1
|
Han Z, Qiu Y, Pan T, Wang L, Wang J, Liu K. GhMAC3e is involved in plant growth and defense response to Verticillium dahliae. PLANT CELL REPORTS 2024; 43:259. [PMID: 39390296 DOI: 10.1007/s00299-024-03348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
KEY MESSAGE GhMAC3e expression was induced by various stresses and hormones. GhMAC3e may regulate plant growth by influencing auxin distribution, and play important roles in Verticillium wilt resistance via mediating SA signaling. The MOS4-Associated Complex (MAC) is a highly conserved protein complex involved in pre-mRNA splicing and spliceosome assembly, which plays a vital role in plant immunity. It comprises key components such as MOS4, CDC5, and PRL1. MAC3A/B, as U-box E3 ubiquitin ligases, are crucial for various plant processes including development, stress responses, and disease resistance. However, their roles in cotton remain largely unknown. In this study, we first cloned the GhMAC3e gene from cotton and explored its biological functions by using virus-induced gene silencing (VIGS) in cotton and transgenic overexpression in Arabidopsis. The results showed that GhMAC3e is ubiquitously expressed in cotton tissues and could be induced by salt stress, Verticillium dahliae (VD) infection, PEG, ABA, ETH, GA3, MeJA, and SA. Silencing GhMAC3e retarded primary stem growth and reduced biomass of cotton coupled with the reduced auxin content in the petioles and veins. Silencing GhMAC3e up-regulated expression of cell growth-related genes GhXTH16 and Gh3.6, while down-regulated GhSAUR12 expression. Ectopic expression of GhMAC3e in Arabidopsis significantly enhanced its resistance to Verticillium wilt (VW) in terms of decreased pathogen biomass and lowered plant mortality. Overexpression of GhMAC3e dramatically upregulated AtPR1 by around 15 fold and more than 262 fold under basal and VD inoculation condition, respectively. This change was not associated with the expression of GhNPR1. In conclusion, GhMAC3e may not only regulate plant growth by influencing auxin distribution and growth-related gene expression, but also play important roles in VW resistance via mediating SA signaling independent of NPR1 transcription level.
Collapse
Affiliation(s)
- Zhenghong Han
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Cosponsored by Jiangsu Province and Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yuanyuan Qiu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Cosponsored by Jiangsu Province and Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ting Pan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Cosponsored by Jiangsu Province and Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Longjie Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Cosponsored by Jiangsu Province and Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Cosponsored by Jiangsu Province and Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Kang Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Cosponsored by Jiangsu Province and Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Yu Z, Qu X, Lv B, Li X, Sui J, Yu Q, Ding Z. MAC3A and MAC3B mediate degradation of the transcription factor ERF13 and thus promote lateral root emergence. THE PLANT CELL 2024; 36:3162-3176. [PMID: 38366565 PMCID: PMC11371146 DOI: 10.1093/plcell/koae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Lateral roots (LRs) increase root surface area and allow plants greater access to soil water and nutrients. LR formation is tightly regulated by the phytohormone auxin. Whereas the transcription factor ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR13 (ERF13) prevents LR emergence in Arabidopsis (Arabidopsis thaliana), auxin activates MITOGEN-ACTIVATED PROTEIN KINASE14 (MPK14), which leads to ERF13 degradation and ultimately promotes LR emergence. In this study, we discovered interactions between ERF13 and the E3 ubiquitin ligases MOS4-ASSOCIATED COMPLEX 3A (MAC3A) and MAC3B. As MAC3A and MAC3B gradually accumulate in the LR primordium, ERF13 levels gradually decrease. We demonstrate that MAC3A and MAC3B ubiquitinate ERF13, leading to its degradation and accelerating the transition of LR primordia from stages IV to V. Auxin enhances the MAC3A and MAC3B interaction with ERF13 by facilitating MPK14-mediated ERF13 phosphorylation. In summary, this study reveals the molecular mechanism by which auxin eliminates the inhibitory factor ERF13 through the MPK14-MAC3A and MAC3B signaling module, thus promoting LR emergence.
