1
|
Rahmati SM, Klishko AN, Martin RS, Bunderson NE, Meslie JA, Nichols TR, Rybak IA, Frigon A, Burkholder TJ, Prilutsky BI. Role of forelimb morphology in muscle sensorimotor functions during locomotion in the cat. J Physiol 2024. [PMID: 39705066 DOI: 10.1113/jp287448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Previous studies established strong links between morphological characteristics of mammalian hindlimb muscles and their sensorimotor functions during locomotion. Less is known about the role of forelimb morphology in motor outputs and generation of sensory signals. Here, we measured morphological characteristics of 46 forelimb muscles from six cats. These characteristics included muscle attachments, physiological cross-sectional area (PCSA) and fascicle length. We also recorded full-body mechanics and EMG activity of forelimb muscles during level overground and treadmill locomotion in seven and 16 adult cats of either sex, respectively. We computed forelimb muscle forces along with force- and length-dependent sensory signals mapped onto corresponding cervical spinal segments. We found that patterns of computed muscle forces and afferent activities were strongly affected by the muscle's moment arm, PCSA and fascicle length. Morphology of the shoulder muscles suggests distinct roles of the forelimbs in lateral force production and movements. Patterns of length-dependent sensory activity of muscles with long fibres (brachioradialis, extensor carpi radialis) closely matched patterns of overall forelimb length, whereas the activity pattern of biceps brachii length afferents matched forelimb orientation. We conclude that cat forelimb muscle morphology contributes substantially to locomotor function, particularly to control lateral stability and turning, rather than propulsion. KEY POINTS: Little is known about the role of forelimb muscle morphology in producing motor outputs and generating somatosensory signals. This information is needed to understand the contributions of forelimbs in locomotor control. We measured morphological characteristics of 46 muscles from cat forelimbs, recorded cat walking mechanics and electromyographic activity, and computed patterns of moment arms, length, velocity, activation, and force of forelimb muscles, as well as length- and force-dependent afferent activity during walking. We demonstrated that moment arms, physiological cross-sectional area and fascicle length of forelimb muscles contribute substantially to muscle force production and proprioceptive activity, to the regulation of locomotor cycle phase transitions and to control of lateral stability. The obtained information can guide the development of biologically accurate neuromechanical models of quadrupedal locomotion for exploring and testing novel methods of treatments of central nervous system pathologies by modulating activities in neural pathways controlling forelimbs/arms.
Collapse
Affiliation(s)
| | - Alexander N Klishko
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | - Jeswin A Meslie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - T Richard Nichols
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, USA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Thomas J Burkholder
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
2
|
Pryyma Y, Yakovenko S. Damage explains function in spiking neural networks representing central pattern generator. J Neural Eng 2024; 21:066030. [PMID: 39626354 DOI: 10.1088/1741-2552/ad9a00] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Objective.Complex biological systems have evolved to control movement dynamics despite noisy and unpredictable inputs and processing delays that necessitate forward predictions. The staple example in vertebrates is the locomotor control emerging from interactions between multiple systems-from passive dynamics of inverted pendulum governing body motion to coupled neural oscillators that integrate predictive forward and sensory feedback signals. These neural dynamic computations are expressed in the rhythmogenic spinal network known as the central pattern generator (CPG). While a system of ordinary differential equations constituting a rate model can accurately reproduce flexor-extensor modulation patterns aligned with experimental data from cats, the equivalent computations performed by thousands of neurons in vertebrates or even in silicon are poorly understood.Approach.We developed a locomotor CPG model expressed as a spiking neural network (SNN) to test how damage affects the distributed computations of a well-defined neural circuit with known dynamics. The SNN-CPG model accurately recreated the input-output relationship of the rate model, describing the modulation of gait phase characteristics.Main Results.The degradation of distributed computation within elements of the SNN-CPG model was further analyzed with progressive simulated lesions. Circuits trained to express flexor or extensor function, with otherwise identical structural organization, were differently affected by lesions mimicking results in experimental observations. The increasing external drive was shown to overcome structural damage and restore function after progressive lesions.Significance.These model results provide theoretical insights into the network dynamics of locomotor control and introduce the concept of degraded computations with applications for restorative technologies.
Collapse
Affiliation(s)
- Yuriy Pryyma
- Faculty of Applied Science, Ukrainian Catholic University, Lviv, Ukraine
| | - Sergiy Yakovenko
- Exercise Physiology, Department of Human Performance, School of Medicine, West Virginia University, Morgantown, WV, United States of America
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, United States of America
- Rockefeller Neuroscience Institute, School of Medicine, West Virginia University, Morgantown, WV, United States of America
- Mechanical and Aerospace Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV, United States of America
- Department of Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV, United States of America
| |
Collapse
|
3
|
Rybak IA, Shevtsova NA, Audet J, Yassine S, Markin SN, Prilutsky BI, Frigon A. Operation of spinal sensorimotor circuits controlling phase durations during tied-belt and split-belt locomotion after a lateral thoracic hemisection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612376. [PMID: 39314446 PMCID: PMC11419089 DOI: 10.1101/2024.09.10.612376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Locomotion is controlled by spinal circuits that interact with supraspinal drives and sensory feedback from the limbs. These sensorimotor interactions are disrupted following spinal cord injury. The thoracic lateral hemisection represents an experimental model of an incomplete spinal cord injury, where connections between the brain and spinal cord are abolished on one side of the cord. To investigate the effects of such an injury on the operation of the spinal locomotor network, we used our computational model of cat locomotion recently published in eLife (Rybak et al., 2024) to investigate and predict changes in cycle and phase durations following a thoracic lateral hemisection during treadmill locomotion in tied-belt (equal left-right speeds) and split-belt (unequal left-right speeds) conditions. In our simulations, the "hemisection" was always applied to the right side. Based on our model, we hypothesized that following hemisection, the contralesional ("intact", left) side of the spinal network is mostly controlled by supraspinal drives, whereas the ipsilesional ("hemisected", right) side is mostly controlled by somatosensory feedback. We then compared the simulated results with those obtained during experiments in adult cats before and after a mid-thoracic lateral hemisection on the right side in the same locomotor conditions. Our experimental results confirmed many effects of hemisection on cat locomotion predicted by our simulations. We show that having the ipsilesional hindlimb step on the slow belt, but not the fast belt, during split-belt locomotion substantially reduces the effects of lateral hemisection. The model provides explanations for changes in temporal characteristics of hindlimb locomotion following hemisection based on altered interactions between spinal circuits, supraspinal drives, and somatosensory feedback.
Collapse
Affiliation(s)
- Ilya A. Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19129, USA
| | - Natalia A. Shevtsova
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19129, USA
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sergey N. Markin
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19129, USA
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
4
|
Smith TS, Abolfath-Beygi M, Sanger TD, Giszter SF. A Stochastic Dynamic Operator Framework That Improves the Precision of Analysis and Prediction Relative to the Classical Spike-Triggered Average Method, Extending the Toolkit. eNeuro 2024; 11:ENEURO.0512-23.2024. [PMID: 39375031 PMCID: PMC11552545 DOI: 10.1523/eneuro.0512-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
Here we test the stochastic dynamic operator (SDO) as a new framework for describing physiological signal dynamics relative to spiking or stimulus events. The SDO is a natural extension of existing spike-triggered average (STA) or stimulus-triggered average techniques currently used in neural analysis. It extends the classic STA to cover state-dependent and probabilistic responses where STA may fail. In simulated data, SDO methods were more sensitive and specific than the STA for identifying state-dependent relationships. We have tested SDO analysis for interactions between electrophysiological recordings of spinal interneurons, single motor units, and aggregate muscle electromyograms (EMG) of major muscles in the spinal frog hindlimb. When predicting target signal behavior relative to spiking events, the SDO framework outperformed or matched classical spike-triggered averaging methods. SDO analysis permits more complicated spike-signal relationships to be captured, analyzed, and interpreted visually and intuitively. SDO methods can be applied at different scales of interest where spike-triggered averaging methods are currently employed, and beyond, from single neurons to gross motor behaviors. SDOs may be readily generated and analyzed using the provided SDO Analysis Toolkit We anticipate this method will be broadly useful for describing dynamical signal behavior and uncovering state-dependent relationships of stochastic signals relative to discrete event times.
Collapse
Affiliation(s)
- Trevor S Smith
- Neurobiology and Anatomy, and Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Maryam Abolfath-Beygi
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, California 92697
| | - Terence D Sanger
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, California 92697
| | - Simon F Giszter
- Neurobiology and Anatomy, and Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| |
Collapse
|
5
|
Rybak IA, Shevtsova NA, Markin SN, Prilutsky BI, Frigon A. Operation regimes of spinal circuits controlling locomotion and the role of supraspinal drives and sensory feedback. eLife 2024; 13:RP98841. [PMID: 39401073 PMCID: PMC11473106 DOI: 10.7554/elife.98841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Locomotion in mammals is directly controlled by the spinal neuronal network, operating under the control of supraspinal signals and somatosensory feedback that interact with each other. However, the functional architecture of the spinal locomotor network, its operation regimes, and the role of supraspinal and sensory feedback in different locomotor behaviors, including at different speeds, remain unclear. We developed a computational model of spinal locomotor circuits receiving supraspinal drives and limb sensory feedback that could reproduce multiple experimental data obtained in intact and spinal-transected cats during tied-belt and split-belt treadmill locomotion. We provide evidence that the spinal locomotor network operates in different regimes depending on locomotor speed. In an intact system, at slow speeds (<0.4 m/s), the spinal network operates in a non-oscillating state-machine regime and requires sensory feedback or external inputs for phase transitions. Removing sensory feedback related to limb extension prevents locomotor oscillations at slow speeds. With increasing speed and supraspinal drives, the spinal network switches to a flexor-driven oscillatory regime and then to a classical half-center regime. Following spinal transection, the model predicts that the spinal network can only operate in the state-machine regime. Our results suggest that the spinal network operates in different regimes for slow exploratory and fast escape locomotor behaviors, making use of different control mechanisms.
