1
|
Gupta H, Lee JR, Hoffman KB, Min KW, Yoon JH. RNA Decay Assay: 5-Ethynyl-Uridine Labeling and Chasing. Methods Mol Biol 2025; 2863:139-149. [PMID: 39535709 DOI: 10.1007/978-1-0716-4176-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Eukaryotic RNA synthesis and degradation are intricately regulated, impacting on gene expression dynamics. RNA stability varies in individual transcripts and is modulated by trans-acting factors such as microRNAs, long noncoding RNAs, and RNA-binding proteins, which determine protein output and subsequent cellular processes. To measure RNA decay rate, accurate and reliable methodologies are essential in the field of RNA biology. Transcription inhibition and metabolic labeling enable comprehensive investigations on RNA decay, offering critical insights into dynamic regulation of RNA decay. Transcription shut-off has been employed widely by using various approaches, such as treatment with chemical inhibitors or generation of temperature-sensitive mutants of RNA polymerases. However, it has limitations, providing a static view and lacking real-time dynamics as well as precise measurement of decay rate. Metabolic labeling, a method of incorporating modified nucleotides into RNA transcripts, complements shut-off approaches, allowing selective monitoring of newly synthesized RNA and tracing decay intermediates. The purpose of the protocol described in this chapter is to assess the kinetics and statics of newly synthesized RNA and its decay by 5-ethynyl uridine labeling.
Collapse
Affiliation(s)
- Haripriya Gupta
- Department of Oncology Science, University of Oklahoma, Oklahoma City, OK, USA
| | - Jayden R Lee
- Department of Oncology Science, University of Oklahoma, Oklahoma City, OK, USA
| | - Kane B Hoffman
- Department of Oncology Science, University of Oklahoma, Oklahoma City, OK, USA
| | - Kyung-Won Min
- Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea.
| | - Je-Hyun Yoon
- Department of Oncology Science, University of Oklahoma, Oklahoma City, OK, USA.
- Department of Pathology, University of Oklahoma, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Kelbert M, Jordán-Pla A, de Miguel-Jiménez L, García-Martínez J, Selitrennik M, Guterman A, Henig N, Granneman S, Pérez-Ortín JE, Chávez S, Choder M. The zinc-finger transcription factor Sfp1 imprints specific classes of mRNAs and links their synthesis to cytoplasmic decay. eLife 2024; 12:RP90766. [PMID: 39356734 PMCID: PMC11446548 DOI: 10.7554/elife.90766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
To function effectively as an integrated system, the transcriptional and post-transcriptional machineries must communicate through mechanisms that are still poorly understood. Here, we focus on the zinc-finger Sfp1, known to regulate transcription of proliferation-related genes. We show that Sfp1 can regulate transcription either by binding to promoters, like most known transcription activators, or by binding to the transcribed regions (gene bodies), probably via RNA polymerase II (Pol II). We further studied the first mode of Sfp1 activity and found that, following promoter binding, Sfp1 binds to gene bodies and affects Pol II configuration, manifested by dissociation or conformational change of its Rpb4 subunit and increased backtracking. Surprisingly, Sfp1 binds to a subset of mRNAs co-transcriptionally and stabilizes them. The interaction between Sfp1 and its client mRNAs is controlled by their respective promoters and coincides with Sfp1's dissociation from chromatin. Intriguingly, Sfp1 dissociation from the chromatin correlates with the extent of the backtracked Pol II. We propose that, following promoter recruitment, Sfp1 accompanies Pol II and regulates backtracking. The backtracked Pol II is more compatible with Sfp1's relocation to the nascent transcripts, whereupon Sfp1 accompanies these mRNAs to the cytoplasm and regulates their stability. Thus, Sfp1's co-transcriptional binding imprints the mRNA fate, serving as a paradigm for the cross-talk between the synthesis and decay of specific mRNAs, and a paradigm for the dual-role of some zinc-finger proteins. The interplay between Sfp1's two modes of transcription regulation remains to be examined.
Collapse
Affiliation(s)
- Moran Kelbert
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Antonio Jordán-Pla
- Instituto Biotecmed, Facultad de Biológicas, Universitat de ValènciaBurjassotSpain
| | - Lola de Miguel-Jiménez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario Virgen del Rocío, and Departamento de Genética, Facultad de Biología, Universidad de SevillaSevilleSpain
| | - José García-Martínez
- Instituto Biotecmed, Facultad de Biológicas, Universitat de ValènciaBurjassotSpain
| | - Michael Selitrennik
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Adi Guterman
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Noa Henig
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Sander Granneman
- Centre for Engineering Biology, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - José E Pérez-Ortín
- Instituto Biotecmed, Facultad de Biológicas, Universitat de ValènciaBurjassotSpain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario Virgen del Rocío, and Departamento de Genética, Facultad de Biología, Universidad de SevillaSevilleSpain
| | - Mordechai Choder
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
3
|
Cao Q, Fang H, Tian H. mRNA vaccines contribute to innate and adaptive immunity to enhance immune response in vivo. Biomaterials 2024; 310:122628. [PMID: 38820767 DOI: 10.1016/j.biomaterials.2024.122628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Messenger RNA (mRNA) therapeutics have been widely employed as strategies for the treatment and prevention of diseases. Amid the global outbreak of COVID-19, mRNA vaccines have witnessed rapid development. Generally, in the case of mRNA vaccines, the initiation of the innate immune system serves as a prerequisite for triggering subsequent adaptive immune responses. Critical cells, cytokines, and chemokines within the innate immune system play crucial and beneficial roles in coordinating tailored immune reactions towards mRNA vaccines. Furthermore, immunostimulators and delivery systems play a significant role in augmenting the immune potency of mRNA vaccines. In this comprehensive review, we systematically delineate the latest advancements in mRNA vaccine research, present an in-depth exploration of strategies aimed at amplifying the immune effectiveness of mRNA vaccines, and offer some perspectives and recommendations regarding the future advancements in mRNA vaccine development.
Collapse
Affiliation(s)
- Qiannan Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China; Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| |
Collapse
|
4
|
Yao J, Xu H, Ferrick-Kiddie EA, Nottingham RM, Wu DC, Ares M, Lambowitz AM. Human cells contain myriad excised linear intron RNAs with links to gene regulation and potential utility as biomarkers. PLoS Genet 2024; 20:e1011416. [PMID: 39325823 PMCID: PMC11460701 DOI: 10.1371/journal.pgen.1011416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/08/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
A previous study using Thermostable Group II Intron Reverse Transcriptase sequencing (TGIRT-seq) found human plasma contains short (≤300 nt) structured full-length excised linear intron (FLEXI) RNAs with potential to serve as blood-based biomarkers. Here, TGIRT-seq identified >9,000 different FLEXI RNAs in human cell lines, including relatively abundant FLEXIs with cell-type-specific expression patterns. Analysis of public CLIP-seq datasets identified 126 RNA-binding proteins (RBPs) that have binding sites within the region corresponding to the FLEXI or overlapping FLEXI splice sites in pre-mRNAs, including 53 RBPs with binding sites for ≥30 different FLEXIs. These included splicing factors, transcription factors, a chromatin remodeling protein, cellular growth regulators, and proteins with cytoplasmic functions. Analysis of ENCODE datasets identified subsets of these RBPs whose knockdown impacted FLEXI host gene mRNA levels or proximate alternative splicing, indicating functional interactions. Hierarchical clustering identified six subsets of RBPs whose FLEXI binding sites were co-enriched in six subsets of functionally related host genes: AGO1-4 and DICER, including but not limited to agotrons or mirtron pre-miRNAs; DKC1, NOLC1, SMNDC1, and AATF (Apoptosis Antagonizing Transcription Factor), including but not limited to snoRNA-encoding FLEXIs; two subsets of alternative splicing factors; and two subsets that included RBPs with cytoplasmic functions (e.g., LARP4, PABPC4, METAP2, and ZNF622) together with regulatory proteins. Cell fractionation experiments showed cytoplasmic enrichment of FLEXI RNAs with binding sites for RBPs with cytoplasmic functions. The subsets of host genes encoding FLEXIs with binding sites for different subsets of RBPs were co-enriched with non-FLEXI other short and long introns with binding sites for the same RBPs, suggesting overarching mechanisms for coordinately regulating expression of functionally related genes. Our findings identify FLEXIs as a previously unrecognized large class of cellular RNAs and provide a comprehensive roadmap for further analyzing their biological functions and the relationship of their RBPs to cellular regulatory mechanisms.
Collapse
Affiliation(s)
- Jun Yao
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin, Texas, United States of America
| | - Hengyi Xu
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin, Texas, United States of America
| | - Elizabeth A. Ferrick-Kiddie
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin, Texas, United States of America
| | - Ryan M. Nottingham
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin, Texas, United States of America
| | - Douglas C. Wu
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin, Texas, United States of America
| | - Manuel Ares
- Department of Molecular, Cell, and Developmental Biology University of California, Santa Cruz, California, United States of America
| | - Alan M. Lambowitz
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin, Texas, United States of America
| |
Collapse
|
5
|
Bakulin A, Teyssier NB, Kampmann M, Khoroshkin M, Goodarzi H. pyPAGE: A framework for Addressing biases in gene-set enrichment analysis-A case study on Alzheimer's disease. PLoS Comput Biol 2024; 20:e1012346. [PMID: 39236079 PMCID: PMC11421795 DOI: 10.1371/journal.pcbi.1012346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Inferring the driving regulatory programs from comparative analysis of gene expression data is a cornerstone of systems biology. Many computational frameworks were developed to address this problem, including our iPAGE (information-theoretic Pathway Analysis of Gene Expression) toolset that uses information theory to detect non-random patterns of expression associated with given pathways or regulons. Our recent observations, however, indicate that existing approaches are susceptible to the technical biases that are inherent to most real world annotations. To address this, we have extended our information-theoretic framework to account for specific biases and artifacts in biological networks using the concept of conditional information. To showcase pyPAGE, we performed a comprehensive analysis of regulatory perturbations that underlie the molecular etiology of Alzheimer's disease (AD). pyPAGE successfully recapitulated several known AD-associated gene expression programs. We also discovered several additional regulons whose differential activity is significantly associated with AD. We further explored how these regulators relate to pathological processes in AD through cell-type specific analysis of single cell and spatial gene expression datasets. Our findings showcase the utility of pyPAGE as a precise and reliable biomarker discovery in complex diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Artemy Bakulin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Noam B. Teyssier
- Institute for Neurodegenerative Diseases, University of California San Francisco, California, United States of America
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Matvei Khoroshkin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Department of Urology, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Department of Urology, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, United States of America
- Arc Institute, Palo Alto, California, United States of America
| |
Collapse
|
6
|
Wang Q, Lin J. Homeostasis of mRNA concentrations through coupling transcription, export, and degradation. iScience 2024; 27:110531. [PMID: 39175768 PMCID: PMC11338957 DOI: 10.1016/j.isci.2024.110531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 04/16/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Many experiments showed that eukaryotic cells maintain a constant mRNA concentration upon various perturbations by actively regulating mRNA production and degradation rates, known as mRNA buffering. However, the underlying mechanism is still unknown. In this work, we unveil a mechanistic model of mRNA buffering: the releasing-shuttling (RS) model. The model incorporates two crucial proteins, X and Y, which play several roles, including transcription, decay, and export factors, in the different stages of mRNA metabolism. The RS model predicts the constant mRNA concentration under genome-wide genetic perturbations and cell volume changes, the slowed-down mRNA degradation after Pol II depletion, and the temporal transcription dynamics after exonuclease depletion, in agreement with multiple experiments. Finally, we present a list of X and Y candidates and propose an experimental method to identify X. Our work uncovers potentially universal pathways coupling transcription, export, and degradation that help cells maintain mRNA homeostasis.
