1
|
Tasnin MN, Takahashi Y, Takuma T, Ushimaru T. Nuclear ESCRT is involved in intranuclear protein quality control by micronucleophagy. Biochem Biophys Res Commun 2025; 744:151219. [PMID: 39721364 DOI: 10.1016/j.bbrc.2024.151219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Intranuclear protein quality control (PQC) is critical for protein homeostasis (or proteostasis) in non-dividing cells including brain nerve cells, but its molecular mechanism remains unresolved. In nutrient-starved conditions, elimination of nucleolar proteins is critical for cell viability in budding yeast, providing a model system to study the mechanisms involved in intranuclear PQC. The nuclear-specific endosomal sorting complex required for transport (ESCRT) CHMP7/Chm7 is linked to neurodegenerative diseases, but its known role is limited. Here, we show a novel role of nuclear ESCRT in intranuclear PQC. Chm7 and its recruiter protein Heh1 were critical for micronucleophagic degradation of nucleolar proteins and for rDNA condensation and nucleolar remodeling, which is prerequisite for proper micronucleophagic degradation of nucleolar proteins. By contrast, Chm7 was dispensable for macronucleophagy. Finally, not only authentic ESCRT but also Chm7 was crucial for the survival of quiescent cells in prolonged nutrient-starved conditions. This study uncovered that nuclear ESCRT together with authentic ESCRT orchestrate micronucleophagic degradation of nucleolar proteins, contributing to intranuclear protein homeostasis.
Collapse
Affiliation(s)
- Most Naoshia Tasnin
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Yuka Takahashi
- Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Tsuneyuki Takuma
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Takashi Ushimaru
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan; Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan.
| |
Collapse
|
2
|
Keeley O, Mendoza E, Menon D, Coyne AN. CHMP2B promotes CHMP7 mediated nuclear pore complex injury in sporadic ALS. Acta Neuropathol Commun 2024; 12:199. [PMID: 39709457 DOI: 10.1186/s40478-024-01916-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Alterations to the composition and function of neuronal nuclear pore complexes (NPCs) have been documented in multiple neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS). Moreover, recent work has suggested that injury to the NPC can at least in part contribute to TDP-43 loss of function and mislocalization, a pathological hallmark of ALS and related neurodegenerative diseases. Collectively, these studies highlight a role for disruptions in NPC homeostasis and surveillance as a significant pathophysiologic event in neurodegeneration. The ESCRT-III nuclear surveillance pathway plays a critical role in the surveillance and maintenance of NPCs and the surrounding nuclear environment. Importantly, pathologic alterations to this pathway and its protein constituents have been implicated in neurodegenerative diseases such as ALS. However, the mechanism by which this pathway contributes to disease associated alterations in the NPC remains unknown. Here we use an induced pluripotent stem cell (iPSC) derived neuron (iPSN) model of sALS to demonstrate that CHMP7/ESCRT-III nuclear maintenance/surveillance is overactivated in sALS neurons. This overactivation is dependent upon the ESCRT-III protein CHMP2B and sustained CHMP2B dependent "activation" is sufficient to contribute to pathologic CHMP7 nuclear accumulation and POM121 reduction. Importantly, partial knockdown of CHMP2B was sufficient to alleviate NPC injury and downstream TDP-43 dysfunction in sALS neurons thereby highlighting CHMP2B as a potential therapeutic target in disease.
Collapse
Affiliation(s)
- Olivia Keeley
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Emma Mendoza
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Druv Menon
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Alyssa N Coyne
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
3
|
Al-Azzam N, To JH, Gautam V, Street LA, Nguyen CB, Naritomi JT, Lam DC, Madrigal AA, Lee B, Jin W, Avina A, Mizrahi O, Mueller JR, Ford W, Schiavon CR, Rebollo E, Vu AQ, Blue SM, Madakamutil YL, Manor U, Rothstein JD, Coyne AN, Jovanovic M, Yeo GW. Inhibition of RNA splicing triggers CHMP7 nuclear entry, impacting TDP-43 function and leading to the onset of ALS cellular phenotypes. Neuron 2024; 112:4033-4047.e8. [PMID: 39486415 DOI: 10.1016/j.neuron.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/08/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is linked to the reduction of certain nucleoporins in neurons. Increased nuclear localization of charged multivesicular body protein 7 (CHMP7), a protein involved in nuclear pore surveillance, has been identified as a key factor damaging nuclear pores and disrupting transport. Using CRISPR-based microRaft, followed by gRNA identification (CRaft-ID), we discovered 55 RNA-binding proteins (RBPs) that influence CHMP7 localization, including SmD1, a survival of motor neuron (SMN) complex component. Immunoprecipitation-mass spectrometry (IP-MS) and enhanced crosslinking and immunoprecipitation (CLIP) analyses revealed CHMP7's interactions with SmD1, small nuclear RNAs, and splicing factor mRNAs in motor neurons (MNs). ALS induced pluripotent stem cell (iPSC)-MNs show reduced SmD1 expression, and inhibiting SmD1/SMN complex increased CHMP7 nuclear localization. Crucially, overexpressing SmD1 in ALS iPSC-MNs restored CHMP7's cytoplasmic localization and corrected STMN2 splicing. Our findings suggest that early ALS pathogenesis is driven by SMN complex dysregulation.
Collapse
Affiliation(s)
- Norah Al-Azzam
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Neurosciences Graduate Program, University of California San Diego, San Diego, CA, USA
| | - Jenny H To
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Vaishali Gautam
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lena A Street
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Chloe B Nguyen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jack T Naritomi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Dylan C Lam
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Laboratories for Innovative Medicines, San Diego, CA, USA
| | - Assael A Madrigal
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Department of Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Benjamin Lee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Wenhao Jin
- Sanford Laboratories for Innovative Medicines, San Diego, CA, USA
| | - Anthony Avina
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Orel Mizrahi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jasmine R Mueller
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Willard Ford
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cara R Schiavon
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA; Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Elena Rebollo
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA; Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anthony Q Vu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yashwin L Madakamutil
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Uri Manor
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA; Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alyssa N Coyne
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Laboratories for Innovative Medicines, San Diego, CA, USA.
| |
Collapse
|
4
|
Keeley O, Coyne AN. Nuclear and degradative functions of the ESCRT-III pathway: implications for neurodegenerative disease. Nucleus 2024; 15:2349085. [PMID: 38700207 PMCID: PMC11073439 DOI: 10.1080/19491034.2024.2349085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The ESCRT machinery plays a pivotal role in membrane-remodeling events across multiple cellular processes including nuclear envelope repair and reformation, nuclear pore complex surveillance, endolysosomal trafficking, and neuronal pruning. Alterations in ESCRT-III functionality have been associated with neurodegenerative diseases including Frontotemporal Dementia (FTD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD). In addition, mutations in specific ESCRT-III proteins have been identified in FTD/ALS. Thus, understanding how disruptions in the fundamental functions of this pathway and its individual protein components in the human central nervous system (CNS) may offer valuable insights into mechanisms underlying neurodegenerative disease pathogenesis and identification of potential therapeutic targets. In this review, we discuss ESCRT components, dynamics, and functions, with a focus on the ESCRT-III pathway. In addition, we explore the implications of altered ESCRT-III function for neurodegeneration with a primary emphasis on nuclear surveillance and endolysosomal trafficking within the CNS.
Collapse
Affiliation(s)
- Olivia Keeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssa N. Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Fare CM, Rothstein JD. Nuclear pore dysfunction and disease: a complex opportunity. Nucleus 2024; 15:2314297. [PMID: 38383349 PMCID: PMC10883112 DOI: 10.1080/19491034.2024.2314297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The separation of genetic material from bulk cytoplasm has enabled the evolution of increasingly complex organisms, allowing for the development of sophisticated forms of life. However, this complexity has created new categories of dysfunction, including those related to the movement of material between cellular compartments. In eukaryotic cells, nucleocytoplasmic trafficking is a fundamental biological process, and cumulative disruptions to nuclear integrity and nucleocytoplasmic transport are detrimental to cell survival. This is particularly true in post-mitotic neurons, where nuclear pore injury and errors to nucleocytoplasmic trafficking are strongly associated with neurodegenerative disease. In this review, we summarize the current understanding of nuclear pore biology in physiological and pathological contexts and discuss potential therapeutic approaches for addressing nuclear pore injury and dysfunctional nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey D Rothstein
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Wu Z, Omura I, Saito A, Imaizumi K, Kamikawa Y. VPS4B orchestrates response to nuclear envelope stress by regulating ESCRT-III dynamics in glioblastoma. Nucleus 2024; 15:2423660. [PMID: 39540606 PMCID: PMC11572143 DOI: 10.1080/19491034.2024.2423660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The Nuclear envelope (NE) is frequently challenged by mechanical stimuli involving cells passing through a tight space and such stress is known as "NE stress." Various factors that cooperate to repair the NE have been identified, including endosomal sorting complex required for transport-III (ESCRT-III). Recently, vacuolar protein sorting 4 homolog B (VPS4B) has been reported to modulate the recycling of ESCRT-III during NE repair, but the regulatory mechanism remains unclear. Our previous study revealed that U251MG cells, derived from the glioblastoma (GBM), exhibited nuclear deformation followed by DNA damage upon mechanical NE stress while these phenotypes were not observed in U87MG, another GBM-derived cell line. Here, we found that VPS4B expression was lower in U251MG than in U87MG. Our functional analysis demonstrated that insufficient VPS4B triggers an inadequate response to NE stress and that VPS4B regulates the dynamics of ESCRT-III, uncovering the mechanism underlying the NE stress response in GBM.