Collapse
Affiliation(s)
- Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Natalia A Shevtsova
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Sergey N Markin
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de SherbrookeSherbrookeCanada
| |
Collapse
|
6
|
Zhu Q, Han F, Yu Y, Wang F, Wang Q, Shakeel A. A spinal circuit model with asymmetric cervical-lumbar layout controls backward locomotion and scratching in quadrupeds. Neural Netw 2024; 178:106422. [PMID: 38901095 DOI: 10.1016/j.neunet.2024.106422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/07/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024]
Abstract
Locomotion and scratching are basic motor functions which are critically important for animal survival. Although the spinal circuits governing forward locomotion have been extensively investigated, the organization of spinal circuits and neural mechanisms regulating backward locomotion and scratching remain unclear. Here, we extend a model by Danner et al. to propose a spinal circuit model with asymmetrical cervical-lumbar layout to investigate these issues. In the model, the left-right alternation within the cervical and lumbar circuits is mediated by V 0D and V 0V commissural interneurons (CINs), respectively. With different control strategies, the model closely reproduces multiple experimental data of quadrupeds in different motor behaviors. Specifically, under the supraspinal drive, walk and trot are expressed in control condition, half-bound is expressed after deletion of V 0V CINs, and bound is expressed after deletion of V0 (V 0D and V 0V) CINs; in addition, unilateral hindlimb scratching occurs in control condition and synchronous bilateral hindlimb scratching appears after deletion of V 0V CINs. Under the combined drive of afferent feedback and perineal stimulation, different coordination patterns between hindlimbs during BBS (backward-biped-spinal) locomotion are generated. The results suggest that (1) the cervical and lumbar circuits in the spinal network are asymmetrically recruited during particular rhythmic limb movements. (2) Multiple motor behaviors share a single spinal network under the reconfiguration of the spinal network by supraspinal inputs or somatosensory feedback. Our model provides new insights into the organization of motor circuits and neural control of rhythmic limb movements.
Collapse
Affiliation(s)
- Qinghua Zhu
- College of Information Science and Technology, Donghua University, Shanghai, 201620, China
| | - Fang Han
- College of Information Science and Technology, Donghua University, Shanghai, 201620, China.
| | - Ying Yu
- Department of Dynamics and Control, Beihang University, Beijing, 100191, China
| | - Fengjie Wang
- College of Information Science and Technology, Donghua University, Shanghai, 201620, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, 100191, China.
| | - Awais Shakeel
- College of Information Science and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
7
|
Molkov YI, Yu G, Ausborn J, Bouvier J, Danner SM, Rybak IA. Sensory feedback and central neuronal interactions in mouse locomotion. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240207. [PMID: 39169962 PMCID: PMC11335407 DOI: 10.1098/rsos.240207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/23/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024]
Abstract
Locomotion is a complex process involving specific interactions between the central neural controller and the mechanical components of the system. The basic rhythmic activity generated by locomotor circuits in the spinal cord defines rhythmic limb movements and their central coordination. The operation of these circuits is modulated by sensory feedback from the limbs providing information about the state of the limbs and the body. However, the specific role and contribution of central interactions and sensory feedback in the control of locomotor gait and posture remain poorly understood. We use biomechanical data on quadrupedal locomotion in mice and recent findings on the organization of neural interactions within the spinal locomotor circuitry to create and analyse a tractable mathematical model of mouse locomotion. The model includes a simplified mechanical model of the mouse body with four limbs and a central controller composed of four rhythm generators, each operating as a state machine controlling the state of one limb. Feedback signals characterize the load and extension of each limb as well as postural stability (balance). We systematically investigate and compare several model versions and compare their behaviour to existing experimental data on mouse locomotion. Our results highlight the specific roles of sensory feedback and some central propriospinal interactions between circuits controlling fore and hind limbs for speed-dependent gait expression. Our models suggest that postural imbalance feedback may be critically involved in the control of swing-to-stance transitions in each limb and the stabilization of walking direction.
Collapse
Affiliation(s)
- Yaroslav I. Molkov
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA30303, USA
| | - Guoning Yu
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA30303, USA
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129, USA
| | - Julien Bouvier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay91400, France
| | - Simon M. Danner
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129, USA
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129, USA
| |
Collapse
|
8
|
Rybak IA, Shevtsova NA, Markin SN, Prilutsky BI, Frigon A. Operation regimes of spinal circuits controlling locomotion and role of supraspinal drives and sensory feedback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586122. [PMID: 38585778 PMCID: PMC10996463 DOI: 10.1101/2024.03.21.586122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Locomotion in mammals is directly controlled by the spinal neuronal network, operating under the control of supraspinal signals and somatosensory feedback that interact with each other. However, the functional architecture of the spinal locomotor network, its operation regimes, and the role of supraspinal and sensory feedback in different locomotor behaviors, including at different speeds, remain unclear. We developed a computational model of spinal locomotor circuits receiving supraspinal drives and limb sensory feedback that could reproduce multiple experimental data obtained in intact and spinal-transected cats during tied-belt and split-belt treadmill locomotion. We provide evidence that the spinal locomotor network operates in different regimes depending on locomotor speed. In an intact system, at slow speeds (< 0.4 m/s), the spinal network operates in a non-oscillating state-machine regime and requires sensory feedback or external inputs for phase transitions. Removing sensory feedback related to limb extension prevents locomotor oscillations at slow speeds. With increasing speed and supraspinal drives, the spinal network switches to a flexor-driven oscillatory regime and then to a classical half-center regime. Following spinal transection, the model predicts that the spinal network can only operate in the state-machine regime. Our results suggest that the spinal network operates in different regimes for slow exploratory and fast escape locomotor behaviors, making use of different control mechanisms.
Collapse
|
9
|
Rahmati SM, Klishko AN, Martin RS, Bunderson NE, Meslie JA, Nichols TR, Rybak IA, Frigon A, Burkholder TJ, Prilutsky BI. ROLE OF FORELIMB MORPHOLOGY IN MUSCLE SENSORIMOTOR FUNCTIONS DURING LOCOMOTION IN THE CAT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603106. [PMID: 39071389 PMCID: PMC11275737 DOI: 10.1101/2024.07.11.603106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Previous studies established strong links between morphological characteristics of mammalian hindlimb muscles and their sensorimotor functions during locomotion. Less is known about the role of forelimb morphology in motor outputs and generation of sensory signals. Here, we measured morphological characteristics of 46 forelimb muscles from 6 cats. These characteristics included muscle attachments, physiological cross-sectional area (PCSA), fascicle length, etc. We also recorded full-body mechanics and EMG activity of forelimb muscles during level overground and treadmill locomotion in 7 and 16 adult cats of either sex, respectively. We computed forelimb muscle forces along with force- and length-dependent sensory signals mapped onto corresponding cervical spinal segments. We found that patterns of computed muscle forces and afferent activities were strongly affected by the muscle's moment arm, PCSA, and fascicle length. Morphology of the shoulder muscles suggests distinct roles of the forelimbs in lateral force production and movements. Patterns of length-dependent sensory activity of muscles with long fibers (brachioradialis, extensor carpi radialis) closely matched patterns of overall forelimb length, whereas the activity pattern of biceps brachii matched forelimb orientation. We conclude that cat forelimb muscle morphology contributes substantially to locomotor function, particularly to control lateral stability and turning, rather than propulsion.
Collapse
Affiliation(s)
| | | | | | | | - Jeswin A Meslie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - T Richard Nichols
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy; Drexel University, Philadelphia, PA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
10
|
Prins CA, de Oliveira FL, de Mello Coelho V, Dos Santos Ribeiro EB, de Almeida JS, Silva NMB, Almeida FM, Martinez AMB. Galectin-3 absence alters lymphocytes populations dynamics behavior and promotes functional recovery after spinal cord injury in mice. Exp Neurol 2024; 377:114785. [PMID: 38670250 DOI: 10.1016/j.expneurol.2024.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Spinal cord injury (SCI) results from various mechanisms that damage the nervous tissue and the blood-brain barrier, leading to sensory and motor function loss below the injury site. Unfortunately, current therapeutic approaches for SCI have limited efficacy in improving patients outcomes. Galectin-3, a protein whose expression increases after SCI, influences the neuroinflammatory response by favoring pro-inflammatory M1 macrophages and microglia, while inhibiting pro-regenerative M2 macrophages and microglia, which are crucial for inflammation resolution and tissue regeneration. Previous studies with Galectin-3 knock-out mice demonstrated enhanced motor recovery after SCI. The M1/M2 balance is strongly influenced by the predominant lymphocytic profiles (Th1, Th2, T Reg, Th17) and cytokines and chemokines released at the lesion site. The present study aimed to investigate how the absence of galectin-3 impacts the adaptive immune system cell population dynamics in various lymphoid spaces following a low thoracic spinal cord compression injury (T9-T10) using a 30 g vascular clip for one minute. It also aimed to assess its influence on the functional outcome in wild-type (WT)and Galectin-3 knock-out (GALNEG) mice. Histological analysis with hematoxylin-eosin and Luxol Fast Blue staining revealed that WT and GALNEG animals exhibit similar spinal cord morphology. The absence of galectin-3 does not affect the common neuroanatomy shared between the groups prompting us to analyze outcomes between both groups. Following our crush model, both groups lost motor and sensory functions below the lesion level. During a 42-day period, GALNEG mice demonstrated superior locomotor recovery in the Basso Mouse Scale (BMS) gait analysis and enhanced motor coordination performance in the ladder rung walk test (LRW) compared to WT mice. GALNEG mice also exhibited better sensory recovery, and their electrophysiological parameters suggested a higher number of functional axons with faster nerve conduction. Seven days after injury, flow cytometry of thymus, spleen, and blood revealed an increased number of T Reg and Th2 cells, accompanied by a decrease in Th1 and Th17 cells in GALNEG mice. Immunohistochemistry conducted on the same day exhibited an increased number of Th2 and T Reg cells around the GALNEG's spinal cord lesion site. At 42-day dpi immunohistochemistry analyses displayed reduced astrogliosis and greater axon preservation in GALNEG's spinal cord seem as a reduction of GFAP immunostaining and an increase in NFH immunostaining, respectively. In conclusion, GALNEG mice exhibited better functional recovery attributed to the milder pro-inflammatory influence, compensated by a higher quantity of T Reg and Th2 cells. These findings suggest that galectin-3 plays a crucial role in the immune response after spinal cord injury and could be a potential target for clinical therapeutic interventions.
