1
|
Chaponda MM, Lam HYP. Schistosoma antigens: A future clinical magic bullet for autoimmune diseases? Parasite 2024; 31:68. [PMID: 39481080 PMCID: PMC11527426 DOI: 10.1051/parasite/2024067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Autoimmune diseases are characterized by dysregulated immunity against self-antigens. Current treatment of autoimmune diseases largely relies on suppressing host immunity to prevent excessive inflammation. Other immunotherapy options, such as cytokine or cell-targeted therapies, have also been used. However, most patients do not benefit from these therapies as recurrence of the disease usually occurs. Therefore, more effort is needed to find alternative immune therapeutics. Schistosoma infection has been a significant public health problem in most developing countries. Schistosoma parasites produce eggs that continuously secrete soluble egg antigen (SEA), which is a known modulator of host immune responses by enhancing Th2 immunity and alleviating outcomes of Th1 and Th17 responses. Recently, SEA has shown promise in treating autoimmune disorders due to their substantial immune-regulatory effects. Despite this interest, how these antigens modulate human immunity demonstrates only limited pieces of evidence, and whether there is potential for Schistosoma antigens in other diseases in the future remains an unsolved question. This review discusses how SEA modulates human immune responses and its potential for development as a novel immunotherapeutic for autoimmune diseases. We also discuss the immune modulatory effects of other non-SEA schistosome antigens at different stages of the parasite's life cycle.
Collapse
Affiliation(s)
- Mphatso Mayuni Chaponda
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University Hualien Taiwan
| | - Ho Yin Pekkle Lam
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University Hualien Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University Hualien Taiwan
- Institute of Medical Science, Tzu Chi University Hualien Taiwan
| |
Collapse
|
2
|
Ittiprasert W, Brindley PJ. CRISPR-based functional genomics for schistosomes and related flatworms. Trends Parasitol 2024:S1471-4922(24)00287-3. [PMID: 39426911 DOI: 10.1016/j.pt.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 10/21/2024]
Abstract
CRISPR genome editing is actively used for schistosomes and other flukes. The ability to genetically manipulate these flatworms enables deeper investigation of their (patho)biological nature. CRISPR gene knockout (KO) demonstrated that a liver fluke growth mediator contributes to disease progression. Genome safe harbor sites have been predicted in Schistosoma mansoni and targeted for transgene insertion. CRISPR-based diagnosis has been demonstrated for infection with schistosomes and Opisthorchis viverrini. This review charts the progress, and the state of play, and posits salient questions for the field to address. Derivation of heritably transgenic loss-of-function or gain-of-function lines is the next milestone.
Collapse
Affiliation(s)
- Wannaporn Ittiprasert
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Paul J Brindley
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
3
|
Rogers M, Kamath S, McManus D, Jones M, Gordon C, Navarro S. Schistosoma excretory/secretory products: an untapped library of tolerogenic immunotherapeutics against food allergy. Clin Transl Immunology 2024; 13:e70001. [PMID: 39221178 PMCID: PMC11359118 DOI: 10.1002/cti2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/18/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Food allergy (FA) is considered the 'second wave' of the allergy epidemic in developed countries after asthma and allergic rhinitis with a steadily growing burden of 40%. The absence of early childhood pathogen stimulation embodied by the hygiene hypothesis is one explanation, and in particular, the eradication of parasitic helminths could be at play. Infections with parasites Schistosoma spp. have been found to have a negative correlation with allergic diseases. Schistosomes induce regulatory responses to evade immune detection and ensure their long-term survival. This is achieved via excretory/secretory (E/S) products, consisting of proteins, lipids, metabolites, nucleic acids and extracellular vesicles, representing an untapped therapeutic avenue for the treatment of FA without the unpleasant side-effects and risks associated with live infection. Schistosome-derived immunotherapeutic development is in its infancy and novel discoveries are heavily technology dependent; thus, it is essential to better understand how newly identified molecules interact with host immune systems to ensure safety and successful translation. This review will outline the identified Schistosoma-derived E/S products at all life cycle stages and discuss known mechanisms of action and their ability to suppress FA.
Collapse
Affiliation(s)
- Madeleine Rogers
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Sandip Kamath
- Institute of Pathophysiology and Allergy ResearchMedical University of ViennaViennaAustria
- Australian Institute of Tropical Health and MedicineJames Cook UniversityTownsvilleQLDAustralia
| | - Donald McManus
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Malcolm Jones
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
- Faculty of Science, School of Veterinary ScienceUniversity of QueenslandGattonQLDAustralia
| | - Catherine Gordon
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Severine Navarro
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
- Centre for Childhood Nutrition Research, Faculty of HealthQueensland University of TechnologyBrisbaneQLDAustralia
| |
Collapse
|
4
|
Ittiprasert W, Moescheid MM, Mann VH, Brindley PJ. Multiplexed CRISPR-Cas9 protocol for large transgene integration into the Schistosoma mansoni genome. STAR Protoc 2024; 5:102886. [PMID: 38354082 PMCID: PMC10876972 DOI: 10.1016/j.xpro.2024.102886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Precise, on-target CRISPR-Cas9 genome editing has been shown in Schistosoma mansoni, involving both non-homology end joining and homology-directed repair pathways. Here, we present a multiplexed CRISPR-Cas9 protocol for large transgene integration into the S. mansoni genome. We describe steps for deploying multiplexed ribonucleoprotein complexes (RNPs) and donor DNA preparation. We then detail procedures for introducing RNPs into schistosome eggs by square-wave electroporation in the presence of a 5' phosphorothioate-modified double-stranded donor transgene. For complete details on the use and execution of this protocol, please refer to Ittiprasert et al. (2023).1.
Collapse
Affiliation(s)
- Wannaporn Ittiprasert
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA.
| | - Max M Moescheid
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University, 35392 Giessen, Germany
| | - Victoria H Mann
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
5
|
Zumuk CP, Jones MK, Navarro S, Gray DJ, You H. Transmission-Blocking Vaccines against Schistosomiasis Japonica. Int J Mol Sci 2024; 25:1707. [PMID: 38338980 PMCID: PMC10855202 DOI: 10.3390/ijms25031707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Control of schistosomiasis japonica, endemic in Asia, including the Philippines, China, and Indonesia, is extremely challenging. Schistosoma japonicum is a highly pathogenic helminth parasite, with disease arising predominantly from an immune reaction to entrapped parasite eggs in tissues. Females of this species can generate 1000-2200 eggs per day, which is about 3- to 15-fold greater than the egg output of other schistosome species. Bovines (water buffalo and cattle) are the predominant definitive hosts and are estimated to generate up to 90% of parasite eggs released into the environment in rural endemic areas where these hosts and humans are present. Here, we highlight the necessity of developing veterinary transmission-blocking vaccines for bovines to better control the disease and review potential vaccine candidates. We also point out that the approach to producing efficacious transmission-blocking animal-based vaccines before moving on to human vaccines is crucial. This will result in effective and feasible public health outcomes in agreement with the One Health concept to achieve optimum health for people, animals, and the environment. Indeed, incorporating a veterinary-based transmission vaccine, coupled with interventions such as human mass drug administration, improved sanitation and hygiene, health education, and snail control, would be invaluable to eliminating zoonotic schistosomiasis.
Collapse
Affiliation(s)
- Chika P. Zumuk
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Malcolm K. Jones
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Severine Navarro
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Centre for Childhood Nutrition Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Darren J. Gray
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
6
|
Kalinna BH, Ross AG, Walduck AK. Schistosome Transgenesis: The Long Road to Success. BIOLOGY 2024; 13:48. [PMID: 38248478 PMCID: PMC10813141 DOI: 10.3390/biology13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
As research on parasitic helminths has entered the post-genomic era, research efforts have turned to deciphering the function of genes in the public databases of genome sequences. It is hoped that, by understanding the role of parasite genes in maintaining their parasitic lifestyle, critical insights can be gained to develop new intervention and control strategies. Methods to manipulate and transform parasitic worms are now developed to a point where it has become possible to gain a comprehensive understanding of the molecular mechanisms underlying host-parasite interplay, and here, we summarise and discuss the advances that have been made in schistosome transgenesis over the past 25 years. The ability to genetically manipulate schistosomes holds promise in finding new ways to control schistosomiasis, which ultimately may lead to the eradication of this debilitating disease.
Collapse
Affiliation(s)
- Bernd H. Kalinna
- Rural Health Research Institute, Charles Sturt University, Orange, NSW 2800, Australia; (A.G.R.); (A.K.W.)
| | | | | |
Collapse
|
7
|
Rinaldi G, Loukas A, Sotillo J. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:507-539. [PMID: 39008274 DOI: 10.1007/978-3-031-60121-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Trematode infections stand out as one of the frequently overlooked tropical diseases, despite their wide global prevalence and remarkable capacity to parasitize diverse host species and tissues. Furthermore, these parasites hold significant socio-economic, medical, veterinary and agricultural implications. Over the past decades, substantial strides have been taken to bridge the information gap concerning various "omic" tools, such as proteomics and genomics, in this field. In this edition of the book, we highlight recent progress in genomics and proteomics concerning trematodes with a particular focus on the advances made in the past 5 years. Additionally, we present insights into cutting-edge technologies employed in studying trematode biology and shed light on the available resources for exploring the molecular facets of this particular group of parasitic helminths.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Javier Sotillo
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.
| |
Collapse
|
8
|
LoVerde PT. Schistosomiasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:75-105. [PMID: 39008264 DOI: 10.1007/978-3-031-60121-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Schistosomiasis is a major cause of morbidity in the world and almost 800 million people worldwide are at risk for schistosomiasis; it is second only to malaria as a major infectious disease. Globally, it is estimated that the disease affects more than 250 million people in 78 countries of the world and is responsible for some 280,000-500,000 deaths each year. The three major schistosomes infecting humans are Schistosoma mansoni, S. japonicum, and S. haematobium. This chapter covers a wide range of aspects of schistosomiasis, including basic biology of the parasites, epidemiology, immunopathology, treatment, control, vaccines, and genomics/proteomics. In this chapter, the reader will understand the significant toll this disease takes in terms of mortality and morbidity. A description of the various life stages of schistosomes is presented, which will be informative for both those unfamiliar with the disease and experienced scientists. Clinical and public health aspects are addressed that cover acute and chronic disease, diagnosis, current treatment regimens and alternative drugs, and schistosomiasis control programs. A brief overview of genomics and proteomics is included that details recent advances in the field that will help scientists investigate the molecular biology of schistosomes. The reader will take away an appreciation for general aspects of schistosomiasis and the current research advances.