Collapse
Affiliation(s)
- Zuqian Wu
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Issei Omura
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
- Department of Frontier Science and Interdisciplinary Research, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Atsushi Saito
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
- Department of Frontier Science and Interdisciplinary Research, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Yasunao Kamikawa
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| |
Collapse
|
7
|
Mannino PJ, Perun A, Surovtsev IV, Ader NR, Shao L, Rodriguez EC, Melia TJ, King MC, Lusk CP. A quantitative ultrastructural timeline of nuclear autophagy reveals a role for dynamin-like protein 1 at the nuclear envelope. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580336. [PMID: 38405892 PMCID: PMC10888867 DOI: 10.1101/2024.02.14.580336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Autophagic mechanisms that maintain nuclear envelope homeostasis are bulwarks to aging and disease. By leveraging 4D lattice light sheet microscopy and correlative light and electron tomography, we define a quantitative and ultrastructural timeline of nuclear macroautophagy (nucleophagy) in yeast. Nucleophagy begins with a rapid accumulation of the selective autophagy receptor Atg39 at the nuclear envelope and finishes in ~300 seconds with Atg39-cargo delivery to the vacuole. Although there are several routes to the vacuole, at least one pathway incorporates two consecutive membrane fission steps: inner nuclear membrane (INM) fission to generate an INM-derived vesicle in the perinuclear space and outer nuclear membrane (ONM) fission to liberate a double membraned vesicle to the cytosol. ONM fission occurs independently of phagophore engagement and instead relies surprisingly on dynamin like 1 (Dnm1), which is recruited to sites of Atg39 accumulation by Atg11. Loss of Dnm1 compromises nucleophagic flux by stalling nucleophagy after INM fission. Our findings reveal how nuclear and INM cargo are removed from an intact nucleus without compromising its integrity, achieved in part by a non-canonical role for Dnm1 in nuclear envelope remodeling.
Collapse
Affiliation(s)
- Philip J. Mannino
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT, 06520
| | - Andrew Perun
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT, 06520
| | - Ivan V. Surovtsev
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT, 06520
- Department of Physics, Yale University, New Haven, CT, 06511
| | - Nicholas R. Ader
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT, 06520
| | - Lin Shao
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT, 06520
| | - Elisa C. Rodriguez
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT, 06520
| | - Thomas J. Melia
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT, 06520
| | - Megan C. King
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT, 06520
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, 06511
| | - C. Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT, 06520
| |
Collapse
|
8
|
Di Bona M, Bakhoum SF. A new microscopy pipeline for studying the initial stages of nuclear and micronuclear rupture and repair. Front Cell Dev Biol 2024; 12:1475095. [PMID: 39359718 PMCID: PMC11445188 DOI: 10.3389/fcell.2024.1475095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Nuclear envelope repair is a fundamental cellular response to stress, especially for cells experiencing frequent nuclear ruptures, such as cancer cells. Moreover, for chromosomally unstable cancer cells, characterized by the presence of micronuclei, the irreversible rupture of these structures constitutes a fundamental step toward cancer progression and therapy resistance. For these reasons, the study of nuclear envelope rupture and repair is of paramount importance. Nonetheless, due to the constraint imposed by the stochastic nature of rupture events, a precise characterization of the initial stage of nuclear repair remains elusive. In this study, we overcame this limitation by developing a new imaging pipeline that deterministically induces rupture while simultaneously imaging fluorescently tagged repair proteins. We provide a detailed step-by-step protocol to implement this method on any confocal microscope and applied it to study the major nuclear repair protein, barrier-to-autointegration factor (BAF). As a proof of principle, we demonstrated two different downstream analysis methods and showed how BAF is differentially recruited at sites of primary and micronuclear rupture. Additionally, we applied this method to study the recruitment at primary nuclei of the inner nuclear membrane protein LEM-domain 2 (LEMD2) and Charged Multivesicular Protein 7 (CHMP7), the scaffolding protein of the endosomal sorting complex required for transport III (ESCRT-III) membrane remodeling complex. The CHMP7-LEMD2 binding is the fundamental step allowing the recruitment of ESCRT-III, which represents the other major nuclear repair mechanism. This demonstrates the method's applicability for investigating protein dynamics at sites of nuclear and micronuclear envelope rupture and paves the way to more time-resolved studies of nuclear envelope repair.
Collapse
Affiliation(s)
- Melody Di Bona
- Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Samuel F Bakhoum
- Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
9
|
Zych MG, Contreras M, Vashisth M, Mammel AE, Ha G, Hatch EM. RCC1 depletion drives protein transport defects and rupture in micronuclei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611299. [PMID: 39282444 PMCID: PMC11398501 DOI: 10.1101/2024.09.04.611299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Micronuclei (MN) are a commonly used marker of chromosome instability that form when missegregated chromatin recruits its own nuclear envelope (NE) after mitosis. MN frequently rupture, which results in genome instability, upregulation of metastatic genes, and increased immune signaling. MN rupture is linked to NE defects, but the cause of these defects is poorly understood. Previous work from our lab found that chromosome identity correlates with rupture timing for small MN, i.e. MN containing a short chromosome, with more euchromatic chromosomes forming more stable MN with fewer nuclear lamina gaps. Here we demonstrate that histone methylation promotes rupture and nuclear lamina defects in small MN. This correlates with increased MN size, and we go on to find that all MN have a constitutive nuclear export defect that drives MN growth and nuclear lamina gap expansion, making the MN susceptible to rupture. We demonstrate that these export defects arise from decreased RCC1 levels in MN and that additional loss of RCC1 caused by low histone methylation in small euchromatic MN results in additional import defects that suppress nuclear lamina gaps and MN rupture. Through analysis of mutational signatures associated with early and late rupturing chromosomes in the Pan-Cancer Analysis of Whole Genomes (PCAWG) dataset, we identify an enrichment of APOBEC and DNA polymerase E hypermutation signatures in chromothripsis events on early and mid rupturing chromosomes, respectively, suggesting that MN rupture timing could determine the landscape of structural variation in chromothripsis. Our study defines a new model of MN rupture where increased MN growth, caused by defects in protein export, drives gaps in nuclear lamina organization that make the MN susceptible to membrane rupture with long-lasting effects on genome architecture.
Collapse
Affiliation(s)
- Molly G Zych
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Maya Contreras
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Manasvita Vashisth
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Anna E Mammel
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gavin Ha
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Emily M Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
10
|
Di Bona M, Chen Y, Agustinus AS, Mazzagatti A, Duran MA, Deyell M, Bronder D, Hickling J, Hong C, Scipioni L, Tedeschi G, Martin S, Li J, Ruzgaitė A, Riaz N, Shah P, D’Souza EK, Brodtman DZ, Sidoli S, Diplas B, Jalan M, Lee NY, Ordureau A, Izar B, Laughney AM, Powell S, Gratton E, Santaguida S, Maciejowski J, Ly P, Jeitner TM, Bakhoum SF. Micronuclear collapse from oxidative damage. Science 2024; 385:eadj8691. [PMID: 39208110 PMCID: PMC11610459 DOI: 10.1126/science.adj8691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/29/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Chromosome-containing micronuclei are a hallmark of aggressive cancers. Micronuclei frequently undergo irreversible collapse, exposing their enclosed chromatin to the cytosol. Micronuclear rupture catalyzes chromosomal rearrangements, epigenetic abnormalities, and inflammation, yet mechanisms safeguarding micronuclear integrity are poorly understood. In this study, we found that mitochondria-derived reactive oxygen species (ROS) disrupt micronuclei by promoting a noncanonical function of charged multivesicular body protein 7 (CHMP7), a scaffolding protein for the membrane repair complex known as endosomal sorting complex required for transport III (ESCRT-III). ROS retained CHMP7 in micronuclei while disrupting its interaction with other ESCRT-III components. ROS-induced cysteine oxidation stimulated CHMP7 oligomerization and binding to the nuclear membrane protein LEMD2, disrupting micronuclear envelopes. Furthermore, this ROS-CHMP7 pathological axis engendered chromosome shattering known to result from micronuclear rupture. It also mediated micronuclear disintegrity under hypoxic conditions, linking tumor hypoxia with downstream processes driving cancer progression.