Collapse
Affiliation(s)
- Caio Andrade Prins
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Leite de Oliveira
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pós-graduação em Ciências Morfológicas, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valeria de Mello Coelho
- Laboratório de lmunofisiologia, Instituto de Ciências Biomédicas, Programa de Pós-graduação em Ciências Morfológicas, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emanuela Bezerra Dos Santos Ribeiro
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Silva de Almeida
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia Moraes Bechelli Silva
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Martins Almeida
- Laboratório de Neurodegeneração e Reparo, Instituto de Ciências Biomédicas, Programa de Pós-graduação em Anatomia Patológica, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria Blanco Martinez
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Harnie J, Al Arab R, Mari S, Yassine S, Eddaoui O, Jéhannin P, Audet J, Lecomte C, Iorio-Morin C, Prilutsky BI, Rybak IA, Frigon A. Forelimb movements contribute to hindlimb cutaneous reflexes during locomotion in cats. J Neurophysiol 2024; 131:997-1013. [PMID: 38691528 PMCID: PMC11381123 DOI: 10.1152/jn.00104.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
During quadrupedal locomotion, interactions between spinal and supraspinal circuits and somatosensory feedback coordinate forelimb and hindlimb movements. How this is achieved is not clear. To determine whether forelimb movements modulate hindlimb cutaneous reflexes involved in responding to an external perturbation, we stimulated the superficial peroneal nerve in six intact cats during quadrupedal locomotion and during hindlimb-only locomotion (with forelimbs standing on stationary platform) and in two cats with a low spinal transection (T12-T13) during hindlimb-only locomotion. We compared cutaneous reflexes evoked in six ipsilateral and four contralateral hindlimb muscles. Results showed similar occurrence and phase-dependent modulation of short-latency inhibitory and excitatory responses during quadrupedal and hindlimb-only locomotion in intact cats. However, the depth of modulation was reduced in the ipsilateral semitendinosus during hindlimb-only locomotion. Additionally, longer-latency responses occurred less frequently in extensor muscles bilaterally during hindlimb-only locomotion, whereas short-latency inhibitory and longer-latency excitatory responses occurred more frequently in the ipsilateral and contralateral sartorius anterior, respectively. After spinal transection, short-latency inhibitory and excitatory responses were similar to both intact conditions, whereas mid- or longer-latency excitatory responses were reduced or abolished. Our results in intact cats and the comparison with spinal-transected cats suggest that the absence of forelimb movements suppresses inputs from supraspinal structures and/or cervical cord that normally contribute to longer-latency reflex responses in hindlimb extensor muscles.NEW & NOTEWORTHY During quadrupedal locomotion, the coordination of forelimb and hindlimb movements involves central circuits and somatosensory feedback. To demonstrate how forelimb movement affects hindlimb cutaneous reflexes during locomotion, we stimulated the superficial peroneal nerve in intact cats during quadrupedal and hindlimb-only locomotion as well as in spinal-transected cats during hindlimb-only locomotion. We show that forelimb movement influences the modulation of hindlimb cutaneous reflexes, particularly the occurrence of long-latency reflex responses.
Collapse
Affiliation(s)
- Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Rasha Al Arab
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Oussama Eddaoui
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Pierre Jéhannin
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Charly Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Christian Iorio-Morin
- Division of Neurosurgery, Department of Surgery, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| |
Collapse
|
12
|
Shafiee M, Bellegarda G, Ijspeert A. Viability leads to the emergence of gait transitions in learning agile quadrupedal locomotion on challenging terrains. Nat Commun 2024; 15:3073. [PMID: 38594288 PMCID: PMC11271497 DOI: 10.1038/s41467-024-47443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Quadruped animals are capable of seamless transitions between different gaits. While energy efficiency appears to be one of the reasons for changing gaits, other determinant factors likely play a role too, including terrain properties. In this article, we propose that viability, i.e., the avoidance of falls, represents an important criterion for gait transitions. We investigate the emergence of gait transitions through the interaction between supraspinal drive (brain), the central pattern generator in the spinal cord, the body, and exteroceptive sensing by leveraging deep reinforcement learning and robotics tools. Consistent with quadruped animal data, we show that the walk-trot gait transition for quadruped robots on flat terrain improves both viability and energy efficiency. Furthermore, we investigate the effects of discrete terrain (i.e., crossing successive gaps) on imposing gait transitions, and find the emergence of trot-pronk transitions to avoid non-viable states. Viability is the only improved factor after gait transitions on both flat and discrete gap terrains, suggesting that viability could be a primary and universal objective of gait transitions, while other criteria are secondary objectives and/or a consequence of viability. Moreover, our experiments demonstrate state-of-the-art quadruped robot agility in challenging scenarios.
Collapse
Affiliation(s)
- Milad Shafiee
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Guillaume Bellegarda
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Auke Ijspeert
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
13
|
Arreguit J, Ramalingasetty ST, Ijspeert A. FARMS: Framework for Animal and Robot Modeling and Simulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.25.559130. [PMID: 38293071 PMCID: PMC10827226 DOI: 10.1101/2023.09.25.559130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The study of animal locomotion and neuromechanical control offers valuable insights for advancing research in neuroscience, biomechanics, and robotics. We have developed FARMS (Framework for Animal and Robot Modeling and Simulation), an open-source, interdisciplinary framework, designed to facilitate access to neuromechanical simulations for modeling, simulation, and analysis of animal locomotion and bio-inspired robotic systems. By providing an accessible and user-friendly platform, FARMS aims to lower the barriers for researchers to explore the complex interactions between the nervous system, musculoskeletal structures, and their environment. Integrating the MuJoCo physics engine in a modular manner, FARMS enables realistic simulations and fosters collaboration among neuroscientists, biologists, and roboticists. FARMS has already been extensively used to study locomotion in animals such as mice, drosophila, fish, salamanders, and centipedes, serving as a platform to investigate the role of central pattern generators and sensory feedback. This article provides an overview of the FARMS framework, discusses its interdisciplinary approach, showcases its versatility through specific case studies, and highlights its effectiveness in advancing our understanding of locomotion. In particular, we show how we used FARMS to study amphibious locomotion by presenting experimental demonstrations across morphologies and environments based on neural controllers with central pattern generators and sensory feedback circuits models. Overall, the goal of FARMS is to contribute to a deeper understanding of animal locomotion, the development of innovative bio-inspired robotic systems, and promote accessibility in neuromechanical research.
Collapse
Affiliation(s)
- Jonathan Arreguit
- BioRob, School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Shravan Tata Ramalingasetty
- BioRob, School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, USA
| | - Auke Ijspeert
- BioRob, School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Shepard CT, Brown BL, Van Rijswijck MA, Zalla RM, Burke DA, Morehouse JR, Riegler AS, Whittemore SR, Magnuson DSK. Silencing long-descending inter-enlargement propriospinal neurons improves hindlimb stepping after contusive spinal cord injuries. eLife 2023; 12:e82944. [PMID: 38099572 PMCID: PMC10776087 DOI: 10.7554/elife.82944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Spinal locomotor circuitry is comprised of rhythm generating centers, one for each limb, that are interconnected by local and long-distance propriospinal neurons thought to carry temporal information necessary for interlimb coordination and gait control. We showed previously that conditional silencing of the long ascending propriospinal neurons (LAPNs) that project from the lumbar to the cervical rhythmogenic centers (L1/L2 to C6), disrupts right-left alternation of both the forelimbs and hindlimbs without significantly disrupting other fundamental aspects of interlimb and speed-dependent coordination (Pocratsky et al., 2020). Subsequently, we showed that silencing the LAPNs after a moderate thoracic contusive spinal cord injury (SCI) resulted in better recovered locomotor function (Shepard et al., 2021). In this research advance, we focus on the descending equivalent to the LAPNs, the long descending propriospinal neurons (LDPNs) that have cell bodies at C6 and terminals at L2. We found that conditional silencing of the LDPNs in the intact adult rat resulted in a disrupted alternation of each limb pair (forelimbs and hindlimbs) and after a thoracic contusion SCI significantly improved locomotor function. These observations lead us to speculate that the LAPNs and LDPNs have similar roles in the exchange of temporal information between the cervical and lumbar rhythm generating centers, but that the partial disruption of the pathway after SCI limits the independent function of the lumbar circuitry. Silencing the LAPNs or LDPNs effectively permits or frees-up the lumbar circuitry to function independently.
Collapse
Affiliation(s)
- Courtney T Shepard
- Interdisciplinary Program in Translational Neuroscience, School of Interdisciplinary and Graduate Studies, University of LouisvilleLouisvilleUnited States
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Brandon L Brown
- Interdisciplinary Program in Translational Neuroscience, School of Interdisciplinary and Graduate Studies, University of LouisvilleLouisvilleUnited States
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Morgan A Van Rijswijck
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Speed School of Engineering, University of LouisvilleLouisvilleUnited States
| | - Rachel M Zalla
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Speed School of Engineering, University of LouisvilleLouisvilleUnited States
| | - Darlene A Burke
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Johnny R Morehouse
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Amberly S Riegler
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Scott R Whittemore
- Interdisciplinary Program in Translational Neuroscience, School of Interdisciplinary and Graduate Studies, University of LouisvilleLouisvilleUnited States
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Department of Neurological Surgery, University of LouisvilleLouisvilleUnited States
| | - David SK Magnuson
- Interdisciplinary Program in Translational Neuroscience, School of Interdisciplinary and Graduate Studies, University of LouisvilleLouisvilleUnited States
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Speed School of Engineering, University of LouisvilleLouisvilleUnited States
- Department of Neurological Surgery, University of LouisvilleLouisvilleUnited States
| |
Collapse
|
15
|
Di Russo A, Stanev D, Sabnis A, Danner SM, Ausborn J, Armand S, Ijspeert A. Investigating the roles of reflexes and central pattern generators in the control and modulation of human locomotion using a physiologically plausible neuromechanical model. J Neural Eng 2023; 20:066006. [PMID: 37757805 DOI: 10.1088/1741-2552/acfdcc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
Objective.Studying the neural components regulating movement in human locomotion is obstructed by the inability to perform invasive experimental recording in the human neural circuits. Neuromechanical simulations can provide insights by modeling the locomotor circuits. Past neuromechanical models proposed control of locomotion either driven by central pattern generators (CPGs) with simple sensory commands or by a purely reflex-based network regulated by state-machine mechanisms, which activate and deactivate reflexes depending on the detected gait cycle phases. However, the physiological interpretation of these state machines remains unclear. Here, we present a physiologically plausible model to investigate spinal control and modulation of human locomotion.Approach.We propose a bio-inspired controller composed of two coupled CPGs that produce the rhythm and pattern, and a reflex-based network simulating low-level reflex pathways and Renshaw cells. This reflex network is based on leaky-integration neurons, and the whole system does not rely on changing reflex gains according to the gait cycle state. The musculoskeletal model is composed of a skeletal structure and nine muscles per leg generating movement in sagittal plane.Main results.Optimizing the open parameters for effort minimization and stability, human kinematics and muscle activation naturally emerged. Furthermore, when CPGs were not activated, periodic motion could not be achieved through optimization, suggesting the necessity of this component to generate rhythmic behavior without a state machine mechanism regulating reflex activation. The controller could reproduce ranges of speeds from 0.3 to 1.9 m s-1. The results showed that the net influence of feedback on motoneurons (MNs) during perturbed locomotion is predominantly inhibitory and that the CPGs provide the timing of MNs' activation by exciting or inhibiting muscles in specific gait phases.Significance.The proposed bio-inspired controller could contribute to our understanding of locomotor circuits of the intact spinal cord and could be used to study neuromotor disorders.
