to bind to the known binding sites of PrAMPs at the 70S ribosome and inhibited in vitro protein translation, independent of release factors, most likely using a “multimodal effect”. Interestingly, Api805 entered the E. coli B strain Rosetta faster and at larger quantities than the E. coli K-12 strain BW25113, which may be related to the different LPS core structure. In conclusion, slight structural changes in PrAMPs significantly altered their binding sites and mechanisms of action, allowing for the design of different antibiotic classes.
Collapse
Affiliation(s)
- Tobias Ludwig
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany; (T.L.); (A.K.); (G.K.M.)
- Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Andor Krizsan
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany; (T.L.); (A.K.); (G.K.M.)
- Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Gubran Khalil Mohammed
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany; (T.L.); (A.K.); (G.K.M.)
- Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany; (T.L.); (A.K.); (G.K.M.)
- Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
- Correspondence:
| |
Collapse
|
27
|
Landon C, Zhu Y, Mustafi M, Madinier JB, Lelièvre D, Aucagne V, Delmas AF, Weisshaar JC. Real-Time Fluorescence Microscopy on Living E. coli Sheds New Light on the Antibacterial Effects of the King Penguin β-Defensin AvBD103b. Int J Mol Sci 2022; 23:ijms23042057. [PMID: 35216173 PMCID: PMC8880245 DOI: 10.3390/ijms23042057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 12/17/2022] Open
Abstract
(1) Antimicrobial peptides (AMPs) are a promising alternative to conventional antibiotics. Among AMPs, the disulfide-rich β-defensin AvBD103b, whose antibacterial activities are not inhibited by salts contrary to most other β-defensins, is particularly appealing. Information about the mechanisms of action is mandatory for the development and approval of new drugs. However, data for non-membrane-disruptive AMPs such as β-defensins are scarce, thus they still remain poorly understood. (2) We used single-cell fluorescence imaging to monitor the effects of a β-defensin (namely AvBD103b) in real time, on living E. coli, and at the physiological concentration of salts. (3) We obtained key parameters to dissect the mechanism of action. The cascade of events, inferred from our precise timing of membrane permeabilization effects, associated with the timing of bacterial growth arrest, differs significantly from the other antimicrobial compounds that we previously studied in the same physiological conditions. Moreover, the AvBD103b mechanism does not involve significant stereo-selective interaction with any chiral partner, at any step of the process. (4) The results are consistent with the suggestion that after penetrating the outer membrane and the cytoplasmic membrane, AvBD103b interacts non-specifically with a variety of polyanionic targets, leading indirectly to cell death.
Collapse
Affiliation(s)
- Céline Landon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
- Correspondence:
| | - Yanyu Zhu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| | - Mainak Mustafi
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| | - Jean-Baptiste Madinier
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Dominique Lelièvre
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Vincent Aucagne
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Agnes F. Delmas
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - James C. Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| |
Collapse
|
28
|
Bellotto N, Agudo-Canalejo J, Colin R, Golestanian R, Malengo G, Sourjik V. Dependence of diffusion in Escherichia coli cytoplasm on protein size, environmental conditions, and cell growth. eLife 2022; 11:82654. [PMID: 36468683 PMCID: PMC9810338 DOI: 10.7554/elife.82654] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Inside prokaryotic cells, passive translational diffusion typically limits the rates with which cytoplasmic proteins can reach their locations. Diffusion is thus fundamental to most cellular processes, but the understanding of protein mobility in the highly crowded and non-homogeneous environment of a bacterial cell is still limited. Here, we investigated the mobility of a large set of proteins in the cytoplasm of Escherichia coli, by employing fluorescence correlation spectroscopy (FCS) combined with simulations and theoretical modeling. We conclude that cytoplasmic protein mobility could be well described by Brownian diffusion in the confined geometry of the bacterial cell and at the high viscosity imposed by macromolecular crowding. We observed similar size dependence of protein diffusion for the majority of tested proteins, whether native or foreign to E. coli. For the faster-diffusing proteins, this size dependence is well consistent with the Stokes-Einstein relation once taking into account the specific dumbbell shape of protein fusions. Pronounced subdiffusion and hindered mobility are only observed for proteins with extensive interactions within the cytoplasm. Finally, while protein diffusion becomes markedly faster in actively growing cells, at high temperature, or upon treatment with rifampicin, and slower at high osmolarity, all of these perturbations affect proteins of different sizes in the same proportions, which could thus be described as changes of a well-defined cytoplasmic viscosity.