Collapse
Affiliation(s)
- Zipeng Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Xingzhen Qu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Bingsheng Lv
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xiaoxuan Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jiaxuan Sui
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Qianqian Yu
- School of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
3
|
Liu W, Lowrey H, Xu A, Leung CC, Adamchek C, He J, Du J, Chen M, Gendron JM. A circadian clock output functions independently of phyB to sustain daytime PIF3 degradation. Proc Natl Acad Sci U S A 2024; 121:e2408322121. [PMID: 39163340 PMCID: PMC11363348 DOI: 10.1073/pnas.2408322121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
The circadian clock is an endogenous oscillator, and its importance lies in its ability to impart rhythmicity on downstream biological processes, or outputs. Our knowledge of output regulation, however, is often limited to an understanding of transcriptional connections between the clock and outputs. For instance, the clock is linked to plant growth through the gating of photoreceptors via rhythmic transcription of the nodal growth regulators, PHYTOCHROME-INTERACTING FACTORs (PIFs), but the clock's role in PIF protein stability is less clear. Here, we identified a clock-regulated, F-box type E3 ubiquitin ligase, CLOCK-REGULATED F-BOX WITH A LONG HYPOCOTYL 1 (CFH1), that specifically interacts with and degrades PIF3 during the daytime. Additionally, genetic evidence indicates that CFH1 functions primarily in monochromatic red light, yet CFH1 confers PIF3 degradation independent of the prominent red-light photoreceptor phytochrome B (phyB). This work reveals a clock-mediated growth regulation mechanism in which circadian expression of CFH1 promotes sustained, daytime PIF3 degradation in parallel with phyB signaling.
Collapse
Affiliation(s)
- Wei Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| | - Harper Lowrey
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| | - Anxu Xu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| | - Chun Chung Leung
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| | - Christopher Adamchek
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| | - Jiangman He
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Juan Du
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Joshua M. Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| |
Collapse
|
4
|
Zhu S, Pan L, Vu LD, Xu X, Orosa-Puente B, Zhu T, Neyt P, van de Cotte B, Jacobs TB, Gendron JM, Spoel SH, Gevaert K, De Smet I. Phosphoproteome analyses pinpoint the F-box protein SLOW MOTION as a regulator of warm temperature-mediated hypocotyl growth in Arabidopsis. THE NEW PHYTOLOGIST 2024; 241:687-702. [PMID: 37950543 PMCID: PMC11091872 DOI: 10.1111/nph.19383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/30/2023] [Indexed: 11/12/2023]
Abstract
Hypocotyl elongation is controlled by several signals and is a major characteristic of plants growing in darkness or under warm temperature. While already several molecular mechanisms associated with this process are known, protein degradation and associated E3 ligases have hardly been studied in the context of warm temperature. In a time-course phosphoproteome analysis on Arabidopsis seedlings exposed to control or warm ambient temperature, we observed reduced levels of diverse proteins over time, which could be due to transcription, translation, and/or degradation. In addition, we observed differential phosphorylation of the LRR F-box protein SLOMO MOTION (SLOMO) at two serine residues. We demonstrate that SLOMO is a negative regulator of hypocotyl growth, also under warm temperature conditions, and protein-protein interaction studies revealed possible interactors of SLOMO, such as MKK5, DWF1, and NCED4. We identified DWF1 as a likely SLOMO substrate and a regulator of warm temperature-mediated hypocotyl growth. We propose that warm temperature-mediated regulation of SLOMO activity controls the abundance of hypocotyl growth regulators, such as DWF1, through ubiquitin-mediated degradation.
Collapse
Affiliation(s)
- Shanshuo Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, B-9000, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium
| | - Lixia Pan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, B-9000, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium
| | - Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Beatriz Orosa-Puente
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Tingting Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Pia Neyt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Brigitte van de Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Thomas B. Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Joshua M. Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Steven H. Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, VIB, B-9000, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| |
Collapse
|
5
|
Liu W, Lowrey H, Leung CC, Adamchek C, Du J, He J, Chen M, Gendron JM. The circadian clock regulates PIF3 protein stability in parallel to red light. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558326. [PMID: 37781622 PMCID: PMC10541125 DOI: 10.1101/2023.09.18.558326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The circadian clock is an endogenous oscillator, but its importance lies in its ability to impart rhythmicity on downstream biological processes or outputs. Focus has been placed on understanding the core transcription factors of the circadian clock and how they connect to outputs through regulated gene transcription. However, far less is known about posttranslational mechanisms that tether clocks to output processes through protein regulation. Here, we identify a protein degradation mechanism that tethers the clock to photomorphogenic growth. By performing a reverse genetic screen, we identify a clock-regulated F-box type E3 ubiquitin ligase, CLOCK-REGULATED F-BOX WITH A LONG HYPOCOTYL 1 ( CFH1 ), that controls hypocotyl length. We then show that CFH1 functions in parallel to red light signaling to target the transcription factor PIF3 for degradation. This work demonstrates that the circadian clock is tethered to photomorphogenesis through the ubiquitin proteasome system and that PIF3 protein stability acts as a hub to integrate information from multiple environmental signals.