Collapse
Affiliation(s)
| | | | | | - Simon M Danner
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States of America
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States of America
| | - Stéphane Armand
- Kinesiology Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
16
|
Molkov YI, Yu G, Ausborn J, Bouvier J, Danner SM, Rybak IA. Sensory Feedback and Central Neuronal Interactions in Mouse Locomotion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564886. [PMID: 37961258 PMCID: PMC10634960 DOI: 10.1101/2023.10.31.564886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Locomotion is a complex process involving specific interactions between the central neural controller and the mechanical components of the system. The basic rhythmic activity generated by locomotor circuits in the spinal cord defines rhythmic limb movements and their central coordination. The operation of these circuits is modulated by sensory feedback from the limbs providing information about the state of the limbs and the body. However, the specific role and contribution of central interactions and sensory feedback in the control of locomotor gait and posture remain poorly understood. We use biomechanical data on quadrupedal locomotion in mice and recent findings on the organization of neural interactions within the spinal locomotor circuitry to create and analyze a tractable mathematical model of mouse locomotion. The model includes a simplified mechanical model of the mouse body with four limbs and a central controller composed of four rhythm generators, each operating as a state machine controlling the state of one limb. Feedback signals characterize the load and extension of each limb as well as postural stability (balance). We systematically investigate and compare several model versions and compare their behavior to existing experimental data on mouse locomotion. Our results highlight the specific roles of sensory feedback and some central propriospinal interactions between circuits controlling fore and hind limbs for speed-dependent gait expression. Our models suggest that postural imbalance feedback may be critically involved in the control of swing-to-stance transitions in each limb and the stabilization of walking direction.
Collapse
Affiliation(s)
- Yaroslav I. Molkov
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Guoning Yu
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Julien Bouvier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France
| | - Simon M. Danner
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
17
|
Danner SM, Shepard CT, Hainline C, Shevtsova NA, Rybak IA, Magnuson DSK. Spinal control of locomotion before and after spinal cord injury. Exp Neurol 2023; 368:114496. [PMID: 37499972 PMCID: PMC10529867 DOI: 10.1016/j.expneurol.2023.114496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/10/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Thoracic spinal cord injury affects long propriospinal neurons that interconnect the cervical and lumbar enlargements. These neurons are crucial for coordinating forelimb and hindlimb locomotor movements in a speed-dependent manner. However, recovery from spinal cord injury is usually studied over a very limited range of speeds that may not fully expose circuitry dysfunction. To overcome this limitation, we investigated overground locomotion in rats trained to move over an extended distance with a wide range of speeds both pre-injury and after recovery from thoracic hemisection or contusion injuries. In this experimental context, intact rats expressed a speed-dependent continuum of alternating (walk and trot) and non-alternating (canter, gallop, half-bound gallop, and bound) gaits. After a lateral hemisection injury, rats recovered the ability to locomote over a wide range of speeds but lost the ability to use the highest-speed gaits (half-bound gallop and bound) and predominantly used the limb contralateral to the injury as lead during canter and gallop. A moderate contusion injury caused a greater reduction in maximal speed, loss of all non-alternating gaits, and emergence of novel alternating gaits. These changes resulted from weak fore-hind coupling together with appropriate control of left-right alternation. After hemisection, animals expressed a subset of intact gaits with appropriate interlimb coordination even on the side of the injury, where the long propriospinal connections were severed. These observations highlight how investigating locomotion over the full range of speeds can reveal otherwise hidden aspects of spinal locomotor control and post-injury recovery.
Collapse
Affiliation(s)
- Simon M Danner
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA.
| | - Courtney T Shepard
- Interdisciplinary Program in Translational Neuroscience, University of Louisville School of Medicine, Health Sciences Campus, Louisville, KY, USA
| | - Casey Hainline
- Speed School of Engineering, University of Louisville School of Medicine, Health Sciences Campus, Louisville, KY, USA
| | - Natalia A Shevtsova
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - David S K Magnuson
- Department of Neurological Surgery, University of Louisville School of Medicine, Health Sciences Campus, Louisville, KY, USA; Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Health Sciences Campus, Louisville, KY, USA
| |
Collapse
|
18
|
Kohler M, Röhrbein F, Knoll A, Albu-Schäffer A, Jörntell H. The Bcm rule allows a spinal cord model to learn rhythmic movements. BIOLOGICAL CYBERNETICS 2023; 117:275-284. [PMID: 37594531 PMCID: PMC10600281 DOI: 10.1007/s00422-023-00970-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
Currently, it is accepted that animal locomotion is controlled by a central pattern generator in the spinal cord. Experiments and models show that rhythm generating neurons and genetically determined network properties could sustain oscillatory output activity suitable for locomotion. However, current central pattern generator models do not explain how a spinal cord circuitry, which has the same basic genetic plan across species, can adapt to control the different biomechanical properties and locomotion patterns existing in these species. Here we demonstrate that rhythmic and alternating movements in pendulum models can be learned by a monolayer spinal cord circuitry model using the Bienenstock-Cooper-Munro learning rule, which has been previously proposed to explain learning in the visual cortex. These results provide an alternative theory to central pattern generator models, because rhythm generating neurons and genetically defined connectivity are not required in our model. Though our results are not in contradiction to current models, as existing neural mechanism and structures, not used in our model, can be expected to facilitate the kind of learning demonstrated here. Therefore, our model could be used to augment existing models.
Collapse
Affiliation(s)
- Matthias Kohler
- Department of Informatics, Technical University of Munich, Boltzmannstraße 3, 85748, Garching, Bavaria, Germany.
| | - Florian Röhrbein
- Department of Computer Science, Chemnitz University of Technology, Straße der Nationen 62, 09111, Chemnitz, Saxony, Germany
| | - Alois Knoll
- Department of Informatics, Technical University of Munich, Boltzmannstraße 3, 85748, Garching, Bavaria, Germany
| | - Alin Albu-Schäffer
- Department of Informatics, Technical University of Munich, Boltzmannstraße 3, 85748, Garching, Bavaria, Germany
- Institute of Robotics and Mechatronics, German Aerospace Center, Münchener Straße 20, 82234, Weßling, Bavaria, Germany
| | - Henrik Jörntell
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, 22184, Lund, Scania, Sweden
| |
Collapse
|
19
|
Chacon C, Nwachukwu CV, Shahsavani N, Cowley KC, Chopek JW. Lumbar V3 interneurons provide direct excitatory synaptic input onto thoracic sympathetic preganglionic neurons, linking locomotor, and autonomic spinal systems. Front Neural Circuits 2023; 17:1235181. [PMID: 37701071 PMCID: PMC10493276 DOI: 10.3389/fncir.2023.1235181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
Although sympathetic autonomic systems are activated in parallel with locomotion, the neural mechanisms mediating this coordination are incompletely understood. Sympathetic preganglionic neurons (SPNs), primarily located in the intermediate laminae of thoracic and upper lumbar segments (T1-L2), increase activation of tissues and organs that provide homeostatic and metabolic support during movement and exercise. Recent evidence suggests integration between locomotor and autonomic nuclei occurs within the brainstem, initiating both descending locomotor and sympathetic activation commands. However, both locomotor and sympathetic autonomic spinal systems can be activated independent of supraspinal input, in part due to a distributed network involving propriospinal neurons. Whether an intraspinal mechanism exists to coordinate activation of these systems is unknown. We hypothesized that ascending spinal neurons located in the lumbar region provide synaptic input to thoracic SPNs. Here, we demonstrate that synaptic contacts from locomotor-related V3 interneurons (INs) are present in all thoracic laminae. Injection of an anterograde tracer into lumbar segments demonstrated that 8-20% of glutamatergic input onto SPNs originated from lumbar V3 INs and displayed a somatotopographical organization of synaptic input. Whole cell patch clamp recording in SPNs demonstrated prolonged depolarizations or action potentials in response to optical activation of either lumbar V3 INs in spinal cord preparations or in response to optical activation of V3 terminals in thoracic slice preparations. This work demonstrates a direct intraspinal connection between lumbar locomotor and thoracic sympathetic networks and suggests communication between motor and autonomic systems may be a general function of the spinal cord.
Collapse
|
20
|
Laflamme OD, Markin SN, Deska-Gauthier D, Banks R, Zhang Y, Danner SM, Akay T. Distinct roles of spinal commissural interneurons in transmission of contralateral sensory information. Curr Biol 2023; 33:3452-3464.e4. [PMID: 37531957 PMCID: PMC10528931 DOI: 10.1016/j.cub.2023.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/29/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023]
Abstract
Crossed reflexes are mediated by commissural pathways transmitting sensory information to the contralateral side of the body, but the underlying network is not fully understood. Commissural pathways coordinating the activities of spinal locomotor circuits during locomotion have been characterized in mice, but their relationship to crossed reflexes is unknown. We show the involvement of two genetically distinct groups of commissural interneurons (CINs) described in mice, V0 and V3 CINs, in the crossed reflex pathways. Our data suggest that the exclusively excitatory V3 CINs are directly involved in the excitatory crossed reflexes and show that they are essential for the inhibitory crossed reflexes. In contrast, the V0 CINs, a population that includes excitatory and inhibitory CINs, are not directly involved in excitatory or inhibitory crossed reflexes but downregulate the inhibitory crossed reflexes. Our data provide insights into the spinal circuitry underlying crossed reflexes in mice, describing the roles of V0 and V3 CINs in crossed reflexes.