Collapse
Affiliation(s)
- Melody Di Bona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanyang Chen
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Albert S. Agustinus
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Pharmacology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mercedes A. Duran
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew Deyell
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daniel Bronder
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James Hickling
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christy Hong
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lorenzo Scipioni
- School of Engineering, University of California, Irvine, CA 92697, USA
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA 92617, USA
| | - Giulia Tedeschi
- School of Engineering, University of California, Irvine, CA 92697, USA
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA 92617, USA
| | - Sara Martin
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aušrinė Ruzgaitė
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Parin Shah
- Systems Biology Department, Columbia University, New York, NY 10032, USA
| | - Edridge K. D’Souza
- Systems Biology Department, Columbia University, New York, NY 10032, USA
| | - D. Zack Brodtman
- Systems Biology Department, Columbia University, New York, NY 10032, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Bill Diplas
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manisha Jalan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nancy Y. Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alban Ordureau
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Benjamin Izar
- Systems Biology Department, Columbia University, New York, NY 10032, USA
| | - Ashley M. Laughney
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Simon Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Enrico Gratton
- School of Engineering, University of California, Irvine, CA 92697, USA
| | - Stefano Santaguida
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - John Maciejowski
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas M. Jeitner
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Samuel F. Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
11
|
Spada SJ, Rose KM, Sette P, O'Connor SK, Dussupt V, Siddartha Yerramilli V, Nagashima K, Sjoelund VH, Cruz P, Kabat J, Ganesan S, Smelkinson M, Nita-Lazar A, Hoyt F, Scarlata S, Hirsch V, Best SM, Grigg ME, Bouamr F. Human ESCRT-I and ALIX function as scaffolding helical filaments in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592080. [PMID: 38903125 PMCID: PMC11188096 DOI: 10.1101/2024.05.01.592080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) is an evolutionarily conserved machinery that performs reverse-topology membrane scission in cells universally required from cytokinesis to budding of enveloped viruses. Upstream acting ESCRT-I and ALIX control these events and link recruitment of viral and cellular partners to late-acting ESCRT-III CHMP4 through incompletely understood mechanisms. Using structure-function analyses combined with super-resolution imaging, we show that ESCRT-I and ALIX function as distinct helical filaments in vivo . Together, they are essential for optimal structural scaffolding of HIV-1 nascent virions, the retention of viral and human genomes through defined functional interfaces, and recruitment of CHMP4 that itself assembles into corkscrew-like filaments intertwined with ESCRT-I or ALIX helices. Disruption of filament assembly or their conformationally clustered RNA binding interfaces in human cells impaired membrane abscission, resulted in major structural instability and leaked nucleic acid from nascent virions and nuclear envelopes. Thus, ESCRT-I and ALIX function as helical filaments in vivo and serve as both nucleic acid-dependent structural scaffolds as well as ESCRT-III assembly templates. Significance statement When cellular membranes are dissolved or breached, ESCRT is rapidly deployed to repair membranes to restore the integrity of intracellular compartments. Membrane sealing is ensured by ESCRT-III filaments assembled on the inner face of membrane; a mechanism termed inverse topology membrane scission. This mechanism, initiated by ESCRT-I and ALIX, is universally necessary for cytokinesis, wound repair, budding of enveloped viruses, and more. We show ESCRT-I and ALIX individually oligomerize into helical filaments that cluster newly discovered nucleic acid-binding interfaces and scaffold-in genomes within nascent virions and nuclear envelopes. These oligomers additionally appear to serve as ideal templates for ESCRT-III polymerization, as helical filaments of CHMP4B were found intertwined ESCRT-I or ALIX filaments in vivo . Similarly, corkscrew-like filaments of ALIX are also interwoven with ESCRT-I, supporting a model of inverse topology membrane scission that is synergistically reinforced by inward double filament scaffolding.
Collapse
|
12
|
Ikeda T, Yamazaki K, Okumura F, Kamura T, Nakatsukasa K. Role of the San1 ubiquitin ligase in the heat stress-induced degradation of nonnative Nup1 in the nuclear pore complex. Genetics 2024; 226:iyae017. [PMID: 38302116 DOI: 10.1093/genetics/iyae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 11/21/2022] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
The nuclear pore complex (NPC) mediates the selective exchange of macromolecules between the nucleus and the cytoplasm. Neurodegenerative diseases such as amyotrophic lateral sclerosis are characterized by mislocalization of nucleoporins (Nups), transport receptors, and Ras-related nuclear proteins into nucleoplasmic or cytosolic aggregates, underscoring the importance of precise assembly of the NPC. The assembly state of large protein complexes is strictly monitored by the protein quality control system. The ubiquitin-proteasome system may eliminate aberrant, misfolded, and/or orphan components; however, the involvement of the ubiquitin-proteasome system in the degradation of nonnative Nups in the NPC remains unclear. Here, we show that in Saccharomyces cerevisiae, although Nup1 (the FG-Nup component of the central core of the NPC) was stable, C-terminally green fluorescent protein-tagged Nup1, which had been incorporated into the NPC, was degraded by the proteasome especially under heat stress conditions. The degradation was dependent on the San1 ubiquitin ligase and Cdc48/p97, as well as its cofactor Doa1. We also demonstrate that San1 weakly but certainly contributes to the degradation of nontagged endogenous Nup1 in cells defective in NPC biogenesis by the deletion of NUP120. In addition, the overexpression of SAN1 exacerbated the growth defect phenotype of nup120Δ cells, which may be caused by excess degradation of defective Nups due to the deletion of NUP120. These biochemical and genetic data suggest that San1 is involved in the degradation of nonnative Nups generated by genetic mutation or when NPC biogenesis is impaired.
Collapse
Affiliation(s)
- Takanari Ikeda
- Graduate School of Science, Nagoya City University, Nagoya, Aichi 467-8501, Japan
| | - Kenji Yamazaki
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Fumihiko Okumura
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Fukuoka 813-8529, Japan
| | - Takumi Kamura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Kunio Nakatsukasa
- Graduate School of Science, Nagoya City University, Nagoya, Aichi 467-8501, Japan
| |
Collapse
|
13
|
Baskerville V, Rapuri S, Mehlhop E, Coyne AN. SUN1 facilitates CHMP7 nuclear influx and injury cascades in sporadic amyotrophic lateral sclerosis. Brain 2024; 147:109-121. [PMID: 37639327 PMCID: PMC10766250 DOI: 10.1093/brain/awad291] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/16/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
We have recently identified the aberrant nuclear accumulation of the ESCRT-III protein CHMP7 as an initiating event that leads to a significant injury to the nuclear pore complex (NPC) characterized by the reduction of specific nucleoporins from the neuronal NPC in sporadic amyotrophic lateral sclerosis (sALS) and C9orf72 ALS/frontotemporal dementia (FTD)-induced pluripotent stem cell-derived neurons (iPSNs), a phenomenon also observed in post-mortem patient tissues. Importantly, this NPC injury is sufficient to contribute to TDP-43 dysfunction and mislocalization, a common pathological hallmark of neurodegenerative diseases. However, the molecular mechanisms and events that give rise to increased nuclear translocation and/or retention of CHMP7 to initiate this pathophysiological cascade remain largely unknown. Here, using an iPSN model of sALS, we demonstrate that impaired NPC permeability barrier integrity and interactions with the LINC complex protein SUN1 facilitate CHMP7 nuclear localization and the subsequent 'activation' of NPC injury cascades. Collectively, our data provide mechanistic insights in the pathophysiological underpinnings of ALS/FTD and highlight SUN1 as a potent contributor to and modifier of CHMP7-mediated toxicity in sALS pathogenesis.