Collapse
|
6
|
Jiang B, Zhong Z, Su J, Zhu T, Yueh T, Bragasin J, Bu V, Zhou C, Lin C, Wang X. Co-condensation with photoexcited cryptochromes facilitates MAC3A to positively control hypocotyl growth in Arabidopsis. SCIENCE ADVANCES 2023; 9:eadh4048. [PMID: 37556549 PMCID: PMC10411877 DOI: 10.1126/sciadv.adh4048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023]
Abstract
Cryptochromes (CRYs) are blue light receptors that mediate plant photoresponses through regulating gene expressions. We recently reported that Arabidopsis CRY2 could form light-elicited liquid condensates to control RNA methylation. However, whether CRY2 condensation is involved in other gene expression-regulatory processes remains unclear. Here, we show that MOS4-associated complex subunits 3A and 3B (MAC3A/3B) are CRY-interacting proteins and assembled into nuclear CRY condensates. mac3a3b double mutants exhibit hypersensitive photoinhibition of hypocotyl elongation, suggesting that MAC3A/3B positively control hypocotyl growth. We demonstrate the noncanonical activity of MAC3A as a DNA binding protein that modulates transcription. Genome-wide mapping of MAC3A-binding sites reveals that blue light enhances the association of MAC3A with its DNA targets, which requires CRYs. Further evidence indicates that MAC3A and ELONGATED HYPOCOTYL 5 (HY5) occupy overlapping genomic regions and compete for the same targets. These results argue that photocondensation of CRYs fine-tunes light-responsive hypocotyl growth by balancing the opposed effects of HY5 and MAC3A.
Collapse
Affiliation(s)
- Bochen Jiang
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Zhenhui Zhong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tengfei Zhu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261325, China
| | - Timothy Yueh
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Jielena Bragasin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Victoria Bu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Charles Zhou
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Chentao Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261325, China
| |
Collapse
|
7
|
Sengupta M, Pluciennik A, Merry DE. The role of ubiquitination in spinal and bulbar muscular atrophy. Front Mol Neurosci 2022; 15:1020143. [PMID: 36277484 PMCID: PMC9583669 DOI: 10.3389/fnmol.2022.1020143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative and neuromuscular genetic disease caused by the expansion of a polyglutamine-encoding CAG tract in the androgen receptor (AR) gene. The AR is an important transcriptional regulator of the nuclear hormone receptor superfamily; its levels are regulated in many ways including by ubiquitin-dependent degradation. Ubiquitination is a post-translational modification (PTM) which plays a key role in both AR transcriptional activity and its degradation. Moreover, the ubiquitin-proteasome system (UPS) is a fundamental component of cellular functioning and has been implicated in diseases of protein misfolding and aggregation, including polyglutamine (polyQ) repeat expansion diseases such as Huntington's disease and SBMA. In this review, we discuss the details of the UPS system, its functions and regulation, and the role of AR ubiquitination and UPS components in SBMA. We also discuss aspects of the UPS that may be manipulated for therapeutic effect in SBMA.
Collapse
Affiliation(s)
| | | | - Diane E. Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
8
|
Scandola S, Mehta D, Li Q, Rodriguez Gallo MC, Castillo B, Uhrig RG. Multi-omic analysis shows REVEILLE clock genes are involved in carbohydrate metabolism and proteasome function. PLANT PHYSIOLOGY 2022; 190:1005-1023. [PMID: 35670757 PMCID: PMC9516735 DOI: 10.1093/plphys/kiac269] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/12/2022] [Indexed: 06/01/2023]
Abstract
Plants are able to sense changes in their light environments, such as the onset of day and night, as well as anticipate these changes in order to adapt and survive. Central to this ability is the plant circadian clock, a molecular circuit that precisely orchestrates plant cell processes over the course of a day. REVEILLE (RVE) proteins are recently discovered members of the plant circadian circuitry that activate the evening complex and PSEUDO-RESPONSE REGULATOR genes to maintain regular circadian oscillation. The RVE8 protein and its two homologs, RVE 4 and 6 in Arabidopsis (Arabidopsis thaliana), have been shown to limit the length of the circadian period, with rve 4 6 8 triple-knockout plants possessing an elongated period along with increased leaf surface area, biomass, cell size, and delayed flowering relative to wild-type Col-0 plants. Here, using a multi-omics approach consisting of phenomics, transcriptomics, proteomics, and metabolomics we draw new connections between RVE8-like proteins and a number of core plant cell processes. In particular, we reveal that loss of RVE8-like proteins results in altered carbohydrate, organic acid, and lipid metabolism, including a starch excess phenotype at dawn. We further demonstrate that rve 4 6 8 plants have lower levels of 20S proteasome subunits and possess significantly reduced proteasome activity, potentially explaining the increase in cell-size observed in RVE8-like mutants. Overall, this robust, multi-omic dataset provides substantial insight into the far-reaching impact RVE8-like proteins have on the diel plant cell environment.