Collapse
Affiliation(s)
- Qirun Wang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jie Lin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Yi S, Singh SS, Rozen-Gagnon K, Luna JM. Mapping RNA-protein interactions with subcellular resolution using colocalization CLIP. RNA (NEW YORK, N.Y.) 2024; 30:920-937. [PMID: 38658162 PMCID: PMC11182006 DOI: 10.1261/rna.079890.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
RNA-binding proteins (RBPs) are essential for RNA metabolism and profoundly impact health and disease. The subcellular organization of RBP interaction networks with target RNAs remains largely unexplored. Here, we develop colocalization CLIP (coCLIP), a method that combines cross-linking and immunoprecipitation (CLIP) with proximity labeling, to explore in-depth the subcellular RNA interactions of the RBP human antigen R (HuR). Using this method, we uncover HuR's dynamic and location-specific interactions with RNA, revealing alterations in sequence preferences and interactions in the nucleus, cytosol, or stress granule (SG) compartments. We uncover HuR's unique binding preferences within SGs during arsenite stress, illuminating intricate interactions that conventional methodologies cannot capture. Overall, coCLIP provides a powerful method for revealing RBP-RNA interactions based on localization and lays the foundation for an advanced understanding of RBP models that incorporate subcellular location as a critical determinant of their functions.
Collapse
Affiliation(s)
- Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Shashi S Singh
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Kathryn Rozen-Gagnon
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Joseph M Luna
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
8
|
Shin CH, Rossi M, Anerillas C, Martindale JL, Yang X, Ji E, Pal A, Munk R, Yang JH, Tsitsipatis D, Mazan-Mamczarz K, Abdelmohsen K, Gorospe M. Increased ANKRD1 Levels in Early Senescence Mediated by RBMS1-Elicited ANKRD1 mRNA Stabilization. Mol Cell Biol 2024; 44:194-208. [PMID: 38769646 PMCID: PMC11123458 DOI: 10.1080/10985549.2024.2350540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Cellular senescence is a dynamic biological process triggered by sublethal cell damage and driven by specific changes in gene expression programs. We recently identified ANKRD1 (ankyrin repeat domain 1) as a protein strongly elevated after triggering senescence in fibroblasts. Here, we set out to investigate the mechanisms driving the elevated production of ANKRD1 in the early stages of senescence. Our results indicated that the rise in ANKRD1 levels after triggering senescence using etoposide (Eto) was the result of moderate increases in transcription and translation, and robust mRNA stabilization. Antisense oligomer (ASO) pulldown followed by mass spectrometry revealed a specific interaction of the RNA-binding protein RBMS1 with ANKRD1 mRNA that was confirmed by ribonucleoprotein immunoprecipitation analysis. RBMS1 abundance decreased in the nucleus and increased in the cytoplasm during Eto-induced senescence; in agreement with the hypothesis that RBMS1 may participate in post-transcriptional stabilization of ANKRD1 mRNA, silencing RBMS1 reduced, while overexpressing RBMS1 enhanced ANKRD1 mRNA half-life after Eto treatment. A segment proximal to the ANKRD1 coding region was identified as binding RBMS1 and conferring RBMS1-dependent increased expression of a heterologous reporter. We propose that RBMS1 increases expression of ANKRD1 during the early stages of senescence by stabilizing ANKRD1 mRNA.
Collapse
Affiliation(s)
- Chang Hoon Shin
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Eunbyul Ji
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Apala Pal
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Shah AU, Hemida MG. The Potential Roles of Host Cell miRNAs in Fine-Tuning Bovine Coronavirus (BCoV) Molecular Pathogenesis, Tissue Tropism, and Immune Regulation. Microorganisms 2024; 12:897. [PMID: 38792727 PMCID: PMC11124416 DOI: 10.3390/microorganisms12050897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Bovine coronavirus (BCoV) infection causes significant economic loss to the dairy and beef industries worldwide. BCoV exhibits dual tropism, infecting the respiratory and enteric tracts of cattle. The enteric BCoV isolates could also induce respiratory manifestations under certain circumstances. However, the mechanism of this dual tropism of BCoV infection has not yet been studied well. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a dual role in virus infection, mediating virus or modulating host immune regulatory genes through complex virus-host cell interactions. However, their role in BCoV infection remains unclear. This study aims to identify bovine miRNAs crucial for regulating virus-host interaction, influencing tissue tropism, and explore their potential as biomarkers and therapeutic agents against BCoV. We downloaded 18 full-length BCoV genomes (10 enteric and eight respiratory) from GenBank. We applied several bioinformatic tools to study the host miRNAs targeting various regions in the viral genome. We used the criteria of differential targeting between the enteric/respiratory isolates to identify some critical miRNAs as biological markers for BCoV infection. Using various online bioinformatic tools, we also searched for host miRNA target genes involved in BCoV infection, immune evasion, and regulation. Our results show that four bovine miRNAs (miR-2375, miR-193a-3p, miR-12059, and miR-494) potentially target the BCoV spike protein at multiple sites. These miRNAs also regulate the host immune suppressor pathways, which negatively impacts BCoV replication. Furthermore, we found that bta-(miR-2338, miR-6535, miR-2392, and miR-12054) also target the BCoV genome at certain regions but are involved in regulating host immune signal transduction pathways, i.e., type I interferon (IFN) and retinoic acid-inducible gene I (RIG-I) pathways. Moreover, both miR-2338 and miR-2392 also target host transcriptional factors RORA, YY1, and HLF, which are potential diagnostic markers for BCoV infection. Therefore, miR-2338, miR-6535, miR-2392, and miR-12054 have the potential to fine-tune BCoV tropism and immune evasion and enhance viral pathogenesis. Our results indicate that host miRNAs play essential roles in the BCoV tissue tropism, pathogenesis, and immune regulation. Four bovine miRNAs (miR-2375, bta-miR-193a-3p, bta-miR-12059, and bta-miR-494) target BCoV-S glycoprotein and are potentially involved in several immune suppression pathways during the viral infection. These miRNA candidates could serve as good genetic markers for BCoV infection. However, further studies are urgently needed to validate these identified miRNAs and their target genes in the context of BCoV infection and dual tropism and as genetic markers.
Collapse
Affiliation(s)
| | - Maged Gomaa Hemida
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA;
| |
Collapse
|
10
|
Coleman JC, Tattersall L, Yianni V, Knight L, Yu H, Hallett SR, Johnson P, Caetano AJ, Cosstick C, Ridley AJ, Gartland A, Conte MR, Grigoriadis AE. The RNA binding proteins LARP4A and LARP4B promote sarcoma and carcinoma growth and metastasis. iScience 2024; 27:109288. [PMID: 38532886 PMCID: PMC10963253 DOI: 10.1016/j.isci.2024.109288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/01/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
RNA-binding proteins (RBPs) are emerging as important regulators of cancer pathogenesis. We reveal that the RBPs LARP4A and LARP4B are differentially overexpressed in osteosarcoma and osteosarcoma lung metastases, as well as in prostate cancer. Depletion of LARP4A and LARP4B reduced tumor growth and metastatic spread in xenografts, as well as inhibiting cell proliferation, motility, and migration. Transcriptomic profiling and high-content multiparametric analyses unveiled a central role for LARP4B, but not LARP4A, in regulating cell cycle progression in osteosarcoma and prostate cancer cells, potentially through modulating key cell cycle proteins such as Cyclins B1 and E2, Aurora B, and E2F1. This first systematic comparison between LARP4A and LARP4B assigns new pro-tumorigenic functions to LARP4A and LARP4B in bone and prostate cancer, highlighting their similarities while also indicating distinct functional differences. Uncovering clear biological roles for these paralogous proteins provides new avenues for identifying tissue-specific targets and potential druggable intervention.
Collapse
Affiliation(s)
- Jennifer C. Coleman
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, SE1 9RT UK
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, SE1 1UL UK
| | - Luke Tattersall
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, S10 2RX UK
| | - Val Yianni
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, SE1 9RT UK
| | - Laura Knight
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, SE1 9RT UK
| | - Hongqiang Yu
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, SE1 9RT UK
| | - Sadie R. Hallett
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, SE1 1UL UK
| | - Philip Johnson
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, SE1 9RT UK
| | - Ana J. Caetano
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, SE1 9RT UK
| | - Charlie Cosstick
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, SE1 9RT UK
| | - Anne J. Ridley
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD UK
| | - Alison Gartland
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, S10 2RX UK
| | - Maria R. Conte
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, SE1 1UL UK
| | | |
Collapse
|
11
|
Eke L, Tweedie A, Cutts S, Wise EL, Elliott G. Translational arrest and mRNA decay are independent activities of alphaherpesvirus virion host shutoff proteins. J Gen Virol 2024; 105:001976. [PMID: 38572740 PMCID: PMC11083458 DOI: 10.1099/jgv.0.001976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
The herpes simplex virus 1 (HSV1) virion host shutoff (vhs) protein is an endoribonuclease that regulates the translational environment of the infected cell, by inducing the degradation of host mRNA via cellular exonuclease activity. To further understand the relationship between translational shutoff and mRNA decay, we have used ectopic expression to compare HSV1 vhs (vhsH) to its homologues from four other alphaherpesviruses - varicella zoster virus (vhsV), bovine herpesvirus 1 (vhsB), equine herpesvirus 1 (vhsE) and Marek's disease virus (vhsM). Only vhsH, vhsB and vhsE induced degradation of a reporter luciferase mRNA, with poly(A)+ in situ hybridization indicating a global depletion of cytoplasmic poly(A)+ RNA and a concomitant increase in nuclear poly(A)+ RNA and the polyA tail binding protein PABPC1 in cells expressing these variants. By contrast, vhsV and vhsM failed to induce reporter mRNA decay and poly(A)+ depletion, but rather, induced cytoplasmic G3BP1 and poly(A)+ mRNA- containing granules and phosphorylation of the stress response proteins eIF2α and protein kinase R. Intriguingly, regardless of their apparent endoribonuclease activity, all vhs homologues induced an equivalent general blockade to translation as measured by single-cell puromycin incorporation. Taken together, these data suggest that the activities of translational arrest and mRNA decay induced by vhs are separable and we propose that they represent sequential steps of the vhs host interaction pathway.
