1
|
Bosch TCG, Blaser MJ, Ruby E, McFall-Ngai M. A new lexicon in the age of microbiome research. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230060. [PMID: 38497258 PMCID: PMC10945402 DOI: 10.1098/rstb.2023.0060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/04/2023] [Indexed: 03/19/2024] Open
Abstract
At a rapid pace, biologists are learning the many ways in which resident microbes influence, and sometimes even control, their hosts to shape both health and disease. Understanding the biochemistry behind these interactions promises to reveal completely novel and targeted ways of counteracting disease processes. However, in our protocols and publications, we continue to describe these new results using a language that originated in a completely different context. This language developed when microbial interactions with hosts were perceived to be primarily pathogenic, as threats that had to be vanquished. Biomedicine had one dominating thought: winning this war against microorganisms. Today, we know that beyond their defensive roles, host tissues, especially epithelia, are vital to ensuring association with the normal microbiota, the communities of microbes that persistently live with the host. Thus, we need to adopt a language that better encompasses the newly appreciated importance of host-microbiota associations. We also need a language that frames the onset and progression of pathogenic conditions within the context of the normal microbiota. Such a reimagined lexicon should make it clear, from the very nature of its words, that microorganisms are primarily vital to our health, and only more rarely the cause of disease. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Edward Ruby
- California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
2
|
Williams A. Multiomics data integration, limitations, and prospects to reveal the metabolic activity of the coral holobiont. FEMS Microbiol Ecol 2024; 100:fiae058. [PMID: 38653719 PMCID: PMC11067971 DOI: 10.1093/femsec/fiae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
Since their radiation in the Middle Triassic period ∼240 million years ago, stony corals have survived past climate fluctuations and five mass extinctions. Their long-term survival underscores the inherent resilience of corals, particularly when considering the nutrient-poor marine environments in which they have thrived. However, coral bleaching has emerged as a global threat to coral survival, requiring rapid advancements in coral research to understand holobiont stress responses and allow for interventions before extensive bleaching occurs. This review encompasses the potential, as well as the limits, of multiomics data applications when applied to the coral holobiont. Synopses for how different omics tools have been applied to date and their current restrictions are discussed, in addition to ways these restrictions may be overcome, such as recruiting new technology to studies, utilizing novel bioinformatics approaches, and generally integrating omics data. Lastly, this review presents considerations for the design of holobiont multiomics studies to support lab-to-field advancements of coral stress marker monitoring systems. Although much of the bleaching mechanism has eluded investigation to date, multiomic studies have already produced key findings regarding the holobiont's stress response, and have the potential to advance the field further.
Collapse
Affiliation(s)
- Amanda Williams
- Microbial Biology Graduate Program, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, United States
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, United States
| |
Collapse
|
3
|
Riddle MR, Nguyen NK, Nave M, Peuß R, Maldonado E, Rohner N, Tabin CJ. Host evolution shapes gut microbiome composition in Astyanax mexicanus. Ecol Evol 2024; 14:e11192. [PMID: 38571802 PMCID: PMC10985381 DOI: 10.1002/ece3.11192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
The ecological and genetic changes that underlie the evolution of host-microbe interactions remain elusive, primarily due to challenges in disentangling the variables that alter microbiome composition. To understand the impact of host habitat, host genetics, and evolutionary history on microbial community structure, we examined gut microbiomes of river- and three cave-adapted morphotypes of the Mexican tetra, Astyanax mexicanus, in their natural environments and under controlled laboratory conditions. Field-collected samples were dominated by very few taxa and showed considerable interindividual variation. We found that lab-reared fish exhibited increased microbiome richness and distinct composition compared to their wild counterparts, underscoring the significant influence of habitat. Most notably, however, we found that morphotypes reared on the same diet throughout life developed distinct microbiomes suggesting that genetic loci resulting from cavefish evolution shape microbiome composition. We observed stable differences in Fusobacteriota abundance between morphotypes and demonstrated that this could be used as a trait for quantitative trait loci mapping to uncover the genetic basis of microbial community structure.
Collapse
Affiliation(s)
| | | | | | - Robert Peuß
- Institute for Evolution and BiodiversityUniversity of MünsterMünsterGermany
| | - Ernesto Maldonado
- Institute of Marine Sciences and LimnologyUniversidad Nacional Autonoma de Mexico, UNAMPuerto MorelosMexico
| | - Nicolas Rohner
- Stowers Institute for Medical ResearchKansas CityMissouriUSA
| | | |
Collapse
|
4
|
Balasubramanian S, Haneen MA, Sharma G, Perumal E. Acute copper oxide nanoparticles exposure alters zebrafish larval microbiome. Life Sci 2024; 336:122313. [PMID: 38035991 DOI: 10.1016/j.lfs.2023.122313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) are being used in healthcare industries due to its antimicrobial properties. The increased consumption of NPs could lead to the rise of these NPs in the environment affecting the biological systems. Altered microbiome has been correlated to disease pathology in humans as well as xenobiotic toxicity in experimental animal models. However, CuO NPs-induced microbiome alterations in vertebrates have not been reported so far. In this study, for the first time, zebrafish larvae at 96 hpf (hours post fertilization) were exposed to CuO NPs for 24 h at 10, 20, and 40 ppm. After exposure, the control and treated larvae were subjected to 16S rRNA amplicon sequencing followed by relative taxa abundance, alpha and beta diversity analysis, single factor analysis, LEfSe, Deseq2, and functional profiling. No significant alteration was detected in the microbial richness and diversity, however, specific taxa constituting the core microbiome such as phylum Proteobacteria were significantly increased and Bacterioidetes and Firmicutes were decreased in the treated groups, indicating a core microbiota dysbiosis. Further, the family Lachnospiraceae, and genus Syntrophomonas involved in butyrate production and the metabolism of lipids and glucose were significantly altered. In addition, the opportunistic pathogens belonging to order Flavobacteriales were increased in CuO NPs treated groups. Moreover, the taxa involved in host immune response (Shewanella, Delftia, and Bosea) were found to be enriched in CuO NPs exposed larvae. These results indicate that CuO NPs exposure causes alteration in the core microbiota, which could cause colitis or inflammatory bowel disease.
Collapse
Affiliation(s)
- Satheeswaran Balasubramanian
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Mariam Azeezuddin Haneen
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India
| | - Gaurav Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India.
| |
Collapse
|
5
|
Chai L, Song Y, Chen A, Jiang L, Deng H. Gut microbiota perturbations during larval stages in Bufo gargarizans tadpoles after Cu exposure with or without the presence of Pb. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122774. [PMID: 37871736 DOI: 10.1016/j.envpol.2023.122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Cu and Pb are ubiquitous environmental contaminants, but there is limited information on their potential impacts on gut microbiota profile in anuran amphibians at different developmental stages during metamorphosis. In this study, Bufo gargarizans tadpoles were chronically exposed to Cu alone or Cu combined with Pb from Gs26 throughout metamorphosis. Morphology of tadpoles, histological characteristic and bacterial community of intestines were evaluated at three developmental stages: Gs33, Gs36, and Gs42. Results showed that Cu and Cu + Pb exposure caused various degrees of morphological and histological changes in guts at tested three stages. In addition, bacterial richness and diversity in tadpoles especially at Gs33 and Gs42 were disturbed by Cu and Cu + Pb. Beta diversity demonstrated that the bacterial community structures were influenced by both heavy metals exposure and developmental stages. Alterations in taxonomic composition were characterized by increased abundance of Proteobacteria and Firmicutes, reduction of Fusobacteriota, as well as decreased Cetobacterium and increased C39 at all three stages. Overall, response of gut bacterial diversity and composition to Cu stress depends on the developmental stage, while the altered patterns of bacterial community at Cu stress could be modified further by the presence of Pb. Moreover, predicted metabolic disorders were associated with shifts in bacterial community, but needs integrated information from metagenomic and metatranscriptomic analyses. These results contribute to the growing body of research about potential ecotoxicological effects of heavy metals on amphibian gut microbiota during metamorphosis.