Collapse
Affiliation(s)
| | | | - Qiaomu Li
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | - Brigo Castillo
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
9
|
Hildreth SB, Littleton ES, Clark LC, Puller GC, Kojima S, Winkel BSJ. Mutations that alter Arabidopsis flavonoid metabolism affect the circadian clock. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:932-945. [PMID: 35218268 PMCID: PMC9311810 DOI: 10.1111/tpj.15718] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 05/05/2023]
Abstract
Flavonoids are a well-known class of specialized metabolites that play key roles in plant development, reproduction, and survival. Flavonoids are also of considerable interest from the perspective of human health, as both phytonutrients and pharmaceuticals. RNA sequencing analysis of an Arabidopsis null allele for chalcone synthase (CHS), which catalyzes the first step in flavonoid metabolism, has uncovered evidence that these compounds influence the expression of genes associated with the plant circadian clock. Analysis of promoter-luciferase constructs further showed that the transcriptional activity of CCA1 and TOC1, two key clock genes, is altered in CHS-deficient seedlings across the day/night cycle. Similar findings for a mutant line lacking flavonoid 3'-hydroxylase (F3'H) activity, and thus able to synthesize mono- but not dihydroxylated B-ring flavonoids, suggests that the latter are at least partially responsible; this was further supported by the ability of quercetin to enhance CCA1 promoter activity in wild-type and CHS-deficient seedlings. The effects of flavonoids on circadian function were also reflected in photosynthetic activity, with chlorophyll cycling abolished in CHS- and F3'H-deficient plants. Remarkably, the same phenotype was exhibited by plants with artificially high flavonoid levels, indicating that neither the antioxidant potential nor the light-screening properties of flavonoids contribute to optimal clock function, as has recently also been demonstrated in animal systems. Collectively, the current experiments point to a previously unknown connection between flavonoids and circadian cycling in plants and open the way to better understanding of the molecular basis of flavonoid action.
Collapse
Affiliation(s)
- Sherry B. Hildreth
- Department of Biological SciencesVirginia TechBlacksburgVA24061USA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVA24061USA
| | - Evan S. Littleton
- Department of Biological SciencesVirginia TechBlacksburgVA24061USA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVA24061USA
| | - Leor C. Clark
- Department of Biological SciencesVirginia TechBlacksburgVA24061USA
- Present address:
Department of Global Health, Milken Institute School of Public HealthGeorge Washington UniversityWashingtonDC20052USA
| | - Gabrielle C. Puller
- Department of Biological SciencesVirginia TechBlacksburgVA24061USA
- Present address:
Laboratory of Molecular BiologyNational Cancer InstituteNational Institutes of HealthBethesdaMD20 892USA
| | - Shihoko Kojima
- Department of Biological SciencesVirginia TechBlacksburgVA24061USA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVA24061USA
| | - Brenda S. J. Winkel
- Department of Biological SciencesVirginia TechBlacksburgVA24061USA
- Fralin Life Sciences InstituteVirginia TechBlacksburgVA24061USA
| |
Collapse
|
10
|
Wang P, Nolan TM, Clark NM, Jiang H, Montes-Serey C, Guo H, Bassham DC, Walley JW, Yin Y. The F-box E3 ubiquitin ligase BAF1 mediates the degradation of the brassinosteroid-activated transcription factor BES1 through selective autophagy in Arabidopsis. THE PLANT CELL 2021; 33:3532-3554. [PMID: 34436598 PMCID: PMC8566207 DOI: 10.1093/plcell/koab210] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/14/2021] [Indexed: 05/02/2023]
Abstract
Brassinosteroids (BRs) regulate plant growth, development, and stress responses by activating the core transcription factor BRI1-EMS-SUPPRESSOR1 (BES1), whose degradation occurs through the proteasome and autophagy pathways. The E3 ubiquitin ligase(s) that modify BES1 for autophagy-mediated degradation remain to be fully defined. Here, we identified an F-box family E3 ubiquitin ligase named BES1-ASSOCIATED F-BOX1 (BAF1) in Arabidopsis thaliana. BAF1 interacts with BES1 and mediates its ubiquitination and degradation. Our genetic data demonstrated that BAF1 inhibits BR signaling in a BES1-dependent manner. Moreover, BAF1 targets BES1 for autophagic degradation in a selective manner. BAF1-triggered selective autophagy of BES1 depends on the ubiquitin binding receptor DOMINANT SUPPRESSOR OF KAR2 (DSK2). Sucrose starvation-induced selective autophagy of BES1, but not bulk autophagy, was significantly compromised in baf1 mutant and BAF1-ΔF (BAF1 F-box decoy) overexpression plants, but clearly increased by BAF1 overexpression. The baf1 and BAF1-ΔF overexpression plants had increased BR-regulated growth but were sensitive to long-term sucrose starvation, while BAF1 overexpression plants had decreased BR-regulated growth but were highly tolerant of sucrose starvation. Our results not only established BAF1 as an E3 ubiquitin ligase that targets BES1 for degradation through selective autophagy pathway, but also revealed a mechanism for plants to reduce growth during sucrose starvation.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Trevor M Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Natalie M Clark