Collapse
Affiliation(s)
- Victoria Baskerville
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sampath Rapuri
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emma Mehlhop
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alyssa N Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Rothstein JD, Warlick C, Coyne AN. Highly variable molecular signatures of TDP-43 loss of function are associated with nuclear pore complex injury in a population study of sporadic ALS patient iPSNs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571299. [PMID: 38168312 PMCID: PMC10760028 DOI: 10.1101/2023.12.12.571299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The nuclear depletion and cytoplasmic aggregation of the RNA binding protein TDP-43 is widely considered a pathological hallmark of Amyotrophic Lateral Sclerosis (ALS) and related neurodegenerative diseases. Recent studies have artificially reduced TDP-43 in wildtype human neurons to replicate loss of function associated events. Although this prior work has defined a number of gene expression and mRNA splicing changes that occur in a TDP-43 dependent manner, it is unclear how these alterations relate to authentic ALS where TDP-43 is not depleted from the cell but miscompartmentalized to variable extents. Here, in this population study, we generate ~30,000 qRT-PCR data points spanning 20 genes in induced pluripotent stem cell (iPSC) derived neurons (iPSNs) from >150 control, C9orf72 ALS/FTD, and sALS patients to examine molecular signatures of TDP-43 dysfunction. This data set defines a time dependent and variable profile of individual molecular hallmarks of TDP-43 loss of function within and amongst individual patient lines. Importantly, nearly identical changes are observed in postmortem CNS tissues obtained from a subset of patients whose iPSNs were examined. Notably, these studies provide evidence that induction of nuclear pore complex (NPC) injury via reduction of the transmembrane Nup POM121 in wildtype iPSNs is sufficient to phenocopy disease associated signatured of TDP-43 loss of function thereby directly linking NPC integrity to TDP-43 loss of function. Therapeutically, we demonstrate that the expression of all mRNA species associated with TDP-43 loss of function can be restored in sALS iPSNs via two independent methods to repair NPC injury. Collectively, this data 1) represents a substantial resource for the community to examine TDP-43 loss of function events in authentic sALS patient iPSNs, 2) demonstrates that patient derived iPSNs can accurately reflect actual TDP-43 associated alterations in patient brain, and 3) that targeting NPC injury events can be preclinically and reliably accomplished in an iPSN based platform of a sporadic disease.
Collapse
Affiliation(s)
- Jeffrey D. Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Caroline Warlick
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Alyssa N. Coyne
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205
| |
Collapse
|
15
|
Barrientos ECR, Otto TA, Mouton SN, Steen A, Veenhoff LM. A survey of the specificity and mechanism of 1,6 hexanediol-induced disruption of nuclear transport. Nucleus 2023; 14:2240139. [PMID: 37498221 PMCID: PMC10376917 DOI: 10.1080/19491034.2023.2240139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Selective transport through the nuclear pore complex (NPC) depends on the dynamic binding of FG-repeat containing nucleoporins, the FG-nups, with each other and with Karyopherins (Kaps). Here, we assessed the specificity and mechanism by which the aliphatic alcohol 1,6-hexanediol (1,6HD) disrupts the permeability barrier of NPCs in live baker's yeast cells. After a 10-minute exposure to 5% 1,6HD, no notable changes were observed in cell growth, cytosolic pH and ATP levels, or the appearance of organelles. However, effects on the cytoskeleton and Hsp104 were noted. 1,6HD clearly affected the NPC permeability barrier, allowing passive nuclear entry of a 177kDa reporter protein that is normally confined to the cytosol. Moreover, multiple Kaps were displaced from NPCs, and the displacement of Kap122-GFP correlated with the observed passive permeability changes. 1,6HD thus temporarily permeates NPCs, and in line with Kap-centric models, the mechanism includes the release of numerous Kaps from the NPCs.
Collapse
Affiliation(s)
- Elizabeth C Riquelme Barrientos
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Groningen, The Netherlands
| | - Tegan A Otto
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Groningen, The Netherlands
| | - Sara N Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Groningen, The Netherlands
| | - Anton Steen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Groningen, The Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Veldsink AC, Gallardo P, Lusk CP, Veenhoff LM. Changing the guard-nuclear pore complex quality control. FEBS Lett 2023; 597:2739-2749. [PMID: 37715940 DOI: 10.1002/1873-3468.14739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
The integrity of the nuclear envelope depends on the function of nuclear pore complexes (NPCs), transport channels that control macromolecular traffic between the nucleus and cytosol. The central importance of NPCs suggests the existence of quality control (QC) mechanisms that oversee their assembly and function. In this perspective, we emphasize the challenges associated with NPC assembly and the need for QC mechanisms that operate at various stages of an NPC's life. This includes cytosolic preassembly QC that helps enforce key nucleoporin-nucleoporin interactions and their ultimate stoichiometry in the NPC in addition to mechanisms that monitor aberrant fusion of the inner and outer nuclear membranes. Furthermore, we discuss whether and how these QC mechanisms may operate to sense faulty mature NPCs to facilitate their repair or removal. The so far uncovered mechanisms for NPC QC provide fertile ground for future research that not only benefits a better understanding of the vital role that NPCs play in cellular physiology but also how loss of NPC function and/or these QC mechanisms might be an input to aging and disease.
Collapse
Affiliation(s)
- Annemiek C Veldsink
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Paola Gallardo
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, CT, New Haven, USA
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
17
|
Barger SR, Penfield L, Bahmanyar S. Nuclear envelope assembly relies on CHMP-7 in the absence of BAF-LEM-mediated hole closure. J Cell Sci 2023; 136:jcs261385. [PMID: 37795681 PMCID: PMC10668030 DOI: 10.1242/jcs.261385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Barrier-to-autointegration factor (BAF) protein is a DNA-binding protein that crosslinks chromatin to allow mitotic nuclear envelope (NE) assembly. The LAP2-emerin-MAN1 (LEM)-domain protein LEMD2 and ESCRT-II/III hybrid protein CHMP7 close NE holes surrounding spindle microtubules (MTs). BAF binds LEM-domain family proteins to repair NE ruptures in interphase, but whether BAF-LEM binding participates in NE hole closure around spindle MTs is not known. Here, we took advantage of the stereotypical event of NE formation in fertilized Caenorhabditis elegans oocytes to show that BAF-LEM binding and LEM-2-CHMP-7 have distinct roles in NE closure around spindle MTs. LEM-2 and EMR-1 (homologs of LEMD2 and emerin) function redundantly with BAF-1 (the C. elegans BAF protein) in NE closure. Compromising BAF-LEM binding revealed an additional role for EMR-1 in the maintenance of the NE permeability barrier. In the absence of BAF-LEM binding, LEM-2-CHMP-7 was required for NE assembly and embryo survival. The winged helix domain of LEM-2 recruits CHMP-7 to the NE in C. elegans and a LEM-2-independent nucleoplasmic pool of CHMP-7 also contributes to NE stability. Thus, NE hole closure surrounding spindle MTs requires redundant mechanisms that safeguard against failure in NE assembly to support embryogenesis.
Collapse
Affiliation(s)
- Sarah R. Barger
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511, USA
| | - Lauren Penfield
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511, USA
| | - Shirin Bahmanyar
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511, USA
| |
Collapse
|
18
|
Ader NR, Chen L, Surovtsev IV, Chadwick WL, Rodriguez EC, King MC, Lusk CP. An ESCRT grommet cooperates with a diffusion barrier to maintain nuclear integrity. Nat Cell Biol 2023; 25:1465-1477. [PMID: 37783794 PMCID: PMC11365527 DOI: 10.1038/s41556-023-01235-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/17/2023] [Indexed: 10/04/2023]
Abstract
The molecular mechanisms by which the endosomal sorting complexes required for transport (ESCRT) proteins contribute to the integrity of the nuclear envelope (NE) barrier are not fully defined. We leveraged the single NE hole generated by mitotic extrusion of the Schizosaccharomyces pombe spindle pole body to reveal two modes of ESCRT function executed by distinct complements of ESCRT-III proteins, both dependent on CHMP7/Cmp7. A grommet-like function is required to restrict the NE hole in anaphase B, whereas replacement of Cmp7 by a sealing module ultimately closes the NE in interphase. Without Cmp7, nucleocytoplasmic compartmentalization remains intact despite NE discontinuities of up to 540 nm, suggesting mechanisms to limit diffusion through these holes. We implicate spindle pole body proteins as key components of a diffusion barrier acting with Cmp7 in anaphase B. Thus, NE remodelling mechanisms cooperate with proteinaceous diffusion barriers beyond nuclear pore complexes to maintain the nuclear compartment.