Collapse
Affiliation(s)
- Nicola Bellotto
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | | | - Remy Colin
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany,Rudolf Peierls Centre for Theoretical Physics, University of OxfordOxfordUnited Kingdom
| | - Gabriele Malengo
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| |
Collapse
|
29
|
Leroux M, Soubry N, Reyes-Lamothe R. Dynamics of Proteins and Macromolecular Machines in Escherichia coli. EcoSal Plus 2021; 9:eESP00112020. [PMID: 34060908 PMCID: PMC11163846 DOI: 10.1128/ecosalplus.esp-0011-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/16/2021] [Indexed: 11/20/2022]
Abstract
Proteins are major contributors to the composition and the functions in the cell. They often assemble into larger structures, macromolecular machines, to carry out intricate essential functions. Although huge progress in understanding how macromolecular machines function has been made by reconstituting them in vitro, the role of the intracellular environment is still emerging. The development of fluorescence microscopy techniques in the last 2 decades has allowed us to obtain an increased understanding of proteins and macromolecular machines in cells. Here, we describe how proteins move by diffusion, how they search for their targets, and how they are affected by the intracellular environment. We also describe how proteins assemble into macromolecular machines and provide examples of how frequent subunit turnover is used for them to function and to respond to changes in the intracellular conditions. This review emphasizes the constant movement of molecules in cells, the stochastic nature of reactions, and the dynamic nature of macromolecular machines.
Collapse
Affiliation(s)
- Maxime Leroux
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Nicolas Soubry
- Department of Biology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
30
|
Zhu Y, Liu L, Mustafi M, Rank LA, Gellman SH, Weisshaar JC. Local rigidification and possible coacervation of the Escherichia coli DNA by cationic nylon-3 polymers. Biophys J 2021; 120:5243-5254. [PMID: 34757079 DOI: 10.1016/j.bpj.2021.10.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Synthetic, cationic random nylon-3 polymers (β-peptides) show promise as inexpensive antimicrobial agents less susceptible to proteolysis than normal peptides. We have used superresolution, single-cell, time-lapse fluorescence microscopy to compare the effects on live Escherichia coli cells of four such polymers and the natural antimicrobial peptides LL-37 and cecropin A. The longer, densely charged monomethyl-cyclohexyl (MM-CH) copolymer and MM homopolymer rapidly traverse the outer membrane and the cytoplasmic membrane. Over the next ∼5 min, they locally rigidify the chromosomal DNA and slow the diffusive motion of ribosomal species to a degree comparable to LL-37. The shorter dimethyl-dimethylcyclopentyl (DM-DMCP) and dimethyl-dimethylcyclohexyl (DM-DMCH) copolymers, and cecropin A are significantly less effective at rigidifying DNA. Diffusion of the DNA-binding protein HU and of ribosomal species is hindered as well. The results suggest that charge density and contour length are important parameters governing these antimicrobial effects. The data corroborate a model in which agents having sufficient cationic charge distributed across molecular contour lengths comparable to local DNA-DNA interstrand spacings (∼6 nm) form a dense network of multivalent, electrostatic "pseudo-cross-links" that cause the local rigidification. In addition, at times longer than ∼30 min, we observe that the MM-CH copolymer and the MM homopolymer (but not the other four agents) cause gradual coalescence of the two nucleoid lobes into a single dense lobe localized at one end of the cell. We speculate that this process involves coacervation of the DNA by the cationic polymer, and may be related to the liquid droplet coacervates observed in eukaryotic cells.
Collapse
Affiliation(s)
- Yanyu Zhu
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin
| | - Lei Liu
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin
| | - Mainak Mustafi
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin
| | - Leslie A Rank
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin
| | - James C Weisshaar
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin.
| |
Collapse
|
31
|
Mantovanelli L, Gaastra BF, Poolman B. Fluorescence-based sensing of the bioenergetic and physicochemical status of the cell. CURRENT TOPICS IN MEMBRANES 2021; 88:1-54. [PMID: 34862023 DOI: 10.1016/bs.ctm.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence-based sensors play a fundamental role in biological research. These sensors can be based on fluorescent proteins, fluorescent probes or they can be hybrid systems. The availability of a very large dataset of fluorescent molecules, both genetically encoded and synthetically produced, together with the structural insights on many sensing domains, allowed to rationally design a high variety of sensors, capable of monitoring both molecular and global changes in living cells or in in vitro systems. The advancements in the fluorescence-imaging field helped researchers to obtain a deeper understanding of how and where specific changes occur in a cell or in vitro by combining the readout of the fluorescent sensors with the spatial information provided by fluorescent microscopy techniques. In this review we give an overview of the state of the art in the field of fluorescent biosensors and fluorescence imaging techniques, and eventually guide the reader through the choice of the best combination of fluorescent tools and techniques to answer specific biological questions. We particularly focus on sensors for probing the bioenergetics and physicochemical status of the cell.