Collapse
Affiliation(s)
- Lucy Eke
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| | - Alistair Tweedie
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| | - Sophie Cutts
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| | - Emma L. Wise
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| | - Gillian Elliott
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| |
Collapse
|
12
|
Bermudez Y, Hatfield D, Muller M. A Balancing Act: The Viral-Host Battle over RNA Binding Proteins. Viruses 2024; 16:474. [PMID: 38543839 PMCID: PMC10974049 DOI: 10.3390/v16030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
A defining feature of a productive viral infection is the co-opting of host cell resources for viral replication. Despite the host repertoire of molecular functions and biological counter measures, viruses still subvert host defenses to take control of cellular factors such as RNA binding proteins (RBPs). RBPs are involved in virtually all steps of mRNA life, forming ribonucleoprotein complexes (mRNPs) in a highly ordered and regulated process to control RNA fate and stability in the cell. As such, the hallmark of the viral takeover of a cell is the reshaping of RNA fate to modulate host gene expression and evade immune responses by altering RBP interactions. Here, we provide an extensive review of work in this area, particularly on the duality of the formation of RNP complexes that can be either pro- or antiviral. Overall, in this review, we highlight the various ways viruses co-opt RBPs to regulate RNA stability and modulate the outcome of infection by gathering novel insights gained from research studies in this field.
Collapse
Affiliation(s)
| | | | - Mandy Muller
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (Y.B.); (D.H.)
| |
Collapse
|
13
|
Sun H, Fu B, Qian X, Xu P, Qin W. Nuclear and cytoplasmic specific RNA binding proteome enrichment and its changes upon ferroptosis induction. Nat Commun 2024; 15:852. [PMID: 38286993 PMCID: PMC10825125 DOI: 10.1038/s41467-024-44987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
The key role of RNA-binding proteins (RBPs) in posttranscriptional regulation of gene expression is intimately tied to their subcellular localization. Here, we show a subcellular-specific RNA labeling method for efficient enrichment and deep profiling of nuclear and cytoplasmic RBPs. A total of 1221 nuclear RBPs and 1333 cytoplasmic RBPs were enriched and identified using nuclear/cytoplasm targeting enrichment probes, representing an increase of 54.4% and 85.7% compared with previous reports. The probes were further applied in the omics-level investigation of subcellular-specific RBP-RNA interactions upon ferroptosis induction. Interestingly, large-scale RBPs display enhanced interaction with RNAs in nucleus but reduced association with RNAs in cytoplasm during ferroptosis process. Furthermore, we discovered dozens of nucleoplasmic translocation candidate RBPs upon ferroptosis induction and validated representative ones by immunofluorescence imaging. The enrichment of Tricarboxylic acid cycle in the translocation candidate RBPs may provide insights for investigating their possible roles in ferroptosis induced metabolism dysregulation.
Collapse
Affiliation(s)
- Haofan Sun
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Bin Fu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiaohong Qian
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ping Xu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Weijie Qin
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
14
|
Baralle M, Romano M. Age-Related Alternative Splicing: Driver or Passenger in the Aging Process? Cells 2023; 12:2819. [PMID: 38132139 PMCID: PMC10742131 DOI: 10.3390/cells12242819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Alternative splicing changes are closely linked to aging, though it remains unclear if they are drivers or effects. As organisms age, splicing patterns change, varying gene isoform levels and functions. These changes may contribute to aging alterations rather than just reflect declining RNA quality control. Three main splicing types-intron retention, cassette exons, and cryptic exons-play key roles in age-related complexity. These events modify protein domains and increase nonsense-mediated decay, shifting protein isoform levels and functions. This may potentially drive aging or serve as a biomarker. Fluctuations in splicing factor expression also occur with aging. Somatic mutations in splicing genes can also promote aging and age-related disease. The interplay between splicing and aging has major implications for aging biology, though differentiating correlation and causation remains challenging. Declaring a splicing factor or event as a driver requires comprehensive evaluation of the associated molecular and physiological changes. A greater understanding of how RNA splicing machinery and downstream targets are impacted by aging is essential to conclusively establish the role of splicing in driving aging, representing a promising area with key implications for understanding aging, developing novel therapeutical options, and ultimately leading to an increase in the healthy human lifespan.
Collapse
Affiliation(s)
- Marco Baralle
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 Trieste, Italy
| |
Collapse
|
15
|
Hatfield D, Rodriguez W, Mehrmann T, Muller M. The antiviral protein Shiftless blocks p-body formation during KSHV infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567185. [PMID: 38014318 PMCID: PMC10680731 DOI: 10.1101/2023.11.16.567185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
P-bodies (PB) are non-membranous foci involved in determining mRNA fate by affecting translation and mRNA decay. In this study, we identify the anti-viral factor SHFL as a potent disassembly factor of PB. We show that PBs remain sparse in the presence of SHFL even in the context of oxidative stress, a major trigger for PB induction. Mutational approaches revealed that SHFL RNA binding activity is not required for its PB disassembly function. However, we have identified a new region of SHFL which bridges two distant domains as responsible for PB disassembly. Furthermore, we show that SHFL ability to disrupt PB formation is directly linked to its anti-viral activity during KSHV infection. While WT SHFL efficiently restricts KSHV lytic cycle, PB disruption defective mutants no longer lead to reactivation defects. SHFL-mediated PB disassembly also leads to increased expression of key anti-viral cytokines, further expanding SHFL dependent anti-viral state. Taken together, our observations suggest a role of SHFL in PB disassembly, which could have important anti-viral consequences during infection.
Collapse
|
16
|
Mamontova EM, Clément MJ, Sukhanova MV, Joshi V, Bouhss A, Rengifo-Gonzalez JC, Desforges B, Hamon L, Lavrik OI, Pastré D. FUS RRM regulates poly(ADP-ribose) levels after transcriptional arrest and PARP-1 activation on DNA damage. Cell Rep 2023; 42:113199. [PMID: 37804508 DOI: 10.1016/j.celrep.2023.113199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/08/2023] [Accepted: 09/15/2023] [Indexed: 10/09/2023] Open
Abstract
PARP-1 activation at DNA damage sites leads to the synthesis of long poly(ADP-ribose) (PAR) chains, which serve as a signal for DNA repair. Here we show that FUS, an RNA-binding protein, is specifically directed to PAR through its RNA recognition motif (RRM) to increase PAR synthesis by PARP-1 in HeLa cells after genotoxic stress. Using a structural approach, we also identify specific residues located in the FUS RRM, which can be PARylated by PARP-1 to control the level of PAR synthesis. Based on the results of this work, we propose a model in which, following a transcriptional arrest that releases FUS from nascent mRNA, FUS can be recruited by PARP-1 activated by DNA damage to stimulate PAR synthesis. We anticipate that this model offers new perspectives to understand the role of FET proteins in cancers and in certain neurodegenerative diseases such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Evgeniya M Mamontova
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France; Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Av. 8, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Street, Novosibirsk 630090, Russia
| | - Marie-Jeanne Clément
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Av. 8, Novosibirsk 630090, Russia
| | - Vandana Joshi
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Ahmed Bouhss
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | | | - Bénédicte Desforges
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Loic Hamon
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Av. 8, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Street, Novosibirsk 630090, Russia.
| | - David Pastré
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France.
| |
Collapse
|
17
|
Yi S, Singh SS, Rozen-Gagnon K, Luna JM. Mapping RNA-Protein Interactions with Subcellular Resolution Using Colocalization CLIP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.563984. [PMID: 37961159 PMCID: PMC10634835 DOI: 10.1101/2023.10.26.563984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
RNA binding proteins (RBPs) are essential for RNA metabolism and profoundly impact health and disease. The subcellular organization of RBP interaction networks with target RNAs remains largely unexplored. Here, we develop colocalization CLIP, a method that combines CrossLinking and ImmunoPrecipitation (CLIP) with proximity labeling, to explore in-depth the subcellular RNA interactions of the well-studied RNA-binding protein HuR. Using this method, we uncover HuR's dynamic and location-specific interactions with RNA, revealing alterations in sequence preferences and interactions in the nucleus, cytosol, or stress granule compartments. We uncover HuR's unique binding preferences within stress granules during arsenite stress, illuminating intricate interactions that conventional methodologies cannot capture. Overall, coCLIP provides a powerful method for revealing RBP:RNA interactions based on localization and lays the foundation for an advanced understanding of RBP models that incorporate subcellular location as a critical determinant of their functions.
Collapse
|
18
|
Chetta M, Cammarota AL, De Marco M, Bukvic N, Marzullo L, Rosati A. The Continuous Adaptive Challenge Played by Arboviruses: An In Silico Approach to Identify a Possible Interplay between Conserved Viral RNA Sequences and Host RNA Binding Proteins (RBPs). Int J Mol Sci 2023; 24:11051. [PMID: 37446229 DOI: 10.3390/ijms241311051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Climate change and globalization have raised the risk of vector-borne disease (VBD) introduction and spread in various European nations in recent years. In Italy, viruses carried by tropical vectors have been shown to cause viral encephalitis, one of the symptoms of arboviruses, a spectrum of viral disorders spread by arthropods such as mosquitoes and ticks. Arboviruses are currently causing alarm and attention, and the World Health Organization (WHO) has released recommendations to adopt essential measures, particularly during the hot season, to restrict the spreading of the infectious agents among breeding stocks. In this scenario, rapid analysis systems are required, because they can quickly provide information on potential virus-host interactions, the evolution of the infection, and the onset of disabling clinical symptoms, or serious illnesses. Such systems include bioinformatics approaches integrated with molecular evaluation. Viruses have co-evolved different strategies to transcribe their own genetic material, by changing the host's transcriptional machinery, even in short periods of time. The introduction of genetic alterations, particularly in RNA viruses, results in a continuous adaptive fight against the host's immune system. We propose an in silico pipeline method for performing a comprehensive motif analysis (including motif discovery) on entire genome sequences to uncover viral sequences that may interact with host RNA binding proteins (RBPs) by interrogating the database of known RNA binding proteins, which play important roles in RNA metabolism and biological processes. Indeed, viral RNA sequences, able to bind host RBPs, may compete with cellular RNAs, altering important metabolic processes. Our findings suggest that the proposed in silico approach could be a useful and promising tool to investigate the complex and multiform clinical manifestations of viral encephalitis, and possibly identify altered metabolic pathways as targets of pharmacological treatments and innovative therapeutic protocols.