Collapse
Affiliation(s)
- Nicholas R Ader
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Linda Chen
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Ivan V Surovtsev
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Physics, Yale University, New Haven, CT, USA
| | | | - Elisa C Rodriguez
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT, USA.
| | - C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
19
|
Cristi AC, Rapuri S, Coyne AN. Nuclear pore complex and nucleocytoplasmic transport disruption in neurodegeneration. FEBS Lett 2023; 597:2546-2566. [PMID: 37657945 PMCID: PMC10612469 DOI: 10.1002/1873-3468.14729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Nuclear pore complexes (NPCs) play a critical role in maintaining the equilibrium between the nucleus and cytoplasm, enabling bidirectional transport across the nuclear envelope, and are essential for proper nuclear organization and gene regulation. Perturbations in the regulatory mechanisms governing NPCs and nuclear envelope homeostasis have been implicated in the pathogenesis of several neurodegenerative diseases. The ESCRT-III pathway emerges as a critical player in the surveillance and preservation of well-assembled, functional NPCs, as well as nuclear envelope sealing. Recent studies have provided insights into the involvement of nuclear ESCRT-III in the selective reduction of specific nucleoporins associated with neurodegenerative pathologies. Thus, maintaining quality control of the nuclear envelope and NPCs represents a pivotal element in the pathological cascade leading to neurodegenerative diseases. This review describes the constituents of the nuclear-cytoplasmic transport machinery, encompassing the nuclear envelope, NPC, and ESCRT proteins, and how their structural and functional alterations contribute to the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- América Chandía Cristi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| | - Sampath Rapuri
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| | - Alyssa N Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| |
Collapse
|
20
|
Bâcle J, Groizard L, Kumanski S, Moriel-Carretero M. Nuclear envelope-remodeling events as models to assess the potential role of membranes on genome stability. FEBS Lett 2023; 597:1946-1956. [PMID: 37339935 DOI: 10.1002/1873-3468.14688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023]
Abstract
The nuclear envelope (NE) encloses the genetic material and functions in chromatin organization and stability. In Saccharomyces cerevisiae, the NE is bound to the ribosomal DNA (rDNA), highly repeated and transcribed, thus prone to genetic instability. While tethering limits instability, it simultaneously triggers notable NE remodeling. We posit here that NE remodeling may contribute to genome integrity maintenance. The NE importance in genome expression, structure, and integrity is well recognized, yet studies mostly focus on peripheral proteins and nuclear pores, not on the membrane itself. We recently characterized a NE invagination drastically obliterating the rDNA, which we propose here as a model to probe if and how membranes play an active role in genome stability preservation.
Collapse
Affiliation(s)
- Janélie Bâcle
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Centre National de la Recherche Scientifique, Université de Montpellier, France
| | - Léa Groizard
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Centre National de la Recherche Scientifique, Université de Montpellier, France
| | - Sylvain Kumanski
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Centre National de la Recherche Scientifique, Université de Montpellier, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Centre National de la Recherche Scientifique, Université de Montpellier, France
| |
Collapse
|
21
|
Barger SR, Penfield L, Bahmanyar S. Nuclear envelope assembly relies on CHMP-7 in the absence of BAF-LEM-mediated hole closure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547980. [PMID: 37461528 PMCID: PMC10350047 DOI: 10.1101/2023.07.06.547980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Barrier-to-autointegration factor (BAF) is a DNA binding protein that crosslinks chromatin to assemble the nuclear envelope (NE) after mitosis. BAF also binds the Lap2b-Emerin-Man1 (LEM) domain family of NE proteins to repair interphase ruptures. The NE adaptors to ESCRTs, LEMD2-CHMP7, seal NE holes surrounding mitotic spindle microtubules (MTs), but whether NE hole closure in mitosis involves BAF-LEM binding is not known. Here, we analyze NE sealing after meiosis II in C. elegans oocytes to show that BAF-LEM binding and LEM-2 LEMD2 -CHMP-7 have distinct roles in hole closure around spindle MTs. LEM-2/EMR-1 emerin function redundantly with BAF-1 to seal the NE. Compromising BAF-LEM binding revealed an additional role for EMR-1 in maintenance of the NE permeability barrier and an essential role for LEM-2-CHMP-7 in preventing NE assembly failure. The WH domain of LEM-2 recruits the majority of CHMP-7 to the NE in C. elegans and a LEM-2 -independent pool of CHMP-7, which is mostly enriched in the nucleoplasm, also contributes to NE stability. Thus, NE hole closure surrounding spindle MTs requires redundant mechanisms that safeguard against failure in NE assembly to support embryogenesis.
Collapse
Affiliation(s)
- Sarah R. Barger
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511
| | - Lauren Penfield
- Current address: Department of Molecular, Cellular, and Developmental Biology at University of California, Santa Barbara, CA
| | - Shirin Bahmanyar
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511
| |
Collapse
|
22
|
Sontag EM, Morales-Polanco F, Chen JH, McDermott G, Dolan PT, Gestaut D, Le Gros MA, Larabell C, Frydman J. Nuclear and cytoplasmic spatial protein quality control is coordinated by nuclear-vacuolar junctions and perinuclear ESCRT. Nat Cell Biol 2023; 25:699-713. [PMID: 37081164 DOI: 10.1038/s41556-023-01128-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/14/2023] [Indexed: 04/22/2023]
Abstract
Effective protein quality control (PQC), essential for cellular health, relies on spatial sequestration of misfolded proteins into defined inclusions. Here we reveal the coordination of nuclear and cytoplasmic spatial PQC. Cytoplasmic misfolded proteins concentrate in a cytoplasmic juxtanuclear quality control compartment, while nuclear misfolded proteins sequester into an intranuclear quality control compartment (INQ). Particle tracking reveals that INQ and the juxtanuclear quality control compartment converge to face each other across the nuclear envelope at a site proximal to the nuclear-vacuolar junction marked by perinuclear ESCRT-II/III protein Chm7. Strikingly, convergence at nuclear-vacuolar junction contacts facilitates VPS4-dependent vacuolar clearance of misfolded cytoplasmic and nuclear proteins, the latter entailing extrusion of nuclear INQ into the vacuole. Finding that nuclear-vacuolar contact sites are cellular hubs of spatial PQC to facilitate vacuolar clearance of nuclear and cytoplasmic inclusions highlights the role of cellular architecture in proteostasis maintenance.
Collapse
Affiliation(s)
- Emily M Sontag
- Department of Biology, Stanford University, Stanford, CA, USA.
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA.
| | | | - Jian-Hua Chen
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Gerry McDermott
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Patrick T Dolan
- Department of Biology, Stanford University, Stanford, CA, USA
- Quantitative Virology and Evolution Unit, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Daniel Gestaut
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Mark A Le Gros
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Carolyn Larabell
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Wenzel DM, Mackay DR, Skalicky JJ, Paine EL, Miller MS, Ullman KS, Sundquist WI. Comprehensive analysis of the human ESCRT-III-MIT domain interactome reveals new cofactors for cytokinetic abscission. eLife 2022; 11:e77779. [PMID: 36107470 PMCID: PMC9477494 DOI: 10.7554/elife.77779] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The 12 related human ESCRT-III proteins form filaments that constrict membranes and mediate fission, including during cytokinetic abscission. The C-terminal tails of polymerized ESCRT-III subunits also bind proteins that contain Microtubule-Interacting and Trafficking (MIT) domains. MIT domains can interact with ESCRT-III tails in many different ways to create a complex binding code that is used to recruit essential cofactors to sites of ESCRT activity. Here, we have comprehensively and quantitatively mapped the interactions between all known ESCRT-III tails and 19 recombinant human MIT domains. We measured 228 pairwise interactions, quantified 60 positive interactions, and discovered 18 previously unreported interactions. We also report the crystal structure of the SPASTIN MIT domain in complex with the IST1 C-terminal tail. Three MIT enzymes were studied in detail and shown to: (1) localize to cytokinetic midbody membrane bridges through interactions with their specific ESCRT-III binding partners (SPASTIN-IST1, KATNA1-CHMP3, and CAPN7-IST1), (2) function in abscission (SPASTIN, KATNA1, and CAPN7), and (3) function in the 'NoCut' abscission checkpoint (SPASTIN and CAPN7). Our studies define the human MIT-ESCRT-III interactome, identify new factors and activities required for cytokinetic abscission and its regulation, and provide a platform for analyzing ESCRT-III and MIT cofactor interactions in all ESCRT-mediated processes.