Collapse
Affiliation(s)
- Luca Mantovanelli
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Bauke F Gaastra
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
32
|
Papadopoulos C, Callebaut I, Gelly JC, Hatin I, Namy O, Renard M, Lespinet O, Lopes A. Intergenic ORFs as elementary structural modules of de novo gene birth and protein evolution. Genome Res 2021; 31:2303-2315. [PMID: 34810219 PMCID: PMC8647833 DOI: 10.1101/gr.275638.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023]
Abstract
The noncoding genome plays an important role in de novo gene birth and in the emergence of genetic novelty. Nevertheless, how noncoding sequences' properties could promote the birth of novel genes and shape the evolution and the structural diversity of proteins remains unclear. Therefore, by combining different bioinformatic approaches, we characterized the fold potential diversity of the amino acid sequences encoded by all intergenic open reading frames (ORFs) of S. cerevisiae with the aim of (1) exploring whether the structural states' diversity of proteomes is already present in noncoding sequences, and (2) estimating the potential of the noncoding genome to produce novel protein bricks that could either give rise to novel genes or be integrated into pre-existing proteins, thus participating in protein structure diversity and evolution. We showed that amino acid sequences encoded by most yeast intergenic ORFs contain the elementary building blocks of protein structures. Moreover, they encompass the large structural state diversity of canonical proteins, with the majority predicted as foldable. Then, we investigated the early stages of de novo gene birth by reconstructing the ancestral sequences of 70 yeast de novo genes and characterized the sequence and structural properties of intergenic ORFs with a strong translation signal. This enabled us to highlight sequence and structural factors determining de novo gene emergence. Finally, we showed a strong correlation between the fold potential of de novo proteins and one of their ancestral amino acid sequences, reflecting the relationship between the noncoding genome and the protein structure universe.
Collapse
Affiliation(s)
- Chris Papadopoulos
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
| | - Jean-Christophe Gelly
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015 Paris, France
- Laboratoire d'Excellence GR-Ex, 75015 Paris, France
- Institut National de la Transfusion Sanguine, F-75015 Paris, France
| | - Isabelle Hatin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Olivier Namy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Maxime Renard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Olivier Lespinet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Anne Lopes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
33
|
Magnetic Nanoprobes for Spatio-Mechanical Manipulation in Single Cells. NANOMATERIALS 2021; 11:nano11092267. [PMID: 34578584 PMCID: PMC8471295 DOI: 10.3390/nano11092267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023]
Abstract
Magnetic nanoparticles (MNPs) are widely known as valuable agents for biomedical applications. Recently, MNPs were further suggested to be used for a remote and non-invasive manipulation, where their spatial redistribution or force response in a magnetic field provides a fine-tunable stimulus to a cell. Here, we investigated the properties of two different MNPs and assessed their suitability for spatio-mechanical manipulations: semisynthetic magnetoferritin nanoparticles and fully synthetic 'nanoflower'-shaped iron oxide nanoparticles. As well as confirming their monodispersity in terms of structure, surface potential, and magnetic response, we monitored the MNP performance in a living cell environment using fluorescence microscopy and asserted their biocompatibility. We then demonstrated facilitated spatial redistribution of magnetoferritin compared to 'nanoflower'-NPs after microinjection, and a higher magnetic force response of these NPs compared to magnetoferritin inside a cell. Our remote manipulation assays present these tailored magnetic materials as suitable agents for applications in magnetogenetics, biomedicine, or nanomaterial research.
Collapse
|
34
|
Kozlowski LP. IPC 2.0: prediction of isoelectric point and pKa dissociation constants. Nucleic Acids Res 2021; 49:W285-W292. [PMID: 33905510 PMCID: PMC8262712 DOI: 10.1093/nar/gkab295] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 01/05/2023] Open
Abstract
The isoelectric point is the pH at which a particular molecule is electrically neutral due to the equilibrium of positive and negative charges. In proteins and peptides, this depends on the dissociation constant (pKa) of charged groups of seven amino acids and NH+ and COO− groups at polypeptide termini. Information regarding isoelectric point and pKa is extensively used in two-dimensional gel electrophoresis (2D-PAGE), capillary isoelectric focusing (cIEF), crystallisation, and mass spectrometry. Therefore, there is a strong need for the in silico prediction of isoelectric point and pKa values. In this paper, I present Isoelectric Point Calculator 2.0 (IPC 2.0), a web server for the prediction of isoelectric points and pKa values using a mixture of deep learning and support vector regression models. The prediction accuracy (RMSD) of IPC 2.0 for proteins and peptides outperforms previous algorithms: 0.848 versus 0.868 and 0.222 versus 0.405, respectively. Moreover, the IPC 2.0 prediction of pKa using sequence information alone was better than the prediction from structure-based methods (0.576 versus 0.826) and a few folds faster. The IPC 2.0 webserver is freely available at www.ipc2-isoelectric-point.org
Collapse
Affiliation(s)
- Lukasz Pawel Kozlowski
- Institute of Informatics, Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Mazovian Voivodeship 02-097, Poland
| |
Collapse
|
35
|
Yu J, Ramirez LM, Premo A, Busch DB, Lin Q, Burz DS, Shekhtman A. Ribosome-Amplified Metabolism, RAMBO, Measured by NMR Spectroscopy. Biochemistry 2021; 60:1885-1895. [PMID: 34081430 PMCID: PMC11299219 DOI: 10.1021/acs.biochem.1c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NMR spectroscopy was used to investigate the phenomenon of ribosome-amplified metabolism or RAMBO between pyruvate kinase and ribosomes. Because the concentration of ribosomes increases as the cell grows, ribosome binding interactions may regulate metabolic fluxes by altering the distribution of bound and free enzymes. Pyruvate kinase (PK) catalyzes the last step of glycolysis and represents a major drug target for controlling bacterial infections. The binding of metabolic enzymes to ribosomes creates protein quinary structures with altered catalytic activities. NMR spectroscopy and chemical cross-linking combined with high-resolution mass spectrometry were used to establish that PK binds to ribosome at three independent sites, the L1 stalk, the A site, and the mRNA entry pore. The bioanalytical methodology described characterizes the altered kinetics and confirms the specificity of pyruvate kinase-ribosome interaction, affording an opportunity to investigate the ribosome dependence of metabolic reactions under solution conditions that closely mimic the cytosol. Expanding on the concept of ribosomal heterogeneity, which describes variations in ribosomal constituents that contribute to the specificity of cellular processes, this work firmly establishes the reciprocal process by which ribosome-dependent quinary interactions affect metabolic activity.