Collapse
Affiliation(s)
- Philip T LoVerde
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA.
| |
Collapse
|
9
|
Du X, McManus DP, French JD, Sivakumaran H, Johnston RL, Kondrashova O, Fogarty CE, Jones MK, You H. Lentiviral Transduction-based CRISPR/Cas9 Editing of Schistosoma mansoni Acetylcholinesterase. Curr Genomics 2023; 24:155-170. [PMID: 38178986 PMCID: PMC10761339 DOI: 10.2174/1389202924666230823094608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/02/2023] [Accepted: 07/17/2023] [Indexed: 01/06/2024] Open
Abstract
Background Recent studies on CRISPR/Cas9-mediated gene editing in Schistosoma mansoni have shed new light on the study and control of this parasitic helminth. However, the gene editing efficiency in this parasite is modest. Methods To improve the efficiency of CRISPR/Cas9 genome editing in schistosomes, we used lentivirus, which has been effectively used for gene editing in mammalian cells, to deliver plasmid DNA encoding Cas9 nuclease, a sgRNA targeting acetylcholinesterase (SmAChE) and a mCherry fluorescence marker into schistosomes. Results MCherry fluorescence was observed in transduced eggs, schistosomula, and adult worms, indicating that the CRISPR components had been delivered into these parasite stages by lentivirus. In addition, clearly changed phenotypes were observed in SmAChE-edited parasites, including decreased SmAChE activity, reduced hatching ability of edited eggs, and altered behavior of miracidia hatched from edited eggs. Next-generation sequencing analysis demonstrated that the lentiviral transduction-based CRISPR/Cas9 gene modifications in SmAChE-edited schistosomes were homology-directed repair predominant but with much lower efficiency than that obtained using electroporation (data previously published by our laboratory) for the delivery of CRISPR components. Conclusion Taken together, electroporation is more efficient than lentiviral transduction in the delivery of CRISPR/Cas9 into schistosomes for programmed genome editing. The exploration of tactics for enhancing CRISPR/Cas9 gene editing provides the basis for the future improvement of programmed genome editing in S. mansoni.
Collapse
Affiliation(s)
- Xiaofeng Du
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Donald P. McManus
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Juliet D. French
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Haran Sivakumaran
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rebecca L. Johnston
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Olga Kondrashova
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Conor E. Fogarty
- Centre for Bioinnovation, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
10
|
Camelo GMA, Silva JKADO, Geiger SM, Melo MN, Negrão-Corrêa DA. Schistosoma and Leishmania: An Untold Story of Coinfection. Trop Med Infect Dis 2023; 8:383. [PMID: 37624321 PMCID: PMC10458104 DOI: 10.3390/tropicalmed8080383] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
A remarkable characteristic of infectious diseases classified as Neglected Tropical Diseases (NTDs) is the fact that they are mostly transmitted in tropical and subtropical regions with poor conditions of sanitation and low access to healthcare, which makes transmission areas more likely to overlap. Two of the most important NTDs, schistosomiasis and leishmaniasis, despite being caused by very different etiological agents, have their pathogenesis heavily associated with immune-mediated mechanisms, and Schistosoma spp. and Leishmania spp. have been shown to simultaneously infect humans. Still, the consequences of Schistosoma-Leishmania coinfections remain underexplored. As the inflammatory processes elicited by each one of these parasites can influence the other, several changes have been observed due to this coinfection in naturally infected humans, experimental models, and in vitro cell assays, including modifications in susceptibility to infection, pathogenesis, prognostic, and response to treatment. Herein, we review the current knowledge in Schistosoma-Leishmania coinfections in both human populations and experimental models, with special regard to how schistosomiasis affects tegumentary leishmaniasis, discuss future perspectives, and suggest a few steps to further improve our understanding in this model of parasite-host-parasite interaction.
Collapse
Affiliation(s)
| | | | | | | | - Deborah Aparecida Negrão-Corrêa
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.M.A.C.)
| |
Collapse
|
11
|
Ittiprasert W, Moescheid MF, Chaparro C, Mann VH, Quack T, Rodpai R, Miller A, Wisitpongpun P, Buakaew W, Mentink-Kane M, Schmid S, Popratiloff A, Grevelding CG, Grunau C, Brindley PJ. Targeted insertion and reporter transgene activity at a gene safe harbor of the human blood fluke, Schistosoma mansoni. CELL REPORTS METHODS 2023; 3:100535. [PMID: 37533651 PMCID: PMC10391569 DOI: 10.1016/j.crmeth.2023.100535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 06/25/2023] [Indexed: 08/04/2023]
Abstract
The identification and characterization of genomic safe harbor sites (GSHs) can facilitate consistent transgene activity with minimal disruption to the host cell genome. We combined computational genome annotation and chromatin structure analysis to predict the location of four GSHs in the human blood fluke, Schistosoma mansoni, a major infectious pathogen of the tropics. A transgene was introduced via CRISPR-Cas-assisted homology-directed repair into one of the GSHs in the egg of the parasite. Gene editing efficiencies of 24% and transgene-encoded fluorescence of 75% of gene-edited schistosome eggs were observed. The approach advances functional genomics for schistosomes by providing a tractable path for generating transgenics using homology-directed, repair-catalyzed transgene insertion. We also suggest that this work will serve as a roadmap for the development of similar approaches in helminths more broadly.
Collapse
Affiliation(s)
- Wannaporn Ittiprasert
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Max F. Moescheid
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Cristian Chaparro
- IHPE, University of Perpignan Via Domitia, CNRS, IFREMER, University Montpellier, Perpignan, France
| | - Victoria H. Mann
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Thomas Quack
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Rutchanee Rodpai
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
- Department of Parasitology and Excellence in Medical Innovation, and Technology Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - André Miller
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD 20850, USA
| | - Prapakorn Wisitpongpun
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
- Faculty of Medical Technology, Rangsit University, Pathum Thani 12000, Thailand
| | - Watunyoo Buakaew
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Margaret Mentink-Kane
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD 20850, USA
| | - Sarah Schmid
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD 20850, USA
| | - Anastas Popratiloff
- Nanofabrication and Imaging Center, Science & Engineering Hall, George Washington University, Washington, DC 20052, USA
| | - Christoph G. Grevelding
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Christoph Grunau
- IHPE, University of Perpignan Via Domitia, CNRS, IFREMER, University Montpellier, Perpignan, France
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| |
Collapse
|
12
|
Peterkova K, Vorel J, Ilgova J, Ostasov P, Fajtova P, Konecny L, Chanova M, Kasny M, Horn M, Dvorak J. Proteases and their inhibitors involved in Schistosoma mansoni egg-host interaction revealed by comparative transcriptomics with Fasciola hepatica eggs. Int J Parasitol 2023; 53:253-263. [PMID: 36754342 DOI: 10.1016/j.ijpara.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 02/08/2023]
Abstract
Schistosoma mansoni eggs are the main causative agents of the pathological manifestations of schistosomiasis. The eggs are laid in the host bloodstream, then they migrate through the intestinal wall into the lumen. However, a significant proportion of the eggs become lodged in the liver, where they cause inflammation and fibrosis. In this study, we focus on a specific group of proteins expressed by the egg, namely proteases and their inhibitors. These molecules are often involved in schistosome-host interactions, but are still unexplored in the egg stage. Using RNA-seq and comparative transcriptomics of immature and mature S. mansoni eggs, we mapped the portfolio of proteases and their inhibitors, and determined their gene expression levels. In addition, we compared these data with gene expression of proteases and their inhibitors in Fasciola hepatica eggs. Fasciola hepatica eggs served as a useful comparative model, as they do not migrate through tissues and inflict pathology. We detected transcription of 135 and 117 proteases in S. mansoni and F. hepatica eggs, respectively, with 87 identified as orthologous between the two species. In contrast, we observed only four orthologous inhibitors out of 21 and 16 identified in S. mansoni and F. hepatica eggs, respectively. Among others, we measured high and developmentally regulated levels of expression of metalloproteases in S. mansoni eggs, specifically aminopeptidase N1, endothelin-converting enzyme 1, and several leishmanolysin-like peptidases. We identified highly transcribed protease inhibitors serpin and alpha-2-macroglobulin that are unique to S. mansoni eggs, and antistasin-like inhibitor in F. hepatica eggs. This study provides new insights into the portfolio of proteases and inhibitors expressed by S. mansoni with potential roles in egg tissue migration, stimulation of angiogenesis, and interaction with host blood and immunity.
Collapse
Affiliation(s)
- Kristyna Peterkova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia; Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Czech University of Life Sciences, Prague, Czechia.
| | - Jiri Vorel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jana Ilgova
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Pavel Ostasov
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Czechia
| | - Pavla Fajtova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Lukas Konecny
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia; Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Czech University of Life Sciences, Prague, Czechia
| | - Marta Chanova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czechia
| | - Martin Kasny
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Jan Dvorak
- Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Czech University of Life Sciences, Prague, Czechia; Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia; Faculty of Environmental Sciences, Center of Infectious Animal Diseases, Czech University of Life Sciences in Prague, Czechia
| |
Collapse
|
13
|
Genetic manipulations in helminth parasites. J Parasit Dis 2023; 47:203-214. [PMID: 36712591 PMCID: PMC9869838 DOI: 10.1007/s12639-023-01567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
Screening of vaccine or drug target in parasitic helminth is hindered by lack of robust tool for functional studies of parasite protein which account for the availability of only a few anti-helminthic vaccines, diagnostic assay and slower pace of development of an anthelmintic drug. With the piling up of parasite transcriptomic and genomic data, in silico screening for possible vaccine/drug target could be validated by functional characterization of proteins by RNA interference or CRISPR/Cas9. These reverse genetic engineering tools have opened up a better avenue and opportunity for screening parasitic proteins in vitro as well as in vivo. RNA interference provides a technique for silencing targeted mRNA transcript for understanding a gene function in helminth as evidence by work in Caenorhabditis elegans. Recent genetic engineering tool, CRISPR/Cas9 allows knock-out/deletion of the desired gene in parasitic helminths and the other provision it provides in terms of gene knock-in/insertion in parasite genome is still to be explored in future. This manuscript discussed the work that has been carried out on RNAi and CRISPR/Cas9 for functional studies of helminth parasitic proteins.
Collapse
|
14
|
Planarians to schistosomes: an overview of flatworm cell-types and regulators. J Helminthol 2023; 97:e7. [PMID: 36644809 DOI: 10.1017/s0022149x22000621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Schistosomiasis remains a major neglected tropical disease that afflicts over 200 million people globally. Schistosomes, the aetiological agent of schistosomiasis, are parasitic flatworms that propagate between molluscan and mammalian hosts. Inside the mammalian host, schistosomes rapidly grow over 100-fold in size and develop into a sexually mature male or female that thrives in the bloodstream for several decades. Recent work has identified schistosome stem cells as the source that drives parasite transmission, reproduction and longevity. Moreover, studies have begun to uncover molecular programmes deployed by stem cells that are essential for tissue development and maintenance, parasite survival and immune evasion. Such programmes are reminiscent of neoblast-driven development and regeneration of planarians, the free-living flatworm relative of schistosomes. Over the last few decades, research in planarians has employed modern functional genomic tools that significantly enhanced our understanding of stem cell-driven animal development and regeneration. In this review, we take a broad stroke overview of major flatworm organ systems at the cellular and molecular levels. We summarize recent advances on genetic regulators that play critical roles in differentiation and maintenance of flatworm cell types. Finally, we provide perspectives on how investigation of basic parasite biology is critical to discovering new approaches to battle schistosomiasis.
Collapse
|
15
|
Du X, McManus DP, French JD, Collinson N, Sivakumaran H, MacGregor SR, Fogarty CE, Jones MK, You H. CRISPR interference for sequence-specific regulation of fibroblast growth factor receptor A in Schistosoma mansoni. Front Immunol 2023; 13:1105719. [PMID: 36713455 PMCID: PMC9880433 DOI: 10.3389/fimmu.2022.1105719] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Employing the flatworm parasite Schistosoma mansoni as a model, we report the first application of CRISPR interference (CRISPRi) in parasitic helminths for loss-of-function studies targeting the SmfgfrA gene which encodes the stem cell marker, fibroblast growth factor receptor A (FGFRA). SmFGFRA is essential for maintaining schistosome stem cells and critical in the schistosome-host interplay. The SmfgfrA gene was targeted in S. mansoni adult worms, eggs and schistosomula using a catalytically dead Cas9 (dCas9) fused to a transcriptional repressor KRAB. We showed that SmfgfrA repression resulted in considerable phenotypic differences in the modulated parasites compared with controls, including reduced levels of SmfgfrA transcription and decreased protein expression of SmFGFRA, a decline in EdU (thymidine analog 5-ethynyl-2'-deoxyuridine, which specifically stains schistosome stem cells) signal, and an increase in cell apoptosis. Notably, reduced SmfgfrA transcription was evident in miracidia hatched from SmfgfrA-repressed eggs, and resulted in a significant change in miracidial behavior, indicative of a durable repression effect caused by CRISPRi. Intravenous injection of mice with SmfgfrA-repressed eggs resulted in granulomas that were markedly reduced in size and a decline in the level of serum IgE, emphasizing the importance of SmFGFRA in regulating the host immune response induced during schistosome infection. Our findings show the feasibility of applying CRISPRi for effective, targeted transcriptional repression in schistosomes, and provide the basis for employing CRISPRi to selectively perturb gene expression in parasitic helminths on a genome-wide scale.