Collapse
Affiliation(s)
- Dawn M Wenzel
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Douglas R Mackay
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Jack J Skalicky
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Elliott L Paine
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Matthew S Miller
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Katharine S Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| |
Collapse
|
24
|
Borah S, Dhanasekaran K, Kumar S. The LEM-ESCRT toolkit: Repair and maintenance of the nucleus. Front Cell Dev Biol 2022; 10:989217. [PMID: 36172278 PMCID: PMC9512039 DOI: 10.3389/fcell.2022.989217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/24/2022] [Indexed: 12/04/2022] Open
Abstract
The eukaryotic genome is enclosed in a nuclear envelope that protects it from potentially damaging cellular activities and physically segregates transcription and translation.Transport across the NE is highly regulated and occurs primarily via the macromolecular nuclear pore complexes.Loss of nuclear compartmentalization due to defects in NPC function and NE integrity are tied to neurological and ageing disorders like Alzheimer’s, viral pathogenesis, immune disorders, and cancer progression.Recent work implicates inner-nuclear membrane proteins of the conserved LEM domain family and the ESCRT machinery in NE reformation during cell division and NE repair upon rupture in migrating cancer cells, and generating seals over defective NPCs. In this review, we discuss the recent in-roads made into defining the molecular mechanisms and biochemical networks engaged by LEM and many other integral inner nuclear membrane proteins to preserve the nuclear barrier.
Collapse
Affiliation(s)
- Sapan Borah
- National Institute of Immunohaematology, Mumbai, Maharashtra, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| | - Karthigeyan Dhanasekaran
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| | - Santosh Kumar
- National Centre for Cell Science, Pune, Maharashtra, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| |
Collapse
|
25
|
Mannino PJ, Lusk CP. Quality control mechanisms that protect nuclear envelope identity and function. J Biophys Biochem Cytol 2022; 221:213424. [PMID: 36036741 PMCID: PMC9442147 DOI: 10.1083/jcb.202205123] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
The nuclear envelope (NE) is a specialization of the endoplasmic reticulum with distinct biochemistry that defines inner and outer membranes connected at a pore membrane that houses nuclear pore complexes (NPCs). Quality control mechanisms that maintain the physical integrity and biochemical identity of these membranes are critical to ensure that the NE acts as a selective barrier that also contributes to genome stability and metabolism. As the proteome of the NE is highly integrated, it is challenging to turn over by conventional ubiquitin-proteasome and autophagy mechanisms. Further, removal of entire sections of the NE requires elaborate membrane remodeling that is poorly understood. Nonetheless, recent work has made inroads into discovering specializations of cellular degradative machineries tailored to meeting the unique challenges imposed by the NE. In addition, cells have evolved mechanisms to surveil and repair the NE barrier to protect against the deleterious effects of a breach in NE integrity, in the form of either a ruptured NE or a dysfunctional NPC. Here, we synthesize the most recent work exploring NE quality control mechanisms across eukaryotes.
Collapse
|
26
|
Martín Caballero L, Capella M, Barrales RR, Dobrev N, van Emden T, Hirano Y, Suma Sreechakram VN, Fischer-Burkart S, Kinugasa Y, Nevers A, Rougemaille M, Sinning I, Fischer T, Hiraoka Y, Braun S. The inner nuclear membrane protein Lem2 coordinates RNA degradation at the nuclear periphery. Nat Struct Mol Biol 2022; 29:910-921. [PMID: 36123402 PMCID: PMC9507967 DOI: 10.1038/s41594-022-00831-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/02/2022] [Indexed: 11/21/2022]
Abstract
Transcriptionally silent chromatin often localizes to the nuclear periphery. However, whether the nuclear envelope (NE) is a site for post-transcriptional gene repression is not well understood. Here we demonstrate that Schizosaccharomycespombe Lem2, an NE protein, regulates nuclear-exosome-mediated RNA degradation. Lem2 deletion causes accumulation of RNA precursors and meiotic transcripts and de-localization of an engineered exosome substrate from the nuclear periphery. Lem2 does not directly bind RNA but instead interacts with the exosome-targeting MTREC complex and its human homolog PAXT to promote RNA recruitment. This pathway acts largely independently of nuclear bodies where exosome factors assemble. Nutrient availability modulates Lem2 regulation of meiotic transcripts, implying that this pathway is environmentally responsive. Our work reveals that multiple spatially distinct degradation pathways exist. Among these, Lem2 coordinates RNA surveillance of meiotic transcripts and non-coding RNAs by recruiting exosome co-factors to the nuclear periphery. The Braun lab shows that the conserved nuclear membrane protein Lem2 interacts with the MTREC complex of the nuclear-exosome pathway to promote recruitment and degradation of ncRNAs and meiotic transcripts at the nuclear periphery in Schizosaccharomycespombe.
Collapse
Affiliation(s)
- Lucía Martín Caballero
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Matías Capella
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ramón Ramos Barrales
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Seville, Spain
| | - Nikolay Dobrev
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Thomas van Emden
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Vishnu N Suma Sreechakram
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sabine Fischer-Burkart
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Yasuha Kinugasa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Regulation for intractable Infectious Diseases, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Alicia Nevers
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.,University Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Mathieu Rougemaille
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Tamás Fischer
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.,The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Sigurd Braun
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany. .,International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany. .,Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
27
|
The ESCRT Machinery: Remodeling, Repairing, and Sealing Membranes. MEMBRANES 2022; 12:membranes12060633. [PMID: 35736340 PMCID: PMC9229795 DOI: 10.3390/membranes12060633] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023]
Abstract
The ESCRT machinery is an evolutionarily conserved membrane remodeling complex that is used by the cell to perform reverse membrane scission in essential processes like protein degradation, cell division, and release of enveloped retroviruses. ESCRT-III, together with the AAA ATPase VPS4, harbors the main remodeling and scission function of the ESCRT machinery, whereas early-acting ESCRTs mainly contribute to protein sorting and ESCRT-III recruitment through association with upstream targeting factors. Here, we review recent advances in our understanding of the molecular mechanisms that underlie membrane constriction and scission by ESCRT-III and describe the involvement of this machinery in the sealing and repairing of damaged cellular membranes, a key function to preserve cellular viability and organellar function.
Collapse
|
28
|
Coyne AN, Rothstein JD. Nuclear pore complexes - a doorway to neural injury in neurodegeneration. Nat Rev Neurol 2022; 18:348-362. [PMID: 35488039 PMCID: PMC10015220 DOI: 10.1038/s41582-022-00653-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/13/2022]
Abstract
The genetic underpinnings and end-stage pathological hallmarks of neurodegenerative diseases are increasingly well defined, but the cellular pathophysiology of disease initiation and propagation remains poorly understood, especially in sporadic forms of these diseases. Altered nucleocytoplasmic transport is emerging as a prominent pathomechanism of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer disease, frontotemporal dementia and Huntington disease. The nuclear pore complex (NPC) and interactions between its individual nucleoporin components and nuclear transport receptors regulate nucleocytoplasmic transport, as well as genome organization and gene expression. Specific nucleoporin abnormalities have been identified in sporadic and familial forms of neurodegenerative disease, and these alterations are thought to contribute to disrupted nucleocytoplasmic transport. The specific nucleoporins and nucleocytoplasmic transport proteins that have been linked to different neurodegenerative diseases are partially distinct, suggesting that NPC injury contributes to the cellular specificity of neurodegenerative disease and could be an early initiator of the pathophysiological cascades that underlie neurodegenerative disease. This concept is consistent with the fact that rare genetic mutations in some nucleoporins cause cell-type-specific neurological disease. In this Review, we discuss nucleoporin and NPC disruptions and consider their impact on cellular function and the pathophysiology of neurodegenerative disease.
Collapse
Affiliation(s)
- Alyssa N Coyne
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
29
|
Alsleben S, Kölling R. Vps68 cooperates with ESCRT-III in intraluminal vesicle formation. J Cell Sci 2022; 135:275091. [PMID: 35445263 DOI: 10.1242/jcs.259743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/31/2022] [Indexed: 11/20/2022] Open
Abstract
The endosomal sorting complex required for transport (ESCRT)-III mediates budding and abscission of intraluminal vesicles (ILVs) into multivesicular endosomes. To further define the role of the yeast ESCRT-III-associated protein Mos10 (also known as Vps60) in ILV formation, we screened for new interaction partners by using stable isotope labeling of amino acids in cell culture (SILAC) and mass spectrometry. Here, we focused on the newly identified interaction partner Vps68. Our data suggest that Vps68 cooperates with ESCRT-III in ILV formation. The deletion of VPS68 caused a sorting defect similar to that of the SNF7 deletion strain when the cargo load was high. The composition of ESCRT-III was altered, the level of core components was higher and the level of associated proteins was lower in the VPS68 deletion strain. Our data further indicate that at some point in the functional cycle of ESCRT-III, Snf7 could be replaced by Mos10. Vps68 has an unusual membrane topology. Two of its potential membrane helices are amphipathic helices that localize to the luminal side of the endosomal membrane. Based on this membrane topology, we propose that Vps68 and ESCRT-III cooperate in the abscission step by weakening the luminal and cytosolic leaflets of the bilayer at the abscission site.