Collapse
Affiliation(s)
- JianChao Yu
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Lisa M Ramirez
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Aaron Premo
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Devin B Busch
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Qishan Lin
- RNA Epitranscriptomics & Proteomics Resource, University at Albany, State University of New York, Albany, New York 12222, United States
| | - David S Burz
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
36
|
Single-molecule localisation microscopy: accounting for chance co-localisation between foci in bacterial cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:941-950. [PMID: 34148104 PMCID: PMC8448688 DOI: 10.1007/s00249-021-01555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/07/2021] [Accepted: 06/09/2021] [Indexed: 11/05/2022]
Abstract
Using single-molecule fluorescence microscopes, individual biomolecules can be observed within live bacterial cells. Using differently coloured probes, physical associations between two different molecular species can be assessed through co-localisation measurements. However, bacterial cells are finite and small (~ 1 μm) relative to the resolution limit of optical microscopes (~ 0.25 μm). Furthermore, the images produced by optical microscopes are typically two-dimensional projections of three-dimensional objects. These limitations mean that a certain proportion of object pairs (molecules) will inevitably be assigned as being co-localised, even when they are distant at molecular distance scales (nm). What is this proportion? Here, we attack this problem, theoretically and computationally, by creating a model of the co-localisation expected purely due to chance. We thus consider a bacterial cell wherein objects are distributed at random and evaluate the co-localisation in a fashion that emulates an experimental analysis. We consider simplified geometries where we can most transparently investigate the effect of a finite size of the cell and the effect of probing a three-dimensional cell in only two dimensions. Coupling theory to simulations, we also study the co-localisation expected due to chance using parameters relevant to bacterial cells. Overall, we show that the co-localisation expected purely due to chance can be quite substantial and describe the parameters that it depends upon.
Collapse
|
37
|
Abstract
Folding of polypeptides begins during their synthesis on ribosomes. This process has evolved as a means for the cell to maintain proteostasis, by mitigating the risk of protein misfolding and aggregation. The capacity to now depict this cellular feat at increasingly higher resolution is providing insight into the mechanistic determinants that promote successful folding. Emerging from these studies is the intimate interplay between protein translation and folding, and within this the ribosome particle is the key player. Its unique structural properties provide a specialized scaffold against which nascent polypeptides can begin to form structure in a highly coordinated, co-translational manner. Here, we examine how, as a macromolecular machine, the ribosome modulates the intrinsic dynamic properties of emerging nascent polypeptide chains and guides them toward their biologically active structures.
Collapse
Affiliation(s)
- Anaïs M E Cassaignau
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom; , ,
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom; , ,
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom; , ,
| |
Collapse
|
38
|
Iyer A, Baranov M, Foster AJ, Chordia S, Roelfes G, Vlijm R, van den Bogaart G, Poolman B. Chemogenetic Tags with Probe Exchange for Live-Cell Fluorescence Microscopy. ACS Chem Biol 2021; 16:891-904. [PMID: 33913682 PMCID: PMC8154248 DOI: 10.1021/acschembio.1c00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022]
Abstract
Fluorogenic protein tagging systems have been less developed for prokaryotes than for eukaryotic cell systems. Here, we extend the concept of noncovalent fluorogenic protein tags in bacteria by introducing transcription factor-based tags, namely, LmrR and RamR, for probe binding and fluorescence readout under aerobic and anaerobic conditions. We developed two chemogenetic protein tags that impart fluorogenicity and a longer fluorescence lifetime to reversibly bound organic fluorophores, hence the name Chemogenetic Tags with Probe Exchange (CTPEs). We present an extensive characterization of 30 fluorophores reversibly interacting with the two different CTPEs and conclude that aromatic planar structures bind with high specificity to the hydrophobic pockets of these tags. The reversible binding of organic fluorophores to the CTPEs and the superior photophysical properties of organic fluorophores enable long-term fluorescence microscopy of living bacterial cells. Our protein tags provide a general tool for investigating (sub)cellular protein localization and dynamics, protein-protein interactions, and prolonged live-cell microscopy, even under oxygen-free conditions.