Collapse
Affiliation(s)
- Massimiliano Chetta
- U.O.C. Medical and Laboratory Genetics, A.O.R.N., Cardarelli, 80131 Naples, Italy
| | - Anna Lisa Cammarota
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
- FIBROSYS s.r.l. Academic Spin-Off, University of Salerno, 84084 Baronissi, Italy
| | - Nenad Bukvic
- Medical Genetics Section, University Hospital Consortium Corporation Polyclinics of Bari, 70124 Bari, Italy
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
- FIBROSYS s.r.l. Academic Spin-Off, University of Salerno, 84084 Baronissi, Italy
| | - Alessandra Rosati
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
- FIBROSYS s.r.l. Academic Spin-Off, University of Salerno, 84084 Baronissi, Italy
| |
Collapse
|
19
|
Rodríguez‐Molina JB, Turtola M. Birth of a poly(A) tail: mechanisms and control of mRNA polyadenylation. FEBS Open Bio 2023; 13:1140-1153. [PMID: 36416579 PMCID: PMC10315857 DOI: 10.1002/2211-5463.13528] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
During their synthesis in the cell nucleus, most eukaryotic mRNAs undergo a two-step 3'-end processing reaction in which the pre-mRNA is cleaved and released from the transcribing RNA polymerase II and a polyadenosine (poly(A)) tail is added to the newly formed 3'-end. These biochemical reactions might appear simple at first sight (endonucleolytic RNA cleavage and synthesis of a homopolymeric tail), but their catalysis requires a multi-faceted enzymatic machinery, the cleavage and polyadenylation complex (CPAC), which is composed of more than 20 individual protein subunits. The activity of CPAC is further orchestrated by Poly(A) Binding Proteins (PABPs), which decorate the poly(A) tail during its synthesis and guide the mRNA through subsequent gene expression steps. Here, we review the structure, molecular mechanism, and regulation of eukaryotic mRNA 3'-end processing machineries with a focus on the polyadenylation step. We concentrate on the CPAC and PABPs from mammals and the budding yeast, Saccharomyces cerevisiae, because these systems are the best-characterized at present. Comparison of their functions provides valuable insights into the principles of mRNA 3'-end processing.
Collapse
Affiliation(s)
| | - Matti Turtola
- Department of Life TechnologiesUniversity of TurkuFinland
| |
Collapse
|
20
|
Vock IW, Simon MD. bakR: uncovering differential RNA synthesis and degradation kinetics transcriptome-wide with Bayesian hierarchical modeling. RNA (NEW YORK, N.Y.) 2023; 29:958-976. [PMID: 37028916 DOI: 10.1261/rna.079451.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Differential expression analysis of RNA sequencing (RNA-seq) data can identify changes in cellular RNA levels, but provides limited information about the kinetic mechanisms underlying such changes. Nucleotide recoding RNA-seq methods (NR-seq; e.g., TimeLapse-seq, SLAM-seq, etc.) address this shortcoming and are widely used approaches to identify changes in RNA synthesis and degradation kinetics. While advanced statistical models implemented in user-friendly software (e.g., DESeq2) have ensured the statistical rigor of differential expression analyses, no such tools that facilitate differential kinetic analysis with NR-seq exist. Here, we report the development of Bayesian analysis of the kinetics of RNA (bakR; https:// github.com/simonlabcode/bakR), an R package to address this need. bakR relies on Bayesian hierarchical modeling of NR-seq data to increase statistical power by sharing information across transcripts. Analyses of simulated data confirmed that bakR implementations of the hierarchical model outperform attempts to analyze differential kinetics with existing models. bakR also uncovers biological signals in real NR-seq data sets and provides improved analyses of existing data sets. This work establishes bakR as an important tool for identifying differential RNA synthesis and degradation kinetics.
Collapse
Affiliation(s)
- Isaac W Vock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06536, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06477, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06536, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06477, USA
| |
Collapse
|
21
|
Burke JM. Regulation of ribonucleoprotein condensates by RNase L during viral infection. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1770. [PMID: 36479619 PMCID: PMC10244490 DOI: 10.1002/wrna.1770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
In response to viral infection, mammalian cells activate several innate immune pathways to antagonize viral gene expression. Upon recognition of viral double-stranded RNA, protein kinase R (PKR) phosphorylates the alpha subunit of eukaryotic initiation factor 2 (eIF2α) on serine 51. This inhibits canonical translation initiation, which broadly antagonizes viral protein synthesis. It also promotes the assembly of cytoplasmic ribonucleoprotein complexes termed stress granules (SGs). SGs are widely thought to promote cell survival and antiviral signaling. However, co-activation of the OAS/RNase L antiviral pathway inhibits the assembly of SGs and promotes the assembly of an alternative ribonucleoprotein complex termed an RNase L-dependent body (RLB). The formation of RLBs has been observed in response to double-stranded RNA, dengue virus infection, or SARS-CoV-2 infection. Herein, we review the distinct biogenesis pathways and properties of SGs and RLBs, and we provide perspective on their potential functions during the antiviral response. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Turnover and Surveillance > Regulation of RNA Stability RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- James M. Burke
- Department of Molecular Medicine, University of Florida Scripps Biomedical Research, Jupiter, Florida 33458, USA
| |
Collapse
|
22
|
Udi Y, Zhang W, Stein ME, Ricardo-Lax I, Pasolli HA, Chait BT, Rout MP. A general method for quantitative fractionation of mammalian cells. J Cell Biol 2023; 222:213941. [PMID: 36920247 PMCID: PMC10040634 DOI: 10.1083/jcb.202209062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/11/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Subcellular fractionation in combination with mass spectrometry-based proteomics is a powerful tool to study localization of key proteins in health and disease. Here we offered a reliable and rapid method for mammalian cell fractionation, tuned for such proteomic analyses. This method proves readily applicable to different cell lines in which all the cellular contents are accounted for, while maintaining nuclear and nuclear envelope integrity. We demonstrated the method's utility by quantifying the effects of a nuclear export inhibitor on nucleoplasmic and cytoplasmic proteomes.
Collapse
Affiliation(s)
- Yael Udi
- Laboratory of Cellular and Structural Biology, The Rockefeller University , New York, NY, USA
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University , New York, NY, USA
| | - Milana E Stein
- Laboratory of Cellular and Structural Biology, The Rockefeller University , New York, NY, USA
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University , New York, NY, USA
| | - Hilda A Pasolli
- Electron Microscopy Resource Center, The Rockefeller University , New York, NY, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University , New York, NY, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University , New York, NY, USA
| |
Collapse
|
23
|
García-Martínez J, Singh A, Medina D, Chávez S, Pérez-Ortín JE. Enhanced gene regulation by cooperation between mRNA decay and gene transcription. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194910. [PMID: 36731791 PMCID: PMC10663100 DOI: 10.1016/j.bbagrm.2023.194910] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
It has become increasingly clear in the last few years that gene expression in eukaryotes is not a linear process from mRNA synthesis in the nucleus to translation and degradation in the cytoplasm, but works as a circular one where the mRNA level is controlled by crosstalk between nuclear transcription and cytoplasmic decay pathways. One of the consequences of this crosstalk is the approximately constant level of mRNA. This is called mRNA buffering and happens when transcription and mRNA degradation act at compensatory rates. However, if transcription and mRNA degradation act additively, enhanced gene expression regulation occurs. In this work, we analyzed new and previously published genomic datasets obtained for several yeast mutants related to either transcription or mRNA decay that are not known to play any role in the other process. We show that some, which were presumed only transcription factors (Sfp1) or only decay factors (Puf3, Upf2/3), may represent examples of RNA-binding proteins (RBPs) that make specific crosstalk to enhance the control of the mRNA levels of their target genes by combining additive effects on transcription and mRNA stability. These results were mathematically modeled to see the effects of RBPs when they have positive or negative effects on mRNA synthesis and decay rates. We found that RBPs can be an efficient way to buffer or enhance gene expression responses depending on their respective effects on transcription and mRNA stability.
Collapse
Affiliation(s)
- José García-Martínez
- Instituto de Biotecnología y Biomedicina (Biotecmed), Facultad de Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| | - Daniel Medina
- Instituto de Biotecnología y Biomedicina (Biotecmed), Facultad de Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Seville, Spain; Dirección de Evaluación y Acreditación, Agencia Andaluza del Conocimiento, Doña Berenguela s/n, planta 3ª C.P. 14006, Córdoba, Spain
| | - José E Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (Biotecmed), Facultad de Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain.
| |
Collapse
|
24
|
Rajendren S, Ye X, Dunker W, Richardson A, Karijolich J. The cellular and KSHV A-to-I RNA editome in primary effusion lymphoma and its role in the viral lifecycle. Nat Commun 2023; 14:1367. [PMID: 36914661 PMCID: PMC10011561 DOI: 10.1038/s41467-023-37105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Adenosine-to-inosine RNA editing is a major contributor to transcriptome diversity in animals with far-reaching biological consequences. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of several human malignancies including primary effusion lymphoma (PEL). The extent of RNA editing within the KSHV transcriptome is unclear as is its contribution to the viral lifecycle. Here, we leverage a combination of biochemical and genomic approaches to determine the RNA editing landscape in host- and KSHV transcriptomes during both latent and lytic replication in PEL. Analysis of RNA editomes reveals it is dynamic, with increased editing upon reactivation and the potential to deregulate pathways critical for latency and tumorigenesis. In addition, we identify conserved RNA editing events within a viral microRNA and discover their role in miRNA biogenesis as well as viral infection. Together, these results describe the editome of PEL cells as well as a critical role for A-to-I editing in the KSHV lifecycle.
Collapse
Affiliation(s)
- Suba Rajendren
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232-2363, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, 37232-2363, USA
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232-2363, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, 37232-2363, USA
| | - William Dunker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232-2363, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, 37232-2363, USA
| | - Antiana Richardson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232-2363, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, 37232-2363, USA
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232-2363, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232-2363, USA.
- Vanderbilt Center for Immunobiology, Nashville, TN, 37232-2363, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-2363, USA.