Collapse
Affiliation(s)
- Sören Alsleben
- Institut für Lebensmittelwissenschaft und Biotechnologie, Fg. Hefegenetik und Gärungstechnologie, Universität Hohenheim, 70599 Stuttgart, Germany
| | - Ralf Kölling
- Institut für Lebensmittelwissenschaft und Biotechnologie, Fg. Hefegenetik und Gärungstechnologie, Universität Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
30
|
Dultz E, Wojtynek M, Medalia O, Onischenko E. The Nuclear Pore Complex: Birth, Life, and Death of a Cellular Behemoth. Cells 2022; 11:1456. [PMID: 35563762 PMCID: PMC9100368 DOI: 10.3390/cells11091456] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/01/2023] Open
Abstract
Nuclear pore complexes (NPCs) are the only transport channels that cross the nuclear envelope. Constructed from ~500-1000 nucleoporin proteins each, they are among the largest macromolecular assemblies in eukaryotic cells. Thanks to advances in structural analysis approaches, the construction principles and architecture of the NPC have recently been revealed at submolecular resolution. Although the overall structure and inventory of nucleoporins are conserved, NPCs exhibit significant compositional and functional plasticity even within single cells and surprising variability in their assembly pathways. Once assembled, NPCs remain seemingly unexchangeable in post-mitotic cells. There are a number of as yet unresolved questions about how the versatility of NPC assembly and composition is established, how cells monitor the functional state of NPCs or how they could be renewed. Here, we review current progress in our understanding of the key aspects of NPC architecture and lifecycle.
Collapse
Affiliation(s)
- Elisa Dultz
- Institute of Biochemistry, Department of Biology, ETHZ Zurich, 8093 Zurich, Switzerland;
| | - Matthias Wojtynek
- Institute of Biochemistry, Department of Biology, ETHZ Zurich, 8093 Zurich, Switzerland;
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Evgeny Onischenko
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
31
|
Migliano SM, Wenzel EM, Stenmark H. Biophysical and molecular mechanisms of ESCRT functions, and their implications for disease. Curr Opin Cell Biol 2022; 75:102062. [DOI: 10.1016/j.ceb.2022.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 12/31/2022]
|
32
|
Mammel AE, Hatch EM. Genome instability from nuclear catastrophe and DNA damage. Semin Cell Dev Biol 2022; 123:131-139. [PMID: 33839019 PMCID: PMC8494860 DOI: 10.1016/j.semcdb.2021.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2021] [Indexed: 11/28/2022]
Abstract
The nuclear envelope compartmentalizes the eukaryotic genome, provides mechanical resistance, and regulates access to the chromatin. However, recent studies have identified several conditions where the nuclear membrane ruptures during interphase, breaking down this compartmentalization leading to DNA damage, chromothripsis, and kataegis. This review discusses three major circumstances that promote nuclear membrane rupture, nuclear deformation, chromatin bridges, and micronucleation, and how each of these nuclear catastrophes results in DNA damage. In addition, we highlight recent studies that demonstrate a single chromosome missegregation can initiate a cascade of events that lead to accumulating damage and even multiple rounds of chromothripsis.
Collapse
Affiliation(s)
- Anna E. Mammel
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Emily M. Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
33
|
Raices M, D'Angelo MA. Structure, Maintenance, and Regulation of Nuclear Pore Complexes: The Gatekeepers of the Eukaryotic Genome. Cold Spring Harb Perspect Biol 2022; 14:a040691. [PMID: 34312247 PMCID: PMC8789946 DOI: 10.1101/cshperspect.a040691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In eukaryotic cells, the genetic material is segregated inside the nucleus. This compartmentalization of the genome requires a transport system that allows cells to move molecules across the nuclear envelope, the membrane-based barrier that surrounds the chromosomes. Nuclear pore complexes (NPCs) are the central component of the nuclear transport machinery. These large protein channels penetrate the nuclear envelope, creating a passage between the nucleus and the cytoplasm through which nucleocytoplasmic molecule exchange occurs. NPCs are one of the largest protein assemblies of eukaryotic cells and, in addition to their critical function in nuclear transport, these structures also play key roles in many cellular processes in a transport-independent manner. Here we will review the current knowledge of the NPC structure, the cellular mechanisms that regulate their formation and maintenance, and we will provide a brief description of a variety of processes that NPCs regulate.
Collapse
Affiliation(s)
- Marcela Raices
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Maximiliano A D'Angelo
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| |
Collapse
|
34
|
Deolal P, Jamir I, Mishra K. Uip4p modulates nuclear pore complex function in Saccharomyces cerevisiae. Nucleus 2022; 13:79-93. [PMID: 35171083 PMCID: PMC8855845 DOI: 10.1080/19491034.2022.2034286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A double membrane bilayer perforated by nuclear pore complexes (NPCs) governs the shape of the nucleus, the prominent distinguishing organelle of a eukaryotic cell. Despite the absence of lamins in yeasts, the nuclear morphology is stably maintained and shape changes occur in a regulated fashion. In a quest to identify factors that contribute to regulation of nuclear shape and function in Saccharomyces cerevisiae, we used a fluorescence imaging based approach. Here we report the identification of a novel protein, Uip4p, that is required for regulation of nuclear morphology. Loss of Uip4 compromises NPC function and loss of nuclear envelope (NE) integrity. Our localization studies show that Uip4 localizes to the NE and endoplasmic reticulum (ER) network. Furthermore, we demonstrate that the localization and expression of Uip4 is regulated during growth, which is crucial for NPC distribution.
Collapse
Affiliation(s)
- Pallavi Deolal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Imlitoshi Jamir
- Department of Biotechnology, School of Engineering and Technology, Nagaland University, Dimapur, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
35
|
Chandra S, Lusk CP. Emerging Connections between Nuclear Pore Complex Homeostasis and ALS. Int J Mol Sci 2022; 23:1329. [PMID: 35163252 PMCID: PMC8835831 DOI: 10.3390/ijms23031329] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
Developing effective treatments for neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) requires understanding of the underlying pathomechanisms that contribute to the motor neuron loss that defines the disease. As it causes the largest fraction of familial ALS cases, considerable effort has focused on hexanucleotide repeat expansions in the C9ORF72 gene, which encode toxic repeat RNA and dipeptide repeat (DPR) proteins. Both the repeat RNA and DPRs interact with and perturb multiple elements of the nuclear transport machinery, including shuttling nuclear transport receptors, the Ran GTPase and the nucleoporin proteins (nups) that build the nuclear pore complex (NPC). Here, we consider recent work that describes changes to the molecular composition of the NPC in C9ORF72 model and patient neurons in the context of quality control mechanisms that function at the nuclear envelope (NE). For example, changes to NPC structure may be caused by the dysregulation of a conserved NE surveillance pathway mediated by the endosomal sorting complexes required for the transport protein, CHMP7. Thus, these studies are introducing NE and NPC quality control pathways as key elements in a pathological cascade that leads to C9ORF72 ALS, opening entirely new experimental avenues and possibilities for targeted therapeutic intervention.
Collapse
Affiliation(s)
| | - C. Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT 06520, USA;
| |
Collapse
|
36
|
Shankar R, Lettman MM, Whisler W, Frankel EB, Audhya A. The ESCRT machinery directs quality control over inner nuclear membrane architecture. Cell Rep 2022; 38:110263. [PMID: 35045304 PMCID: PMC8801257 DOI: 10.1016/j.celrep.2021.110263] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/21/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022] Open
Abstract
The late-acting endosomal sorting complex required for transport (ESCRT) machinery has been implicated in facilitating the resealing of the nuclear envelope (NE) after mitosis, enabling compartmentalization of the genome away from the cytoplasm. Here, we leverage the stereotypic first division of the C. elegans embryo to identify additional functions of the ESCRT machinery in maintaining the structure of the inner nuclear membrane. Specifically, impaired ESCRT function results in a defect in the pruning of inner nuclear membrane invaginations, which arise normally during NE reformation and expansion. Additionally, in combination with a hypomorphic mutation that interferes with assembly of the underlying nuclear lamina, inhibition of ESCRT function significantly perturbs NE architecture and increases chromosome segregation defects, resulting in penetrant embryonic lethality. Our findings highlight links between ESCRT-mediated inner nuclear membrane remodeling, maintenance of nuclear envelope morphology, and the preservation of the genome during early development. In this study, Shankar et al. demonstrate that defects in ESCRT machinery functions impair pruning of inner nuclear membrane invaginations that form normally after mitotic exit as the nuclear envelope undergoes expansion. These findings highlight a critical role for the ESCRT machinery in the maintenance of inner nuclear membrane morphology.