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
| | - Hao Jiang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | | | - Hongqing Guo
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
- Plant Sciences Institutes, Iowa State University, Ames, Iowa 50011
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
- Plant Sciences Institutes, Iowa State University, Ames, Iowa 50011
- Author for correspondence:
| |
Collapse
|
11
|
Liu W, Feke A, Leung CC, Tarté DA, Yuan W, Vanderwall M, Sager G, Wu X, Schear A, Clark DA, Thines BC, Gendron JM. A metabolic daylength measurement system mediates winter photoperiodism in plants. Dev Cell 2021; 56:2501-2515.e5. [PMID: 34407427 DOI: 10.1016/j.devcel.2021.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/30/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022]
Abstract
Plants have served as a preeminent study system for photoperiodism due to their propensity to flower in concordance with the seasons. A nearly singular focus on understanding photoperiodic flowering has prevented the discovery of other photoperiod measuring systems necessary for vegetative health. Here, we use bioinformatics to identify photoperiod-induced genes in Arabidopsis. We show that one, PP2-A13, is expressed exclusively in, and required for, plant fitness in short, winter-like photoperiods. We create a real-time photoperiod reporter, using the PP2-A13 promoter driving luciferase, and show that photoperiodic regulation is independent of the canonical CO/FT mechanism for photoperiodic flowering. We then reveal that photosynthesis combines with circadian-clock-controlled starch production to regulate cellular sucrose levels to control photoperiodic expression of PP2-A13. This work demonstrates the existence of a photoperiod measuring system housed in the metabolic network of plants that functions to control seasonal cellular health.
Collapse
Affiliation(s)
- Wei Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ann Feke
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Chun Chung Leung
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Daniel A Tarté
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Wenxin Yuan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Morgan Vanderwall
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Garrett Sager
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Xing Wu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ariela Schear
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Bryan C Thines
- Biology Department, University of Puget Sound, Tacoma, WA 98416, USA
| | - Joshua M Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
12
|
Feke A, Vanderwall M, Liu W, Gendron JM. Functional domain studies uncover novel roles for the ZTL Kelch repeat domain in clock function. PLoS One 2021; 16:e0235938. [PMID: 33730063 PMCID: PMC7968664 DOI: 10.1371/journal.pone.0235938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/23/2021] [Indexed: 02/01/2023] Open
Abstract
The small LOV/F-box/Kelch family of E3 ubiquitin ligases plays an essential role in the regulation of plant circadian clocks and flowering time by sensing dusk. The family consists of three members, ZEITLUPE (ZTL), LOV KELCH PROTEIN 2 (LKP2), and FLAVIN-BINDING KELCH REPEAT F-BOX PROTEIN 1 (FKF1), which share a unique protein domain architecture allowing them to act as photoreceptors that transduce light signals via altering stability of target proteins. Despite intensive study of this protein family we still lack important knowledge about the biochemical and functional roles of the protein domains that comprise these unique photoreceptors. Here, we perform comparative analyses of transgenic lines constitutively expressing the photoreceptor LOV domain or the Kelch repeat protein-protein interaction domains of ZTL, FKF1, and LKP2. Expression of each domain alone is sufficient to disrupt circadian rhythms and flowering time, but each domain differs in the magnitude of effect. Immunoprecipitation followed by mass spectrometry with the ZTL Kelch repeat domain identified a suite of potential interacting partners. Furthermore, the ZTL Kelch repeat domain can interact with the ZTL homologs, LKP2 and FKF1, and the LOV domain of ZTL itself. This suggests a hypothesis that the Kelch repeat domain of ZTL may mediate inter- and intra-molecular interactions of the three LOV/F-box/Kelch proteins and provides added insight into the composition of the protein complexes and an additional role for the Kelch repeat domain.