Collapse
Affiliation(s)
- Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China.
| | - Yanjiao Song
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China.
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Ling Jiang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Hongzhang Deng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| |
Collapse
|
6
|
Scott E, Brewer MS, Peralta AL, Issa FA. The Effects of Social Experience on Host Gut Microbiome in Male Zebrafish ( Danio rerio). THE BIOLOGICAL BULLETIN 2023; 244:177-189. [PMID: 38457676 DOI: 10.1086/729377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
AbstractAlthough the gut and the brain vastly differ in physiological function, they have been interlinked in a variety of different neurological and behavioral disorders. The bacteria that comprise the gut microbiome communicate and influence the function of various physiological processes within the body, including nervous system function. However, the effects of social experience in the context of dominance and social stress on gut microbiome remain poorly understood. Here, we examined whether social experience impacts the host zebrafish (Danio rerio) gut microbiome. We studied how social dominance during the first 2 weeks of social interactions changed the composition of zebrafish gut microbiome by comparing gut bacterial composition, diversity, and relative abundance between socially dominant, submissive, social isolates and control group-housed communal fish. Using amplicon sequencing of the 16S rRNA gene, we report that social dominance significantly affects host gut bacterial community composition but not bacterial diversity. At the genus level, Aeromonas and unclassified Enterobacteriaceae relative abundance decreased in dominant individuals while commensal bacteria (e.g., Exiguobacterium and Cetobacterium) increased in relative abundance. Conversely, the relative abundance of Psychrobacter and Acinetobacter was increased in subordinates, isolates, and communal fish compared to dominant fish. The shift in commensal and pathogenic bacteria highlights the impact of social experience and the accompanying stress on gut microbiome, with potentially similar effects in other social organisms.
Collapse
|
7
|
Proctor DM, Drummond RA, Lionakis MS, Segre JA. One population, multiple lifestyles: Commensalism and pathogenesis in the human mycobiome. Cell Host Microbe 2023; 31:539-553. [PMID: 37054674 PMCID: PMC10155287 DOI: 10.1016/j.chom.2023.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 04/15/2023]
Abstract
Candida auris and Candida albicans can result in invasive fungal diseases. And yet, these species can stably and asymptomatically colonize human skin and gastrointestinal tracts. To consider these disparate microbial lifestyles, we first review factors shown to influence the underlying microbiome. Structured by the damage response framework, we then consider the molecular mechanisms deployed by C. albicans to switch between commensal and pathogenic lifestyles. Next, we explore this framework with C. auris to highlight how host physiology, immunity, and/or antibiotic receipt are associated with progression from colonization to infection. While treatment with antibiotics increases the risk that an individual will succumb to invasive candidiasis, the underlying mechanisms remain unclear. Here, we describe several hypotheses that may explain this phenomenon. We conclude by highlighting future directions integrating genomics with immunology to advance our understanding of invasive candidiasis and human fungal disease.
Collapse
Affiliation(s)
- Diana M Proctor
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Rebecca A Drummond
- Institute of Immunology & Immunotherapy, Institute of Microbiology & Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Banse AV, VanBeuge S, Smith TJ, Logan SL, Guillemin K. Secreted Aeromonas GlcNAc binding protein GbpA stimulates epithelial cell proliferation in the zebrafish intestine. Gut Microbes 2023; 15:2183686. [PMID: 36859771 PMCID: PMC9988336 DOI: 10.1080/19490976.2023.2183686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/19/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
In response to microbiota colonization, the intestinal epithelia of many animals exhibit increased rates of cell proliferation. We used gnotobiotic larval zebrafish to identify a secreted factor from the mutualist Aeromonas veronii that is sufficient to promote intestinal epithelial cell proliferation. This secreted A. veronii protein is a homologue of the Vibrio cholerae GlcNAc binding protein GbpA, which was identified as a chitin-binding colonization factor in mice. GbpA was subsequently shown to be a lytic polysaccharide monooxygenase (LPMO) that can degrade recalcitrant chitin. Our phenotypic characterization of gbpA deficient A. veronii found no alterations in these cells' biogeography in the zebrafish intestine and only a modest competitive disadvantage in chitin-binding and colonization fitness when competed against the wild-type strain. These results argue against the model of GbpA being a secreted adhesin that binds simultaneously to bacterial cells and GlcNAc, and instead suggests that GbpA is part of a bacterial GlcNAc utilization program. We show that the host proliferative response to GbpA occurs in the absence of bacteria upon exposure of germ-free zebrafish to preparations of native GbpA secreted from either A. veronii or V. cholerae or recombinant A. veronii GbpA. Furthermore, domain 1 of A. veronii GbpA, containing the predicted LPMO activity, is sufficient to stimulate intestinal epithelial proliferation. We propose that intestinal epithelial tissues upregulate their rates of renewal in response to secreted bacterial GbpA proteins as an adaptive strategy for coexisting with bacteria that can degrade glycan constituents of the protective intestinal lining.
Collapse
Affiliation(s)
- Allison V. Banse
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Stephanie VanBeuge
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - T. Jarrod Smith
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | | | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Xia H, Chen H, Cheng X, Yin M, Yao X, Ma J, Huang M, Chen G, Liu H. Zebrafish: an efficient vertebrate model for understanding role of gut microbiota. Mol Med 2022; 28:161. [PMID: 36564702 PMCID: PMC9789649 DOI: 10.1186/s10020-022-00579-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota plays a critical role in the maintenance of host health. As a low-cost and genetically tractable vertebrate model, zebrafish have been widely used for biological research. Zebrafish and humans share some similarities in intestinal physiology and function, and this allows zebrafish to be a surrogate model for investigating the crosstalk between the gut microbiota and host. Especially, zebrafish have features such as high fecundity, external fertilization, and early optical transparency. These enable the researchers to employ the fish to address questions not easily addressed in other animal models. In this review, we described the intestine structure of zebrafish. Also, we summarized the methods of generating a gnotobiotic zebrafish model, the factors affecting its intestinal flora, and the study progress of gut microbiota functions in zebrafish. Finally, we discussed the limitations and challenges of the zebrafish model for gut microbiota studies. In summary, this review established that zebrafish is an attractive research tool to understand mechanistic insights into host-microbe interaction.