Collapse
Affiliation(s)
- Xiaofeng Du
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Donald P. McManus
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Juliet D. French
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Natasha Collinson
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Haran Sivakumaran
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Skye R. MacGregor
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Conor E. Fogarty
- Genecology Research Centre, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia,*Correspondence: Hong You,
| |
Collapse
|
16
|
Yang WB, Luo F, Zhang W, Sun CS, Tan C, Zhou A, Hu W. Inhibition of signal peptidase complex expression affects the development and survival of Schistosoma japonicum. Front Cell Infect Microbiol 2023; 13:1136056. [PMID: 36936776 PMCID: PMC10020623 DOI: 10.3389/fcimb.2023.1136056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Background Schistosomiasis, the second most neglected tropical disease defined by the WHO, is a significant zoonotic parasitic disease infecting approximately 250 million people globally. This debilitating disease has seriously threatened public health, while only one drug, praziquantel, is used to control it. Because of this, it highlights the significance of identifying more satisfactory target genes for drug development. Protein translocation into the endoplasmic reticulum (ER) is vital to the subsequent localization of secretory and transmembrane proteins. The signal peptidase complex (SPC) is an essential component of the translocation machinery and functions to cleave the signal peptide sequence (SP) of secretory and membrane proteins entering the ER. Inhibiting the expression of SPC can lead to the abolishment or weaker cleavage of the signal peptide, and the accumulation of uncleaved protein in the ER would affect the survival of organisms. Despite the evident importance of SPC, in vivo studies exploring its function have yet to be reported in S. japonicum. Methods The S. japonicum SPC consists of four proteins: SPC12, SPC18, SPC22 and SPC25. RNA interference was used to investigate the impact of SPC components on schistosome growth and development in vivo. qPCR and in situ hybridization were applied to localize the SPC25 expression. Mayer's carmalum and Fast Blue B staining were used to observe morphological changes in the reproductive organs of dsRNA-treated worms. The effect of inhibitor treatment on the worm's viability and pairing was also examined in vitro. Results Our results showed that RNAi-SPC delayed the worm's normal development and was even lethal for schistosomula in vivo. Among them, the expression of SPC25 was significantly higher in the developmental stages of the reproductive organs in schistosomes. Moreover, SPC25 possessed high expression in the worm tegument, testes of male worms and the ovaries and vitellarium of female worms. The SPC25 knockdown led to the degeneration of reproductive organs, such as the ovaries and vitellarium of female worms. The SPC25 exhaustion also reduced egg production while reducing the pathological damage of the eggs to the host. Additionally, the SPC-related inhibitor AEBSF or suppressing the expression of SPC25 also impacted cultured worms' pairing and viability in vitro. Conclusions These data demonstrate that SPC is necessary to maintain the development and reproduction of S. japonicum. This research provides a promising anti-schistosomiasis drug target and discovers a new perspective on preventing worm fecundity and maturation.
Collapse
Affiliation(s)
- Wen-Bin Yang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Fang Luo
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Cheng-Song Sun
- Central Laboratory, Anhui Provincial Institute of Parasitic Diseases, Anhui, China
| | - Cong Tan
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - An Zhou
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
- *Correspondence: Wei Hu,
| |
Collapse
|
17
|
Zhang L, Wang L, Xiang S, Hu Y, Zhao S, Liao Y, Zhu Z, Wu X. CRISPR/Cas9-mediated gene knockout of Sj16 in Schistosoma japonicum eggs upregulates the host-to-egg immune response. FASEB J 2022; 36:e22615. [PMID: 36273308 DOI: 10.1096/fj.202200600rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/15/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022]
Abstract
Schistosomiasis is an important, neglected tropical disease. Schistosoma japonicum can evade host attacks by regulating the host's immunity, causing continuous infection. However, interactions between the host's immune system and S. japonicum are unclear. Our previous research found that the Sj16 protein isolated from S. japonicum has an anti-inflammatory effect in the host. However, the role of Sj16 in the regulation of host immunity in S. japonicum infection is not clear. Here, we applied the CRISPR/Cas9 technique to knockout Sj16 in S. japonicum eggs and investigated the effect of Sj16 in regulating host immunity. We found egg viability decreased after Sj16 knockout. In addition, we found granulomatous inflammation increased, the T-cell immune response enhanced and the immune microenvironment changed in mice model injected with Sj16-knockout eggs by tail vein. These findings suggested that S. japonicum could regulate host immunity through Sj16 to evade the host immune attack and cause continuous infection. In addition, we confirmed the application of CRISPR/Cas9-mediated gene reprogramming for functional genomics in S. japonicum.
Collapse
Affiliation(s)
- Lichao Zhang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Suoyu Xiang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Yunyi Hu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Siyu Zhao
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Yao Liao
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zifeng Zhu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xiaoying Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Doyle SR. Improving helminth genome resources in the post-genomic era. Trends Parasitol 2022; 38:831-840. [PMID: 35810065 DOI: 10.1016/j.pt.2022.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 01/02/2023]
Abstract
Rapid advancement in high-throughput sequencing and analytical approaches has seen a steady increase in the generation of genomic resources for helminth parasites. Now, helminth genomes and their annotations are a cornerstone of numerous efforts to compare genetic and transcriptomic variation, from single cells to populations of globally distributed parasites, to genome modifications to understand gene function. Our understanding of helminths is increasingly reliant on these genomic resources, which are primarily static once published and vary widely in quality and completeness between species. This article seeks to highlight the cause and effect of this variation and argues for the continued improvement of these genomic resources - even after their publication - which is necessary to provide a more accurate and complete understanding of the biology of these important pathogens.
Collapse
Affiliation(s)
- Stephen R Doyle
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
| |
Collapse
|
19
|
Wheeler NJ, Hallem EA, Zamanian M. Making sense of sensory behaviors in vector-borne helminths. Trends Parasitol 2022; 38:841-853. [PMID: 35931639 PMCID: PMC9481669 DOI: 10.1016/j.pt.2022.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 10/16/2022]
Abstract
Migrations performed by helminths are impressive and diverse, and accumulating evidence shows that many are controlled by sophisticated sensory programs. The migrations of vector-borne helminths are particularly complex, requiring precise, stage-specific regulation. We review the contrasting states of knowledge on snail-borne schistosomes and mosquito-borne filarial nematodes. Rich observational data exist for the chemosensory behaviors of schistosomes, while the molecular sensory pathways in nematodes are well described. Recent investigations on the molecular mechanisms of sensation in schistosomes and filarial nematodes have revealed some features conserved within their respective phyla, but adaptations correlated with parasitism are pronounced. Technological developments are likely to extend these advances, and we forecast how these technologies may be applied.
Collapse
Affiliation(s)
- Nicolas J Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology & Molecular Genetics and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
20
|
Skelly PJ, Da'dara AA. Schistosome secretomes. Acta Trop 2022; 236:106676. [PMID: 36113567 DOI: 10.1016/j.actatropica.2022.106676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Schistosomes are intravascular parasitic platyhelminths (blood flukes) that infect over 200 million people globally. Biomolecules secreted by the worms likely contribute to their ability to survive in the bloodstreams of immunocompetent hosts for many years. Here we review what is known about the protein composition of material released by the worms. Prominent among cercarial excretions/secretions (ES) is a ∼ 30 kDa serine protease called cercarial elastase (SmCE in Schistosoma mansoni), likely important in host invasion. Also prominent is a 117 amino acid non-glycosylated polypeptide (Sm16) that can impact several host cell-types to impinge on immunological outcomes. Similarly, components of the egg secretome (notably the 134 amino acid homodimeric glycoprotein "IL-4 inducing principle of schistosome eggs", IPSE, and the 225-amino acid monomeric T2 ribonuclease - omega-1) are capable of driving Th2-biased immune responses. A ∼36kDa chemokine binding glycoprotein SmCKBP, secreted by eggs, can negate the impact of several cytokines and can impede neutrophil migration. Of special interest is a disparate collection of classically cytosolic proteins that are surprisingly often identified in schistosome ES across life stages. These proteins, perhaps released as components of extracellular vesicles (EVs), include glycolytic enzymes, redox proteins, proteases and protease inhibitors, heat shock proteins, proteins involved in translation/turnover, histones, and others. Some such proteins may display "moonlighting" functions and, for example, impede blood clot formation around the worms. More prosaically, since several are particularly abundant soluble proteins, their appearance in the ES fraction may be indicative of worm damage ex vivo leading to protein leakage. Some bioactive schistosome ES proteins are in development as novel therapeutics against autoimmune, inflammatory, and other, non-parasitic, diseases.
Collapse
Affiliation(s)
- Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA.
| | - Akram A Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
21
|
Naidoo P, Mkhize-Kwitshana ZL. Clustered Regularly Interspaced Short Palindromic Repeats/ CRISPR associated protein 9-mediated editing of Schistosoma mansoni genes: Identifying genes for immunologically potent drug and vaccine development. Rev Soc Bras Med Trop 2022; 55:e0131. [PMID: 35976333 PMCID: PMC9405935 DOI: 10.1590/0037-8682-0131-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/08/2022] [Indexed: 12/26/2022] Open
Abstract
Schistosomiasis is a neglected acute and chronic tropical disease caused by intestinal (Schistosoma mansoni and Schistosoma japonicum) and urogenital (Schistosoma haematobium) helminth parasites (blood flukes or digenetic trematodes). It afflicts over 250 million people worldwide, the majority of whom reside in impoverished tropical and subtropical regions in sub-Saharan Africa. Schistosomiasis is the second most common devastating parasitic disease in the world after malaria and causes over 200,000 deaths annually. Currently, there is no effective and approved vaccine available for human use, and treatment strongly relies on praziquantel drug therapy, which is ineffective in killing immature larval schistosomula stages and eggs already lodged in the tissues. The Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9 (CRISPR/Cas9)-mediated gene editing tool is used to deactivate a gene of interest to scrutinize its role in health and disease, and to identify genes for vaccine and drug targeting. The present review aims to summarize the major findings from the current literature reporting the usage of CRISPR/Cas9-mediated gene editing to inactivate genes in S. mansoni (acetylcholinesterase (AChE), T2 ribonuclease omega-1 (ω1), sulfotransferase oxamniquine resistance protein (SULT-OR), and α-N-acetylgalactosaminidase (SmNAGAL)), and freshwater gastropod snails, Biomphalaria glabrata (allograft inflammatory factor (BgAIF)), an obligatory component of the life cycle of S. mansoni, to identify their roles in the pathogenesis of schistosomiasis, and to highlight the importance of such studies in identifying and developing drugs and vaccines with high therapeutic efficacy.