Collapse
Affiliation(s)
- Aditya Iyer
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Maxim Baranov
- Department
of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Alexander J. Foster
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Shreyans Chordia
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gerard Roelfes
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Rifka Vlijm
- Molecular
Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Geert van den Bogaart
- Department
of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Bert Poolman
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
39
|
Speer SL, Zheng W, Jiang X, Chu IT, Guseman AJ, Liu M, Pielak GJ, Li C. The intracellular environment affects protein-protein interactions. Proc Natl Acad Sci U S A 2021; 118:e2019918118. [PMID: 33836588 PMCID: PMC7980425 DOI: 10.1073/pnas.2019918118] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Protein-protein interactions are essential for life but rarely thermodynamically quantified in living cells. In vitro efforts show that protein complex stability is modulated by high concentrations of cosolutes, including synthetic polymers, proteins, and cell lysates via a combination of hard-core repulsions and chemical interactions. We quantified the stability of a model protein complex, the A34F GB1 homodimer, in buffer, Escherichia coli cells and Xenopus laevis oocytes. The complex is more stable in cells than in buffer and more stable in oocytes than E. coli Studies of several variants show that increasing the negative charge on the homodimer surface increases stability in cells. These data, taken together with the fact that oocytes are less crowded than E. coli cells, lead to the conclusion that chemical interactions are more important than hard-core repulsions under physiological conditions, a conclusion also gleaned from studies of protein stability in cells. Our studies have implications for understanding how promiscuous-and specific-interactions coherently evolve for a protein to properly function in the crowded cellular environment.
Collapse
Affiliation(s)
- Shannon L Speer
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
| | - Wenwen Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071 Wuhan, China
- Graduate University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xin Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071 Wuhan, China
- Graduate University of Chinese Academy of Sciences, 100049 Beijing, China
| | - I-Te Chu
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
| | - Alex J Guseman
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599;
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071 Wuhan, China;
| |
Collapse
|
40
|
Stracy M, Schweizer J, Sherratt DJ, Kapanidis AN, Uphoff S, Lesterlin C. Transient non-specific DNA binding dominates the target search of bacterial DNA-binding proteins. Mol Cell 2021; 81:1499-1514.e6. [PMID: 33621478 PMCID: PMC8022225 DOI: 10.1016/j.molcel.2021.01.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/24/2020] [Accepted: 01/27/2021] [Indexed: 12/18/2022]
Abstract
Despite their diverse biochemical characteristics and functions, all DNA-binding proteins share the ability to accurately locate their target sites among the vast excess of non-target DNA. Toward identifying universal mechanisms of the target search, we used single-molecule tracking of 11 diverse DNA-binding proteins in living Escherichia coli. The mobility of these proteins during the target search was dictated by DNA interactions rather than by their molecular weights. By generating cells devoid of all chromosomal DNA, we discovered that the nucleoid is not a physical barrier for protein diffusion but significantly slows the motion of DNA-binding proteins through frequent short-lived DNA interactions. The representative DNA-binding proteins (irrespective of their size, concentration, or function) spend the majority (58%–99%) of their search time bound to DNA and occupy as much as ∼30% of the chromosomal DNA at any time. Chromosome crowding likely has important implications for the function of all DNA-binding proteins. Protein motion was compared between unperturbed cells and DNA-free cells Protein mobility was dictated by DNA interactions rather than molecular weight The nucleoid is not a physical barrier for protein diffusion The proteins studied spend most (58%–99%) of their search time bound to DNA
Collapse
Affiliation(s)
- Mathew Stracy
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - Jakob Schweizer
- Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - Christian Lesterlin
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, INSERM, UMR5086, 69007 Lyon, France.
| |
Collapse
|
41
|
Tran BM, Prabha H, Iyer A, O'Byrne C, Abee T, Poolman B. Measurement of Protein Mobility in Listeria monocytogenes Reveals a Unique Tolerance to Osmotic Stress and Temperature Dependence of Diffusion. Front Microbiol 2021; 12:640149. [PMID: 33679676 PMCID: PMC7925416 DOI: 10.3389/fmicb.2021.640149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/21/2021] [Indexed: 11/18/2022] Open
Abstract
Protein mobility in the cytoplasm is essential for cellular functions, and slow diffusion may limit the rates of biochemical reactions in the living cell. Here, we determined the apparent lateral diffusion coefficient (DL) of GFP in Listeria monocytogenes as a function of osmotic stress, temperature, and media composition. We find that DL is much less affected by hyperosmotic stress in L. monocytogenes than under similar conditions in Lactococcus lactis and Escherichia coli. We find a temperature optimum for protein diffusion in L. monocytogenes at 30°C, which deviates from predicted trends from the generalized Stokes-Einstein equation under dilute conditions and suggests that the structure of the cytoplasm and macromolecular crowding vary as a function of temperature. The turgor pressure of L. monocytogenes is comparable to other Gram-positive bacteria like Bacillus subtilis and L. lactis but higher in a knockout strain lacking the stress-inducible sigma factor SigB. We discuss these findings in the context of how L. monocytogenes survives during environmental transmission and interaction with the human host.