Collapse
Affiliation(s)
- Hui Xia
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Huimin Chen
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xue Cheng
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mingzhu Yin
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xiaowei Yao
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Jun Ma
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mengzhen Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Gang Chen
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
| | - Hongtao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China.
| |
Collapse
|
10
|
Lokesh J, Ghislain M, Reyrolle M, Bechec ML, Pigot T, Terrier F, Roy J, Panserat S, Ricaud K. Prebiotics modify host metabolism in rainbow trout (Oncorhynchus mykiss) fed with a total plant-based diet: Potential implications for microbiome-mediated diet optimization. AQUACULTURE 2022; 561:738699. [DOI: 10.1016/j.aquaculture.2022.738699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Hill JH, Massaquoi MS, Sweeney EG, Wall ES, Jahl P, Bell R, Kallio K, Derrick D, Murtaugh LC, Parthasarathy R, Remington SJ, Round JL, Guillemin K. BefA, a microbiota-secreted membrane disrupter, disseminates to the pancreas and increases β cell mass. Cell Metab 2022; 34:1779-1791.e9. [PMID: 36240759 PMCID: PMC9633563 DOI: 10.1016/j.cmet.2022.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/26/2022] [Accepted: 08/31/2022] [Indexed: 01/11/2023]
Abstract
Microbiome dysbiosis is a feature of diabetes, but how microbial products influence insulin production is poorly understood. We report the mechanism of BefA, a microbiome-derived protein that increases proliferation of insulin-producing β cells during development in gnotobiotic zebrafish and mice. BefA disseminates systemically by multiple anatomic routes to act directly on pancreatic islets. We detail BefA's atomic structure, containing a lipid-binding SYLF domain, and demonstrate that it permeabilizes synthetic liposomes and bacterial membranes. A BefA mutant impaired in membrane disruption fails to expand β cells, whereas the pore-forming host defense protein, Reg3, stimulates β cell proliferation. Our work demonstrates that membrane permeabilization by microbiome-derived and host defense proteins is necessary and sufficient for β cell expansion during pancreas development, potentially connecting microbiome composition with diabetes risk.
Collapse
Affiliation(s)
- Jennifer Hampton Hill
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | - Elena S Wall
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Philip Jahl
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Rickesha Bell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Karen Kallio
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Daniel Derrick
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - L Charles Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Raghuveer Parthasarathy
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - S James Remington
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - June L Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada.
| |
Collapse
|
12
|
Wan Y, Huang M, Xu X, Cao X, Chen H, Duan R. Effects of short-term continuous and pulse cadmium exposure on gut histology and microbiota of adult male frogs (Pelophylax nigromaculatus) during pre-hibernation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103926. [PMID: 35787952 DOI: 10.1016/j.etap.2022.103926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is an environmental endocrine-disrupting pollutant which mainly occurs in pulsed manner in natural waters, while traditional toxicology experiments have less examined the effects of pulsed exposure. Here, we studied the effects of short-term (7 days) continuous and pulse exposure to 100 μg/L Cd on gut morphology and microbiota of frogs (Pelophylax nigromaculatus) during pre-hibernation. Compared to continuous exposure, Cd pulse exposure significantly increased individual mortality and decreased the villi height and the ratio of villi height to crypt depth of the gut. Cd continuous and pulse exposure both changed the community structure and relative abundance of intestinal microbiota. Compared to continuous exposure, Cd pulse exposure significantly decreased the relative abundance of beneficial bacteria (e.g., Cetobacterium and Aeromonas genus), and significantly increased the relative abundance of harmful bacteria (e.g., Parabacteroides, Odoribacter, and Acinetobacter genus). This study shows that the gut histology and microbiota of amphibians during pre-hibernation are more susceptible to Cd pulse exposure than continuous exposure.
Collapse
Affiliation(s)
- Yuyue Wan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China.
| | - Xiang Xu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Xiaohong Cao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Hongping Chen
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China.
| |
Collapse
|
13
|
Kumar J, Kumar M, Sharma S, Srivastava N, Singh R, Hussain MA, Mazumder S. Th1-Th2 and M1-M2 interplay sculpt Aeromonas hydrophila pathogenesis in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2022; 127:357-365. [PMID: 35772676 DOI: 10.1016/j.fsi.2022.06.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Aeromonas hydrophila is an important aquatic zoonotic pathogen that causes septicemia, necrotizing fasciitis and gastroenteritis in various aquatic and non-aquatic animals. However, the pathogenesis of A. hydrophila is not fully understood. Here, we examined the pathogenicity and histopathology of A. hydrophila in the zebrafish (Danio rerio) model system. We found that the intensity of symptoms and mortality is dose-dependent. Bacterial colonization studies demonstrated that A. hydrophila never cleared out from the fish body but stayed in a state of inactivity till it enters a fresh host. Reinfection studies showed that exposure to A. hydrophila provides immunity against future infection and hence improves fish survival. Gene expression studies revealed the crosstalk between T-helper cell and macrophage responses in fish immune system in response to A. hydrophila and infection memory. Histopathological studies showed that symptoms of tissue damage and inflammation lasted for less duration with less intensity in immunized fish when compared to non-immunized fish. Together, our results suggest that the zebrafish model is a useful system in studying the interplay between A. hydrophila pathogenesis, persistence and immunity.
Collapse
Affiliation(s)
- Jai Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Nidhi Srivastava
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India; Department of Zoology, School of Basic and Applied Sciences, Maharaja Agrasen University, Solan, Himachal Pradesh, 174103, India
| | - Rashmi Singh
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Md Arafat Hussain
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India; Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India.
| |
Collapse
|
14
|
Liang Q, Liu G, Guo Z, Wang Y, Xu Z, Ren Y, Zhang Q, Cui M, Zhao X, Xu D. Application of potential probiotic strain Streptomyces sp. SH5 on anti-Aeromonas infection in zebrafish larvae. FISH & SHELLFISH IMMUNOLOGY 2022; 127:375-385. [PMID: 35777708 DOI: 10.1016/j.fsi.2022.06.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Pre-treatment of Streptomyces sp. SH5 on zebrafish lead to a significant enhancement of larvae survival upon Aeromonas hydrophila challenging. SH5 was able to colonize in zebrafish approximately at 1 × 102.6 cells per fish for at least seven days. The presence of SH5 strongly repelled the A. hydrophila colonization in zebrafish, and maximally, a 67.53% reduction rate was achieved. A more diversified flora was discovered in the SH5-treated zebrafish larvae at both phylum and genus levels. The expression of immune response genes of SH5-treated zebrafish, including TLR3, lysozyme and NOS2α, were enhanced at initial stage, while, that of various inflammatory stimuli genes including 1L-1β, 1L-6 and MyD88 were decreased at all tested timepoints. SH5 was shown to inhibit virulence factors production and the expression of corresponding virulence genes in A. hydrophila, suggesting its quorum sensing inhibitory potential. These results indicated favorable application perspectives of SH5 in resisting pathogenic infection in aquaculture.