Collapse
Affiliation(s)
- Pragalathan Naidoo
- University of KwaZulu-Natal, College of Health Sciences, Department of Medical Microbiology, Durban, KwaZulu-Natal, South Africa.,South African Medical Research Council (SAMRC), Division of Research Capacity Development, Cape Town, Western Cape, South Africa
| | - Zilungile Lynette Mkhize-Kwitshana
- University of KwaZulu-Natal, College of Health Sciences, Department of Medical Microbiology, Durban, KwaZulu-Natal, South Africa.,South African Medical Research Council (SAMRC), Division of Research Capacity Development, Cape Town, Western Cape, South Africa
| |
Collapse
|
22
|
Abdel Aziz N, Musaigwa F, Mosala P, Berkiks I, Brombacher F. Type 2 immunity: a two-edged sword in schistosomiasis immunopathology. Trends Immunol 2022; 43:657-673. [PMID: 35835714 DOI: 10.1016/j.it.2022.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
Schistosomiasis is the second most debilitating neglected tropical disease globally after malaria, with no available therapy to control disease-driven immunopathology. Although schistosomiasis induces a markedly heterogenous immune response, type 2 immunity is the dominating immune response following oviposition. While type 2 immunity has a crucial role in granuloma formation and host survival during the acute stage of disease, its chronic activation can result in tissue scarring, fibrosis, and organ impairment. Here, we discuss recent advances in schistosomiasis, demonstrating how different immune and non-immune cells and signaling pathways are involved in the induction, maintenance, and regulation of type 2 immunity. A better understanding of these immune responses during schistosomiasis is essential to inform the potential development of candidate therapeutic strategies that fine-tune type 2 immunity to ideally modulate schistosomiasis immunopathology.
Collapse
Affiliation(s)
- Nada Abdel Aziz
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Biotechnology/Biomolecular Chemistry Program, Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.
| | - Fungai Musaigwa
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Paballo Mosala
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Inssaf Berkiks
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Frank Brombacher
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.
| |
Collapse
|
23
|
Quinzo MJ, Perteguer MJ, Brindley PJ, Loukas A, Sotillo J. Transgenesis in parasitic helminths: a brief history and prospects for the future. Parasit Vectors 2022; 15:110. [PMID: 35346328 PMCID: PMC8962113 DOI: 10.1186/s13071-022-05211-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Helminth infections impact the health of hundreds of millions of persons globally and also cause important economic losses in livestock farming. Methodological limitations as well as the low attention given to the study of helminths have impacted biological research and, thus, the procurement of accurate diagnosis and effective treatments. Understanding the biology of helminths using genomic and proteomic approaches could contribute to advances in understanding host-helminth interactions and lead to new vaccines, drugs and diagnostics. Despite the significant advances in genomics in the last decade, the lack of methodological adaptation of current transgenesis techniques has hampered the progression of post-genomic research in helminthology. However, the application of new techniques, such as CRISPR, to the study of trematodes and nematodes has opened new avenues for genome editing-powered functional genomics for these pathogens. This review summarises the historical advances in functional genomics in parasitic helminths and highlights pending limitations that will need to be overcome to deploy transgenesis tools.
Collapse
Affiliation(s)
- M J Quinzo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Escuela Internacional de Doctorado, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - M J Perteguer
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - P J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20037, USA
| | - A Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - J Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
24
|
Vaccines for Human Schistosomiasis: Recent Progress, New Developments and Future Prospects. Int J Mol Sci 2022; 23:ijms23042255. [PMID: 35216369 PMCID: PMC8879820 DOI: 10.3390/ijms23042255] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/18/2022] Open
Abstract
Schistosomiasis, caused by human trematode blood flukes (schistosomes), remains one of the most prevalent and serious of the neglected tropical parasitic diseases. Currently, treatment of schistosomiasis relies solely on a single drug, the anthelmintic praziquantel, and with increased usage in mass drug administration control programs for the disease, the specter of drug resistance developing is a constant threat. Vaccination is recognized as one of the most sustainable options for the control of any pathogen, but despite the discovery and reporting of numerous potentially promising schistosome vaccine antigens, to date, no schistosomiasis vaccine for human or animal deployment is available. This is despite the fact that Science ranked such an intervention as one of the top 10 vaccines that need to be urgently developed to improve public health globally. This review summarizes current progress of schistosomiasis vaccines under clinical development and advocates the urgent need for the establishment of a revolutionary and effective anti-schistosome vaccine pipeline utilizing cutting-edge technologies (including developing mRNA vaccines and exploiting CRISPR-based technologies) to provide novel insight into future vaccine discovery, design, manufacture and deployment.
Collapse
|
25
|
You H, Gordon CA, MacGregor SR, Cai P, McManus DP. Potential of the CRISPR-Cas system for improved parasite diagnosis: CRISPR-Cas mediated diagnosis in parasitic infections: CRISPR-Cas mediated diagnosis in parasitic infections. Bioessays 2022; 44:e2100286. [PMID: 35142378 DOI: 10.1002/bies.202100286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas technology accelerates development of fast, accurate, and portable diagnostic tools, typified by recent applications in COVID-19 diagnosis. Parasitic helminths cause devastating diseases afflicting 1.5 billion people globally, representing a significant public health and economic burden, especially in developing countries. Currently available diagnostic tests for worm infection are neither sufficiently sensitive nor field-friendly for use in low-endemic or resource-poor settings, leading to underestimation of true prevalence rates. Mass drug administration programs are unsustainable long-term, and diagnostic tools - required to be rapid, specific, sensitive, cost-effective, and user-friendly without specialized equipment and expertise - are urgently needed for rapid mapping of helminthic diseases and monitoring control programs. We describe the key features of the CRISPR-Cas12/13 system and emphasise its potential for the development of effective tools for the diagnosis of parasitic and other neglected tropical diseases (NTDs), a key recommendation of the NTDs 2021-2030 roadmap released by the World Health Organization.
Collapse
Affiliation(s)
- Hong You
- Immunology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Catherine A Gordon
- Immunology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Skye R MacGregor
- Immunology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Pengfei Cai
- Immunology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Donald P McManus
- Immunology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| |
Collapse
|
26
|
Stroehlein AJ, Korhonen PK, Lee VV, Ralph SA, Mentink-Kane M, You H, McManus DP, Tchuenté LAT, Stothard JR, Kaur P, Dudchenko O, Aiden EL, Yang B, Yang H, Emery AM, Webster BL, Brindley PJ, Rollinson D, Chang BCH, Gasser RB, Young ND. Chromosome-level genome of Schistosoma haematobium underpins genome-wide explorations of molecular variation. PLoS Pathog 2022; 18:e1010288. [PMID: 35167626 PMCID: PMC8846543 DOI: 10.1371/journal.ppat.1010288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/19/2022] [Indexed: 01/08/2023] Open
Abstract
Urogenital schistosomiasis is caused by the blood fluke Schistosoma haematobium and is one of the most neglected tropical diseases worldwide, afflicting > 100 million people. It is characterised by granulomata, fibrosis and calcification in urogenital tissues, and can lead to increased susceptibility to HIV/AIDS and squamous cell carcinoma of the bladder. To complement available treatment programs and break the transmission of disease, sound knowledge and understanding of the biology and ecology of S. haematobium is required. Hybridisation/introgression events and molecular variation among members of the S. haematobium-group might effect important biological and/or disease traits as well as the morbidity of disease and the effectiveness of control programs including mass drug administration. Here we report the first chromosome-contiguous genome for a well-defined laboratory line of this blood fluke. An exploration of this genome using transcriptomic data for all key developmental stages allowed us to refine gene models (including non-coding elements) and annotations, discover 'new' genes and transcription profiles for these stages, likely linked to development and/or pathogenesis. Molecular variation within S. haematobium among some geographical locations in Africa revealed unique genomic 'signatures' that matched species other than S. haematobium, indicating the occurrence of introgression events. The present reference genome (designated Shae.V3) and the findings from this study solidly underpin future functional genomic and molecular investigations of S. haematobium and accelerate systematic, large-scale population genomics investigations, with a focus on improved and sustained control of urogenital schistosomiasis.
Collapse
Affiliation(s)
- Andreas J. Stroehlein
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - V. Vern Lee
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Margaret Mentink-Kane
- NIH-NIAID Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, Maryland, United States of America
| | - Hong You
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Donald P. McManus
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Louis-Albert Tchuem Tchuenté
- Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - J. Russell Stothard
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Erez Lieberman Aiden
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong, China
- Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Bicheng Yang
- BGI Australia, Oceania, BGI Group, CBCRB Building, Herston, Queensland, Australia
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Aidan M. Emery
- Parasites and Vectors Division, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
| | - Bonnie L. Webster
- Parasites and Vectors Division, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
| | - Paul J. Brindley
- School of Medicine & Health Sciences, Department of Microbiology, Immunology & Tropical Medicine, George Washington University, Washington DC, United States of America
| | - David Rollinson
- Parasites and Vectors Division, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
| | - Bill C. H. Chang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D. Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
27
|
Ittiprasert W, Chatupheeraphat C, Mann VH, Li W, Miller A, Ogunbayo T, Tran K, Alrefaei YN, Mentink-Kane M, Brindley PJ. RNA-Guided AsCas12a- and SpCas9-Catalyzed Knockout and Homology Directed Repair of the Omega-1 Locus of the Human Blood Fluke, Schistosoma mansoni. Int J Mol Sci 2022; 23:631. [PMID: 35054816 PMCID: PMC8775552 DOI: 10.3390/ijms23020631] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 12/17/2022] Open
Abstract
The efficiency of the RNA-guided AsCas12a nuclease of Acidaminococcus sp. was compared with SpCas9 from Streptococcus pyogenes, for functional genomics in Schistosoma mansoni. We deployed optimized conditions for the ratio of guide RNAs to the nuclease, donor templates, and electroporation parameters, to target a key schistosome enzyme termed omega-1. Programmed cleavages catalyzed by Cas12a and Cas9 resulted in staggered- and blunt-ended strand breaks, respectively. AsCas12a was more efficient than SpCas9 for gene knockout, as determined by TIDE analysis. CRISPResso2 analysis confirmed that most mutations were deletions. Knockout efficiency of both nucleases markedly increased in the presence of single-stranded oligodeoxynucleotide (ssODN) template. With AsCas12a, ssODNs representative of both the non-CRISPR target (NT) and target (T) strands were tested, resulting in KO efficiencies of 15.67, 28.71, and 21.43% in the SpCas9 plus ssODN, AsCas12a plus NT-ssODN, and AsCas12a plus T-ssODN groups, respectively. Trans-cleavage against the ssODNs by activated AsCas12a was not apparent in vitro. SpCas9 catalyzed more precise transgene insertion, with knock-in efficiencies of 17.07% for the KI_Cas9 group, 14.58% for KI_Cas12a-NT-ssODN, and 12.37% for KI_Cas12a-T-ssODN. Although AsCas12a induced fewer mutations per genome than SpCas9, the phenotypic impact on transcription and expression of omega-1 was similar for both nucleases.
Collapse
Affiliation(s)
- Wannaporn Ittiprasert
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA; (C.C.); (V.H.M.); (W.L.); (Y.N.A.)
| | - Chawalit Chatupheeraphat
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA; (C.C.); (V.H.M.); (W.L.); (Y.N.A.)
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Victoria H. Mann
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA; (C.C.); (V.H.M.); (W.L.); (Y.N.A.)
| | - Wenhui Li
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA; (C.C.); (V.H.M.); (W.L.); (Y.N.A.)