Collapse
Affiliation(s)
- Buu Minh Tran
- Department of Biochemistry, University of Groningen, Groningen, Netherlands
| | - Haritha Prabha
- Department of Biochemistry, University of Groningen, Groningen, Netherlands
| | - Aditya Iyer
- Department of Biochemistry, University of Groningen, Groningen, Netherlands
| | - Conor O'Byrne
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Tjakko Abee
- Laboratory of Food Microbiology, Wageningen University Research, Wageningen, Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Groningen, Netherlands
| |
Collapse
|
42
|
Yeong V, Werth EG, Brown LM, Obermeyer AC. Formation of Biomolecular Condensates in Bacteria by Tuning Protein Electrostatics. ACS CENTRAL SCIENCE 2020; 6:2301-2310. [PMID: 33376791 PMCID: PMC7760465 DOI: 10.1021/acscentsci.0c01146] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 05/09/2023]
Abstract
While eukaryotic cells have a myriad of membrane-bound organelles enabling the isolation of different chemical environments, prokaryotic cells lack these defined reaction vessels. Biomolecular condensates-organelles that lack a membrane-provide a strategy for cellular organization without a physical barrier while allowing for the dynamic, responsive organization of the cell. It is well established that intrinsically disordered protein domains drive condensate formation via liquid-liquid phase separation; however, the role of globular protein domains on intracellular phase separation remains poorly understood. We hypothesized that the overall charge of globular proteins would dictate the formation and concentration of condensates and systematically probed this hypothesis with supercharged proteins and nucleic acids in E. coli. Within this study, we demonstrated that condensates form via electrostatic interactions between engineered proteins and RNA and that these condensates are dynamic and only enrich specific nucleic acid and protein components. Herein, we propose a simple model for the phase separation based on protein charge that can be used to predict intracellular condensate formation. With these guidelines, we have paved the way to designer functional synthetic membraneless organelles with tunable control over globular protein function.
Collapse
Affiliation(s)
- Vivian Yeong
- Department of Chemical
Engineering, Columbia University, New York, New York 10027, United States
| | - Emily G. Werth
- Quantitative Proteomics and Metabolomics Center, Department of Biological
Sciences, Columbia University, New York, New York 10027, United States
| | - Lewis M. Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological
Sciences, Columbia University, New York, New York 10027, United States
| | - Allie C. Obermeyer
- Department of Chemical
Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
43
|
Leeb S, Yang F, Oliveberg M, Danielsson J. Connecting Longitudinal and Transverse Relaxation Rates in Live-Cell NMR. J Phys Chem B 2020; 124:10698-10707. [PMID: 33179918 PMCID: PMC7735724 DOI: 10.1021/acs.jpcb.0c08274] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/22/2020] [Indexed: 12/26/2022]
Abstract
In the cytosolic environment, protein crowding and Brownian motions result in numerous transient encounters. Each such encounter event increases the apparent size of the interacting molecules, leading to slower rotational tumbling. The extent of transient protein complexes formed in live cells can conveniently be quantified by an apparent viscosity, based on NMR-detected spin-relaxation measurements, that is, the longitudinal (T1) and transverse (T2) relaxation. From combined analysis of three different proteins and surface mutations thereof, we find that T2 implies significantly higher apparent viscosity than T1. At first sight, the effect on T1 and T2 seems thus nonunifiable, consistent with previous reports on other proteins. We show here that the T1 and T2 deviation is actually not a inconsistency but an expected feature of a system with fast exchange between free monomers and transient complexes. In this case, the deviation is basically reconciled by a model with fast exchange between the free-tumbling reporter protein and a transient complex with a uniform 143 kDa partner. The analysis is then taken one step further by accounting for the fact that the cytosolic content is by no means uniform but comprises a wide range of molecular sizes. Integrating over the complete size distribution of the cytosolic interaction ensemble enables us to predict both T1 and T2 from a single binding model. The result yields a bound population for each protein variant and provides a quantification of the transient interactions. We finally extend the approach to obtain a correction term for the shape of a database-derived mass distribution of the interactome in the mammalian cytosol, in good accord with the existing data of the cellular composition.