Collapse
Affiliation(s)
- Qiting Liang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China; State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Drinking Water Source Safety Control, Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, PR China
| | - Ganxing Liu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Zheng Guo
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Yuting Wang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Zhongheng Xu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Yuxian Ren
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Qizhong Zhang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Miao Cui
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Delin Xu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
15
|
Di Chiacchio IM, Gómez-Abenza E, Paiva IM, de Abreu DJM, Rodríguez-Vidal JF, Carvalho EEN, Carvalho SM, Solis-Murgas LD, Mulero V. Bee pollen in zebrafish diet affects intestinal microbiota composition and skin cutaneous melanoma development. Sci Rep 2022; 12:9998. [PMID: 35705722 PMCID: PMC9200724 DOI: 10.1038/s41598-022-14245-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/03/2022] [Indexed: 11/08/2022] Open
Abstract
Bee pollen is recommended as dietary supplement due to immunostimulating functions including antioxidant, anti-inflammatory and anti-carcinogenic properties. Nevertheless, the effectiveness of such properties is still not well understood. As diet can be associated with animal performance, microbiota modulation and potentially factor for cancer, this study aimed to analyze if bee pollen could influence growth, gut microbial and skin cutaneous melanoma development in zebrafish. Control diets based on commercial flakes and Artemia were compared with the same diet supplemented with bee pollen. Fish weight gain, increased length, intestinal bacteria metagenomics analysis, serum amyloid A gene expression and cutaneous melanoma transplantation assays were performed. Bee pollen affected microbiota composition and melanoma development. Differential abundance revealed higher abundance in the control group for Aeromonadaceae family, Aeromonas and Pseudomonas genus, A. sobria, A. schubertii, A. jandaei and P. alcaligenes species compared with pollen diet group. Pollen group presented higher abundance for Chromobacterium genus and for Gemmobacter aquaticus, Flavobacterium succinicans and Bifidobacterium breve compared with control group. Unexpectedly, fish fed with bee pollen showed higher tumor growth rate and larger tumor size than control group. This is the first study to report intestinal microbial changes and no protective cancer properties after bee pollen administration.
Collapse
Affiliation(s)
- Isabela M Di Chiacchio
- Programa de Pós-graduação em Ciências Veterinárias-FZMV, Universidade Federal de Lavras, UFLA, 3037, Lavras, MG, 37200-900, Brasil
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia. IMIB-Arrixaca. CIBERER, 30100, Murcia, Spain
| | - Elena Gómez-Abenza
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia. IMIB-Arrixaca. CIBERER, 30100, Murcia, Spain
| | - Isadora M Paiva
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, MG, 31270-901, Brasil
| | - Danilo J M de Abreu
- Programa de Pós-graduação em Microbiologia Agrícola-ICN, Universidade Federal de Lavras, UFLA, 3037, Lavras, MG, 37200-900, Brazil
| | - Juan Francisco Rodríguez-Vidal
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia. IMIB-Arrixaca. CIBERER, 30100, Murcia, Spain
| | - Elisângela E N Carvalho
- Departamento de Ciência dos Alimentos-ESAL, Universidade Federal de Lavras, UFLA, 3037, Lavras, MG, 37200-900, Brasil
| | - Stephan M Carvalho
- Programa de Pós-graduação em Entomologia-ESAL, Universidade Federal de Lavras, UFLA, 3037, Lavras, MG, 37200-900, Brasil
| | - Luis David Solis-Murgas
- Programa de Pós-graduação em Ciências Veterinárias-FZMV, Universidade Federal de Lavras, UFLA, 3037, Lavras, MG, 37200-900, Brasil.
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia. IMIB-Arrixaca. CIBERER, 30100, Murcia, Spain.
| |
Collapse
|
16
|
|
17
|
Yu D, Meng X, de Vos WM, Wu H, Fang X, Maiti AK. Implications of Gut Microbiota in Complex Human Diseases. Int J Mol Sci 2021; 22:12661. [PMID: 34884466 PMCID: PMC8657718 DOI: 10.3390/ijms222312661] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/30/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Humans, throughout the life cycle, from birth to death, are accompanied by the presence of gut microbes. Environmental factors, lifestyle, age and other factors can affect the balance of intestinal microbiota and their impact on human health. A large amount of data show that dietary, prebiotics, antibiotics can regulate various diseases through gut microbes. In this review, we focus on the role of gut microbes in the development of metabolic, gastrointestinal, neurological, immune diseases and, cancer. We also discuss the interaction between gut microbes and the host with respect to their beneficial and harmful effects, including their metabolites, microbial enzymes, small molecules and inflammatory molecules. More specifically, we evaluate the potential ability of gut microbes to cure diseases through Fecal Microbial Transplantation (FMT), which is expected to become a new type of clinical strategy for the treatment of various diseases.
Collapse
Affiliation(s)
- Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Xin Meng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands;
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Amit K. Maiti
- Department of Genetics and Genomics, Mydnavar, 2645 Somerset Boulevard, Troy, MI 48084, USA
| |
Collapse
|
18
|
Xue W, Li JJ, Zou Y, Zou B, Wei L. Microbiota and Ocular Diseases. Front Cell Infect Microbiol 2021; 11:759333. [PMID: 34746029 PMCID: PMC8566696 DOI: 10.3389/fcimb.2021.759333] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent advances have identified significant associations between the composition and function of the gut microbiota and various disorders in organ systems other than the digestive tract. Utilizing next-generation sequencing and multiomics approaches, the microbial community that possibly impacts ocular disease has been identified. This review provides an overview of the literature on approaches to microbiota analysis and the roles of commensal microbes in ophthalmic diseases, including autoimmune uveitis, age-related macular degeneration, glaucoma, and other ocular disorders. In addition, this review discusses the hypothesis of the "gut-eye axis" and evaluates the therapeutic potential of targeting commensal microbiota to alleviate ocular inflammation.
Collapse
Affiliation(s)
- Wei Xue
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Jing Jing Li
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Yanli Zou
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China.,Department of Ophthalmology, Affiliated Foshan Hospital, Southern Medical University, Foshan, China
| | - Bin Zou
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Elias AE, McBain AJ, O'Neill CA. The role of the skin microbiota in the modulation of cutaneous inflammation-Lessons from the gut. Exp Dermatol 2021; 30:1509-1516. [PMID: 34173265 DOI: 10.1111/exd.14420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Inflammation is a vital defense mechanism used to protect the body from invading pathogens, but dysregulation can lead to chronic inflammatory disorders such as psoriasis and atopic dermatitis. Differences in microbiota composition have been observed in patients with inflammatory skin conditions compared with healthy individuals, particularly within lesions. There is also increasing evidence accumulating to support the notion that the microbiome contributes to the onset or modulates the severity of inflammatory diseases. Despite the known protective effects of orally administered lactic acid bacteria against inflammation, few studies have investigated the potential protective effects of topical application of bacteria on skin health and even fewer have looked at the potential anti-inflammatory effects of skin commensals. If lack of diversity and reduction in the abundance of specific commensal strains is observed in inflammatory skin lesions, and it is known that commensal bacteria can produce anti-inflammatory compounds, we suggest that certain members of the skin microbiota have anti-inflammatory properties that can be harnessed for use as topical therapeutics in inflammatory skin disorders.
Collapse
Affiliation(s)
- Abigail E Elias
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Catherine A O'Neill
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
20
|
Zebrafish model for human gut microbiome-related studies: advantages and limitations. MEDICINE IN MICROECOLOGY 2021. [DOI: 10.1016/j.medmic.2021.100042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
21
|
Anbalagan S. Endocrine cross-talk between the gut microbiome and glial cells in development and disease. J Neuroendocrinol 2021; 33:e12924. [PMID: 34019340 DOI: 10.1111/jne.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 11/27/2022]
Abstract
Glial cells make up the major cellular component of the nervous system. Glial development is usually investigated through perturbations of host genetics, although non-host-derived signalling molecules can also regulate glial cells. Indeed, gut microbiome colonisation and the presence of microbiome-derived factors in the blood coincide with glial cell development. Emerging data suggest that the gut microbiome can regulate gliogenesis, myelination and glial epigenetics. Neurodegenerative diseases are characterised by changes in the gut microbiome and glial dysfunction. This perspective discusses the ways in which microbiome-derived molecules can engage in cross-talk with glial cells during development and in dysfunctional glial diseases.