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - André Miller
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD 20850, USA; (A.M.); (T.O.); (K.T.); (M.M.-K.)
| | - Taiwo Ogunbayo
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD 20850, USA; (A.M.); (T.O.); (K.T.); (M.M.-K.)
| | - Kenny Tran
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD 20850, USA; (A.M.); (T.O.); (K.T.); (M.M.-K.)
| | - Yousef N. Alrefaei
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA; (C.C.); (V.H.M.); (W.L.); (Y.N.A.)
- Department of Medical Laboratory Technology, College of Health Sciences, PAEET, Adailiya, Kuwait City 73101, Kuwait
| | - Margaret Mentink-Kane
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD 20850, USA; (A.M.); (T.O.); (K.T.); (M.M.-K.)
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA; (C.C.); (V.H.M.); (W.L.); (Y.N.A.)
| |
Collapse
|
28
|
Schistosoma mansoni α-N-acetylgalactosaminidase (SmNAGAL) regulates coordinated parasite movement and egg production. PLoS Pathog 2022; 18:e1009828. [PMID: 35025955 PMCID: PMC8791529 DOI: 10.1371/journal.ppat.1009828] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/26/2022] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
α-galactosidase (α-GAL) and α-N-acetylgalactosaminidase (α-NAGAL) are two glycosyl hydrolases responsible for maintaining cellular homeostasis by regulating glycan substrates on proteins and lipids. Mutations in the human genes encoding either enzyme lead to neurological and neuromuscular impairments seen in both Fabry- and Schindler/Kanzaki- diseases. Here, we investigate whether the parasitic blood fluke Schistosoma mansoni, responsible for the neglected tropical disease schistosomiasis, also contains functionally important α-GAL and α-NAGAL proteins. As infection, parasite maturation and host interactions are all governed by carefully-regulated glycosylation processes, inhibiting S. mansoni's α-GAL and α-NAGAL activities could lead to the development of novel chemotherapeutics. Sequence and phylogenetic analyses of putative α-GAL/α-NAGAL protein types showed Smp_089290 to be the only S. mansoni protein to contain the functional amino acid residues necessary for α-GAL/α-NAGAL substrate cleavage. Both α-GAL and α-NAGAL enzymatic activities were higher in females compared to males (p<0.05; α-NAGAL > α-GAL), which was consistent with smp_089290's female biased expression. Spatial localisation of smp_089290 revealed accumulation in parenchymal cells, neuronal cells, and the vitellaria and mature vitellocytes of the adult schistosome. siRNA-mediated knockdown (>90%) of smp_089290 in adult worms significantly inhibited α-NAGAL activity when compared to control worms (siLuc treated males, p<0.01; siLuc treated females, p<0.05). No significant reductions in α-GAL activities were observed in the same extracts. Despite this, decreases in α-NAGAL activities correlated with a significant inhibition in adult worm motility as well as in egg production. Programmed CRISPR/Cas9 editing of smp_089290 in adult worms confirmed the egg reduction phenotype. Based on these results, Smp_089290 was determined to act predominantly as an α-NAGAL (hereafter termed SmNAGAL) in schistosome parasites where it participates in coordinating movement and oviposition processes. Further characterisation of SmNAGAL and other functionally important glycosyl hydrolases may lead to the development of a novel anthelmintic class of compounds.
Collapse
|
29
|
Cheng S, Zhu B, Luo F, Lin X, Sun C, You Y, Yi C, Xu B, Wang J, Lu Y, Hu W. Comparative transcriptome profiles of Schistosoma japonicum larval stages: Implications for parasite biology and host invasion. PLoS Negl Trop Dis 2022; 16:e0009889. [PMID: 35025881 PMCID: PMC8791509 DOI: 10.1371/journal.pntd.0009889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/26/2022] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Schistosoma japonicum is prevalent in Asia with a wide mammalian host range, which leads to highly harmful zoonotic parasitic diseases. Most previous transcriptomic studies have been performed on this parasite, but mainly focus on stages inside the mammalian host. Moreover, few larval transcriptomic data are available in public databases. Here we mapped the detailed transcriptome profiles of four S. japonicum larval stages including eggs, miracidia, sporocysts and cercariae, providing a comprehensive development picture outside of the mammalian host. By analyzing the stage-specific/enriched genes, we identified functional genes associated with the biological characteristic at each stage: e.g. we observed enrichment of genes necessary for DNA replication only in sporocysts, while those involved in proteolysis were upregulated in sporocysts and/or cercariae. This data indicated that miracidia might use leishmanolysin and neprilysin to penetrate the snail, while elastase (SjCE2b) and leishmanolysin might contribute to the cercariae invasion. The expression profile of stem cell markers revealed potential germinal cell conversion during larval development. Additionally, our analysis indicated that tandem duplications had driven the expansion of the papain family in S. japonicum. Notably, all the duplicated cathepsin B-like proteases were highly expressed in cercariae. Utilizing our 3rd version of S. japonicum genome, we further characterized the alternative splicing profiles throughout these four stages. Taken together, the present study provides compressive gene expression profiles of S. japonicum larval stages and identifies a set of genes that might be involved in intermediate and definitive host invasion.
Collapse
Affiliation(s)
- Shaoyun Cheng
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Bingkuan Zhu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Fang Luo
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Xiying Lin
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Chengsong Sun
- Anhui Provincial Institute of Parasitic Diseases, Hefei, China
| | - Yanmin You
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Cun Yi
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Jipeng Wang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Yan Lu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Wei Hu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
30
|
Abstract
Schistosomes are long lived, intravascular parasitic platyhelminths that infect >200 million people globally. The molecular mechanisms used by these blood flukes to dampen host immune responses are described in this review. Adult worms express a collection of host-interactive tegumental ectoenzymes that can cleave host signaling molecules such as the "alarmin" ATP (cleaved by SmATPDase1), the platelet activator ADP (SmATPDase1, SmNPP5), and can convert AMP into the anti-inflammatory mediator adenosine (SmAP). SmAP can additionally cleave the lipid immunomodulator sphingosine-1-phosphate and the proinflammatory anionic polymer, polyP. In addition, the worms release a barrage of proteins (e.g., SmCB1, SjHSP70, cyclophilin A) that can impinge on immune cell function. Parasite eggs also release their own immunoregulatory proteins (e.g., IPSE/α1, omega1, SmCKBP) as do invasive cercariae (e.g., Sm16, Sj16). Some schistosome glycans (e.g., LNFPIII, LNnT) and lipids (e.g., Lyso-PS, LPC), produced by several life stages, likewise affect immune cell responses. The parasites not only produce eicosanoids (e.g., PGE2, PGD2-that can be anti-inflammatory) but can also induce host cells to release these metabolites. Finally, the worms release extracellular vesicles (EVs) containing microRNAs, and these too have been shown to skew host cell metabolism. Thus, schistosomes employ an array of biomolecules-protein, lipid, glycan, nucleic acid, and more, to bend host biochemistry to their liking. Many of the listed molecules have been individually shown capable of inducing aspects of the polarized Th2 response seen following infection (with the generation of regulatory T cells (Tregs), regulatory B cells (Bregs) and anti-inflammatory, alternatively activated (M2) macrophages). Precisely how host cells integrate the impact of these myriad parasite products following natural infection is not known. Several of the schistosome immunomodulators described here are in development as novel therapeutics against autoimmune, inflammatory, and other, nonparasitic, diseases.
Collapse
Affiliation(s)
- Sreemoyee Acharya
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Akram A. Da’dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Patrick J. Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
31
|
Le Clec’h W, Chevalier FD, McDew-White M, Menon V, Arya GA, Anderson TJ. Genetic architecture of transmission stage production and virulence in schistosome parasites. Virulence 2021; 12:1508-1526. [PMID: 34167443 PMCID: PMC8237990 DOI: 10.1080/21505594.2021.1932183] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 12/30/2022] Open
Abstract
Both theory and experimental data from pathogens suggest that the production of transmission stages should be strongly associated with virulence, but the genetic bases of parasite transmission/virulence traits are poorly understood. The blood fluke Schistosoma mansoni shows extensive variation in numbers of cercariae larvae shed and in their virulence to infected snail hosts, consistent with expected trade-offs between parasite transmission and virulence. We crossed schistosomes from two populations that differ 8-fold in cercarial shedding and in their virulence to Biomphalaria glabrata snail hosts, and determined four-week cercarial shedding profiles in F0 parents, F1 parents and 376 F2 progeny from two independent crosses in inbred snails. Sequencing and linkage analysis revealed that cercarial production is polygenic and controlled by five QTLs (i.e. Quantitative Trait Loci). These QTLs act additively, explaining 28.56% of the phenotypic variation. These results demonstrate that the genetic architecture of key traits relevant to schistosome ecology can be dissected using classical linkage mapping approaches.
Collapse
Affiliation(s)
- Winka Le Clec’h
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | | | | | - Vinay Menon
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Grace-Ann Arya
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | | |
Collapse
|
32
|
Chapman PR, Giacomin P, Loukas A, McCarthy JS. Experimental human hookworm infection: a narrative historical review. PLoS Negl Trop Dis 2021; 15:e0009908. [PMID: 34882670 PMCID: PMC8659326 DOI: 10.1371/journal.pntd.0009908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In 1896, a serendipitous laboratory accident led to the understanding that hookworms propagate infection by penetrating skin, a theory that was then confirmed with the first experimental human infection, reported in 1901. Experimental human infections undertaken in the 20th century enabled understanding of the natural history of infection and the immune response. More recently, experimental hookworm infection has been performed to investigate the immunomodulatory potential of hookworm infection and for the evaluation of hookworm vaccines and chemotherapeutic interventions. Experimental human hookworm infection has been proven to be safe, with no deaths observed in over 500 participants (although early reports predate systematic adverse event reporting) and no serious adverse events described in over 200 participants enrolled in contemporary clinical trials. While experimental human hookworm infection holds significant promise, as both a challenge model for testing anti-hookworm therapies and for treating various diseases of modernity, there are many challenges that present. These challenges include preparation and storage of larvae, which has not significantly changed since Harada and Mori first described their coproculture method in 1955. In vitro methods of hookworm larval culture, storage, and the development of meaningful potency or release assays are required. Surrogate markers of intestinal infection intensity are required because faecal egg counts or hookworm faecal DNA intensity lack the fidelity required for exploration of hookworm infection as a vaccine/drug testing platform or as a regulated therapy.
Collapse
Affiliation(s)
- Paul R. Chapman
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Herston, Australia
- Infectious Diseases Unit, Royal Brisbane and Women’s Hospital, Herston, Australia
| | - Paul Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - James S. McCarthy
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Herston, Australia
- Infectious Diseases Unit, Royal Brisbane and Women’s Hospital, Herston, Australia
| |
Collapse
|
33
|
CRISPR-Cas Technology: Emerging Applications in Clinical Microbiology and Infectious Diseases. Pharmaceuticals (Basel) 2021; 14:ph14111171. [PMID: 34832953 PMCID: PMC8625472 DOI: 10.3390/ph14111171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
Through the years, many promising tools for gene editing have been developed including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), CRISPR-associated protein 9 (Cas9), and homing endonucleases (HEs). These novel technologies are now leading new scientific advancements and practical applications at an inimitable speed. While most work has been performed in eukaryotes, CRISPR systems also enable tools to understand and engineer bacteria. The increase in the number of multi-drug resistant strains highlights a necessity for more innovative approaches to the diagnosis and treatment of infections. CRISPR has given scientists a glimmer of hope in this area that can provide a novel tool to fight against antimicrobial resistance. This system can provide useful information about the functions of genes and aid us to find potential targets for antimicrobials. This paper discusses the emerging use of CRISPR-Cas systems in the fields of clinical microbiology and infectious diseases with a particular emphasis on future prospects.