Collapse
Affiliation(s)
- Sarah Leeb
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, Stockholm 106 91, Sweden
| | - Fan Yang
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, Stockholm 106 91, Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, Stockholm 106 91, Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
44
|
Vibhute MA, Schaap MH, Maas RJM, Nelissen FHT, Spruijt E, Heus HA, Hansen MMK, Huck WTS. Transcription and Translation in Cytomimetic Protocells Perform Most Efficiently at Distinct Macromolecular Crowding Conditions. ACS Synth Biol 2020; 9:2797-2807. [PMID: 32976714 PMCID: PMC7573978 DOI: 10.1021/acssynbio.0c00330] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
The formation of
cytomimetic protocells that capture the physicochemical
aspects of living cells is an important goal in bottom-up synthetic
biology. Here, we recreated the crowded cytoplasm in liposome-based
protocells and studied the kinetics of cell-free gene expression in
these crowded containers. We found that diffusion of key components
is affected not only by macromolecular crowding but also by enzymatic
activity in the protocell. Surprisingly, size-dependent diffusion
in crowded conditions yielded two distinct maxima for protein synthesis,
reflecting the differential impact of crowding on transcription and
translation. Our experimental data show, for the first time, that
macromolecular crowding induces a switch from reaction to diffusion
control and that this switch depends on the sizes of the macromolecules
involved. These results highlight the need to control the physical
environment in the design of synthetic cells.
Collapse
Affiliation(s)
- Mahesh A. Vibhute
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mark H. Schaap
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Roel J. M. Maas
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Frank H. T. Nelissen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Evan Spruijt
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Hans A. Heus
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Maike M. K. Hansen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wilhelm T. S. Huck
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
45
|
Velivelli SLS, Czymmek KJ, Li H, Shaw JB, Buchko GW, Shah DM. Antifungal symbiotic peptide NCR044 exhibits unique structure and multifaceted mechanisms of action that confer plant protection. Proc Natl Acad Sci U S A 2020; 117:16043-16054. [PMID: 32571919 PMCID: PMC7354933 DOI: 10.1073/pnas.2003526117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the indeterminate nodules of a model legume Medicago truncatula, ∼700 nodule-specific cysteine-rich (NCR) peptides with conserved cysteine signature are expressed. NCR peptides are highly diverse in sequence, and some of these cationic peptides exhibit antimicrobial activity in vitro and in vivo. However, there is a lack of knowledge regarding their structural architecture, antifungal activity, and modes of action against plant fungal pathogens. Here, the three-dimensional NMR structure of the 36-amino acid NCR044 peptide was solved. This unique structure was largely disordered and highly dynamic with one four-residue α-helix and one three-residue antiparallel β-sheet stabilized by two disulfide bonds. NCR044 peptide also exhibited potent fungicidal activity against multiple plant fungal pathogens, including Botrytis cinerea and three Fusarium spp. It inhibited germination in quiescent spores of B. cinerea In germlings, it breached the fungal plasma membrane and induced reactive oxygen species. It bound to multiple bioactive phosphoinositides in vitro. Time-lapse confocal and superresolution microscopy revealed strong fungal cell wall binding, penetration of the cell membrane at discrete foci, followed by gradual loss of turgor, subsequent accumulation in the cytoplasm, and elevated levels in nucleoli of germlings. Spray-applied NCR044 significantly reduced gray mold disease symptoms caused by the fungal pathogen B. cinerea in tomato and tobacco plants, and postharvest products. Our work illustrates the antifungal activity of a structurally unique NCR peptide against plant fungal pathogens and paves the way for future development of this class of peptides as a spray-on fungistat/fungicide.
Collapse
Affiliation(s)
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, St Louis, MO 63132
- Advanced Bioimaging Laboratory, Donald Danforth Plant Science Center, St Louis, MO 63132
| | - Hui Li
- Donald Danforth Plant Science Center, St Louis, MO 63132
| | - Jared B Shaw
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Garry W Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164
| | - Dilip M Shah
- Donald Danforth Plant Science Center, St Louis, MO 63132;
| |
Collapse
|
46
|
Löwe M, Kalacheva M, Boersma AJ, Kedrov A. The more the merrier: effects of macromolecular crowding on the structure and dynamics of biological membranes. FEBS J 2020; 287:5039-5067. [DOI: 10.1111/febs.15429] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Maryna Löwe
- Synthetic Membrane Systems Institute of Biochemistry Heinrich Heine University Düsseldorf Germany
| | | | | | - Alexej Kedrov
- Synthetic Membrane Systems Institute of Biochemistry Heinrich Heine University Düsseldorf Germany
| |
Collapse
|
47
|
Yaeger-Weiss SK, Jennaro TS, Mecha M, Becker JH, Yang H, Winkler GLW, Cavagnero S. Net Charge and Nonpolar Content Guide the Identification of Folded and Prion Proteins. Biochemistry 2020; 59:1881-1895. [DOI: 10.1021/acs.biochem.9b01114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Susanna K. Yaeger-Weiss
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Theodore S. Jennaro
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Miranda Mecha
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Jenna H. Becker
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Hanming Yang
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Gordon L. W. Winkler
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
48
|
Breindel L, Yu J, Burz DS, Shekhtman A. Intact ribosomes drive the formation of protein quinary structure. PLoS One 2020; 15:e0232015. [PMID: 32330166 PMCID: PMC7182177 DOI: 10.1371/journal.pone.0232015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/05/2020] [Indexed: 01/19/2023] Open
Abstract
Transient, site-specific, or so-called quinary, interactions are omnipresent in live cells and modulate protein stability and activity. Quinary intreactions are readily detected by in-cell NMR spectroscopy as severe broadening of the NMR signals. Intact ribosome particles were shown to be necessary for the interactions that give rise to the NMR protein signal broadening observed in cell lysates and sufficient to mimic quinary interactions present in the crowded cytosol. Recovery of target protein NMR spectra that were broadened in lysates, in vitro and in the presence of purified ribosomes was achieved by RNase A digestion only after the structure of the ribosome was destabilized by removing magnesium ions from the system. Identifying intact ribosomal particles as the major protein-binding component of quinary interactions and consequent spectral peak broadening will facilitate quantitative characterization of macromolecular crowding effects in live cells and streamline models of metabolic activity.