Collapse
Affiliation(s)
- Savani Anbalagan
- ReMedy International Research Agenda Programme, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
22
|
Daliri EBM, Ofosu FK, Chelliah R, Lee BH, Oh DH. Challenges and Perspective in Integrated Multi-Omics in Gut Microbiota Studies. Biomolecules 2021; 11:300. [PMID: 33671370 PMCID: PMC7922017 DOI: 10.3390/biom11020300] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
The advent of omic technology has made it possible to identify viable but unculturable micro-organisms in the gut. Therefore, application of multi-omic technologies in gut microbiome studies has become invaluable for unveiling a comprehensive interaction between these commensals in health and disease. Meanwhile, despite the successful identification of many microbial and host-microbial cometabolites that have been reported so far, it remains difficult to clearly identify the origin and function of some proteins and metabolites that are detected in gut samples. However, the application of single omic techniques for studying the gut microbiome comes with its own challenges which may be overcome if a number of different omics techniques are combined. In this review, we discuss our current knowledge about multi-omic techniques, their challenges and future perspective in this field of gut microbiome studies.
Collapse
Affiliation(s)
- Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea; (E.B.-M.D.); (F.K.O.); (R.C.)
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea; (E.B.-M.D.); (F.K.O.); (R.C.)
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea; (E.B.-M.D.); (F.K.O.); (R.C.)
| | - Byong H. Lee
- SportBiomics, Sacramento Inc., California, CA 95660, USA;
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea; (E.B.-M.D.); (F.K.O.); (R.C.)
| |
Collapse
|
23
|
Phylogenetic Integration Reveals the Zebrafish Core Microbiome and Its Sensitivity to Environmental Exposures. TOXICS 2021; 9:toxics9010010. [PMID: 33467528 PMCID: PMC7829988 DOI: 10.3390/toxics9010010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
Zebrafish are increasingly used to study how environmental exposures impact vertebrate gut microbes. However, we understand little about which microbial taxa are common to the zebrafish gut across studies and facilities. Here, we define the zebrafish core gut microbiome to resolve microbiota that are both relatively robust to study or facility effects and likely to drive proper microbiome assembly and functioning due to their conservation. To do so, we integrated publicly available gut microbiome 16S gene sequence data from eight studies into a phylogeny and identified monophyletic clades of gut bacteria that are unexpectedly prevalent across individuals. Doing so revealed 585 core clades of bacteria in the zebrafish gut, including clades within Aeromonas, Pseudomonas, Cetobacterium, Shewanella, Chitinibacter, Fluviicola, Flectobacillus, and Paucibacter. We then applied linear regression to discern which of these core clades are sensitive to an array of different environmental exposures. We found that 200 core clades were insensitive to any exposure we assessed, while 134 core clades were sensitive to more than two exposures. Overall, our analysis defines the zebrafish core gut microbiome and its sensitivity to exposure, which helps future studies to assess the robustness of their results and prioritize taxa for empirical assessments of how gut microbiota mediate the effects of exposure on the zebrafish host.
Collapse
|
24
|
Borges N, Keller-Costa T, Sanches-Fernandes GMM, Louvado A, Gomes NCM, Costa R. Bacteriome Structure, Function, and Probiotics in Fish Larviculture: The Good, the Bad, and the Gaps. Annu Rev Anim Biosci 2020; 9:423-452. [PMID: 33256435 DOI: 10.1146/annurev-animal-062920-113114] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aquaculture is the fastest-growing sector in food production worldwide. For decades, research on animal physiology, nutrition, and behavior established the foundations of best practices in land-based fish rearing and disease control. Current DNA sequencing, bioinformatics, and data science technologies now allow deep investigations of host-associated microbiomes in a tractable fashion. Adequate use of these technologies can illuminate microbiome dynamics and aid the engineering of microbiome-based solutions to disease prevention in an unprecedented manner. This review examines molecular studies of bacterial diversity, function, and host immunitymodulation at early stages of fish development, where microbial infections cause important economic losses. We uncover host colonization and virulence factors within a synthetic assemblage of fish pathogens using high-end comparative genomics and address the use of probiotics and paraprobiotics as applicable disease-prevention strategies in fish larval and juvenile rearing. We finally propose guidelines for future microbiome research of presumed relevance to fish larviculture.
Collapse
Affiliation(s)
- Nuno Borges
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , ,
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , ,
| | - Gracinda M M Sanches-Fernandes
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , ,
| | - António Louvado
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; ,
| | - Newton C M Gomes
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; ,
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , , .,Centre of Marine Sciences, Algarve University, 8005-139 Faro, Portugal.,Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
25
|
Rea V, Van Raay TJ. Using Zebrafish to Model Autism Spectrum Disorder: A Comparison of ASD Risk Genes Between Zebrafish and Their Mammalian Counterparts. Front Mol Neurosci 2020; 13:575575. [PMID: 33262688 PMCID: PMC7686559 DOI: 10.3389/fnmol.2020.575575] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a highly variable and complex set of neurological disorders that alter neurodevelopment and cognitive function, which usually presents with social and learning impairments accompanied with other comorbid symptoms like hypersensitivity or hyposensitivity, or repetitive behaviors. Autism can be caused by genetic and/or environmental factors and unraveling the etiology of ASD has proven challenging, especially given that different genetic mutations can cause both similar and different phenotypes that all fall within the autism spectrum. Furthermore, the list of ASD risk genes is ever increasing making it difficult to synthesize a common theme. The use of rodent models to enhance ASD research is invaluable and is beginning to unravel the underlying molecular mechanisms of this disease. Recently, zebrafish have been recognized as a useful model of neurodevelopmental disorders with regards to genetics, pharmacology and behavior and one of the main foundations supporting autism research (SFARI) recently identified 12 ASD risk genes with validated zebrafish mutant models. Here, we describe what is known about those 12 ASD risk genes in human, mice and zebrafish to better facilitate this research. We also describe several non-genetic models including pharmacological and gnotobiotic models that are used in zebrafish to study ASD.
Collapse
Affiliation(s)
| | - Terence J. Van Raay
- Dept of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
26
|
Meng X, Zhang G, Cao H, Yu D, Fang X, de Vos WM, Wu H. Gut dysbacteriosis and intestinal disease: mechanism and treatment. J Appl Microbiol 2020; 129:787-805. [PMID: 32277534 PMCID: PMC11027427 DOI: 10.1111/jam.14661] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/14/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
The gut microbiome functions like an endocrine organ, generating bioactive metabolites, enzymes or small molecules that can impact host physiology. Gut dysbacteriosis is associated with many intestinal diseases including (but not limited to) inflammatory bowel disease, primary sclerosing cholangitis-IBD, irritable bowel syndrome, chronic constipation, osmotic diarrhoea and colorectal cancer. The potential pathogenic mechanism of gut dysbacteriosis associated with intestinal diseases includes the alteration of composition of gut microbiota as well as the gut microbiota-derived signalling molecules. The many correlations between the latter and the susceptibility for intestinal diseases has placed a spotlight on the gut microbiome as a potential novel target for therapeutics. Currently, faecal microbial transplantation, dietary interventions, use of probiotics, prebiotics and drugs are the major therapeutic tools utilized to impact dysbacteriosis and associated intestinal diseases. In this review, we systematically summarized the role of intestinal microbiome in the occurrence and development of intestinal diseases. The potential mechanism of the complex interplay between gut dysbacteriosis and intestinal diseases, and the treatment methods are also highlighted.