Collapse
|
34
|
Smith M, Yadav S, Fagunloye OG, Pels NA, Horton DA, Alsultan N, Borns A, Cousin C, Dixon F, Mann VH, Lee C, Brindley PJ, El-Sayed NM, Bridger JM, Knight M. PIWI silencing mechanism involving the retrotransposon nimbus orchestrates resistance to infection with Schistosoma mansoni in the snail vector, Biomphalaria glabrata. PLoS Negl Trop Dis 2021; 15:e0009094. [PMID: 34495959 PMCID: PMC8462715 DOI: 10.1371/journal.pntd.0009094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/24/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022] Open
Abstract
Background Schistosomiasis remains widespread in many regions despite efforts at its elimination. By examining changes in the transcriptome at the host-pathogen interface in the snail Biomphalaria glabrata and the blood fluke Schistosoma mansoni, we previously demonstrated that an early stress response in juvenile snails, manifested by induction of heat shock protein 70 (Hsp 70) and Hsp 90 and of the reverse transcriptase (RT) domain of the B. glabrata non-LTR- retrotransposon, nimbus, were critical for B. glabrata susceptibility to S. mansoni. Subsequently, juvenile B. glabrata BS-90 snails, resistant to S. mansoni at 25°C become susceptible by the F2 generation when maintained at 32°C, indicating an epigenetic response. Methodology/Principal findings To better understand this plasticity in susceptibility of the BS-90 snail, mRNA sequences were examined from S. mansoni exposed juvenile BS-90 snails cultured either at 25°C (non-permissive temperature) or 32°C (permissive). Comparative analysis of transcriptomes from snails cultured at the non-permissive and permissive temperatures revealed that whereas stress related transcripts dominated the transcriptome of susceptible BS-90 juvenile snails at 32°C, transcripts encoding proteins with a role in epigenetics, such as PIWI (BgPiwi), chromobox protein homolog 1 (BgCBx1), histone acetyltransferase (BgHAT), histone deacetylase (BgHDAC) and metallotransferase (BgMT) were highly expressed in those cultured at 25°C. To identify robust candidate transcripts that will underscore the anti-schistosome phenotype in B. glabrata, further validation of the differential expression of the above transcripts was performed by using the resistant BS-90 (25°C) and the BBO2 susceptible snail stock whose genome has now been sequenced and represents an invaluable resource for molecular studies in B. glabrata. A role for BgPiwi in B. glabrata susceptibility to S. mansoni, was further examined by using siRNA corresponding to the BgPiwi encoding transcript to suppress expression of BgPiwi, rendering the resistant BS-90 juvenile snail susceptible to infection at 25°C. Given transposon silencing activity of PIWI as a facet of its role as guardian of the integrity of the genome, we examined the expression of the nimbus RT encoding transcript at 120 min after infection of resistant BS90 piwi-siRNA treated snails. We observed that nimbus RT was upregulated, indicating that modulation of the transcription of the nimbus RT was associated with susceptibility to S. mansoni in BgPiwi-siRNA treated BS-90 snails. Furthermore, treatment of susceptible BBO2 snails with the RT inhibitor lamivudine, before exposure to S. mansoni, blocked S. mansoni infection concurrent with downregulation of the nimbus RT transcript and upregulation of the BgPiwi encoding transcript in the lamivudine-treated, schistosome-exposed susceptible snails. Conclusions and significance These findings support a role for the interplay of BgPiwi and nimbus in the epigenetic modulation of plasticity of resistance/susceptibility in the snail-schistosome relationship. Progress is being made to eliminate schistosomiasis, a tropical disease that remains endemic in the tropics and neotropics. In 2020, WHO proposed controlling the snail population as part of a strategy toward reducing schistosomiasis, a vector borne disease, by 2025. The life cycle of the causative parasite is, however, complex and in the absence of vaccines, new drugs, and access to clean water and sanitation, reduction of schistosomiasis will remain elusive. To break the parasite’s life cycle during the snail stage of its development, a better understanding of the molecular basis of how schistosomes survive, or not, in the snail is required. By examining changes in the transcriptome at the host-pathogen interface in the snail Biomphalaria glabrata and Schistosoma mansoni, we showed that early stress response, manifested by the induction of Heat Shock Proteins (Hsps) and the RT domain of the non-LTR retrotransposon, nimbus, were critical for snail susceptibility. Subsequently, juvenile B. glabrata BS-90 snails, resistant to S. mansoni at 25°C were observed to become susceptible by the F2 generation when maintained at 32°C, indicating an epigenetic response. This study confirms these earlier results and shows an interplay between PIWI and nimbus in the anti-schistosome response in the snail host.
Collapse
Affiliation(s)
- Michael Smith
- Howard University, Washington, District of Columbia, United States of America
| | - Swara Yadav
- Division of Science & Mathematics, University of the District of Columbia, Washington, District of Columbia, United States of America
| | - Olayemi G. Fagunloye
- Division of Science & Mathematics, University of the District of Columbia, Washington, District of Columbia, United States of America
| | - Nana Adjoa Pels
- Division of Science & Mathematics, University of the District of Columbia, Washington, District of Columbia, United States of America
| | - Daniel A. Horton
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University, London, United Kingdom
| | - Nashwah Alsultan
- Division of Science & Mathematics, University of the District of Columbia, Washington, District of Columbia, United States of America
| | - Andrea Borns
- Division of Science & Mathematics, University of the District of Columbia, Washington, District of Columbia, United States of America
| | - Carolyn Cousin
- Division of Science & Mathematics, University of the District of Columbia, Washington, District of Columbia, United States of America
| | - Freddie Dixon
- Division of Science & Mathematics, University of the District of Columbia, Washington, District of Columbia, United States of America
| | - Victoria H. Mann
- Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, United States of America
| | - Clarence Lee
- Division of Science & Mathematics, University of the District of Columbia, Washington, District of Columbia, United States of America
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, United States of America
| | - Najib M. El-Sayed
- Department of Cell Biology and Molecular Genetics and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Joanna M. Bridger
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University, London, United Kingdom
| | - Matty Knight
- Howard University, Washington, District of Columbia, United States of America
- Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, United States of America
- * E-mail: ,
| |
Collapse
|
35
|
Campos TL, Korhonen PK, Hofmann A, Gasser RB, Young ND. Harnessing model organism genomics to underpin the machine learning-based prediction of essential genes in eukaryotes - Biotechnological implications. Biotechnol Adv 2021; 54:107822. [PMID: 34461202 DOI: 10.1016/j.biotechadv.2021.107822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022]
Abstract
The availability of high-quality genomes and advances in functional genomics have enabled large-scale studies of essential genes in model eukaryotes, including the 'elegant worm' (Caenorhabditis elegans; Nematoda) and the 'vinegar fly' (Drosophila melanogaster; Arthropoda). However, this is not the case for other, much less-studied organisms, such as socioeconomically important parasites, for which functional genomic platforms usually do not exist. Thus, there is a need to develop innovative techniques or approaches for the prediction, identification and investigation of essential genes. A key approach that could enable the prediction of such genes is machine learning (ML). Here, we undertake an historical review of experimental and computational approaches employed for the characterisation of essential genes in eukaryotes, with a particular focus on model ecdysozoans (C. elegans and D. melanogaster), and discuss the possible applicability of ML-approaches to organisms such as socioeconomically important parasites. We highlight some recent results showing that high-performance ML, combined with feature engineering, allows a reliable prediction of essential genes from extensive, publicly available 'omic data sets, with major potential to prioritise such genes (with statistical confidence) for subsequent functional genomic validation. These findings could 'open the door' to fundamental and applied research areas. Evidence of some commonality in the essential gene-complement between these two organisms indicates that an ML-engineering approach could find broader applicability to ecdysozoans such as parasitic nematodes or arthropods, provided that suitably large and informative data sets become/are available for proper feature engineering, and for the robust training and validation of algorithms. This area warrants detailed exploration to, for example, facilitate the identification and characterisation of essential molecules as novel targets for drugs and vaccines against parasitic diseases. This focus is particularly important, given the substantial impact that such diseases have worldwide, and the current challenges associated with their prevention and control and with drug resistance in parasite populations.
Collapse
Affiliation(s)
- Tulio L Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia; Bioinformatics Core Facility, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (IAM-Fiocruz), Recife, Pernambuco, Brazil
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
36
|
|
37
|
Lu Z, Sankaranarayanan G, Rawlinson KA, Offord V, Brindley PJ, Berriman M, Rinaldi G. The Transcriptome of Schistosoma mansoni Developing Eggs Reveals Key Mediators in Pathogenesis and Life Cycle Propagation. FRONTIERS IN TROPICAL DISEASES 2021; 2:713123. [PMID: 36389622 PMCID: PMC7613829 DOI: 10.3389/fitd.2021.713123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Schistosomiasis, the most important helminthic disease of humanity, is caused by infection with parasitic flatworms of the genus Schistosoma. The disease is driven by parasite eggs becoming trapped in host tissues, followed by inflammation and granuloma formation. Despite abundant transcriptome data for most developmental stages of the three main human-infective schistosome species—Schistosoma mansoni, S. japonicum and S. haematobium—the transcriptomic profiles of developing eggs remain under unexplored. In this study, we performed RNAseq of S. mansoni eggs laid in vitro during early and late embryogenesis, days 1-3 and 3-6 post-oviposition, respectively. Analysis of the transcriptomes identified hundreds of up-regulated genes during the later stage, including venom allergen-like (VAL) proteins, well-established host immunomodulators, and genes involved in organogenesis of the miracidium larva. In addition, the transcriptomes of the in vitro laid eggs were compared with existing publicly available RNA-seq datasets from S. mansoni eggs collected from the livers of rodent hosts. Analysis of enriched GO terms and pathway annotations revealed cell division and protein synthesis processes associated with early embryogenesis, whereas cellular metabolic processes, microtubule-based movement, and microtubule cytoskeleton organization were enriched in the later developmental time point. This is the first transcriptomic analysis of S. mansoni embryonic development, and will facilitate our understanding of infection pathogenesis, miracidial development and life cycle progression of schistosomes.
Collapse
Affiliation(s)
- Zhigang Lu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | | | - Kate A. Rawlinson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Victoria Offord
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Correspondence: Gabriel Rinaldi,
| |
Collapse
|
38
|
Oyesola OO, Tait Wojno ED. Prostaglandin regulation of type 2 inflammation: From basic biology to therapeutic interventions. Eur J Immunol 2021; 51:2399-2416. [PMID: 34396535 PMCID: PMC8843787 DOI: 10.1002/eji.202048909] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/11/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022]
Abstract
Type 2 immunity is critical for the protective and repair responses that mediate resistance to parasitic helminth infection. This immune response also drives aberrant inflammation during atopic diseases. Prostaglandins are a class of critical lipid mediators that are released during type 2 inflammation and are integral in controlling the initiation, activation, maintenance, effector functions, and resolution of Type 2 inflammation. In this review, we explore the roles of the different prostaglandin family members and the receptors they bind to during allergen‐ and helminth‐induced Type 2 inflammation and the mechanism through which prostaglandins promote or suppress Type 2 inflammation. Furthermore, we discuss the potential role of prostaglandins produced by helminth parasites in the regulation of host–pathogen interactions, and how prostaglandins may regulate the inverse relationship between helminth infection and allergy. Finally, we discuss opportunities to capitalize on our understanding of prostaglandin pathways to develop new therapeutic options for humans experiencing Type 2 inflammatory disorders that have a significant prostaglandin‐driven component including allergic rhinitis and asthma.