Collapse
Affiliation(s)
- Ann Feke
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States of America
| | - Morgan Vanderwall
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States of America
| | - Wei Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States of America
| | - Joshua M. Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States of America
- * E-mail:
| |
Collapse
|
13
|
Yan J, Kim YJ, Somers DE. Post-Translational Mechanisms of Plant Circadian Regulation. Genes (Basel) 2021; 12:325. [PMID: 33668215 PMCID: PMC7995963 DOI: 10.3390/genes12030325] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
The molecular components of the circadian system possess the interesting feature of acting together to create a self-sustaining oscillator, while at the same time acting individually, and in complexes, to confer phase-specific circadian control over a wide range of physiological and developmental outputs. This means that many circadian oscillator proteins are simultaneously also part of the circadian output pathway. Most studies have focused on transcriptional control of circadian rhythms, but work in plants and metazoans has shown the importance of post-transcriptional and post-translational processes within the circadian system. Here we highlight recent work describing post-translational mechanisms that impact both the function of the oscillator and the clock-controlled outputs.
Collapse
Affiliation(s)
| | | | - David E. Somers
- Department of Molecular Genetics, The Ohio State University; Columbus, OH 43210, USA; (J.Y.); (Y.J.K.)
| |
Collapse
|
14
|
SUSA2 is an F-box protein required for autoimmunity mediated by paired NLRs SOC3-CHS1 and SOC3-TN2. Nat Commun 2020; 11:5190. [PMID: 33060601 PMCID: PMC7562919 DOI: 10.1038/s41467-020-19033-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/24/2020] [Indexed: 12/20/2022] Open
Abstract
Both higher plants and mammals rely on nucleotide-binding leucine-rich repeat (NLR) immune receptors to detect pathogens and initiate immunity. Upon effector recognition, plant NLRs oligomerize for defense activation, the mechanism of which is poorly understood. We previously showed that disruption of the E3 ligase, Senescence-Associated E3 Ubiquitin Ligase 1 (SAUL1) leads to the activation of the NLR SOC3. Here, we report the identification of suppressor of saul1 2 (susa2) and susa3 from the saul1-1 suppressor screen. Pairwise interaction analysis suggests that both SUSA proteins interact with components of an SCFSUSA2 E3 ligase complex as well as CHS1 or TN2, truncated NLRs that pair with SOC3. susa2-2 only suppresses the autoimmunity mediated by either CHS1 or TN2, suggesting its specific involvement in SOC3-mediated immunity. In summary, our study indicates links between plant NLRs and an SCF complex that may enable ubiquitination and degradation of unknown downstream components to activate defense.
Collapse
|
15
|
Waadt R. Phytohormone signaling mechanisms and genetic methods for their modulation and detection. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:31-40. [PMID: 32622326 DOI: 10.1016/j.pbi.2020.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/24/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Phytohormones enable plants to regulate their development, growth and physiology according to the environmental requirements. Knowledge about the underlying signaling mechanisms, combined with the ability to pharmacologically or genetically manipulate phytohormone responses is steadily being incorporated into modern plant biology research and agriculture. This knowledge also enabled the development of genetically encoded phytohormone indicators that allow the tracking of spatiotemporal phytohormone dynamics and signaling processes in vivo. This review aims to provide an overview about core phytohormone signaling mechanisms, and about genetic tools for the manipulation and in vivo tracking of phytohormone actions.
Collapse
|
16
|
Srikanta SB, Cermakian N. To Ub or not to Ub: Regulation of circadian clocks by ubiquitination and deubiquitination. J Neurochem 2020; 157:11-30. [PMID: 32717140 DOI: 10.1111/jnc.15132] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022]
Abstract
Circadian clocks are internal timing systems that enable organisms to adjust their behavioral and physiological rhythms to the daily changes of their environment. These clocks generate self-sustained oscillations at the cellular, tissue, and behavioral level. The rhythm-generating mechanism is based on a gene expression network with a delayed negative feedback loop that causes the transcripts to oscillate with a period of approximately 24 hr. This oscillatory nature of the proteins involved in this network necessitates that they are intrinsically unstable, with a short half-life. Hence, post-translational modifications (PTMs) are important to precisely time the presence, absence, and interactions of these proteins at appropriate times of the day. Ubiquitination and deubiquitination are counter-balancing PTMs which play a key role in this regulatory process. In this review, we take a comprehensive look at the roles played by the processes of ubiquitination and deubiquitination in the clock machinery of the most commonly studied eukaryotic models of the circadian clock: plants, fungi, fruit flies, and mammals. We present the effects exerted by ubiquitinating and deubiquitinating enzymes on the stability, but also the activity, localization, and interactions of clock proteins. Overall, these PTMs have key roles in regulating not only the pace of the circadian clocks but also their response to external cues and their control of cellular functions.