Collapse
Affiliation(s)
- X Meng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun, PR China
| | - G Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun, PR China
| | - H Cao
- InnovHope Inc, Framingham, MA, USA
| | - D Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun, PR China
| | - X Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun, PR China
| | - W M de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - H Wu
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Maselli KM, Gee K, Isani M, Fode A, Schall KA, Grikscheit TC. Broad-spectrum antibiotics alter the microbiome, increase intestinal fxr, and decrease hepatic steatosis in zebrafish short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2020; 319:G212-G226. [PMID: 32597709 DOI: 10.1152/ajpgi.00119.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Short bowel syndrome (SBS) is associated with changes in the intestinal microbiome and marked local and systemic inflammation. There is also a late complication of SBS, intestinal failure associated liver disease (IFALD) in which hepatic steatosis progresses to cirrhosis. Most patients with SBS arrive at massive intestinal resection after a contaminating intraabdominal catastrophe and have a history of exposure to broad-spectrum antibiotics. We therefore investigated whether the administration of broad-spectrum antibiotics in conjunction with SBS in zebrafish (ZF) would replicate these systemic effects observed in humans to identify potentially druggable targets to aid in the management of SBS and resulting IFALD. In zebrafish with SBS, broad-spectrum antibiotics altered the microbiome, decreased inflammation, and reduced the development of hepatic steatosis. After two weeks of broad-spectrum antibiotics, these fish exhibited decreased alpha diversity, with less variation in microbial community composition between SBS and sham fish. Additionally, administration of broad-spectrum antibiotics was associated with decreased expression of intestinal toll-like receptor 4 (tlr4), increased expression of the intestinal gene encoding the Farnesoid X receptor (fxr), decreased expression of downstream hepatic cyp7a1, and decreased development of hepatic steatosis. SBS in zebrafish reproducibly results in increased epithelial surface area as occurs in human patients who demonstrate intestinal adaptation, but antibiotic administration in zebrafish with SBS reduced these gains with increased cell death in the intervillus pocket that contains stem/progenitor cells. These alternate states in SBS zebrafish might direct the development of future human therapies.NEW & NOTEWORTHY In a zebrafish model that replicates a common clinical scenario, systemic effects of the administration of broad-spectrum antibiotics in a zebrafish model of SBS identified two alternate states that led to the establishment of fat accumulation in the liver or its absence. Broad-spectrum antibiotics given to zebrafish with SBS over 2 wk altered the intestinal microbiome, decreased intestinal and hepatic inflammation, and decreased hepatic steatosis.
Collapse
Affiliation(s)
- Kathryn M Maselli
- Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California
| | - Kristin Gee
- Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California
| | - Mubina Isani
- Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California
| | - Alexa Fode
- Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California
| | - Kathy A Schall
- Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California
| | - Tracy C Grikscheit
- Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California.,Department of Surgery, Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, California.,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
28
|
Zhou Z, Feng C, Liu X, Liu S. 3nLcn2, a teleost lipocalin 2 that possesses antimicrobial activity and inhibits bacterial infection in triploid crucian carp. FISH & SHELLFISH IMMUNOLOGY 2020; 102:47-55. [PMID: 32283247 DOI: 10.1016/j.fsi.2020.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/25/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Lipocalin 2 (Lcn2) has been identified in mammals, however, the in vivo function of fish Lcn2 is essentially unknown. Triploid crucian carp (3n = 150) of red crucian carp (female, 2n = 100) and allotetraploid (male, 4n = 200) shows better resistance to pathogenic infections. To elucidate the antimicrobial mechanism of triploid crucian carp, we examined the function of a novel Lcn2 from triploid crucian carp (3nLcn2). 3nLcn2 is 183 residues in length and contains a conserved lipocalin domain. Quantitative real time reverse transcription PCR (qRT-PCR) analysis showed that 3nLcn2 expression occurred in multiple tissues and was upregulated by bacterial infection in a time-dependent manner. We found that purified recombinant 3nLcn2 (r3nLcn2) exerted bactericidal activity to Aeromonas hydrophila and Escherichia coli. qRT-PCR detected increased expression of pro-inflammatory cytokines and tight junctions in fish with 3nLcn2 overexpression. Fish administered with 3nLcn2 exhibited enhanced intestinal barrier and resistance against bacterial infection. These results provide the first evidence that 3nLcn2 is a functional lipocalin with antimicrobial activity and plays a positive role in the immune defense during bacterial infection.
Collapse
Affiliation(s)
- Zejun Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Chen Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaofeng Liu
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
29
|
Stagaman K, Sharpton TJ, Guillemin K. Zebrafish microbiome studies make waves. Lab Anim (NY) 2020; 49:201-207. [PMID: 32541907 DOI: 10.1038/s41684-020-0573-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
Abstract
Zebrafish have a 50-year history as a model organism for studying vertebrate developmental biology and more recently have emerged as a powerful model system for studying vertebrate microbiome assembly, dynamics and function. In this Review, we discuss the strengths of the zebrafish model for both observational and manipulative microbiome studies, and we highlight some of the important insights gleaned from zebrafish gut microbiome research.
Collapse
Affiliation(s)
- Keaton Stagaman
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, USA.,Department of Statistics, Oregon State University, Corvallis, OR, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA. .,Humans and the Microbiome Program, CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Ya J, Li X, Wang L, Kou H, Wang H, Zhao H. The effects of chronic cadmium exposure on the gut of Bufo gargarizans larvae at metamorphic climax: Histopathological impairments, microbiota changes and intestinal remodeling disruption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110523. [PMID: 32222598 DOI: 10.1016/j.ecoenv.2020.110523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is carcinogenic to human and it also has adverse effects on aquatic life such as amphibian larvae. However, its influences on amphibian gut morphology and development as well as intestinal microbiota are still hardly understood. In this study, we examined the effects of chronic cadmium exposure on the gut of tadpoles at Gosner stage 42 of metamorphic climax by using Bufo gargarizans as a model species. Tadpoles were exposed to cadmium concentrations at 0, 5, 100 and 200 μg L-1 from Gosner stage 26-42. The results showed that high cadmium (100 and 200 μg L-1) exposure caused significant decrease of body length and weight but significant increase of intestinal length and weight. Moreover, severe histopathological damages were induced by high Cd exposure. In addition, microbial communities in the gut of tadpoles in high cadmium exposure groups were remarkably different from those in control group. Unexpectedly, species diversity and richness were higher in the intestinal microbiota of 200 μg L-1 cadmium exposure group. Furthermore, the abundance of prevalent phyla, families and genera of intestinal microbiota were changed by cadmium exposure. Meanwhile, cadmium exposure perturbed gut renewal functions and the relative mRNA expression of genes involved in canonical and non-canonical Wnt signaling pathway was seriously affected by high cadmium exposure. We concluded that cadmium could be harmful to tadpole health by inducing intestinal histopathological damages, gut remodeling inhibition and intestinal microbiota alterations.