Collapse
Affiliation(s)
- Oyebola O Oyesola
- Department of Immunology, University of Washington, Seattle, WA, 98117, USA
| | - Elia D Tait Wojno
- Department of Immunology, University of Washington, Seattle, WA, 98117, USA
| |
Collapse
|
39
|
McManus DP. The Search for a Schistosomiasis Vaccine: Australia's Contribution. Vaccines (Basel) 2021; 9:vaccines9080872. [PMID: 34451997 PMCID: PMC8402410 DOI: 10.3390/vaccines9080872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023] Open
Abstract
Schistosomiasis, a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma, results in considerable human morbidity in sub-Saharan Africa, in particular, but also parts of the Middle East, South America, and Southeast Asia. The anti-schistosome drug praziquantel is efficacious and safe against the adult parasites of all Schistosoma species infecting humans; however, it does not prevent reinfection and the development of drug resistance is a constant concern. The need to develop an effective vaccine is of great importance if the health of many in the developing world is to be improved. Indeed, vaccination, in combination with other public health measures, can provide an invaluable tool to achieve lasting control, leading to schistosomiasis elimination. Australia has played a leading role in schistosomiasis vaccine research over many years and this review presents an overview of some of the significant contributions made by Australian scientists in this important area.
Collapse
Affiliation(s)
- Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| |
Collapse
|
40
|
Rodpai R, Sanpool O, Thanchomnang T, Laoraksawong P, Sadaow L, Boonroumkaew P, Wangwiwatsin A, Wongkham C, Laummaunwai P, Ittiprasert W, Brindley PJ, Intapan PM, Maleewong W. Exposure to dexamethasone modifies transcriptomic responses of free-living stages of Strongyloides stercoralis. PLoS One 2021; 16:e0253701. [PMID: 34181669 PMCID: PMC8238218 DOI: 10.1371/journal.pone.0253701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperinfection and disseminated infection by the parasitic nematode Strongyloides stercoralis can be induced by iatrogenic administration of steroids and immunosuppression and lead to an elevated risk of mortality. Responses of free-living stages of S. stercoralis to the therapeutic corticosteroid dexamethasone (DXM) were investigated using RNA-seq transcriptomes of DXM-treated female and male worms. A total of 17,950 genes representing the transcriptome of these free-living adult stages were obtained, among which 199 and 263 were differentially expressed between DXM-treated females and DXM-treated males, respectively, compared with controls. According to Gene Ontology analysis, differentially expressed genes from DXM-treated females participate in developmental process, multicellular organismal process, cell differentiation, carbohydrate metabolic process and embryonic morphogenesis. Others are involved in signaling and signal transduction, including cAMP, cGMP-dependent protein kinase pathway, endocrine system, and thyroid hormone pathway, as based on Kyoto Encyclopedia of Genes and Genomes analysis. The novel findings warrant deeper investigation of the influence of DXM on growth and other pathways in this neglected tropical disease pathogen, particularly in a setting of autoimmune and/or allergic disease, which may require the clinical use of steroid-like hormones during latent or covert strongyloidiasis.
Collapse
Affiliation(s)
- Rutchanee Rodpai
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Oranuch Sanpool
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | | | - Pokkamol Laoraksawong
- School of Health Science, Sukhothai Thammathirat Open University, Nonthaburi, Thailand
| | - Lakkhana Sadaow
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Patcharaporn Boonroumkaew
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Arporn Wangwiwatsin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Porntip Laummaunwai
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Wannaporn Ittiprasert
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States of America
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States of America
| | - Pewpan M. Intapan
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
41
|
You H, Mayer JU, Johnston RL, Sivakumaran H, Ranasinghe S, Rivera V, Kondrashova O, Koufariotis LT, Du X, Driguez P, French JD, Waddell N, Duke MG, Ittiprasert W, Mann VH, Brindley PJ, Jones MK, McManus DP. CRISPR/Cas9-mediated genome editing of Schistosoma mansoni acetylcholinesterase. FASEB J 2021; 35:e21205. [PMID: 33337558 DOI: 10.1096/fj.202001745rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
CRISPR/Cas9-mediated genome editing shows cogent potential for the genetic modification of helminth parasites. We report successful gene knock-in (KI) into the genome of the egg of Schistosoma mansoni by combining CRISPR/Cas9 with single-stranded oligodeoxynucleotides (ssODNs). We edited the acetylcholinesterase (AChE) gene of S. mansoni targeting two guide RNAs (gRNAs), X5 and X7, located on exon 5 and exon 7 of Smp_154600, respectively. Eggs recovered from livers of experimentally infected mice were transfected by electroporation with a CRISPR/Cas9-vector encoding gRNA X5 or X7 combining with/ without a ssODN donor. Next generation sequencing analysis of reads of amplicon libraries spanning targeted regions revealed that the major modifications induced by CRISPR/Cas9 in the eggs were generated by homology directed repair (HDR). Furthermore, soluble egg antigen from AChE-edited eggs exhibited markedly reduced AChE activity, indicative that programed Cas9 cleavage mutated the AChE gene. Following injection of AChE-edited schistosome eggs into the tail veins of mice, an significantly enhanced Th2 response involving IL-4, -5, -10, and-13 was detected in lung cells and splenocytes in mice injected with X5-KI eggs in comparison to control mice injected with unmutated eggs. A Th2-predominant response, with increased levels of IL-4, -13, and GATA3, also was induced by X5 KI eggs in small intestine-draining mesenteric lymph node cells when the gene-edited eggs were introduced into the subserosa of the ileum of the mice. These findings confirmed the potential and the utility of CRISPR/Cas9-mediated genome editing for functional genomics in schistosomes.
Collapse
Affiliation(s)
- Hong You
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Rebecca L Johnston
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Haran Sivakumaran
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Shiwanthi Ranasinghe
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Vanessa Rivera
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Olga Kondrashova
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lambros T Koufariotis
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Xiaofeng Du
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Patrick Driguez
- King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Juliet D French
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nicola Waddell
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Mary G Duke
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wannaporn Ittiprasert
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA
| | - Victoria H Mann
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA
| | - Paul J Brindley
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA
| | - Malcolm K Jones
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Donald P McManus
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
42
|
High-content approaches to anthelmintic drug screening. Trends Parasitol 2021; 37:780-789. [PMID: 34092518 DOI: 10.1016/j.pt.2021.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022]
Abstract
Most anthelmintics were discovered through in vivo screens using animal models of infection. Developing in vitro assays for parasitic worms presents several challenges. The lack of in vitro life cycle culture protocols requires harvesting worms from vertebrate hosts or vectors, limiting assay throughput. Once worms are removed from the host environment, established anthelmintics often show no obvious phenotype - raising concerns about the predictive value of many in vitro assays. However, with recent progress in understanding how anthelmintics subvert host-parasite interactions, and breakthroughs in high-content imaging and machine learning, in vitro assays have the potential to discern subtle cryptic parasite phenotypes. These may prove better endpoints than conventional in vitro viability assays.
Collapse
|
43
|
Fontenla S, Rinaldi G, Tort JF. Lost and Found: Piwi and Argonaute Pathways in Flatworms. Front Cell Infect Microbiol 2021; 11:653695. [PMID: 34123869 PMCID: PMC8191739 DOI: 10.3389/fcimb.2021.653695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Platyhelminthes comprise one of the major phyla of invertebrate animals, inhabiting a wide range of ecosystems, and one of the most successful in adapting to parasitic life. Small non-coding RNAs have been implicated in regulating complex developmental transitions in model parasitic species. Notably, parasitic flatworms have lost Piwi RNA pathways but gained a novel Argonaute gene. Herein, we analyzed, contrasted and compared the conservation of small RNA pathways among several free-living species (a paraphyletic group traditionally known as ‘turbellarians’) and parasitic species (organized in the monophyletic clade Neodermata) to disentangle possible adaptations during the transition to parasitism. Our findings showed that complete miRNA and RNAi pathways are present in all analyzed free-living flatworms. Remarkably, whilst all ‘turbellarians’ have Piwi proteins, these were lost in parasitic Neodermantans. Moreover, two clusters of Piwi class Argonaute genes are present in all ‘turbellarians’. Interestingly, we identified a divergent Piwi class Argonaute in free living flatworms exclusively, which we named ‘Fliwi’. In addition, other key proteins of the Piwi pathways were conserved in ‘turbellarians’, while none of them were detected in Neodermatans. Besides Piwi and the canonical Argonaute proteins, a flatworm-specific class of Argonautes (FL-Ago) was identified in the analyzed species confirming its ancestrallity to all Platyhelminthes. Remarkably, this clade was expanded in parasitic Neodermatans, but not in free-living species. These phyla-specific Argonautes showed lower sequence conservation compared to other Argonaute proteins, suggesting that they might have been subjected to high evolutionary rates. However, key residues involved in the interaction with the small RNA and mRNA cleavage in the canonical Argonautes were more conserved in the FL-Agos than in the Piwi Argonautes. Whether this is related to specialized functions and adaptations to parasitism in Neodermatans remains unclear. In conclusion, differences detected in gene conservation, sequence and structure of the Argonaute family suggest tentative biological and evolutionary diversifications that are unique to Platyhelminthes. The remarkable divergencies in the small RNA pathways between free-living and parasitic flatworms indicate that they may have been involved in the adaptation to parasitism of Neodermatans.
Collapse
Affiliation(s)
- Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | | | - Jose F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| |
Collapse
|
44
|
Bennett APS, Robinson MW. Trematode Proteomics: Recent Advances and Future Directions. Pathogens 2021; 10:348. [PMID: 33809501 PMCID: PMC7998542 DOI: 10.3390/pathogens10030348] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 12/14/2022] Open
Abstract
Trematodes cause disease in millions of people worldwide, but the absence of commercial vaccines has led to an over-reliance on a handful of monotherapies to control infections. Since drug-resistant fluke populations are emerging, a deeper understanding of parasite biology and host interactions is required to identify new drug targets and immunogenic vaccine candidates. Mass spectrometry-based proteomics represents a key tool to that end. Recent studies have capitalised on the wider availability of annotated helminth genomes to achieve greater coverage of trematode proteomes and discover new aspects of the host-parasite relationship. This review focusses on these latest advances. These include how the protein components of fluke extracellular vesicles have given insight into their biogenesis and cellular interactions. In addition, how the integration of transcriptome/proteome datasets has revealed that the expression and secretion of selected families of liver fluke virulence factors and immunomodulators are regulated in accordance with parasite development and migration within the mammalian host. Furthermore, we discuss the use of immunoproteomics as a tool to identify vaccine candidates associated with protective antibody responses. Finally, we highlight how established and emerging technologies, such as laser microdissection and single-cell proteomics, could be exploited to resolve the protein profiles of discrete trematode tissues or cell types which, in combination with functional tools, could pinpoint optimal targets for fluke control.