Collapse
Affiliation(s)
- Olivier D Laflamme
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3T 0A6, Canada
| | - Sergey N Markin
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA 19129, USA
| | - Dylan Deska-Gauthier
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3T 0A6, Canada
| | - Rachel Banks
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3T 0A6, Canada
| | - Ying Zhang
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3T 0A6, Canada
| | - Simon M Danner
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA 19129, USA
| | - Turgay Akay
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3T 0A6, Canada.
| |
Collapse
|
21
|
Ijspeert AJ, Daley MA. Integration of feedforward and feedback control in the neuromechanics of vertebrate locomotion: a review of experimental, simulation and robotic studies. J Exp Biol 2023; 226:jeb245784. [PMID: 37565347 DOI: 10.1242/jeb.245784] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Animal locomotion is the result of complex and multi-layered interactions between the nervous system, the musculo-skeletal system and the environment. Decoding the underlying mechanisms requires an integrative approach. Comparative experimental biology has allowed researchers to study the underlying components and some of their interactions across diverse animals. These studies have shown that locomotor neural circuits are distributed in the spinal cord, the midbrain and higher brain regions in vertebrates. The spinal cord plays a key role in locomotor control because it contains central pattern generators (CPGs) - systems of coupled neuronal oscillators that provide coordinated rhythmic control of muscle activation that can be viewed as feedforward controllers - and multiple reflex loops that provide feedback mechanisms. These circuits are activated and modulated by descending pathways from the brain. The relative contributions of CPGs, feedback loops and descending modulation, and how these vary between species and locomotor conditions, remain poorly understood. Robots and neuromechanical simulations can complement experimental approaches by testing specific hypotheses and performing what-if scenarios. This Review will give an overview of key knowledge gained from comparative vertebrate experiments, and insights obtained from neuromechanical simulations and robotic approaches. We suggest that the roles of CPGs, feedback loops and descending modulation vary among animals depending on body size, intrinsic mechanical stability, time required to reach locomotor maturity and speed effects. We also hypothesize that distal joints rely more on feedback control compared with proximal joints. Finally, we highlight important opportunities to address fundamental biological questions through continued collaboration between experimentalists and engineers.
Collapse
Affiliation(s)
- Auke J Ijspeert
- BioRobotics Laboratory, EPFL - Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Monica A Daley
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
22
|
Abstract
The spinal cord is home to the intrinsic networks for locomotion. An animal in which the spinal cord has been fully severed from the brain can still produce rhythmic, patterned locomotor movements as long as some excitatory drive is provided, such as physical, pharmacological, or electrical stimuli. Yet it remains a challenge to define the underlying circuitry that produces these movements because the spinal cord contains a wide variety of neuron classes whose patterns of interconnectivity are still poorly understood. Computational models of locomotion accordingly rely on untested assumptions about spinal neuron network element identity and connectivity. In this review, we consider the classes of spinal neurons, their interconnectivity, and the significance of their circuit connections along the long axis of the spinal cord. We suggest several lines of analysis to move toward a definitive understanding of the spinal network.
Collapse
Affiliation(s)
- Mohini Sengupta
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, USA;
| | - Martha W Bagnall
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, USA;
| |
Collapse
|
23
|
Szorkovszky A, Veenstra F, Glette K. Central pattern generators evolved for real-time adaptation to rhythmic stimuli. BIOINSPIRATION & BIOMIMETICS 2023; 18:046020. [PMID: 37339660 DOI: 10.1088/1748-3190/ace017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
For a robot to be both autonomous and collaborative requires the ability to adapt its movement to a variety of external stimuli, whether these come from humans or other robots. Typically, legged robots have oscillation periods explicitly defined as a control parameter, limiting the adaptability of walking gaits. Here we demonstrate a virtual quadruped robot employing a bio-inspired central pattern generator (CPG) that can spontaneously synchronize its movement to a range of rhythmic stimuli. Multi-objective evolutionary algorithms were used to optimize the variation of movement speed and direction as a function of the brain stem drive and the centre of mass control respectively. This was followed by optimization of an additional layer of neurons that filters fluctuating inputs. As a result, a range of CPGs were able to adjust their gait pattern and/or frequency to match the input period. We show how this can be used to facilitate coordinated movement despite differences in morphology, as well as to learn new movement patterns.
Collapse
Affiliation(s)
- Alex Szorkovszky
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Frank Veenstra
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Kyrre Glette
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Danner SM, Shepard CT, Hainline C, Shevtsova NA, Rybak IA, Magnuson DS. Spinal control of locomotion before and after spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533794. [PMID: 36993490 PMCID: PMC10055332 DOI: 10.1101/2023.03.22.533794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Thoracic spinal cord injury affects long propriospinal neurons that interconnect the cervical and lumbar enlargements. These neurons are crucial for coordinating forelimb and hindlimb locomotor movements in a speed-dependent manner. However, recovery from spinal cord injury is usually studied over a very limited range of speeds that may not fully expose circuitry dysfunction. To overcome this limitation, we investigated overground locomotion in rats trained to move over an extended distance with a wide range of speeds both pre-injury and after recovery from thoracic hemisection or contusion injuries. In this experimental context, intact rats expressed a speed-dependent continuum of alternating (walk and trot) and non-alternating (canter, gallop, half-bound gallop, and bound) gaits. After a lateral hemisection injury, rats recovered the ability to locomote over a wide range of speeds but lost the ability to use the highest-speed gaits (half-bound gallop and bound) and predominantly used the limb contralateral to the injury as lead during canter and gallop. A moderate contusion injury caused a greater reduction in maximal speed, loss of all non-alternating gaits, and emergence of novel alternating gaits. These changes resulted from weak fore-hind coupling together with appropriate control of left-right alternation. After hemisection, animals expressed a subset of intact gaits with appropriate interlimb coordination even on the side of the injury, where the long propriospinal connections were severed. These observations highlight how investigating locomotion over the full range of speeds can reveal otherwise hidden aspects of spinal locomotor control and post-injury recovery.
Collapse
Affiliation(s)
- Simon M. Danner
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Courtney T. Shepard
- Interdisciplinary Program in Translational Neuroscience, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA
| | - Casey Hainline
- Speed School of Engineering, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA
| | - Natalia A. Shevtsova
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - David S.K. Magnuson
- Department of Neurological Surgery, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA
| |
Collapse
|
25
|
Liao SM, Kleinfeld D. A change in behavioral state switches the pattern of motor output that underlies rhythmic head and orofacial movements. Curr Biol 2023; 33:1951-1966.e6. [PMID: 37105167 PMCID: PMC10225163 DOI: 10.1016/j.cub.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
The breathing rhythm serves as a reference that paces orofacial motor actions and orchestrates active sensing. Past work has reported that pacing occurs solely at a fixed phase relative to sniffing. We re-evaluated this constraint as a function of exploratory behavior. Allocentric and egocentric rotations of the head and the electromyogenic activity of the motoneurons for head and orofacial movements were recorded in free-ranging rats as they searched for food. We found that a change in state from foraging to rearing is accompanied by a large phase shift in muscular activation relative to sniffing, and a concurrent change in the frequency of sniffing, so that pacing now occurs at one of the two phases. Further, head turning is biased such that an animal gathers a novel sample of its environment upon inhalation. In total, the coordination of active sensing has a previously unrealized computational complexity. This can emerge from hindbrain circuits with fixed architecture and credible synaptic time delays.
Collapse
Affiliation(s)
- Song-Mao Liao
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - David Kleinfeld
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA; Department of Neurobiology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
26
|
Wilson AC, Sweeney LB. Spinal cords: Symphonies of interneurons across species. Front Neural Circuits 2023; 17:1146449. [PMID: 37180760 PMCID: PMC10169611 DOI: 10.3389/fncir.2023.1146449] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/23/2023] [Indexed: 05/16/2023] Open
Abstract
Vertebrate movement is orchestrated by spinal inter- and motor neurons that, together with sensory and cognitive input, produce dynamic motor behaviors. These behaviors vary from the simple undulatory swimming of fish and larval aquatic species to the highly coordinated running, reaching and grasping of mice, humans and other mammals. This variation raises the fundamental question of how spinal circuits have changed in register with motor behavior. In simple, undulatory fish, exemplified by the lamprey, two broad classes of interneurons shape motor neuron output: ipsilateral-projecting excitatory neurons, and commissural-projecting inhibitory neurons. An additional class of ipsilateral inhibitory neurons is required to generate escape swim behavior in larval zebrafish and tadpoles. In limbed vertebrates, a more complex spinal neuron composition is observed. In this review, we provide evidence that movement elaboration correlates with an increase and specialization of these three basic interneuron types into molecularly, anatomically, and functionally distinct subpopulations. We summarize recent work linking neuron types to movement-pattern generation across fish, amphibians, reptiles, birds and mammals.
Collapse
Affiliation(s)
| | - Lora B. Sweeney
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Lower Austria, Austria
| |
Collapse
|
27
|
Laflamme OD, Markin SN, Banks R, Zhang Y, Danner SM, Akay T. Distinct roles of spinal commissural interneurons in transmission of contralateral sensory information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528842. [PMID: 36824871 PMCID: PMC9949098 DOI: 10.1101/2023.02.16.528842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Crossed reflexes (CR) are mediated by commissural pathways transmitting sensory information to the contralateral side of the body, but the underlying network is not fully understood. Commissural pathways coordinating the activities of spinal locomotor circuits during locomotion have been characterized in mice, but their relationship to CR is unknown. We show the involvement of two genetically distinct groups of commissural interneurons (CINs) described in mice, V0 and V3 CINs, in the CR pathways. Our data suggest that the exclusively excitatory V3 CINs are directly involved in the excitatory CR, and show that they are essential for the inhibitory CR. In contrast, the V0 CINs, a population that includes excitatory and inhibitory CINs, are not directly involved in excitatory or inhibitory CRs but down-regulate the inhibitory CR. Our data provide insights into the spinal circuitry underlying CR in mice, describing the roles of V0 and V3 CINs in CR.
Collapse
Affiliation(s)
- Olivier D. Laflamme
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sergey N. Markin
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Rachel Banks
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ying Zhang
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Simon M. Danner
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Turgay Akay
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
28
|
Bagnall MW. Neurons that control walking go round in circles. Nature 2022; 610:453-454. [PMID: 36224359 DOI: 10.1038/d41586-022-02238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Spinal Cord Circuits: Models and Reality. NEUROPHYSIOLOGY+ 2022. [DOI: 10.1007/s11062-022-09927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
30
|
Okamoto K, Obayashi I, Kokubu H, Senda K, Tsuchiya K, Aoi S. Contribution of Phase Resetting to Statistical Persistence in Stride Intervals: A Modeling Study. Front Neural Circuits 2022; 16:836121. [PMID: 35814485 PMCID: PMC9257880 DOI: 10.3389/fncir.2022.836121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Stride intervals in human walking fluctuate from one stride to the next, exhibiting statistical persistence. This statistical property is changed by aging, neural disorders, and experimental interventions. It has been hypothesized that the central nervous system is responsible for the statistical persistence. Human walking is a complex phenomenon generated through the dynamic interactions between the central nervous system and the biomechanical system. It has also been hypothesized that the statistical persistence emerges through the dynamic interactions during walking. In particular, a previous study integrated a biomechanical model composed of seven rigid links with a central pattern generator (CPG) model, which incorporated a phase resetting mechanism as sensory feedback as well as feedforward, trajectory tracking, and intermittent feedback controllers, and suggested that phase resetting contributes to the statistical persistence in stride intervals. However, the essential mechanisms remain largely unclear due to the complexity of the neuromechanical model. In this study, we reproduced the statistical persistence in stride intervals using a simplified neuromechanical model composed of a simple compass-type biomechanical model and a simple CPG model that incorporates only phase resetting and a feedforward controller. A lack of phase resetting induced a loss of statistical persistence, as observed for aging, neural disorders, and experimental interventions. These mechanisms were clarified based on the phase response characteristics of our model. These findings provide useful insight into the mechanisms responsible for the statistical persistence of stride intervals in human walking.