Collapse
Affiliation(s)
- Jing Ya
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Ling Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Honghong Kou
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
31
|
Swimming motility of a gut bacterial symbiont promotes resistance to intestinal expulsion and enhances inflammation. PLoS Biol 2020; 18:e3000661. [PMID: 32196484 PMCID: PMC7112236 DOI: 10.1371/journal.pbio.3000661] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/01/2020] [Accepted: 02/24/2020] [Indexed: 01/07/2023] Open
Abstract
Some of the densest microbial ecosystems in nature thrive within the intestines of humans and other animals. To protect mucosal tissues and maintain immune tolerance, animal hosts actively sequester bacteria within the intestinal lumen. In response, numerous bacterial pathogens and pathobionts have evolved strategies to subvert spatial restrictions, thereby undermining immune homeostasis. However, in many cases, it is unclear how escaping host spatial control benefits gut bacteria and how changes in intestinal biogeography are connected to inflammation. A better understanding of these processes could uncover new targets for treating microbiome-mediated inflammatory diseases. To this end, we investigated the spatial organization and dynamics of bacterial populations within the intestine using larval zebrafish and live imaging. We discovered that a proinflammatory Vibrio symbiont native to zebrafish governs its own spatial organization using swimming motility and chemotaxis. Surprisingly, we found that Vibrio’s motile behavior does not enhance its growth rate but rather promotes its persistence by enabling it to counter intestinal flow. In contrast, Vibrio mutants lacking motility traits surrender to host spatial control, becoming aggregated and entrapped within the lumen. Consequently, nonmotile and nonchemotactic mutants are susceptible to intestinal expulsion and experience large fluctuations in absolute abundance. Further, we found that motile Vibrio cells induce expression of the proinflammatory cytokine tumor necrosis factor alpha (TNFα) in gut-associated macrophages and the liver. Using inducible genetic switches, we demonstrate that swimming motility can be manipulated in situ to modulate the spatial organization, persistence, and inflammatory activity of gut bacterial populations. Together, our findings suggest that host spatial control over resident microbiota plays a broader role in regulating the abundance and persistence of gut bacteria than simply protecting mucosal tissues. Moreover, we show that intestinal flow and bacterial motility are potential targets for therapeutically managing bacterial spatial organization and inflammatory activity within the gut. The use of live imaging and bacteria engineered to carry inducible genetic switches reveals how a gut symbiont uses swimming motility to escape the host's spatial control and persist within the physically dynamic confines of the intestine.
Collapse
|
32
|
Patterns of partnership: surveillance and mimicry in host-microbiota mutualisms. Curr Opin Microbiol 2020; 54:87-94. [PMID: 32062152 DOI: 10.1016/j.mib.2020.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
The repertoire of microbial cues monitored by animal and plant tissues encompasses not just molecules but also microbial activities. These include typical pathogen strategies of injuring membranes, degrading cellular material, and scavenging resources. These activities, however, are not exclusive to pathogens. Instead, they characterize the competitive strategies of microbes living in multispecies communities, like those typically found colonizing host tissues. Similar activities are also deployed by host tissues to keep microbes in check. We propose that host surveillance and mimicry of Microbial-Associated Competitive Activities (MACAs), derived from an evolutionary history of living in mixed microbial communities, has shaped contemporary animal and plant tissue programs of defense, repair, metabolism, and development.
Collapse
|
33
|
López Nadal A, Ikeda-Ohtsubo W, Sipkema D, Peggs D, McGurk C, Forlenza M, Wiegertjes GF, Brugman S. Feed, Microbiota, and Gut Immunity: Using the Zebrafish Model to Understand Fish Health. Front Immunol 2020; 11:114. [PMID: 32117265 PMCID: PMC7014991 DOI: 10.3389/fimmu.2020.00114] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Aquafeed companies aim to provide solutions to the various challenges related to nutrition and health in aquaculture. Solutions to promote feed efficiency and growth, as well as improving the fish health or protect the fish gut from inflammation may include dietary additives such as prebiotics and probiotics. The general assumption is that feed additives can alter the fish microbiota which, in turn, interacts with the host immune system. However, the exact mechanisms by which feed influences host-microbe-immune interactions in fish still remain largely unexplored. Zebrafish rapidly have become a well-recognized animal model to study host-microbe-immune interactions because of the diverse set of research tools available for these small cyprinids. Genome editing technologies can create specific gene-deficient zebrafish that may contribute to our understanding of immune functions. Zebrafish larvae are optically transparent, which allows for in vivo imaging of specific (immune) cell populations in whole transgenic organisms. Germ-free individuals can be reared to study host-microbe interactions. Altogether, these unique zebrafish features may help shed light on the mechanisms by which feed influences host-microbe-immune interactions and ultimately fish health. In this review, we first describe the anatomy and function of the zebrafish gut: the main surface where feed influences host-microbe-immune interactions. Then, we further describe what is currently known about the molecular pathways that underlie this interaction in the zebrafish gut. Finally, we summarize and critically review most of the recent research on prebiotics and probiotics in relation to alterations of zebrafish microbiota and immune responses. We discuss the advantages and disadvantages of the zebrafish as an animal model for other fish species to study feed effects on host-microbe-immune interactions.
Collapse
Affiliation(s)
- Adrià López Nadal
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands.,Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, Netherlands
| | - Wakako Ikeda-Ohtsubo
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Detmer Sipkema
- Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - David Peggs
- Skretting Aquaculture Research Centre, Stavanger, Norway
| | - Charles McGurk
- Skretting Aquaculture Research Centre, Stavanger, Norway
| | - Maria Forlenza
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Geert F Wiegertjes
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, Netherlands
| | - Sylvia Brugman
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
34
|
Bosch TCG, Guillemin K, McFall-Ngai M. Evolutionary "Experiments" in Symbiosis: The Study of Model Animals Provides Insights into the Mechanisms Underlying the Diversity of Host-Microbe Interactions. Bioessays 2019; 41:e1800256. [PMID: 31099411 PMCID: PMC6756983 DOI: 10.1002/bies.201800256] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/11/2019] [Indexed: 12/13/2022]
Abstract
Current work in experimental biology revolves around a handful of animal species. Studying only a few organisms limits science to the answers that those organisms can provide. Nature has given us an overwhelming diversity of animals to study, and recent technological advances have greatly accelerated the ability to generate genetic and genomic tools to develop model organisms for research on host-microbe interactions. With the help of such models the authors therefore hope to construct a more complete picture of the mechanisms that underlie crucial interactions in a given metaorganism (entity consisting of a eukaryotic host with all its associated microbial partners). As reviewed here, new knowledge of the diversity of host-microbe interactions found across the animal kingdom will provide new insights into how animals develop, evolve, and succumb to the disease.
Collapse
Affiliation(s)
- Thomas C G Bosch
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
- Zoological Institute, University of Kiel, 24118, Kiel, Germany
| | - Karen Guillemin
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Margaret McFall-Ngai
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
35
|
Murdoch CC, Rawls JF. Commensal Microbiota Regulate Vertebrate Innate Immunity-Insights From the Zebrafish. Front Immunol 2019; 10:2100. [PMID: 31555292 PMCID: PMC6742977 DOI: 10.3389/fimmu.2019.02100] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Microbial communities populate the mucosal surfaces of all animals. Metazoans have co-evolved with these microorganisms, forming symbioses that affect the molecular and cellular underpinnings of animal physiology. These microorganisms, collectively referred to as the microbiota, are found on many distinct body sites (including the skin, nasal cavity, and urogenital tract), however the most densely colonized host tissue is the intestinal tract. Although spatially confined within the intestinal lumen, the microbiota and associated products shape the development and function of the host immune system. Studies comparing gnotobiotic animals devoid of any microbes (germ free) with counterparts colonized with selected microbial communities have demonstrated that commensal microorganisms are required for the proper development and function of the immune system at homeostasis and following infectious challenge or injury. Animal model systems have been essential for defining microbiota-dependent shifts in innate immune cell function and intestinal physiology during infection and disease. In particular, the zebrafish has emerged as a powerful vertebrate model organism with unparalleled capacity for in vivo imaging, a full complement of genetic approaches, and facile methods to experimentally manipulate microbial communities. Here we review key insights afforded by the zebrafish into the impact of microbiota on innate immunity, including evidence that the perception of and response to the microbiota is evolutionarily conserved. We also highlight opportunities to strengthen the zebrafish model system, and to gain new insights into microbiota-innate immune interactions that would be difficult to achieve in mammalian models.