Collapse
Affiliation(s)
- Shashank Bangalore Srikanta
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada.,Laboratory of Molecular Chronobiology, Douglas Research Centre, Montréal, QC, Canada
| | - Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Research Centre, Montréal, QC, Canada.,Department of Psychiatry, McGill University, Montréal, QC, Canada
| |
Collapse
|
17
|
Wu Z, Tong M, Tian L, Zhu C, Liu X, Zhang Y, Li X. Plant E3 ligases SNIPER1 and SNIPER2 broadly regulate the homeostasis of sensor NLR immune receptors. EMBO J 2020; 39:e104915. [PMID: 32557679 PMCID: PMC7396873 DOI: 10.15252/embj.2020104915] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 11/09/2022] Open
Abstract
In both plants and animals, nucleotide-binding leucine-rich repeat (NLR) immune receptors perceive pathogen-derived molecules to trigger immunity. Global NLR homeostasis must be tightly controlled to ensure sufficient and timely immune output while avoiding aberrant activation, the mechanisms of which are largely unclear. In a previous reverse genetic screen, we identified two novel E3 ligases, SNIPER1 and its homolog SNIPER2, both of which broadly control the levels of NLR immune receptors in Arabidopsis. Protein levels of sensor NLRs (sNLRs) are inversely correlated with SNIPER1 amount and the interactions between SNIPER1 and sNLRs seem to be through the common nucleotide-binding (NB) domains of sNLRs. In support, SNIPER1 can ubiquitinate the NB domains of multiple sNLRs in vitro. Our study thus reveals a novel process of global turnover of sNLRs by two master E3 ligases for immediate attenuation of immune output to effectively avoid autoimmunity. Such unique mechanism can be utilized in the future for engineering broad-spectrum resistance in crops to fend off pathogens that damage our food supply.
Collapse
Affiliation(s)
- Zhongshou Wu
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Meixuezi Tong
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Lei Tian
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Chipan Zhu
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Xueru Liu
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Yuelin Zhang
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Xin Li
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
18
|
Zeng JY, Vuong TMD, Guo JX, Shi JH, Shi ZB, Zhang GC, Zhang J. Diel pattern in the structure and function of the gut microbial community in Lymantria dispar asiatica (Lepidoptera: Lymantriidae) larvae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21691. [PMID: 32410326 DOI: 10.1002/arch.21691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
In the present study, diel pattern in gut microbial communities in insects were evaluated. Lymantria dispar asiatica fourth instar larvae (72 ± 2 hr after molting) at noon (LdD) and midnight (LdN) were used for a comparative analysis of the gut microbial community. Ten bacterial operational taxonomic units (OTUs) were shared between LdD and LdN samples. One bacterial OTU was specific to LdD. The dominant gut microbes were OTU72 in LdD and OTU75 in LdN. A linear discriminant analysis effect size cladogram suggested that ten bacterial OTUs maintain significant differences in relative abundances between LdD and LdN. These results agreed with the discrete ellipses between LdD and LdN in principal coordinates analysis plots. Additionally, using phylogenetic investigation of communities by reconstruction of unobserved states, the gut microbial community was assigned to 23 functional terms, among which 22 exhibited significant differences between LdD and LdN. To conclude, the present study documented a diel pattern in the gut microbial community of L. dispar asiatica larvae.
Collapse
Affiliation(s)
- Jian-Yong Zeng
- Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, China
| | - Thi-Minh-Dien Vuong
- Department of Soil and Water Conservation and Desertification Control, School of Forestry, Northeast Forestry University, Harbin, China
- Department of International Cooperation, Center of Technology Development and Agricultural Extension, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Jia-Xing Guo
- Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, China
| | - Jiang-Hong Shi
- Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, China
| | - Zhong-Bin Shi
- Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, China
| | - Guo-Cai Zhang
- Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, China
| | - Jie Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
19
|
A Decoy Library Uncovers U-Box E3 Ubiquitin Ligases That Regulate Flowering Time in Arabidopsis. Genetics 2020; 215:699-712. [PMID: 32434795 DOI: 10.1534/genetics.120.303199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/14/2020] [Indexed: 11/18/2022] Open
Abstract
Targeted degradation of proteins is mediated by E3 ubiquitin ligases and is important for the execution of many biological processes. Redundancy has prevented the genetic characterization of many E3 ubiquitin ligases in plants. Here, we performed a reverse genetic screen in Arabidopsis using a library of dominant-negative U-box-type E3 ubiquitin ligases to identify their roles in flowering time and reproductive development. We identified five U-box decoy transgenic populations that have defects in flowering time or the floral development program. We used additional genetic and biochemical studies to validate PLANT U-BOX 14 (PUB14), MOS4-ASSOCIATED COMPLEX 3A (MAC3A), and MAC3B as bona fide regulators of flowering time. This work demonstrates the widespread importance of E3 ubiquitin ligases in floral reproductive development. Furthermore, it reinforces the necessity of dominant-negative strategies for uncovering previously unidentified regulators of developmental transitions in an organism with widespread genetic redundancy, and provides a basis on which to model other similar studies.