- Vanderbilt-Ingram Cancer Center, Nashville, TN, 37232-2363, USA.
| |
Collapse
|
25
|
Saga Y, Shimoyama Y, Yamada Y, Morikawa N, Kawata T. The cytosolic lncRNA dutA affects STATa signaling and developmental commitment in Dictyostelium. Genes Cells 2023; 28:111-128. [PMID: 36504347 DOI: 10.1111/gtc.12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
STATa is a pivotal transcription factor for Dictyostelium development. dutA is the most abundant RNA transcribed by RNA polymerase II in Dictyostelium, and its functional interplay with STATa has been suggested. This study demonstrates that dutA RNA molecules are distributed as spot-like structures in the cytoplasm, and that its cell type-specific expression changes dramatically during development. dutA RNA was exclusively detectable in the prespore region of slugs and then predominantly localized in prestalk cells, including the organizer region, at the Mexican hat stage before most dutA transcripts, excluding those in prestalk O cells, disappeared as culmination proceeded. dutA RNA was not translated into small peptides from any potential open reading frame, which confirmed that it is a cytoplasmic lncRNA. Ectopic expression of dutA RNA in the organizer region of slugs caused a prolonged slug migration period. In addition, buffered suspension-cultured cells of the strain displayed reduced STATa nuclear translocation and phosphorylation on Tyr702. Analysis of gene expression in various dutA mutants revealed changes in the levels of several STATa-regulated genes, such as the transcription factors mybC and gtaG, which might affect the phenotype. dutA RNA may regulate several mRNA species, thereby playing an indirect role in STATa activation.
Collapse
Affiliation(s)
- Yukika Saga
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan.,Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Yudai Shimoyama
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Yoko Yamada
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan.,Department of Materials and Life Sciences, Sophia University, Tokyo, Japan
| | - Naoki Morikawa
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Takefumi Kawata
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| |
Collapse
|
26
|
RNA-controlled nucleocytoplasmic shuttling of mRNA decay factors regulates mRNA synthesis and a novel mRNA decay pathway. Nat Commun 2022; 13:7184. [PMID: 36418294 PMCID: PMC9684461 DOI: 10.1038/s41467-022-34417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/25/2022] [Indexed: 11/27/2022] Open
Abstract
mRNA level is controlled by factors that mediate both mRNA synthesis and decay, including the 5' to 3' exonuclease Xrn1. Here we show that nucleocytoplasmic shuttling of several yeast mRNA decay factors plays a key role in determining both mRNA synthesis and decay. Shuttling is regulated by RNA-controlled binding of the karyopherin Kap120 to two nuclear localization sequences (NLSs) in Xrn1, location of one of which is conserved from yeast to human. The decaying RNA binds and masks NLS1, establishing a link between mRNA decay and Xrn1 shuttling. Preventing Xrn1 import, either by deleting KAP120 or mutating the two Xrn1 NLSs, compromises transcription and, unexpectedly, also cytoplasmic decay, uncovering a cytoplasmic decay pathway that initiates in the nucleus. Most mRNAs are degraded by both pathways - the ratio between them represents a full spectrum. Importantly, Xrn1 shuttling is required for proper responses to environmental changes, e.g., fluctuating temperatures, involving proper changes in mRNA abundance and in cell proliferation rate.
Collapse
|
27
|
Rodriguez W, Mehrmann T, Hatfield D, Muller M. Shiftless Restricts Viral Gene Expression and Influences RNA Granule Formation during Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication. J Virol 2022; 96:e0146922. [PMID: 36326276 PMCID: PMC9682979 DOI: 10.1128/jvi.01469-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Herpesviral infection reflects thousands of years of coevolution and the constant struggle between virus and host for control of cellular gene expression. During Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication, the virus rapidly seizes control of host gene expression machinery by triggering a massive RNA decay event via a virally encoded endoribonuclease, SOX. This virus takeover strategy decimates close to 80% of cellular transcripts, reallocating host resources toward viral replication. The host cell, however, is not entirely passive in this assault on RNA stability. A small pool of host transcripts that actively evade SOX cleavage has been identified over the years. One such "escapee," C19ORF66 (herein referred to as Shiftless [SHFL]), encodes a potent antiviral protein capable of restricting the replication of multiple DNA and RNA viruses and retroviruses, including KSHV. Here, we show that SHFL restricts KSHV replication by targeting the expression of critical viral early genes, including the master transactivator protein, KSHV ORF50, and thus subsequently the entire lytic gene cascade. Consistent with previous reports, we found that the SHFL interactome throughout KSHV infection is dominated by RNA-binding proteins that influence both translation and protein stability, including the viral protein ORF57, a crucial regulator of viral RNA fate. We next show that SHFL affects cytoplasmic RNA granule formation, triggering the disassembly of processing bodies. Taken together, our findings provide insights into the complex relationship between RNA stability, RNA granule formation, and the antiviral response to KSHV infection. IMPORTANCE In the past 5 years, SHFL has emerged as a novel and integral piece of the innate immune response to viral infection. SHFL has been reported to restrict the replication of multiple viruses, including several flaviviruses and the retrovirus HIV-1. However, to date, the mechanism(s) by which SHFL restricts DNA virus infection remains largely unknown. We have previously shown that following its escape from KSHV-induced RNA decay, SHFL acts as a potent antiviral factor, restricting nearly every stage of KSHV lytic replication. In this study, we set out to determine the mechanism by which SHFL restricts KSHV infection. We demonstrate that SHFL impacts all classes of KSHV genes and found that SHFL restricts the expression of several key early genes, including KSHV ORF50 and ORF57. We then mapped the interactome of SHFL during KSHV infection and found several host and viral RNA-binding proteins that all play crucial roles in regulating RNA stability and translation. Lastly, we found that SHFL expression influences RNA granule formation both outside and within the context of KSHV infection, highlighting its broader impact on global gene expression. Collectively, our findings highlight a novel relationship between a critical piece of the antiviral response to KSHV infection and the regulation of RNA-protein dynamics.
Collapse
Affiliation(s)
- William Rodriguez
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Timothy Mehrmann
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - David Hatfield
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mandy Muller
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
28
|
RNA-binding proteins: Underestimated contributors in tumorigenesis. Semin Cancer Biol 2022; 86:431-444. [PMID: 35124196 DOI: 10.1016/j.semcancer.2022.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
mRNA export, translation, splicing, cleavage or capping determine mRNA stability, which represents one of the primary aspects regulating gene expression and function. RNA-binding proteins (RBPs) bind to their target mRNAs to regulate multiple cell functions by increasing or reducing their stability. In recent decades, studies of the role of RBPs in tumorigenesis have revealed an increasing number of proteins impacting the prognosis, diagnosis and cancer treatment. Several RBPs have been identified based on their interactions with oncogenes or tumor suppressor genes in human cancers, which are involved in apoptosis, the epithelial-mesenchymal transition (EMT), DNA repair, autophagy, cell proliferation, immune response, metabolism, and the regulation of noncoding RNAs. In this review, we propose a model showing how RBP mutations influence tumorigenesis, and we update the current knowledge regarding the molecular mechanism by which RBPs regulate cancer. Special attention is being devoted to RBPs that represent prognostic and diagnostic factors in cancer patients.
Collapse
|
29
|
Burke JM, Ripin N, Ferretti MB, St Clair LA, Worden-Sapper ER, Salgado F, Sawyer SL, Perera R, Lynch KW, Parker R. RNase L activation in the cytoplasm induces aberrant processing of mRNAs in the nucleus. PLoS Pathog 2022; 18:e1010930. [PMID: 36318584 PMCID: PMC9651596 DOI: 10.1371/journal.ppat.1010930] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/11/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
The antiviral endoribonuclease, RNase L, is activated by the mammalian innate immune response to destroy host and viral RNA to ultimately reduce viral gene expression. Herein, we show that RNase L and RNase L-mediated mRNA decay are primarily localized to the cytoplasm. Consequently, RNA-binding proteins (RBPs) translocate from the cytoplasm to the nucleus upon RNase L activation due to the presence of intact nuclear RNA. The re-localization of RBPs to the nucleus coincides with global alterations to RNA processing in the nucleus. While affecting many host mRNAs, these alterations are pronounced in mRNAs encoding type I and type III interferons and correlate with their retention in the nucleus and reduction in interferon protein production. Similar RNA processing defects also occur during infection with either dengue virus or SARS-CoV-2 when RNase L is activated. These findings reveal that the distribution of RBPs between the nucleus and cytosol is dictated by the availability of RNA in each compartment. Thus, viral infections that trigger RNase L-mediated cytoplasmic RNA in the cytoplasm also alter RNA processing in the nucleus, resulting in an ingenious multi-step immune block to protein biogenesis.
Collapse
Affiliation(s)
- James M. Burke
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
- Department of Molecular Medicine, University of Florida Scripps Biomedical Research, Jupiter, Florida, United States of America
| | - Nina Ripin
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Max B. Ferretti
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Laura A. St Clair
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Center for Metabolism of Infectious Diseases, Colorado State University, Fort Collins, Colorado, United States of America
| | - Emma R. Worden-Sapper
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Fernando Salgado
- Department of Molecular Medicine, University of Florida Scripps Biomedical Research, Jupiter, Florida, United States of America
| | - Sara L. Sawyer
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Rushika Perera
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Center for Metabolism of Infectious Diseases, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kristen W. Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
30
|
Pepe G, Appierdo R, Carrino C, Ballesio F, Helmer-Citterich M, Gherardini PF. Artificial intelligence methods enhance the discovery of RNA interactions. Front Mol Biosci 2022; 9:1000205. [PMID: 36275611 PMCID: PMC9585310 DOI: 10.3389/fmolb.2022.1000205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding how RNAs interact with proteins, RNAs, or other molecules remains a challenge of main interest in biology, given the importance of these complexes in both normal and pathological cellular processes. Since experimental datasets are starting to be available for hundreds of functional interactions between RNAs and other biomolecules, several machine learning and deep learning algorithms have been proposed for predicting RNA-RNA or RNA-protein interactions. However, most of these approaches were evaluated on a single dataset, making performance comparisons difficult. With this review, we aim to summarize recent computational methods, developed in this broad research area, highlighting feature encoding and machine learning strategies adopted. Given the magnitude of the effect that dataset size and quality have on performance, we explored the characteristics of these datasets. Additionally, we discuss multiple approaches to generate datasets of negative examples for training. Finally, we describe the best-performing methods to predict interactions between proteins and specific classes of RNA molecules, such as circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), and methods to predict RNA-RNA or RNA-RBP interactions independently of the RNA type.
Collapse
Affiliation(s)
- G Pepe
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- *Correspondence: G Pepe, ; M Helmer-Citterich,
| | - R Appierdo
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - C Carrino
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - F Ballesio
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - M Helmer-Citterich
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- *Correspondence: G Pepe, ; M Helmer-Citterich,
| | - PF Gherardini
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
31
|
Gulyas L, Glaunsinger BA. RNA polymerase II subunit modulation during viral infection and cellular stress. Curr Opin Virol 2022; 56:101259. [PMID: 36162260 PMCID: PMC10150648 DOI: 10.1016/j.coviro.2022.101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022]
Abstract
Control of gene expression, including transcription, is central in dictating the outcome of viral infection. One of the profound alterations induced by viruses is modification to the integrity and function of eukaryotic RNA polymerase II (Pol II). Here, we discuss how infection perturbs the Pol II complex by altering subunit phosphorylation and turnover, as well as how cellular genotoxic stress (e.g. DNA damage) elicits similar outcomes. By highlighting emerging parallels and differences in Pol II control during viral infection and abiotic stress, we hope to bolster identification of pathways that target Pol II and regulate the transcriptome.