Collapse
Affiliation(s)
- Kota Okamoto
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-Katsura, Kyoto, Japan
| | - Ippei Obayashi
- Cyber-Physical Engineering Information Research Core (Cypher), Okayama University, Okayama, Japan
| | - Hiroshi Kokubu
- Department of Mathematics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kei Senda
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-Katsura, Kyoto, Japan
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-Katsura, Kyoto, Japan
| | - Shinya Aoi
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
- *Correspondence: Shinya Aoi
| |
Collapse
|
31
|
Shevtsova NA, Li EZ, Singh S, Dougherty KJ, Rybak IA. Ipsilateral and Contralateral Interactions in Spinal Locomotor Circuits Mediated by V1 Neurons: Insights from Computational Modeling. Int J Mol Sci 2022; 23:5541. [PMID: 35628347 PMCID: PMC9146873 DOI: 10.3390/ijms23105541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
We describe and analyze a computational model of neural circuits in the mammalian spinal cord responsible for generating and shaping locomotor-like oscillations. The model represents interacting populations of spinal neurons, including the neurons that were genetically identified and characterized in a series of previous experimental studies. Here, we specifically focus on the ipsilaterally projecting V1 interneurons, their possible role in the spinal locomotor circuitry, and their involvement in the generation of locomotor oscillations. The proposed connections of these neurons and their involvement in different neuronal pathways in the spinal cord allow the model to reproduce the results of optogenetic manipulations of these neurons under different experimental conditions. We suggest the existence of two distinct populations of V1 interneurons mediating different ipsilateral and contralateral interactions within the spinal cord. The model proposes explanations for multiple experimental data concerning the effects of optogenetic silencing and activation of V1 interneurons on the frequency of locomotor oscillations in the intact cord and hemicord under different experimental conditions. Our simulations provide an important insight into the organization of locomotor circuitry in the mammalian spinal cord.
Collapse
Affiliation(s)
| | | | | | | | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA 19129, USA; (N.A.S.); (E.Z.L.); (S.S.); (K.J.D.)
| |
Collapse
|
32
|
Zhang H, Shevtsova NA, Deska-Gauthier D, Mackay C, Dougherty KJ, Danner SM, Zhang Y, Rybak IA. The role of V3 neurons in speed-dependent interlimb coordination during locomotion in mice. eLife 2022; 11:e73424. [PMID: 35476640 PMCID: PMC9045817 DOI: 10.7554/elife.73424] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/14/2022] [Indexed: 11/17/2022] Open
Abstract
Speed-dependent interlimb coordination allows animals to maintain stable locomotion under different circumstances. The V3 neurons are known to be involved in interlimb coordination. We previously modeled the locomotor spinal circuitry controlling interlimb coordination (Danner et al., 2017). This model included the local V3 neurons that mediate mutual excitation between left and right rhythm generators (RGs). Here, our focus was on V3 neurons involved in ascending long propriospinal interactions (aLPNs). Using retrograde tracing, we revealed a subpopulation of lumbar V3 aLPNs with contralateral cervical projections. V3OFF mice, in which all V3 neurons were silenced, had a significantly reduced maximal locomotor speed, were unable to move using stable trot, gallop, or bound, and predominantly used a lateral-sequence walk. To reproduce this data and understand the functional roles of V3 aLPNs, we extended our previous model by incorporating diagonal V3 aLPNs mediating inputs from each lumbar RG to the contralateral cervical RG. The extended model reproduces our experimental results and suggests that locally projecting V3 neurons, mediating left-right interactions within lumbar and cervical cords, promote left-right synchronization necessary for gallop and bound, whereas the V3 aLPNs promote synchronization between diagonal fore and hind RGs necessary for trot. The model proposes the organization of spinal circuits available for future experimental testing.
Collapse
Affiliation(s)
- Han Zhang
- Department of Medical Neuroscience, Brain Repair Centre, Faculty of Medicine, Dalhousie UniversityHalifaxCanada
| | - Natalia A Shevtsova
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Dylan Deska-Gauthier
- Department of Medical Neuroscience, Brain Repair Centre, Faculty of Medicine, Dalhousie UniversityHalifaxCanada
| | - Colin Mackay
- Department of Medical Neuroscience, Brain Repair Centre, Faculty of Medicine, Dalhousie UniversityHalifaxCanada
| | - Kimberly J Dougherty
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Simon M Danner
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Ying Zhang
- Department of Medical Neuroscience, Brain Repair Centre, Faculty of Medicine, Dalhousie UniversityHalifaxCanada
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| |
Collapse
|
33
|
Zhang Q, Cheng Y, Zhou M, Dai Y. Locomotor Pattern and Force Generation Modulated by Ionic Channels: A Computational Study of Spinal Networks Underlying Locomotion. Front Comput Neurosci 2022; 16:809599. [PMID: 35493855 PMCID: PMC9050146 DOI: 10.3389/fncom.2022.809599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Locomotion is a fundamental movement in vertebrates produced by spinal networks known as central pattern generators (CPG). During fictive locomotion cat lumbar motoneurons (MNs) exhibit changes in membrane properties, including hyperpolarization of voltage threshold, reduction of afterhyperpolarization and input resistance, and amplification of nonlinear membrane properties. Both modeling and electrophysiological studies suggest that these changes can be produced by upregulating voltage-gated sodium channel (VGSC), persistent sodium (NaP), or L-type calcium channel (LTCC) or downregulating delayed-rectifier potassium (K(DR)) or calcium-dependent potassium channel (KCa) in spinal MNs. Further studies implicate that these channel modulations increase motor output and facilitate MN recruitment. However, it remains unknown how the channel modulation of CPG networks or MN pools affects the rhythmic generation of locomotion and force production of skeletal muscle during locomotion. In order to investigate this issue, we built a two-level CPG model composed of excitatory interneuron pools (Exc-INs), coupled reciprocally with inhibitory interneuron pools (Inh-INs), and projected to the flexor-extensor MN pools innervating skeletal muscles. Each pool consisted of 100 neurons with membrane properties based on cat spinal neurons. VGSC, K(DR), NaP, KCa, LTCC, and H-current channels were included in the model. Simulation results showed that (1) upregulating VGSC, NaP, or LTCC or downregulating KCa in MNs increased discharge rate and recruitment of MNs, thus facilitating locomotor pattern formation, increased amplitude of electroneurogram (ENG) bursting, and enhanced force generation of skeletal muscles. (2) The same channel modulation in Exc-INs increased the firing frequency of the Exc-INs, facilitated rhythmic generation, and increased flexor-extensor durations of step cycles. (3) Contrarily, downregulation of NaP or LTCC in MNs or Exc-INs or both CPG (Exc-INs and Inh-INs) and MNs disrupted locomotor pattern and reduced or even blocked the ENG bursting of MNs and force generation of skeletal muscles. (4) Pharmacological experiments showed that bath application of 25 μM nimodipine or 2 μM riluzole completely blocked fictive locomotion in isolated rat spinal cord, consistent with simulation results. We concluded that upregulation of VGSC, NaP, or LTCC or downregulation of KCa facilitated rhythmic generation and force production during walking, with NaP and LTCC playing an essential role.
Collapse
Affiliation(s)
- Qiang Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China
| | - Yi Cheng
- School of Physical Education, Yunnan University, Kunming, China
| | - Mei Zhou
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China
| | - Yue Dai
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, China
- *Correspondence: Yue Dai,
| |
Collapse
|
34
|
Kim Y, Aoi S, Fujiki S, Danner SM, Markin SN, Ausborn J, Rybak IA, Yanagihara D, Senda K, Tsuchiya K. Contribution of Afferent Feedback to Adaptive Hindlimb Walking in Cats: A Neuromusculoskeletal Modeling Study. Front Bioeng Biotechnol 2022; 10:825149. [PMID: 35464733 PMCID: PMC9023865 DOI: 10.3389/fbioe.2022.825149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 11/26/2022] Open
Abstract
Mammalian locomotion is generated by central pattern generators (CPGs) in the spinal cord, which produce alternating flexor and extensor activities controlling the locomotor movements of each limb. Afferent feedback signals from the limbs are integrated by the CPGs to provide adaptive control of locomotion. Responses of CPG-generated neural activity to afferent feedback stimulation have been previously studied during fictive locomotion in immobilized cats. Yet, locomotion in awake, behaving animals involves dynamic interactions between central neuronal circuits, afferent feedback, musculoskeletal system, and environment. To study these complex interactions, we developed a model simulating interactions between a half-center CPG and the musculoskeletal system of a cat hindlimb. Then, we analyzed the role of afferent feedback in the locomotor adaptation from a dynamic viewpoint using the methods of dynamical systems theory and nullcline analysis. Our model reproduced limb movements during regular cat walking as well as adaptive changes of these movements when the foot steps into a hole. The model generates important insights into the mechanism for adaptive locomotion resulting from dynamic interactions between the CPG-based neural circuits, the musculoskeletal system, and the environment.
Collapse
Affiliation(s)
- Yongi Kim
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-Katsura, Kyoto, Japan
| | - Shinya Aoi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-Katsura, Kyoto, Japan
- *Correspondence: Shinya Aoi,
| | - Soichiro Fujiki
- Department of Physiology, School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Simon M. Danner
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Sergey N. Markin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Dai Yanagihara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kei Senda
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-Katsura, Kyoto, Japan
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-Katsura, Kyoto, Japan
| |
Collapse
|
35
|
Ali F, Benarroch E. What Is the Brainstem Control of Locomotion? Neurology 2022; 98:446-451. [PMID: 35288473 DOI: 10.1212/wnl.0000000000200108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Farwa Ali
- From the Department of Neurology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
36
|
Pithapuram MV, Raghavan M. Automatic rule-based generation of spinal cord connectome model for a neuro-musculoskeletal limb in-silico. IOP SCINOTES 2022. [DOI: 10.1088/2633-1357/ac585e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
Studying spinal interactions with muscles has been of great importance for over a century. However, with surging spinal-related movement pathologies, the need for computational models to study spinal pathways is increasing. Although spinal cord connectome models have been developed, anatomically relevant spinal neuromotor models are rare. However, building and maintaining such models is time consuming. In this study, the concept of the rule-based generation of a spinal connectome was introduced and lumbosacral connectome generation was demonstrated as an example. Furthermore, the rule-based autogenerated connectome models were synchronized with lower-limb musculoskeletal models to create an in-silico test bed. Using this setup, the role of the autogenic Ia-excitatory pathway in controlling the ankle angle was tested.