Collapse
|
20
|
Hearn TJ, Webb AAR. Recent advances in understanding regulation of the Arabidopsis circadian clock by local cellular environment. F1000Res 2020; 9. [PMID: 32047621 PMCID: PMC6993837 DOI: 10.12688/f1000research.21307.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2020] [Indexed: 11/20/2022] Open
Abstract
Circadian clocks have evolved to synchronise an organism’s physiology with the environmental rhythms driven by the Earth’s rotation on its axis. Over the past two decades, many of the genetic components of the
Arabidopsis thaliana circadian oscillator have been identified. The interactions between these components have been formulized into mathematical models that describe the transcriptional translational feedback loops of the oscillator. More recently, focus has turned to the regulation and functions of the circadian clock. These studies have shown that the system dynamically responds to environmental signals and small molecules. We describe advances that have been made in discovering the cellular mechanisms by which signals regulate the circadian oscillator of Arabidopsis in the context of tissue-specific regulation.
Collapse
Affiliation(s)
- Timothy J Hearn
- Department of Plant Sciences, University of Cambridge, Downing Site, Cambridge, CB2 3EA, UK.,Research Department of Cell and Developmental Biology, Rockefeller Building, University College London, London, WC1E 6DE, UK.,Academic Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Downing Site, Cambridge, CB2 3EA, UK
| |
Collapse
|
21
|
Yang Z, Yang Z, Yang C, Wang Z, Chen D, Xie Y, Wu Y. Identification and genetic analysis of alternative splicing of long non-coding RNAs in tomato initial flowering stage. Genomics 2019; 112:897-907. [PMID: 31175976 DOI: 10.1016/j.ygeno.2019.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/19/2019] [Accepted: 06/04/2019] [Indexed: 01/07/2023]
Abstract
Alternative splicing (AS) is a key modulator of development in many eukaryotic organisms. Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs that play essential regulatory roles in various developmental processes and stress responses. However, the functions of AS lncRNAs during the initial flowering of tomato are largely unknown. This study was designed to investigate the AS pattern of lncRNAs in tomato flower, leaf, and root tissues at the initial flowering stage. Using RNA-Seq, we found that 72.55% of lncRNAs underwent AS in these tissues, yielding a total of 16,995 AS events. Among them, the main type of AS event is alternative first exon (AFE), followed by retained intron (RI). We performed candidate target genes analysis on tissue-specific AS lncRNA, and the results indicated that the candidate target genes of these lncRNAs may be involved in the regulation of circadian rhythm, plant immunity, cellulose synthesis and phosphate-containing compound metabolic process. Moreover, a total of 73,085 putative SNPs and 15,679 InDels were detected, and the potential relationship between the AS of lncRNAs and interesting SNP and InDel loci, as well as their numbers, revealed their effects on tomato genetic diversity and genomic stability. Our data provide new insights into the complexity of the transcriptome and the regulation of AS.
Collapse
Affiliation(s)
- Zhenchao Yang
- College of Horticulture, College of Life Sciences, College of Science, Northwest A&F University, Yangling, Shaan Xi, China
| | - Zhao Yang
- College of Horticulture, College of Life Sciences, College of Science, Northwest A&F University, Yangling, Shaan Xi, China
| | - Chengcheng Yang
- College of Horticulture, College of Life Sciences, College of Science, Northwest A&F University, Yangling, Shaan Xi, China
| | - Zhengyan Wang
- College of Horticulture, College of Life Sciences, College of Science, Northwest A&F University, Yangling, Shaan Xi, China
| | - Danyan Chen
- College of Horticulture, College of Life Sciences, College of Science, Northwest A&F University, Yangling, Shaan Xi, China
| | - Yingge Xie
- College of Horticulture, College of Life Sciences, College of Science, Northwest A&F University, Yangling, Shaan Xi, China.
| | - Yongjun Wu
- College of Horticulture, College of Life Sciences, College of Science, Northwest A&F University, Yangling, Shaan Xi, China.
| |
Collapse
|