Collapse
Affiliation(s)
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
36
|
Moran NA, Ochman H, Hammer TJ. Evolutionary and ecological consequences of gut microbial communities. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019; 50:451-475. [PMID: 32733173 DOI: 10.1146/annurev-ecolsys-110617-062453] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animals are distinguished by having guts: organs that must extract nutrients from food while barring invasion by pathogens. Most guts are colonized by non-pathogenic microorganisms, but the functions of these microbes, or even the reasons why they occur in the gut, vary widely among animals. Sometimes these microorganisms have co-diversified with hosts; sometimes they live mostly elsewhere in the environment. Either way, gut microorganisms often benefit hosts. Benefits may reflect evolutionary "addiction" whereby hosts incorporate gut microorganisms into normal developmental processes. But benefits often include novel ecological capabilities; for example, many metazoan clades exist by virtue of gut communities enabling new dietary niches. Animals vary immensely in their dependence on gut microorganisms, from lacking them entirely, to using them as food, to obligate dependence for development, nutrition, or protection. Many consequences of gut microorganisms for hosts can be ascribed to microbial community processes and the host's ability to shape these processes.
Collapse
Affiliation(s)
- Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703 USA
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703 USA
| | - Tobin J Hammer
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703 USA
| |
Collapse
|
37
|
|
38
|
Abstract
Low-cost, high-throughput nucleic acid sequencing ushered the field of microbial ecology into a new era in which the microbial composition of nearly every conceivable environment on the planet is under examination. However, static "screenshots" derived from sequence-only approaches belie the underlying complexity of the microbe-microbe and microbe-host interactions occurring within these systems. Reductionist experimental models are essential to identify the microbes involved in interactions and to characterize the molecular mechanisms that manifest as complex host and environmental phenomena. Herein, we focus on three models (Bacillus-Streptomyces, Aliivibrio fischeri-Hawaiian bobtail squid, and gnotobiotic mice) at various levels of taxonomic complexity and experimental control used to gain molecular insight into microbe-mediated interactions. We argue that when studying microbial communities, it is crucial to consider the scope of questions that experimental systems are suited to address, especially for researchers beginning new projects. Therefore, we highlight practical applications, limitations, and tradeoffs inherent to each model.
Collapse
Affiliation(s)
- Marc G Chevrette
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jennifer R Bratburd
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Reed M Stubbendieck
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
39
|
Amato KR, Maurice CF, Guillemin K, Giles-Vernick T. Multidisciplinarity in Microbiome Research: A Challenge and Opportunity to Rethink Causation, Variability, and Scale. Bioessays 2019; 41:e1900007. [PMID: 31099415 DOI: 10.1002/bies.201900007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/16/2019] [Indexed: 02/06/2023]
Abstract
This essay, written by a biologist, a microbial ecologist, a biological anthropologist, and an anthropologist-historian, examines tensions and translations in microbiome research on animals in the laboratory and field. The authors trace how research questions and findings in the laboratory are extrapolated into the field and vice versa, and the shifting evidentiary standards that these research settings require. Showing how complexities of microbiomes challenge traditional standards of causation, the authors contend that these challenges require new approaches to inferences used in ecology, anthropology, and history. As social scientists incorporate investigations of microbial life into their human studies, microbiome researchers venture into field settings to develop mechanistic understandings about the functions of complex microbial communities. These efforts generate new possibilities for cross-fertilizations and inference frameworks to interpret microbiome findings. Microbiome research should integrate multiple scales, levels of variability, and other disciplinary approaches to tackle questions spanning conditions from the laboratory to the field.
Collapse
Affiliation(s)
- Katherine R Amato
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, 661 University Avenue, Suite 505, Toronto, ON, M5G 1Z8, Canada.,Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Corinne F Maurice
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, 661 University Avenue, Suite 505, Toronto, ON, M5G 1Z8, Canada.,Microbiology and Immunology Department, McGill University, Room 332, Bellini Building, Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Karen Guillemin
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, 661 University Avenue, Suite 505, Toronto, ON, M5G 1Z8, Canada.,Institute of Molecular Biology, University of Oregon, 1318 Franklin Blvd, Eugene, OR, 97403, USA
| | - Tamara Giles-Vernick
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, 661 University Avenue, Suite 505, Toronto, ON, M5G 1Z8, Canada.,Emerging Diseases Epidemiology Unit, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France
| |
Collapse
|
40
|
Wiles TJ, Guillemin K. The Other Side of the Coin: What Beneficial Microbes Can Teach Us about Pathogenic Potential. J Mol Biol 2019; 431:2946-2956. [PMID: 31078557 DOI: 10.1016/j.jmb.2019.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/19/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
Koch's postulates and molecular Koch's postulates have made an indelible mark on how we study and classify microbes, particularly pathogens. However, rigid adherence to these historic postulates constrains our view of not only microbial pathogenesis but also host-microbe relationships in general. Collectively, the postulates imply that a "microbial pathogen" is a clearly identifiable organism with the exclusive capacity to elicit disease through an arsenal of pathogen-specific "virulence factors." This narrow definition has been repeatedly contradicted. Advances in DNA sequencing technologies and new experimental systems have revealed that the outcomes of host-microbe interactions are highly contextual and dynamic, especially those involving resident microbiota and variable aspects of host biology. Clarifying what differentiates pathogenic from non-pathogenic microbes, including their paradoxical ability to masquerade as one another, is critical to developing targeted diagnostics and treatments for infectious disease. Such endeavors will also inform the design of therapeutic strategies based on microbiome engineering by providing insights into how manipulating entire host-microbe systems may directly or indirectly alter the pathogenic potential of microbial communities. With these goals in mind, we discuss the need to develop experimental models that better capture the contexts that determine the nature of host-microbe relationships. To demonstrate the potential of one such model-the zebrafish and its resident microbiota-we describe recent work that has revealed the thin line between pathogenic and mutualistic relationships, how the intestine physically shapes bacterial populations and inflammation, and the ability of microbial transmission to override the host's innate immune system.
Collapse
Affiliation(s)
- Travis J Wiles
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Humans and the Microbiome Program, CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
41
|
Abstract
Aeromonas bacteria living in the gut of zebrafish produce a specific molecule to pacify the immune system of their host.
Collapse
Affiliation(s)
- Renata C Matos
- Institut de Génomique Fonctionnelle de LyonUniversité Claude Bernard Lyon-1LyonFrance
- Institut de Génomique Fonctionnelle de LyonEcole Normale Supérieure de LyonLyonFrance
| | - François Leulier
- Institut de Génomique Fonctionnelle de LyonUniversité Claude Bernard Lyon-1LyonFrance
- Institut de Génomique Fonctionnelle de LyonEcole Normale Supérieure de LyonLyonFrance
| |
Collapse
|