Collapse
|
37
|
Beato M, Bhumbra G. Synaptic Projections of Motoneurons Within the Spinal Cord. ADVANCES IN NEUROBIOLOGY 2022; 28:151-168. [PMID: 36066825 DOI: 10.1007/978-3-031-07167-6_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Motoneurons have long been considered as the final common pathway of the nervous system, transmitting the neural impulses that are transduced into action.While many studies have focussed on the inputs that motoneurons receive from local circuits within the spinal cord and from other parts of the CNS, relatively few have investigated the targets of local axonal projections from motoneurons themselves, with the notable exception of those contacting Renshaw cells or other motoneurons.Recent research has not only characterised the detailed features of the excitatory connections between motoneurons and Renshaw cells but has also established that Renshaw cells are not the only target of motoneurons axons within the spinal cord. Motoneurons also form synaptic contacts with other motoneurons as well as with a subset of ventrally located V3 interneurons. These findings indicate that motoneurons cannot be simply viewed as the last relay station delivering the command drive to muscles, but perform an active role in the generation and modulation of motor patterns.
Collapse
Affiliation(s)
- Marco Beato
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Gary Bhumbra
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
38
|
Abstract
When animals walk overground, mechanical stimuli activate various receptors located in muscles, joints, and skin. Afferents from these mechanoreceptors project to neuronal networks controlling locomotion in the spinal cord and brain. The dynamic interactions between the control systems at different levels of the neuraxis ensure that locomotion adjusts to its environment and meets task demands. In this article, we describe and discuss the essential contribution of somatosensory feedback to locomotion. We start with a discussion of how biomechanical properties of the body affect somatosensory feedback. We follow with the different types of mechanoreceptors and somatosensory afferents and their activity during locomotion. We then describe central projections to locomotor networks and the modulation of somatosensory feedback during locomotion and its mechanisms. We then discuss experimental approaches and animal models used to investigate the control of locomotion by somatosensory feedback before providing an overview of the different functional roles of somatosensory feedback for locomotion. Lastly, we briefly describe the role of somatosensory feedback in the recovery of locomotion after neurological injury. We highlight the fact that somatosensory feedback is an essential component of a highly integrated system for locomotor control. © 2021 American Physiological Society. Compr Physiol 11:1-71, 2021.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Quebec, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
39
|
Baruzzi V, Lodi M, Storace M, Shilnikov A. Towards more biologically plausible central-pattern-generator models. Phys Rev E 2021; 104:064405. [PMID: 35030894 DOI: 10.1103/physreve.104.064405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Central pattern generators (CPGs) are relatively small neural networks that play a fundamental role in the control of animal locomotion. In this paper we define a method for the systematic design of CPG models able to exhibit biologically plausible gait transitions by implementing short-term synaptic plasticity mechanisms. As a case study, we focus on a simple CPG for quadruped locomotion. By applying the proposed method, three of four standard quadruped gaits were correctly reproduced by the obtained CPG model, not only in terms of the alternating sequence of the limbs but also in terms of frequency, duty cycle, and phase lags.
Collapse
Affiliation(s)
- V Baruzzi
- Department of Electrical, Electronics and Telecommunication Engineering and Naval Architecture, University of Genoa, 16145 Genoa, Italy
| | - M Lodi
- Department of Electrical, Electronics and Telecommunication Engineering and Naval Architecture, University of Genoa, 16145 Genoa, Italy
| | - M Storace
- Department of Electrical, Electronics and Telecommunication Engineering and Naval Architecture, University of Genoa, 16145 Genoa, Italy
| | - A Shilnikov
- Neuroscience Institute and Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|
40
|
Socolovsky G, Shamir M. Robust rhythmogenesis via spike-timing-dependent plasticity. Phys Rev E 2021; 104:024413. [PMID: 34525545 DOI: 10.1103/physreve.104.024413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/21/2021] [Indexed: 11/07/2022]
Abstract
Rhythmic activity has been observed in numerous animal species ranging from insects to humans, and in relation to a wide range of cognitive tasks. Various experimental and theoretical studies have investigated rhythmic activity. The theoretical efforts have mainly been focused on the neuronal dynamics, under the assumption that network connectivity satisfies certain fine-tuning conditions required to generate oscillations. However, it remains unclear how this fine-tuning is achieved. Here we investigated the hypothesis that spike-timing-dependent plasticity (STDP) can provide the underlying mechanism for tuning synaptic connectivity to generate rhythmic activity. We addressed this question in a modeling study. We examined STDP dynamics in the framework of a network of excitatory and inhibitory neuronal populations that has been suggested to underlie the generation of oscillations in the gamma range. Mean-field Fokker-Planck equations for the synaptic weight dynamics are derived in the limit of slow learning. We drew on this approximation to determine which types of STDP rules drive the system to exhibit rhythmic activity, and we demonstrate how the parameters that characterize the plasticity rule govern the rhythmic activity. Finally, we propose a mechanism that can ensure the robustness of self-developing processes in general, and for rhythmogenesis in particular.
Collapse
Affiliation(s)
- Gabi Socolovsky
- Department of Physics, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Be'er-Sheva 8410501, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er-Sheva 8410501, Israel
| | - Maoz Shamir
- Department of Physics, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Be'er-Sheva 8410501, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er-Sheva 8410501, Israel.,Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva 8410501, Israel
| |
Collapse
|
41
|
Elimination of glutamatergic transmission from Hb9 interneurons does not impact treadmill locomotion. Sci Rep 2021; 11:16008. [PMID: 34362940 PMCID: PMC8346588 DOI: 10.1038/s41598-021-95143-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/20/2021] [Indexed: 11/08/2022] Open
Abstract
The spinal cord contains neural circuits that can produce the rhythm and pattern of locomotor activity. It has previously been postulated that a population of glutamatergic neurons, termed Hb9 interneurons, contributes to locomotor rhythmogenesis. These neurons were identified by their expression of the homeobox gene, Hb9, which is also expressed in motor neurons. We developed a mouse line in which Cre recombinase activity is inducible in neurons expressing Hb9. We then used this line to eliminate vesicular glutamate transporter 2 from Hb9 interneurons, and found that there were no deficits in treadmill locomotion. We conclude that glutamatergic neurotransmission by Hb9 interneurons is not required for locomotor behaviour. The role of these neurons in neural circuits remains elusive.
Collapse
|
42
|
Baruzzi V, Lodi M, Storace M, Shilnikov A. Generalized half-center oscillators with short-term synaptic plasticity. Phys Rev E 2021; 102:032406. [PMID: 33075913 DOI: 10.1103/physreve.102.032406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/24/2020] [Indexed: 11/07/2022]
Abstract
How can we develop simple yet realistic models of the small neural circuits known as central pattern generators (CPGs), which contribute to generate complex multiphase locomotion in living animals? In this paper we introduce a new model (with design criteria) of a generalized half-center oscillator, (pools of) neurons reciprocally coupled by fast/slow inhibitory and excitatory synapses, to produce either alternating bursting or other rhythmic patterns, characterized by different phase lags, depending on the sensory or other external input. We also show how to calibrate its parameters, based on both physiological and functional criteria and on bifurcation analysis. This model accounts for short-term neuromodulation in a biophysically plausible way and is a building block to develop more realistic and functionally accurate CPG models. Examples and counterexamples are used to point out the generality and effectiveness of our design approach.
Collapse
Affiliation(s)
- V Baruzzi
- Department of Electrical, Electronics and Telecommunication Engineering and Naval Architecture, University of Genoa, 16145 Genoa, Italy
| | - M Lodi
- Department of Electrical, Electronics and Telecommunication Engineering and Naval Architecture, University of Genoa, 16145 Genoa, Italy
| | - M Storace
- Department of Electrical, Electronics and Telecommunication Engineering and Naval Architecture, University of Genoa, 16145 Genoa, Italy
| | - A Shilnikov
- Department of Mathematics and Statistics, Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|
43
|
Klishko AN, Akyildiz A, Mehta-Desai R, Prilutsky BI. Common and distinct muscle synergies during level and slope locomotion in the cat. J Neurophysiol 2021; 126:493-515. [PMID: 34191619 DOI: 10.1152/jn.00310.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although it is well established that the motor control system is modular, the organization of muscle synergies during locomotion and their change with ground slope are not completely understood. For example, typical reciprocal flexor-extensor muscle synergies of level walking in cats break down in downslope: one-joint hip extensors are silent throughout the stride cycle, whereas hindlimb flexors demonstrate an additional stance phase-related electromyogram (EMG) burst (Smith JL, Carlson-Kuhta P, Trank TV. J Neurophysiol 79: 1702-1716, 1998). Here, we investigated muscle synergies during level, upslope (27°), and downslope (-27°) walking in adult cats to examine common and distinct features of modular organization of locomotor EMG activity. Cluster analysis of EMG burst onset-offset times of 12 hindlimb muscles revealed five flexor and extensor burst groups that were generally shared across slopes. Stance-related bursts of flexor muscles in downslope were placed in a burst group from level and upslope walking formed by the rectus femoris. Walking upslope changed swing/stance phase durations of level walking but not the cycle duration. Five muscle synergies computed using non-negative matrix factorization accounted for at least 95% of variance in EMG patterns in each slope. Five synergies were shared between level and upslope walking, whereas only three of those were shared with downslope synergies; these synergies were active during the swing phase and phase transitions. Two stance-related synergies of downslope walking were distinct; they comprised a mixture of flexors and extensors. We suggest that the modular organization of muscle activity during level and slope walking results from interactions between motion-related sensory feedback, CPG, and supraspinal inputs.NEW & NOTEWORTHY We demonstrated that the atypical EMG activities during cat downslope walking, silent one-joint hip extensors and stance-related EMG bursts in flexors, have many features shared with activities of level and upslope walking. Majority of EMG burst groups and muscle synergies were shared among these slopes, and upslope modulated the swing/stance phase duration but not cycle duration. Thus, synergistic EMG activities in all slopes might result from a shared CPG receiving somatosensory and supraspinal inputs.