Collapse
Affiliation(s)
- Leah Gulyas
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Britt A Glaunsinger
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94709, USA.
| |
Collapse
|
32
|
Abstract
Many viruses induce shutoff of host gene expression (host shutoff) as a strategy to take over cellular machinery and evade host immunity. Without host shutoff activity, these viruses generally replicate poorly in vivo, attesting to the importance of this antiviral strategy. In this review, we discuss one particularly advantageous way for viruses to induce host shutoff: triggering widespread host messenger RNA (mRNA) decay. Viruses can trigger increased mRNA destruction either directly, by encoding RNA cleaving or decapping enzymes, or indirectly, by activating cellular RNA degradation pathways. We review what is known about the mechanism of action of several viral RNA degradation factors. We then discuss the consequences of widespread RNA degradation on host gene expression and on the mechanisms of immune evasion, highlighting open questions. Answering these questions is critical to understanding how viral RNA degradation factors regulate host gene expression and how this process helps viruses evade host responses and replicate.
Collapse
Affiliation(s)
- Léa Gaucherand
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, and Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA;
| | - Marta Maria Gaglia
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, and Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA;
| |
Collapse
|
33
|
Sharma S, Yang J, Doamekpor SK, Grudizen-Nogalska E, Tong L, Kiledjian M. Identification of a novel deFADding activity in human, yeast and bacterial 5' to 3' exoribonucleases. Nucleic Acids Res 2022; 50:8807-8817. [PMID: 35904778 PMCID: PMC9410882 DOI: 10.1093/nar/gkac617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/18/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022] Open
Abstract
Identification of metabolite caps including FAD on the 5' end of RNA has uncovered a previously unforeseen intersection between cellular metabolism and gene expression. To understand the function of FAD caps in cellular physiology, we characterised the proteins interacting with FAD caps in budding yeast. Here we demonstrate that highly conserved 5'-3' exoribonucleases, Xrn1 and Rat1, physically interact with the RNA 5' FAD cap and both possess FAD cap decapping (deFADding) activity and subsequently degrade the resulting RNA. Xrn1 deFADding activity was also evident in human cells indicating its evolutionary conservation. Furthermore, we report that the recently identified bacterial 5'-3' exoribonuclease RNase AM also possesses deFADding activity that can degrade FAD-capped RNAs in vitro and in Escherichia coli cells. To gain a molecular understanding of the deFADding reaction, an RNase AM crystal structure with three manganese ions coordinated by a sulfate molecule and the active site amino acids was generated that provided details underlying hydrolysis of the FAD cap. Our findings reveal a general propensity for 5'-3' exoribonucleases to hydrolyse and degrade RNAs with 5' end noncanonical caps in addition to their well characterized 5' monophosphate RNA substrates indicating an intrinsic property of 5'-3' exoribonucleases.
Collapse
Affiliation(s)
- Sunny Sharma
- Department of Cell Biology and Neurosciences, Rutgers, University, Piscataway, NJ 08854, USA
| | - Jun Yang
- Department of Cell Biology and Neurosciences, Rutgers, University, Piscataway, NJ 08854, USA
| | - Selom K Doamekpor
- Department Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Ewa Grudizen-Nogalska
- Department of Cell Biology and Neurosciences, Rutgers, University, Piscataway, NJ 08854, USA
| | - Liang Tong
- Department Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neurosciences, Rutgers, University, Piscataway, NJ 08854, USA
| |
Collapse
|
34
|
Wise EL, Samolej J, Elliott G. Herpes Simplex Virus 1 Expressing GFP-Tagged Virion Host Shutoff (vhs) Protein Uncouples the Activities of RNA Degradation and Differential Nuclear Retention of the Virus Transcriptome. J Virol 2022; 96:e0192621. [PMID: 35758691 PMCID: PMC9327678 DOI: 10.1128/jvi.01926-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virion host shutoff (vhs) protein is an endoribonuclease encoded by herpes simplex virus 1 (HSV1). vhs causes several changes to the infected cell environment that favor the translation of late (L) virus proteins: cellular mRNAs are degraded, immediate early (IE) and early (E) viral transcripts are sequestered in the nucleus with polyA binding protein (PABPC1), and dsRNA is degraded to help dampen the PKR-dependent stress response. To further our understanding of the cell biology of vhs, we constructed a virus expressing vhs tagged at its C terminus with GFP. When first expressed, vhs-GFP localized to juxtanuclear clusters, and later it colocalized and interacted with its binding partner VP16, and was packaged into virions. Despite vhs-GFP maintaining activity when expressed in isolation, it failed to degrade mRNA or relocalise PABPC1 during infection, while viral transcript levels were similar to those seen for a vhs knockout virus. PKR phosphorylation was also enhanced in vhs-GFP infected cells, which is in line with a failure to degrade dsRNA. Nonetheless, mRNA FISH revealed that as in Wt but not Dvhs infection, IE and E, but not L transcripts were retained in the nucleus of vhs-GFP infected cells at late times. These results revealed that the vhs-induced nuclear retention of IE and E transcripts was dependent on vhs expression but not on its endoribonuclease activity, uncoupling these two functions of vhs. IMPORTANCE Like many viruses, herpes simplex virus 1 (HSV1) expresses an endoribonuclease, the virion host shutoff (vhs) protein, which regulates the RNA environment of the infected cell and facilitates the classical cascade of virus protein translation. It does this by causing the degradation of some mRNA molecules and the nuclear retention of others. Here, we describe a virus expressing vhs tagged at its C terminus with a green fluorescent protein (GFP) and show that the vhs-GFP fusion protein retains the physical properties of native vhs but does not induce the degradation of mRNA. Nonetheless, vhs-GFP maintains the ability to trap the early virus transcriptome in the nucleus to favor late protein translation, proving for the first time that mRNA degradation is not a prerequisite for vhs effects on the nuclear transcriptome. This virus, therefore, has uncoupled the nuclear retention and degradation activities of vhs, providing a new understanding of vhs during infection.
Collapse
Affiliation(s)
- Emma L. Wise
- Section of Virology, Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surreygrid.5475.3, Guildford, Surrey, United Kingdom
| | - Jerzy Samolej
- Section of Virology, Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surreygrid.5475.3, Guildford, Surrey, United Kingdom
| | - Gillian Elliott
- Section of Virology, Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surreygrid.5475.3, Guildford, Surrey, United Kingdom
| |
Collapse
|
35
|
Duan L, Zaepfel BL, Aksenova V, Dasso M, Rothstein JD, Kalab P, Hayes LR. Nuclear RNA binding regulates TDP-43 nuclear localization and passive nuclear export. Cell Rep 2022; 40:111106. [PMID: 35858577 PMCID: PMC9345261 DOI: 10.1016/j.celrep.2022.111106] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/26/2022] [Accepted: 06/27/2022] [Indexed: 11/27/2022] Open
Abstract
Nuclear clearance of the RNA-binding protein TDP-43 is a hallmark of neurodegeneration and an important therapeutic target. Our current understanding of TDP-43 nucleocytoplasmic transport does not fully explain its predominantly nuclear localization or mislocalization in disease. Here, we show that TDP-43 exits nuclei by passive diffusion, independent of facilitated mRNA export. RNA polymerase II blockade and RNase treatment induce TDP-43 nuclear efflux, suggesting that nuclear RNAs sequester TDP-43 in nuclei and limit its availability for passive export. Induction of TDP-43 nuclear efflux by short, GU-rich oligomers (presumably by outcompeting TDP-43 binding to endogenous nuclear RNAs), and nuclear retention conferred by splicing inhibition, demonstrate that nuclear TDP-43 localization depends on binding to GU-rich nuclear RNAs. Indeed, RNA-binding domain mutations markedly reduce TDP-43 nuclear localization and abolish transcription blockade-induced nuclear efflux. Thus, the nuclear abundance of GU-RNAs, dictated by the balance of transcription, pre-mRNA processing, and RNA export, regulates TDP-43 nuclear localization.
Collapse
Affiliation(s)
- Lauren Duan
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin L Zaepfel
- Biochemistry, Cellular and Molecular Biology Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Lindsey R Hayes
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
36
|
Pérez-Ortín JE, Chávez S. Nucleo-cytoplasmic shuttling of RNA-binding factors: mRNA buffering and beyond. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194849. [PMID: 35907432 DOI: 10.1016/j.bbagrm.2022.194849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Gene expression is a highly regulated process that adapts RNAs and proteins content to the cellular context. Under steady-state conditions, mRNA homeostasis is robustly maintained by tight controls that act on both nuclear transcription and cytoplasmic mRNA stability. In recent years, it has been revealed that several RNA-binding proteins (RBPs) that perform functions in mRNA decay can move to the nucleus and regulate transcription. The RBPs involved in transcription can also travel to the cytoplasm and regulate mRNA degradation and/or translation. The multifaceted functions of these shuttling nucleo-cytoplasm RBPs have raised the possibility that they can act as mRNA metabolism coordinators. In addition, this indicates the existence of crosstalk mechanisms between the enzymatic machineries that drive the different mRNA life-cycle phases. The buffering of the mRNA concentration is the best known consequence of a transcription-degradation crosstalk counteraction, but alternative ways of RBP action can also imply enhanced gene regulation.
Collapse
Affiliation(s)
- José E Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (Biotecmed), Facultad de Biológicas, Universitat de València. C/Dr. Moliner 50, E46100 Burjassot, Spain.
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Seville, Spain; Dirección de Evaluación y Acreditación, Agencia Andaluza del Conocimiento, Doña Berenguela s/n, planta 3ª C.P., 14006 Córdoba, Spain
| |
Collapse
|
37
|
Rodriguez W, Muller M. Shiftless, a Critical Piece of the Innate Immune Response to Viral Infection. Viruses 2022; 14:1338. [PMID: 35746809 PMCID: PMC9230503 DOI: 10.3390/v14061338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022] Open
Abstract
Since its initial characterization in 2016, the interferon stimulated gene Shiftless (SHFL) has proven to be a critical piece of the innate immune response to viral infection. SHFL expression stringently restricts the replication of multiple DNA, RNA, and retroviruses with an extraordinary diversity of mechanisms that differ from one virus to the next. These inhibitory strategies include the negative regulation of viral RNA stability, translation, and even the manipulation of RNA granule formation during viral infection. Even more surprisingly, SHFL is the first human protein found to directly inhibit the activity of the -1 programmed ribosomal frameshift, a translation recoding strategy utilized across nearly all domains of life and several human viruses. Recent literature has shown that SHFL expression also significantly impacts viral pathogenesis in mouse models, highlighting its in vivo efficacy. To help reconcile the many mechanisms by which SHFL restricts viral replication, we provide here a comprehensive review of this complex ISG, its influence over viral RNA fate, and the implications of its functions on the virus-host arms race for control of the cell.