Collapse
Affiliation(s)
- Leonard Breindel
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, United States of America
| | - Jianchao Yu
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, United States of America
| | - David S. Burz
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, United States of America
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, United States of America
| |
Collapse
|
49
|
Leeb S, Sörensen T, Yang F, Mu X, Oliveberg M, Danielsson J. Diffusive protein interactions in human versus bacterial cells. Curr Res Struct Biol 2020; 2:68-78. [PMID: 34235470 PMCID: PMC8244477 DOI: 10.1016/j.crstbi.2020.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/05/2020] [Accepted: 04/06/2020] [Indexed: 01/14/2023] Open
Abstract
Random encounters between proteins in crowded cells are by no means passive, but found to be under selective control. This control enables proteome solubility, helps to optimise the diffusive search for interaction partners, and allows for adaptation to environmental extremes. Interestingly, the residues that modulate the encounters act mesoscopically through protein surface hydrophobicity and net charge, meaning that their detailed signatures vary across organisms with different intracellular constraints. To examine such variations, we use in-cell NMR relaxation to compare the diffusive behaviour of bacterial and human proteins in both human and Escherichia coli cytosols. We find that proteins that ‘stick’ in E. coli are generally less restricted in mammalian cells. Furthermore, the rotational diffusion in the mammalian cytosol is less sensitive to surface-charge mutations. This implies that, in terms of protein motions, the mammalian cytosol is more forgiving to surface alterations than E. coli cells. The cellular differences seem not linked to the proteome properties per se, but rather to a 6-fold difference in protein concentrations. Our results outline a scenario in which the tolerant cytosol of mammalian cells, found in long-lived multicellular organisms, provides an enlarged evolutionary playground, where random protein-surface mutations are less deleterious than in short-generational bacteria. Random protein encounters and diffusibility in cells are controlled by surface charge. Protein rotational diffusion is less restricted in human cells than in E. coli. Human cells are less sensitive to alterations of protein charge than Escherichia coli cells.
Collapse
Affiliation(s)
- Sarah Leeb
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91, Stockholm, Sweden
| | - Therese Sörensen
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91, Stockholm, Sweden
| | - Fan Yang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91, Stockholm, Sweden
| | - Xin Mu
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91, Stockholm, Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91, Stockholm, Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91, Stockholm, Sweden
| |
Collapse
|
50
|
Pan S, Jeon T, Luther DC, Duan X, Rotello VM. Cytosolic Delivery of Functional Proteins In Vitro through Tunable Gigahertz Acoustics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15823-15829. [PMID: 32150373 PMCID: PMC7392053 DOI: 10.1021/acsami.9b21131] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Intracellular delivery is essential to therapeutic applications such as genome engineering and disease diagnosis. Current methods lack simple, noninvasive strategies and are often hindered by long incubation time or high toxicity. Hydrodynamic approaches offer rapid and controllable delivery of small molecules, but thus far have not been demonstrated for delivering functional proteins. In this work, we developed a robust hydrodynamic approach based on gigahertz (GHz) acoustics to achieve rapid and noninvasive cytosolic delivery of biologically active proteins. With this method, GHz-based acoustic devices trigger oscillations through a liquid medium (acoustic streaming), generating shear stress on the cell membrane and inducing transient nanoporation. This mechanical effect enhances membrane permeability and enables cytosolic access to cationic proteins without disturbing their bioactivity. We evaluated the versatility of this approach through the delivery of cationic fluorescent proteins to a range of cell lines, all of which displayed equally efficient delivery speed (≤20 min). Delivery of multiple enzymatically active proteins with functionality related to apoptosis or genetic recombination further demonstrated the relevance of this method.
Collapse
Affiliation(s)
- Shuting Pan
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Taewon Jeon
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, United States
| | - David C. Luther
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Corresponding Author, . Tel./Fax: +86 2227401002 (X.D.)
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
- Corresponding Author, . Tel./Fax: +86 2227401002 (X.D.)
| |
Collapse
|