Collapse
Affiliation(s)
| | - Mark W. Robinson
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK;
| |
Collapse
|
45
|
You H, Jones MK, Whitworth DJ, McManus DP. Innovations and Advances in Schistosome Stem Cell Research. Front Immunol 2021; 12:599014. [PMID: 33746946 PMCID: PMC7973109 DOI: 10.3389/fimmu.2021.599014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Schistosomes infect about 250 million people globally causing the devastating and persistent disease of schistosomiasis. These blood flukes have a complicated life cycle involving alternating infection of freshwater snail intermediate and definitive mammalian hosts. To survive and flourish in these diverse environments, schistosomes transition through a number of distinct life-cycle stages as a result of which they change their body plan in order to quickly adapt to each new environment. Current research suggests that stem cells, present in adults and larvae, are key in aiding schistosomes to facilitate these changes. Given the recent advances in our understanding of schistosome stem cell biology, we review the key roles that two major classes of cells play in the different life cycle stages during intramolluscan and intramammalian development; these include the germinal cells of sporocysts involved in asexual reproduction in molluscan hosts and the neoblasts of adult worms involved in sexual reproduction in human and other mammalian hosts. These studies shed considerable new light in revealing the stem cell heterogeneity driving the propagation of the schistosome life cycle. We also consider the possibility and value of establishing stem cell lines in schistosomes to advance schistosomiasis research. The availability of such self-renewable resources will provide new platforms to study stem cell behavior and regulation, and to address fundamental aspects of schistosome biology, reproductive development and survival. In turn, such studies will create new avenues to unravel individual gene function and to optimize genome-editing processes in blood flukes, which may lead to the design of novel intervention strategies for schistosomiasis.
Collapse
Affiliation(s)
- Hong You
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Malcolm K Jones
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Deanne J Whitworth
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Donald P McManus
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
46
|
Douglas B, Oyesola O, Cooper MM, Posey A, Tait Wojno E, Giacomin PR, Herbert DR. Immune System Investigation Using Parasitic Helminths. Annu Rev Immunol 2021; 39:639-665. [PMID: 33646858 DOI: 10.1146/annurev-immunol-093019-122827] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Coevolutionary adaptation between humans and helminths has developed a finely tuned balance between host immunity and chronic parasitism due to immunoregulation. Given that these reciprocal forces drive selection, experimental models of helminth infection are ideally suited for discovering how host protective immune responses adapt to the unique tissue niches inhabited by these large metazoan parasites. This review highlights the key discoveries in the immunology of helminth infection made over the last decade, from innate lymphoid cells to the emerging importance of neuroimmune connections. A particular emphasis is placed on the emerging areas within helminth immunology where the most growth is possible, including the advent of genetic manipulation of parasites to study immunology and the use of engineered T cells for therapeutic options. Lastly,we cover the status of human challenge trials with helminths as treatment for autoimmune disease, which taken together, stand to keep the study of parasitic worms at the forefront of immunology for years to come.
Collapse
Affiliation(s)
- Bonnie Douglas
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| | - Oyebola Oyesola
- Department of Immunology, University of Washington, Seattle, Washington 98109, USA; ,
| | - Martha M Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; ,
| | - Avery Posey
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Elia Tait Wojno
- Department of Immunology, University of Washington, Seattle, Washington 98109, USA; ,
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; ,
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| |
Collapse
|
47
|
Hambrook JR, Hanington PC. Immune Evasion Strategies of Schistosomes. Front Immunol 2021; 11:624178. [PMID: 33613562 PMCID: PMC7889519 DOI: 10.3389/fimmu.2020.624178] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Human schistosomes combat the unique immune systems of two vastly different hosts during their indirect life cycles. In gastropod molluscs, they face a potent innate immune response composed of variable immune recognition molecules and highly phagocytic hemocytes. In humans, a wide variety of innate and adaptive immune processes exist in proximity to these parasites throughout their lifespan. To survive and thrive as the second most common parasitic disease in humans, schistosomes have evolved many techniques to avoid and combat these targeted host responses. Among these techniques are molecular mimicry of host antigens, the utilization of an immune resistant outer tegument, the secretion of several potent proteases, and targeted release of specific immunomodulatory factors affecting immune cell functions. This review seeks to describe these key immune evasion mechanisms, among others, which schistosomes use to survive in both of their hosts. After diving into foundational observational studies of the processes mediating the establishment of schistosome infections, more recent transcriptomic and proteomic studies revealing crucial components of the host/parasite molecular interface are discussed. In order to combat this debilitating and lethal disease, a comprehensive understanding of schistosome immune evasion strategies is necessary for the development of novel therapeutics and treatment plans, necessitating the discussion of the numerous ways in which these parasitic flatworms overcome the immune responses of both hosts.
Collapse
Affiliation(s)
- Jacob R Hambrook
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
48
|
Sankaranarayanan G, Coghlan A, Driguez P, Lotkowska ME, Sanders M, Holroyd N, Tracey A, Berriman M, Rinaldi G. Large CRISPR-Cas-induced deletions in the oxamniquine resistance locus of the human parasite Schistosoma mansoni. Wellcome Open Res 2021; 5:178. [PMID: 32789192 PMCID: PMC7405262 DOI: 10.12688/wellcomeopenres.16031.2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
Background. At least 250 million people worldwide suffer from schistosomiasis, caused by Schistosoma worms. Genome sequences for several Schistosoma species are available, including a high-quality annotated reference for Schistosoma mansoni. There is a pressing need to develop a reliable functional toolkit to translate these data into new biological insights and targets for intervention. CRISPR-Cas9 was recently demonstrated for the first time in S. mansoni, to produce somatic mutations in the omega-1 ( ω1) gene. Methods. We employed CRISPR-Cas9 to introduce somatic mutations in a second gene, SULT-OR, a sulfotransferase expressed in the parasitic stages of S. mansoni, in which mutations confer resistance to the drug oxamniquine. A 262-bp PCR product spanning the region targeted by the gRNA against SULT-OR was amplified, and mutations identified in it by high-throughput sequencing. Results. We found that 0.3-2.0% of aligned reads from CRISPR-Cas9-treated adult worms showed deletions spanning the predicted Cas9 cut site, compared to 0.1-0.2% for sporocysts, while deletions were extremely rare in eggs. The most common deletion observed in adults and sporocysts was a 34 bp-deletion directly upstream of the predicted cut site, but rarer deletions reaching as far as 102 bp upstream of the cut site were also detected. The CRISPR-Cas9-induced deletions, if homozygous, are predicted to cause resistance to oxamniquine by producing frameshifts, ablating SULT-OR transcription, or leading to mRNA degradation via the nonsense-mediated mRNA decay pathway. However, no SULT-OR knock down at the mRNA level was observed, presumably because the cells in which CRISPR-Cas9 did induce mutations represented a small fraction of all cells expressing SULT-OR. Conclusions. Further optimisation of CRISPR-Cas protocols for different developmental stages and particular cell types, including germline cells, will contribute to the generation of a homozygous knock-out in any gene of interest, and in particular the SULT-OR gene to derive an oxamniquine-resistant stable transgenic line.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alan Tracey
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | | | | |
Collapse
|
49
|
Tumor Necrosis Factor and Schistosoma mansoni egg antigen omega-1 shape distinct aspects of the early egg-induced granulomatous response. PLoS Negl Trop Dis 2021; 15:e0008814. [PMID: 33465071 PMCID: PMC7845976 DOI: 10.1371/journal.pntd.0008814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/29/2021] [Accepted: 11/17/2020] [Indexed: 11/29/2022] Open
Abstract
Infections by schistosomes result in granulomatous lesions around parasite eggs entrapped within the host tissues. The host and parasite determinants of the Schistosoma mansoni egg-induced granulomatous response are areas of active investigation. Some studies in mice implicate Tumor Necrosis Factor (TNF) produced in response to the infection whereas others fail to find a role for it. In addition, in the mouse model, the S. mansoni secreted egg antigen omega-1 is found to induce granulomas but the underlying mechanism remains unknown. We have recently developed the zebrafish larva as a model to study macrophage recruitment and granuloma formation in response to Schistosoma mansoni eggs. Here we use this model to investigate the mechanisms by which TNF and omega-1 shape the early granulomatous response. We find that TNF, specifically signaling through TNF receptor 1, is not required for macrophage recruitment to the egg and granuloma initiation but does mediate granuloma enlargement. In contrast, omega-1 mediates initial macrophage recruitment, with this chemotactic activity being dependent on its RNase activity. Our findings further the understanding of the role of these host- and parasite-derived factors and show that they impact distinct facets of the granulomatous response to the schistosome egg. Schistosomiasis is a disease caused by parasitic flatworms which lay eggs within the veins of their human host. Upon sensing the parasite egg, macrophages, the first line defense cells, aggregate tightly around the egg to encapsulate it within an immune structure known as a granuloma. These granulomas are the key pathological structures which determine both host disease outcome and parasite transmission. Studies in mice have implicated omega-1, a secreted parasite protein. Omega-1 is an RNase, an enzyme that degrades host RNA. Mouse studies have also suggested that a host defense protein, Tumor Necrosis Factor (TNF), is required to form granulomas around the egg. We used the small and transparent zebrafish larva to examine the requirement of omega-1 and TNF for granuloma formation. We find that omega-1 induces rapid macrophage migration and that its RNase activity is required for this. In contrast, TNF is not involved in the initial recruitment of macrophages. Rather, it enlarges granulomas after they are initiated. These findings improve our understanding of the role of omega-1 and TNF, and show that they impact distinct facets of granuloma formation around Schistosoma eggs.
Collapse
|
50
|
Santos LL, Santos J, Gouveia MJ, Bernardo C, Lopes C, Rinaldi G, Brindley PJ, da Costa JMC. Urogenital Schistosomiasis-History, Pathogenesis, and Bladder Cancer. J Clin Med 2021; 10:jcm10020205. [PMID: 33429985 PMCID: PMC7826813 DOI: 10.3390/jcm10020205] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Schistosomiasis is the most important helminthiasis worldwide in terms of morbidity and mortality. Most of the infections occurs in Africa, which about two thirds are caused by Schistosoma haematobium. The infection with S. haematobium is considered carcinogenic leading to squamous cell carcinoma (SCC) and urothelial carcinoma of the urinary bladder. Additionally, it is responsible for female genital schistosomiasis leading to infertility and higher risk of human immunodeficiency virus (HIV) transmission. Remarkably, a recent outbreak in Corsica (France) drew attention to its potential re-mergence in Southern Europe. Thus far, little is known related to host-parasite interactions that trigger carcinogenesis. However, recent studies have opened new avenues to understand mechanisms on how the parasite infection can lead cancer and other associated pathologies. Here, we present a historical perspective of schistosomiasis, and review the infection-associated pathologies and studies on host-parasite interactions that unveil tentative mechanisms underlying schistosomiasis-associated carcinogenesis.
Collapse
Affiliation(s)
- Lúcio Lara Santos
- Experimental Pathology and Therapeutics, Research Centre, Portuguese Oncology Institute—Porto (IPO-Porto), 4200-072 Porto, Portugal; (L.L.S.); (C.L.)
- Department of Surgical Oncology, Portuguese Oncology Institute—Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Urology Department, Hospital Américo Boavida, Luanda 00200, Angola;
| | - Júlio Santos
- Urology Department, Hospital Américo Boavida, Luanda 00200, Angola;
| | - Maria João Gouveia
- Center for the Study in Animal Science (CECA/ICETA), University of Porto, Rua de D. Manuel II, Apt 55142, 4051-401 Porto, Portugal;
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
| | - Carina Bernardo
- Hormones and Cancer Lab, Institute of Biomedicine, iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Carlos Lopes
- Experimental Pathology and Therapeutics, Research Centre, Portuguese Oncology Institute—Porto (IPO-Porto), 4200-072 Porto, Portugal; (L.L.S.); (C.L.)
- Department of Surgical Oncology, Portuguese Oncology Institute—Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK;
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA;
- Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - José M. Correia da Costa
- Center for the Study in Animal Science (CECA/ICETA), University of Porto, Rua de D. Manuel II, Apt 55142, 4051-401 Porto, Portugal;
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
- Correspondence:
| |
Collapse
|