Collapse
Affiliation(s)
| | - Mandy Muller
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| |
Collapse
|
38
|
Emerging Roles of RNA-Binding Proteins in Neurodevelopment. J Dev Biol 2022; 10:jdb10020023. [PMID: 35735914 PMCID: PMC9224834 DOI: 10.3390/jdb10020023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diverse cell types in the central nervous system (CNS) are generated by a relatively small pool of neural stem cells during early development. Spatial and temporal regulation of stem cell behavior relies on precise coordination of gene expression. Well-studied mechanisms include hormone signaling, transcription factor activity, and chromatin remodeling processes. Much less is known about downstream RNA-dependent mechanisms including posttranscriptional regulation, nuclear export, alternative splicing, and transcript stability. These important functions are carried out by RNA-binding proteins (RBPs). Recent work has begun to explore how RBPs contribute to stem cell function and homeostasis, including their role in metabolism, transport, epigenetic regulation, and turnover of target transcripts. Additional layers of complexity are provided by the different target recognition mechanisms of each RBP as well as the posttranslational modifications of the RBPs themselves that alter function. Altogether, these functions allow RBPs to influence various aspects of RNA metabolism to regulate numerous cellular processes. Here we compile advances in RNA biology that have added to our still limited understanding of the role of RBPs in neurodevelopment.
Collapse
|
39
|
Chappleboim A, Joseph-Strauss D, Gershon O, Friedman N. Transcription feedback dynamics in the wake of cytoplasmic mRNA degradation shutdown. Nucleic Acids Res 2022; 50:5864-5880. [PMID: 35640599 PMCID: PMC9177992 DOI: 10.1093/nar/gkac411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 01/02/2023] Open
Abstract
In the last decade, multiple studies demonstrated that cells maintain a balance of mRNA production and degradation, but the mechanisms by which cells implement this balance remain unknown. Here, we monitored cells' total and recently-transcribed mRNA profiles immediately following an acute depletion of Xrn1-the main 5'-3' mRNA exonuclease-which was previously implicated in balancing mRNA levels. We captured the detailed dynamics of the adaptation to rapid degradation of Xrn1 and observed a significant accumulation of mRNA, followed by a delayed global reduction in transcription and a gradual return to baseline mRNA levels. We found that this transcriptional response is not unique to Xrn1 depletion; rather, it is induced earlier when upstream factors in the 5'-3' degradation pathway are perturbed. Our data suggest that the mRNA feedback mechanism monitors the accumulation of inputs to the 5'-3' exonucleolytic pathway rather than its outputs.
Collapse
Affiliation(s)
- Alon Chappleboim
- Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Rachel and Selim Benin School of Computer Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Daphna Joseph-Strauss
- Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Rachel and Selim Benin School of Computer Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Omer Gershon
- Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Rachel and Selim Benin School of Computer Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nir Friedman
- Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Rachel and Selim Benin School of Computer Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
40
|
Berry S, Müller M, Rai A, Pelkmans L. Feedback from nuclear RNA on transcription promotes robust RNA concentration homeostasis in human cells. Cell Syst 2022; 13:454-470.e15. [PMID: 35613616 DOI: 10.1016/j.cels.2022.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/13/2021] [Accepted: 04/21/2022] [Indexed: 12/18/2022]
Abstract
RNA concentration homeostasis involves coordinating RNA abundance and synthesis rates with cell size. Here, we study this in human cells by combining genome-wide perturbations with quantitative single-cell measurements. Despite relative ease in perturbing RNA synthesis, we find that RNA concentrations generally remain highly constant. Perturbations that would be expected to increase nuclear mRNA levels, including those targeting nuclear mRNA degradation or export, result in downregulation of RNA synthesis. This is associated with reduced abundance of transcription-associated proteins and protein states that are normally coordinated with RNA production in single cells, including RNA polymerase II (RNA Pol II) itself. Acute perturbations, elevation of nuclear mRNA levels, and mathematical modeling indicate that mammalian cells achieve robust mRNA concentration homeostasis by the mRNA-based negative feedback on transcriptional activity in the nucleus. This ultimately acts to coordinate RNA Pol II abundance with nuclear mRNA degradation and export rates and may underpin the scaling of mRNA abundance with cell size.
Collapse
Affiliation(s)
- Scott Berry
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| | - Micha Müller
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Arpan Rai
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
41
|
Faucillion ML, Johansson AM, Larsson J. Modulation of RNA stability regulates gene expression in two opposite ways: through buffering of RNA levels upon global perturbations and by supporting adapted differential expression. Nucleic Acids Res 2022; 50:4372-4388. [PMID: 35390159 PMCID: PMC9071389 DOI: 10.1093/nar/gkac208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 01/02/2023] Open
Abstract
The steady state levels of RNAs, often referred to as expression levels, result from a well-balanced combination of RNA transcription and decay. Alterations in RNA levels will therefore result from tight regulation of transcription rates, decay rates or both. Here, we explore the role of RNA stability in achieving balanced gene expression and present genome-wide RNA stabilities in Drosophila melanogaster male and female cells as well as male cells depleted of proteins essential for dosage compensation. We identify two distinct RNA-stability mediated responses involved in regulation of gene expression. The first of these responds to acute and global changes in transcription and thus counteracts potentially harmful gene mis-expression by shifting the RNA stability in the direction opposite to the transcriptional change. The second response enhances inter-individual differential gene expression by adjusting the RNA stability in the same direction as a transcriptional change. Both mechanisms are global, act on housekeeping as well as non-housekeeping genes and were observed in both flies and mammals. Additionally, we show that, in contrast to mammals, modulation of RNA stability does not detectably contribute to dosage compensation of the sex-chromosomes in D. melanogaster.
Collapse
Affiliation(s)
| | | | - Jan Larsson
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
42
|
Ly M, Burgess HM, Shah SB, Mohr I, Glaunsinger BA. Vaccinia virus D10 has broad decapping activity that is regulated by mRNA splicing. PLoS Pathog 2022; 18:e1010099. [PMID: 35202449 PMCID: PMC8903303 DOI: 10.1371/journal.ppat.1010099] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/08/2022] [Accepted: 02/10/2022] [Indexed: 01/01/2023] Open
Abstract
The mRNA 5' cap structure serves both to protect transcripts from degradation and promote their translation. Cap removal is thus an integral component of mRNA turnover that is carried out by cellular decapping enzymes, whose activity is tightly regulated and coupled to other stages of the mRNA decay pathway. The poxvirus vaccinia virus (VACV) encodes its own decapping enzymes, D9 and D10, that act on cellular and viral mRNA, but may be regulated differently than their cellular counterparts. Here, we evaluated the targeting potential of these viral enzymes using RNA sequencing from cells infected with wild-type and decapping mutant versions of VACV as well as in uninfected cells expressing D10. We found that D9 and D10 target an overlapping subset of viral transcripts but that D10 plays a dominant role in depleting the vast majority of human transcripts, although not in an indiscriminate manner. Unexpectedly, the splicing architecture of a gene influences how robustly its corresponding transcript is targeted by D10, as transcripts derived from intronless genes are less susceptible to enzymatic decapping by D10. As all VACV genes are intronless, preferential decapping of transcripts from intron-containing genes provides an unanticipated mechanism for the virus to disproportionately deplete host transcripts and remodel the infected cell transcriptome.
Collapse
Affiliation(s)
- Michael Ly
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Hannah M. Burgess
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Sahil B. Shah
- Center for Computational Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Britt A. Glaunsinger
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, Berkeley, California, United States of America
| |
Collapse
|
43
|
Schneider-Lunitz V, Ruiz-Orera J, Hubner N, van Heesch S. Multifunctional RNA-binding proteins influence mRNA abundance and translational efficiency of distinct sets of target genes. PLoS Comput Biol 2021; 17:e1009658. [PMID: 34879078 PMCID: PMC8687540 DOI: 10.1371/journal.pcbi.1009658] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/20/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
RNA-binding proteins (RBPs) can regulate more than a single aspect of RNA metabolism. We searched for such previously undiscovered multifunctionality within a set of 143 RBPs, by defining the predictive value of RBP abundance for the transcription and translation levels of known RBP target genes across 80 human hearts. This led us to newly associate 27 RBPs with cardiac translational regulation in vivo. Of these, 21 impacted both RNA expression and translation, albeit for virtually independent sets of target genes. We highlight a subset of these, including G3BP1, PUM1, UCHL5, and DDX3X, where dual regulation is achieved through differential affinity for target length, by which separate biological processes are controlled. Like the RNA helicase DDX3X, the known splicing factors EFTUD2 and PRPF8—all identified as multifunctional RBPs by our analysis—selectively influence target translation rates depending on 5’ UTR structure. Our analyses identify dozens of RBPs as being multifunctional and pinpoint potential novel regulators of translation, postulating unanticipated complexity of protein-RNA interactions at consecutive stages of gene expression. The lifecycle of an RNA molecule is controlled by hundreds of proteins that can bind RNA, also known as RNA-binding proteins (RBPs). These proteins recognize landing sites within the RNA and guide the RNA’s transcription from DNA, its processing into a mature messenger RNA, its translation into protein, or its degradation once the RNA is no longer needed. Although we now mechanistically understand how certain RBPs regulate these processes, for many RBP-target interactions the consequences imposed by RNA binding are not well understood. For 143 RBPs with known RNA binding positions, the authors of the current study investigated how RNA molecules responded to fluctuations in the expression levels of these RBPs, across each of 80 human hearts. Using statistical approaches, they could show that many RBPs influenced stages of the RNA lifecycle that they were not known to be involved in. Some RBPs turned out to be true "all-rounders" of RNA metabolism: they controlled the RNA transcript levels of some genes, whereas they influenced the translation rates of others. This unexpected multifunctionality unveiled previously hidden aspects of the everyday RNA-binding protein working life.