Collapse
Affiliation(s)
- Alexander N Klishko
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Adil Akyildiz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Ricky Mehta-Desai
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
44
|
Computational Modeling of Spinal Locomotor Circuitry in the Age of Molecular Genetics. Int J Mol Sci 2021; 22:ijms22136835. [PMID: 34202085 PMCID: PMC8267724 DOI: 10.3390/ijms22136835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Neuronal circuits in the spinal cord are essential for the control of locomotion. They integrate supraspinal commands and afferent feedback signals to produce coordinated rhythmic muscle activations necessary for stable locomotion. For several decades, computational modeling has complemented experimental studies by providing a mechanistic rationale for experimental observations and by deriving experimentally testable predictions. This symbiotic relationship between experimental and computational approaches has resulted in numerous fundamental insights. With recent advances in molecular and genetic methods, it has become possible to manipulate specific constituent elements of the spinal circuitry and relate them to locomotor behavior. This has led to computational modeling studies investigating mechanisms at the level of genetically defined neuronal populations and their interactions. We review literature on the spinal locomotor circuitry from a computational perspective. By reviewing examples leading up to and in the age of molecular genetics, we demonstrate the importance of computational modeling and its interactions with experiments. Moving forward, neuromechanical models with neuronal circuitry modeled at the level of genetically defined neuronal populations will be required to further unravel the mechanisms by which neuronal interactions lead to locomotor behavior.
Collapse
|
45
|
Hiraoka K. Phase-Dependent Crossed Inhibition Mediating Coordination of Anti-phase Bilateral Rhythmic Movement: A Mini Review. Front Hum Neurosci 2021; 15:668442. [PMID: 34025379 PMCID: PMC8136415 DOI: 10.3389/fnhum.2021.668442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
The activity of the left and right central pattern generators (CPGs) is efficiently coordinated during locomotion. To achieve this coordination, the interplay between the CPG controlling one leg and that controlling another must be present. Previous findings in aquatic vertebrates and mammalians suggest that the alternate activation of the left and right CPGs is mediated by the commissural interneurons crossing the midline of the spinal cord. Especially, V0 commissural interneurons mediate crossed inhibition during the alternative activity of the left and right CPGs. Even in humans, phase-dependent modulation of the crossed afferent inhibition during gait has been reported. Based on those previous findings, crossed inhibition of the CPG in one leg side caused by the activation of the contralateral CPG is a possible mechanism underlying the coordination of the anti-phase rhythmic movement of the legs. It has been hypothesized that the activity of the flexor half center in the CPG inhibits the contralateral flexor half center, but crossed inhibition of the extensor half center is not present because of the existence of the double limb support during gait. Nevertheless, previous findings on the phase-dependent crossed inhibition during anti-phase bilateral movement of the legs are not in line with this hypothesis. For example, extensor activity caused crossed inhibition of the flexor half center during bilateral cycling of the legs. In another study, the ankle extensor was inhibited at the period switching from extension to flexion during anti-phase rhythmic movement of the ankles. In this review article, I provide a critical discussion about crossed inhibition mediating the coordination of the anti-phase bilateral rhythmic movement of the legs.
Collapse
Affiliation(s)
- Koichi Hiraoka
- College of Health and Human Sciences, Osaka Prefecture University, Habikino, Japan
| |
Collapse
|
46
|
Spinal Inhibitory Interneurons: Gatekeepers of Sensorimotor Pathways. Int J Mol Sci 2021; 22:ijms22052667. [PMID: 33800863 PMCID: PMC7961554 DOI: 10.3390/ijms22052667] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
The ability to sense and move within an environment are complex functions necessary for the survival of nearly all species. The spinal cord is both the initial entry site for peripheral information and the final output site for motor response, placing spinal circuits as paramount in mediating sensory responses and coordinating movement. This is partly accomplished through the activation of complex spinal microcircuits that gate afferent signals to filter extraneous stimuli from various sensory modalities and determine which signals are transmitted to higher order structures in the CNS and to spinal motor pathways. A mechanistic understanding of how inhibitory interneurons are organized and employed within the spinal cord will provide potential access points for therapeutics targeting inhibitory deficits underlying various pathologies including sensory and movement disorders. Recent studies using transgenic manipulations, neurochemical profiling, and single-cell transcriptomics have identified distinct populations of inhibitory interneurons which express an array of genetic and/or neurochemical markers that constitute functional microcircuits. In this review, we provide an overview of identified neural components that make up inhibitory microcircuits within the dorsal and ventral spinal cord and highlight the importance of inhibitory control of sensorimotor pathways at the spinal level.
Collapse
|
47
|
Strohmer B, Stagsted RK, Manoonpong P, Larsen LB. Integrating Non-spiking Interneurons in Spiking Neural Networks. Front Neurosci 2021; 15:633945. [PMID: 33746701 PMCID: PMC7973219 DOI: 10.3389/fnins.2021.633945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/09/2021] [Indexed: 01/14/2023] Open
Abstract
Researchers working with neural networks have historically focused on either non-spiking neurons tractable for running on computers or more biologically plausible spiking neurons typically requiring special hardware. However, in nature homogeneous networks of neurons do not exist. Instead, spiking and non-spiking neurons cooperate, each bringing a different set of advantages. A well-researched biological example of such a mixed network is a sensorimotor pathway, responsible for mapping sensory inputs to behavioral changes. This type of pathway is also well-researched in robotics where it is applied to achieve closed-loop operation of legged robots by adapting amplitude, frequency, and phase of the motor output. In this paper we investigate how spiking and non-spiking neurons can be combined to create a sensorimotor neuron pathway capable of shaping network output based on analog input. We propose sub-threshold operation of an existing spiking neuron model to create a non-spiking neuron able to interpret analog information and communicate with spiking neurons. The validity of this methodology is confirmed through a simulation of a closed-loop amplitude regulating network inspired by the internal feedback loops found in insects for posturing. Additionally, we show that non-spiking neurons can effectively manipulate post-synaptic spiking neurons in an event-based architecture. The ability to work with mixed networks provides an opportunity for researchers to investigate new network architectures for adaptive controllers, potentially improving locomotion strategies of legged robots.
Collapse
Affiliation(s)
- Beck Strohmer
- SDU Biorobotics, Maersk McKinney Moller Institute, University of Southern Denmark, Odense, Denmark
| | - Rasmus Karnøe Stagsted
- SDU Biorobotics, Maersk McKinney Moller Institute, University of Southern Denmark, Odense, Denmark
| | - Poramate Manoonpong
- SDU Biorobotics, Maersk McKinney Moller Institute, University of Southern Denmark, Odense, Denmark
| | - Leon Bonde Larsen
- SDU Biorobotics, Maersk McKinney Moller Institute, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
48
|
Zholudeva LV, Abraira VE, Satkunendrarajah K, McDevitt TC, Goulding MD, Magnuson DSK, Lane MA. Spinal Interneurons as Gatekeepers to Neuroplasticity after Injury or Disease. J Neurosci 2021; 41:845-854. [PMID: 33472820 PMCID: PMC7880285 DOI: 10.1523/jneurosci.1654-20.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Spinal interneurons are important facilitators and modulators of motor, sensory, and autonomic functions in the intact CNS. This heterogeneous population of neurons is now widely appreciated to be a key component of plasticity and recovery. This review highlights our current understanding of spinal interneuron heterogeneity, their contribution to control and modulation of motor and sensory functions, and how this role might change after traumatic spinal cord injury. We also offer a perspective for how treatments can optimize the contribution of interneurons to functional improvement.
Collapse
Affiliation(s)
| | - Victoria E Abraira
- Department of Cell Biology & Neuroscience, Rutgers University, The State University of New Jersey, New Jersey, 08854
| | - Kajana Satkunendrarajah
- Departments of Neurosurgery and Physiology, Medical College of Wisconsin, Wisconsin, 53226
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, 53295
| | - Todd C McDevitt
- Gladstone Institutes, San Francisco, California, 94158
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, 94143
| | | | - David S K Magnuson
- University of Louisville, Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, 40208
| | - Michael A Lane
- Department of Neurobiology and Anatomy, and the Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, Pennsylvania, 19129
| |
Collapse
|
49
|
Recent Insights into the Rhythmogenic Core of the Locomotor CPG. Int J Mol Sci 2021; 22:ijms22031394. [PMID: 33573259 PMCID: PMC7866530 DOI: 10.3390/ijms22031394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 01/10/2023] Open
Abstract
In order for locomotion to occur, a complex pattern of muscle activation is required. For more than a century, it has been known that the timing and pattern of stepping movements in mammals are generated by neural networks known as central pattern generators (CPGs), which comprise multiple interneuron cell types located entirely within the spinal cord. A genetic approach has recently been successful in identifying several populations of spinal neurons that make up this neural network, as well as the specific role they play during stepping. In spite of this progress, the identity of the neurons responsible for generating the locomotor rhythm and the manner in which they are interconnected have yet to be deciphered. In this review, we summarize key features considered to be expressed by locomotor rhythm-generating neurons and describe the different genetically defined classes of interneurons which have been proposed to be involved.
Collapse
|
50
|
Shevtsova NA, Ha NT, Rybak IA, Dougherty KJ. Neural Interactions in Developing Rhythmogenic Spinal Networks: Insights From Computational Modeling. Front Neural Circuits 2020; 14:614615. [PMID: 33424558 PMCID: PMC7787004 DOI: 10.3389/fncir.2020.614615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
The mechanisms involved in generation of rhythmic locomotor activity in the mammalian spinal cord remain poorly understood. These mechanisms supposedly rely on both intrinsic properties of constituting neurons and interactions between them. A subset of Shox2 neurons was suggested to contribute to generation of spinal locomotor activity, but the possible cellular basis for rhythmic bursting in these neurons remains unknown. Ha and Dougherty (2018) recently revealed the presence of bidirectional electrical coupling between Shox2 neurons in neonatal spinal cords, which can be critically involved in neuronal synchronization and generation of populational bursting. Gap junctional connections found between functionally-related Shox2 interneurons decrease with age, possibly being replaced by increasing interactions through chemical synapses. Here, we developed a computational model of a heterogeneous population of neurons sparsely connected by electrical or/and chemical synapses and investigated the dependence of frequency of populational bursting on the type and strength of neuronal interconnections. The model proposes a mechanistic explanation that can account for the emergence of a synchronized rhythmic activity in the neuronal population and provides insights into the possible role of gap junctional coupling between Shox2 neurons in the spinal mechanisms for locomotor rhythm generation.
Collapse
Affiliation(s)
| | | | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Kimberly J. Dougherty
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| |
Collapse
|