Collapse
Affiliation(s)
- Valentin Schneider-Lunitz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- * E-mail: (NH); (SvH)
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- * E-mail: (NH); (SvH)
| |
Collapse
|
44
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
45
|
Burke JM, St Clair LA, Perera R, Parker R. SARS-CoV-2 infection triggers widespread host mRNA decay leading to an mRNA export block. RNA (NEW YORK, N.Y.) 2021; 27:1318-1329. [PMID: 34315815 PMCID: PMC8522697 DOI: 10.1261/rna.078923.121] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 05/16/2023]
Abstract
The transcriptional induction of interferon (IFN) genes is a key feature of the mammalian antiviral response that limits viral replication and dissemination. A hallmark of severe COVID-19 disease caused by SARS-CoV-2 is the low presence of IFN proteins in patient serum despite elevated levels of IFN-encoding mRNAs, indicative of post-transcriptional inhibition of IFN protein production. Here, we performed single-molecule RNA visualization to examine the expression and localization of host mRNAs during SARS-CoV-2 infection. Our data show that the biogenesis of type I and type III IFN mRNAs is inhibited at multiple steps during SARS-CoV-2 infection. First, translocation of the interferon regulatory factor 3 (IRF3) transcription factor to the nucleus is limited in response to SARS-CoV-2, indicating that SARS-CoV-2 inhibits RLR-MAVS signaling and thus weakens transcriptional induction of IFN genes. Second, we observed that IFN mRNAs primarily localize to the site of transcription in most SARS-CoV-2 infected cells, suggesting that SARS-CoV-2 either inhibits the release of IFN mRNAs from their sites of transcription and/or triggers decay of IFN mRNAs in the nucleus upon exiting the site of transcription. Lastly, nuclear-cytoplasmic transport of IFN mRNAs is inhibited during SARS-CoV-2 infection, which we propose is a consequence of widespread degradation of host cytoplasmic basal mRNAs in the early stages of SARS-CoV-2 replication by the SARS-CoV-2 Nsp1 protein, as well as the host antiviral endoribonuclease, RNase L. Importantly, IFN mRNAs can escape SARS-CoV-2-mediated degradation if they reach the cytoplasm, making rescue of mRNA export a viable means for promoting the immune response to SARS-CoV-2.
Collapse
Affiliation(s)
- James M Burke
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Laura A St Clair
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
- Center for Metabolism of Infectious Diseases, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Rushika Perera
- Center for Vector-Borne and Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
- Center for Metabolism of Infectious Diseases, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| |
Collapse
|
46
|
Pashler AL, Towler BP, Jones CI, Haime HJ, Burgess T, Newbury SF. Genome-wide analyses of XRN1-sensitive targets in osteosarcoma cells identify disease-relevant transcripts containing G-rich motifs. RNA (NEW YORK, N.Y.) 2021; 27:1265-1280. [PMID: 34266995 PMCID: PMC8457002 DOI: 10.1261/rna.078872.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
XRN1 is a highly conserved exoribonuclease which degrades uncapped RNAs in a 5'-3' direction. Degradation of RNAs by XRN1 is important in many cellular and developmental processes and is relevant to human disease. Studies in D. melanogaster demonstrate that XRN1 can target specific RNAs, which have important consequences for developmental pathways. Osteosarcoma is a malignancy of the bone and accounts for 2% of all pediatric cancers worldwide. Five-year survival of patients has remained static since the 1970s and therefore furthering our molecular understanding of this disease is crucial. Previous work has shown a down-regulation of XRN1 in osteosarcoma cells; however, the transcripts regulated by XRN1 which might promote osteosarcoma remain elusive. Here, we confirm reduced levels of XRN1 in osteosarcoma cell lines and patient samples and identify XRN1-sensitive transcripts in human osteosarcoma cells. Using RNA-seq in XRN1-knockdown SAOS-2 cells, we show that 1178 genes are differentially regulated. Using a novel bioinformatic approach, we demonstrate that 134 transcripts show characteristics of direct post-transcriptional regulation by XRN1. Long noncoding RNAs (lncRNAs) are enriched in this group, suggesting that XRN1 normally plays an important role in controlling lncRNA expression in these cells. Among potential lncRNAs targeted by XRN1 is HOTAIR, which is known to be up-regulated in osteosarcoma and contributes to disease progression. We have also identified G-rich and GU motifs in post-transcriptionally regulated transcripts which appear to sensitize them to XRN1 degradation. Our results therefore provide significant insights into the specificity of XRN1 in human cells which are relevant to disease.
Collapse
Affiliation(s)
- Amy L Pashler
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| | - Benjamin P Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| | - Christopher I Jones
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| | - Hope J Haime
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| | - Tom Burgess
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| | - Sarah F Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| |
Collapse
|
47
|
García-Martínez J, Medina DA, Bellvís P, Sun M, Cramer P, Chávez S, Pérez-Ortín JE. The total mRNA concentration buffering system in yeast is global rather than gene-specific. RNA (NEW YORK, N.Y.) 2021; 27:1281-1290. [PMID: 34272303 PMCID: PMC8456998 DOI: 10.1261/rna.078774.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Gene expression in eukaryotes does not follow a linear process from transcription to translation and mRNA degradation. Instead it follows a circular process in which cytoplasmic mRNA decay crosstalks with nuclear transcription. In many instances, this crosstalk contributes to buffer mRNA at a roughly constant concentration. Whether the mRNA buffering concept operates on the total mRNA concentration or at the gene-specific level, and if the mechanism to do so is a global or a specific one, remain unknown. Here we assessed changes in mRNA concentrations and their synthesis rates along the transcriptome of aneuploid strains of the yeast Saccharomyces cerevisiae We also assessed mRNA concentrations and their synthesis rates in nonsense-mediated decay (NMD) targets in euploid strains. We found that the altered synthesis rates in the genes from the aneuploid chromosome and the changes in their mRNA stabilities were not counterbalanced. In addition, the stability of NMD targets was not specifically compensated by the changes in synthesis rate. We conclude that there is no genetic compensation of NMD mRNA targets in yeast, and total mRNA buffering uses mostly a global system rather than a gene-specific one.
Collapse
Affiliation(s)
- José García-Martínez
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, E46100 Burjassot, Spain
| | - Daniel A Medina
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, E46100 Burjassot, Spain
| | - Pablo Bellvís
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain
| | - Mai Sun
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, 37077 Göttingen, Germany
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, 37077 Göttingen, Germany
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain
- Dirección de Evaluación y Acreditación, Agencia Andaluza del Conocimiento, planta 3ª C.P. 14006 Córdoba, Spain
| | - José E Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, E46100 Burjassot, Spain
| |
Collapse
|
48
|
Turtola M, Manav MC, Kumar A, Tudek A, Mroczek S, Krawczyk PS, Dziembowski A, Schmid M, Passmore LA, Casañal A, Jensen TH. Three-layered control of mRNA poly(A) tail synthesis in Saccharomyces cerevisiae. Genes Dev 2021; 35:1290-1303. [PMID: 34385261 PMCID: PMC8415320 DOI: 10.1101/gad.348634.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022]
Abstract
Biogenesis of most eukaryotic mRNAs involves the addition of an untemplated polyadenosine (pA) tail by the cleavage and polyadenylation machinery. The pA tail, and its exact length, impacts mRNA stability, nuclear export, and translation. To define how polyadenylation is controlled in S. cerevisiae, we have used an in vivo assay capable of assessing nuclear pA tail synthesis, analyzed tail length distributions by direct RNA sequencing, and reconstituted polyadenylation reactions with purified components. This revealed three control mechanisms for pA tail length. First, we found that the pA binding protein (PABP) Nab2p is the primary regulator of pA tail length. Second, when Nab2p is limiting, the nuclear pool of Pab1p, the second major PABP in yeast, controls the process. Third, when both PABPs are absent, the cleavage and polyadenylation factor (CPF) limits pA tail synthesis. Thus, Pab1p and CPF provide fail-safe mechanisms to a primary Nab2p-dependent pathway, thereby preventing uncontrolled polyadenylation and allowing mRNA export and translation.
Collapse
Affiliation(s)
- Matti Turtola
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - M Cemre Manav
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ananthanarayanan Kumar
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Agnieszka Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Seweryn Mroczek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Paweł S Krawczyk
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Lori A Passmore
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ana Casañal
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
49
|
Diaz-Muñoz MD, Osma-Garcia IC. The RNA regulatory programs that govern lymphocyte development and function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1683. [PMID: 34327847 DOI: 10.1002/wrna.1683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/25/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
Lymphocytes require of constant and dynamic changes in their transcriptome for timely activation and production of effector molecules to combat external pathogens. Synthesis and translation of messenger (m)RNAs into these effector proteins is controlled both quantitatively and qualitatively by RNA binding proteins (RBPs). RBP-dependent regulation of RNA editing, subcellular location, stability, and translation shapes immune cell development and immunity. Extensive evidences have now been gathered from few model RBPs, HuR, PTBP1, ZFP36, and Roquin. However, recently developed methodologies for global characterization of protein:RNA interactions suggest the existence of complex RNA regulatory networks in which RBPs co-ordinately regulate the fate of sets of RNAs controlling cellular pathways and functions. In turn, RNA can also act as scaffolding of functionally related proteins modulating their activation and function. Here we review current knowledge about how RBP-dependent regulation of RNA shapes our immune system and discuss about the existence of a hidden immune cell epitranscriptome. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Manuel D Diaz-Muñoz
- Toulouse Institute for Infectious and Inflammatory Diseases, Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, Toulouse, France
| | - Ines C Osma-Garcia
- Toulouse Institute for Infectious and Inflammatory Diseases, Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, Toulouse, France
| |
Collapse
|
50
|
Duncan-Lewis C, Hartenian E, King V, Glaunsinger BA. Cytoplasmic mRNA decay represses RNA polymerase II transcription during early apoptosis. eLife 2021; 10:e58342. [PMID: 34085923 PMCID: PMC8192121 DOI: 10.7554/elife.58342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/03/2021] [Indexed: 12/22/2022] Open
Abstract
RNA abundance is generally sensitive to perturbations in decay and synthesis rates, but crosstalk between RNA polymerase II transcription and cytoplasmic mRNA degradation often leads to compensatory changes in gene expression. Here, we reveal that widespread mRNA decay during early apoptosis represses RNAPII transcription, indicative of positive (rather than compensatory) feedback. This repression requires active cytoplasmic mRNA degradation, which leads to impaired recruitment of components of the transcription preinitiation complex to promoter DNA. Importin α/β-mediated nuclear import is critical for this feedback signaling, suggesting that proteins translocating between the cytoplasm and nucleus connect mRNA decay to transcription. We also show that an analogous pathway activated by viral nucleases similarly depends on nuclear protein import. Collectively, these data demonstrate that accelerated mRNA decay leads to the repression of mRNA transcription, thereby amplifying the shutdown of gene expression. This highlights a conserved gene regulatory mechanism by which cells respond to threats.
Collapse
Affiliation(s)
- Christopher Duncan-Lewis
- Department of Molecular and Cell Biology; University of California, BerkeleyBerkeleyUnited States
| | - Ella Hartenian
- Department of Molecular and Cell Biology; University of California, BerkeleyBerkeleyUnited States
| | - Valeria King
- Department of Molecular and Cell Biology; University of California, BerkeleyBerkeleyUnited States
| | - Britt A Glaunsinger
- Department of Molecular and Cell Biology; University of California, BerkeleyBerkeleyUnited States
- Department of Plant and Microbial Biology; University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, BerkeleyBerkeleyUnited States
| |
Collapse
|