Collapse
Affiliation(s)
- Raakhee Shankar
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Molly M Lettman
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - William Whisler
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Elisa B Frankel
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
37
|
Chandra S, Mannino PJ, Thaller DJ, Ader NR, King MC, Melia TJ, Lusk CP. Atg39 selectively captures inner nuclear membrane into lumenal vesicles for delivery to the autophagosome. J Cell Biol 2021; 220:e202103030. [PMID: 34714326 PMCID: PMC8575018 DOI: 10.1083/jcb.202103030] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/26/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
Mechanisms that turn over components of the nucleus and inner nuclear membrane (INM) remain to be fully defined. We explore how components of the INM are selected by a cytosolic autophagy apparatus through a transmembrane nuclear envelope-localized cargo adaptor, Atg39. A split-GFP reporter showed that Atg39 localizes to the outer nuclear membrane (ONM) and thus targets the INM across the nuclear envelope lumen. Consistent with this, sequence elements that confer both nuclear envelope localization and a membrane remodeling activity are mapped to the Atg39 lumenal domain; these lumenal motifs are required for the autophagy-mediated degradation of integral INM proteins. Interestingly, correlative light and electron microscopy shows that the overexpression of Atg39 leads to the expansion of the ONM and the enclosure of a network of INM-derived vesicles in the nuclear envelope lumen. Thus, we propose an outside-in model of nucleophagy where INM is delivered into vesicles in the nuclear envelope lumen, which can be targeted by the autophagosome.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas J. Melia
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - C. Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
38
|
Wallis SS, Ventimiglia LN, Otigbah E, Infante E, Cuesta-Geijo MA, Kidiyoor GR, Carbajal MA, Fleck RA, Foiani M, Garcia-Manyes S, Martin-Serrano J, Agromayor M. The ESCRT machinery counteracts Nesprin-2G-mediated mechanical forces during nuclear envelope repair. Dev Cell 2021; 56:3192-3202.e8. [PMID: 34818527 PMCID: PMC8657813 DOI: 10.1016/j.devcel.2021.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/03/2021] [Accepted: 10/28/2021] [Indexed: 12/31/2022]
Abstract
Transient nuclear envelope ruptures during interphase (NERDI) occur due to cytoskeletal compressive forces at sites of weakened lamina, and delayed NERDI repair results in genomic instability. Nuclear envelope (NE) sealing is completed by endosomal sorting complex required for transport (ESCRT) machinery. A key unanswered question is how local compressive forces are counteracted to allow efficient membrane resealing. Here, we identify the ESCRT-associated protein BROX as a crucial factor required to accelerate repair of the NE. Critically, BROX binds Nesprin-2G, a component of the linker of nucleoskeleton and cytoskeleton complex (LINC). This interaction promotes Nesprin-2G ubiquitination and facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site. Thus, BROX rebalances excessive cytoskeletal forces in cells experiencing NE instability to promote effective NERDI repair. Our results demonstrate that BROX coordinates mechanoregulation with membrane remodeling to ensure the maintenance of nuclear-cytoplasmic compartmentalization and genomic stability. Cytoskeletal forces exerted on the nucleus can rupture its membrane BROX is recruited to sites of rupture by the ESCRT membrane remodeling machinery BROX ubiquitinates the LINC complex protein Nesprin-2G, targeting it for degradation BROX coordinates local relaxation of mechanical stress with membrane remodeling
Collapse
Affiliation(s)
- Samuel S Wallis
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| | - Leandro N Ventimiglia
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| | - Evita Otigbah
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| | - Elvira Infante
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, and London Centre for Nanotechnology, King's College London, London WC2R 2LS, UK
| | - Miguel Angel Cuesta-Geijo
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK; Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (CSIC), Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain
| | - Gururaj Rao Kidiyoor
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, 20122 Milan, Italy
| | | | - Roland A Fleck
- Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, UK
| | - Marco Foiani
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, 20122 Milan, Italy
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, and London Centre for Nanotechnology, King's College London, London WC2R 2LS, UK; the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Juan Martin-Serrano
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK.
| | - Monica Agromayor
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK.
| |
Collapse
|
39
|
Padilla-Mejia NE, Makarov AA, Barlow LD, Butterfield ER, Field MC. Evolution and diversification of the nuclear envelope. Nucleus 2021; 12:21-41. [PMID: 33435791 PMCID: PMC7889174 DOI: 10.1080/19491034.2021.1874135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells arose ~1.5 billion years ago, with the endomembrane system a central feature, facilitating evolution of intracellular compartments. Endomembranes include the nuclear envelope (NE) dividing the cytoplasm and nucleoplasm. The NE possesses universal features: a double lipid bilayer membrane, nuclear pore complexes (NPCs), and continuity with the endoplasmic reticulum, indicating common evolutionary origin. However, levels of specialization between lineages remains unclear, despite distinct mechanisms underpinning various nuclear activities. Several distinct modes of molecular evolution facilitate organellar diversification and to understand which apply to the NE, we exploited proteomic datasets of purified nuclear envelopes from model systems for comparative analysis. We find enrichment of core nuclear functions amongst the widely conserved proteins to be less numerous than lineage-specific cohorts, but enriched in core nuclear functions. This, together with consideration of additional evidence, suggests that, despite a common origin, the NE has evolved as a highly diverse organelle with significant lineage-specific functionality.
Collapse
Affiliation(s)
- Norma E. Padilla-Mejia
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alexandr A. Makarov
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lael D. Barlow
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Erin R. Butterfield
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Mark C. Field
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České, Czech Republic
| |
Collapse
|
40
|
Zhang W, Khan A, Vitale J, Neuner A, Rink K, Lüchtenborg C, Brügger B, Söllner TH, Schiebel E. A short perinuclear amphipathic α-helix in Apq12 promotes nuclear pore complex biogenesis. Open Biol 2021; 11:210250. [PMID: 34814743 PMCID: PMC8611336 DOI: 10.1098/rsob.210250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The integral membrane protein Apq12 is an important nuclear envelope (NE)/endoplasmic reticulum (ER) modulator that cooperates with the nuclear pore complex (NPC) biogenesis factors Brl1 and Brr6. How Apq12 executes these functions is unknown. Here, we identified a short amphipathic α-helix (AαH) in Apq12 that links the two transmembrane domains in the perinuclear space and has liposome-binding properties. Cells expressing an APQ12 (apq12-ah) version in which AαH is disrupted show NPC biogenesis and NE integrity defects, without impacting Apq12-ah topology or NE/ER localization. Overexpression of APQ12 but not apq12-ah triggers striking over-proliferation of the outer nuclear membrane (ONM)/ER and promotes accumulation of phosphatidic acid (PA) at the NE. Apq12 and Apq12-ah both associate with NPC biogenesis intermediates and removal of AαH increases both Brl1 levels and the interaction between Brl1 and Brr6. We conclude that the short amphipathic α-helix of Apq12 regulates the function of Brl1 and Brr6 and promotes PA accumulation at the NE possibly during NPC biogenesis.
Collapse
Affiliation(s)
- Wanlu Zhang
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Azqa Khan
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Jlenia Vitale
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Kerstin Rink
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Christian Lüchtenborg
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Britta Brügger
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Thomas H. Söllner
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|
41
|
Isono E. ESCRT Is a Great Sealer: Non-Endosomal Function of the ESCRT Machinery in Membrane Repair and Autophagy. PLANT & CELL PHYSIOLOGY 2021; 62:766-774. [PMID: 33768242 DOI: 10.1093/pcp/pcab045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/18/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Components of the endosomal sorting complex required for transport (ESCRTs) were first identified in a genetic screen in budding yeast as factors interfering with vacuolar protein sorting. In the last three decades, intensive studies have revealed the subunit composition of ESCRT-0, ESCRT-I, ESCRT-II, ESCRT-III, their structure, the assembling mechanisms and their molecular and physiological functions. In plants, ESCRTs are essential for development, growth and stress responses. ESCRTs are best known for their function in endosomal trafficking, during which they are required for sorting ubiquitylated membrane proteins into intraluminal vesicles (ILVs) of multivesicular endosomes (MVEs). The formation of ILVs requires the function of ESCRT-III, which has been shown to mediate the membrane scission. Although the function of plant ESCRTs has been predominantly discussed in the context of endosomal trafficking, recent studies in other model organisms revealed a versatile role of ESCRTs in diverse cellular events with broad physiological implications. The non-endosomal functions of ESCRTs include cytokinesis, viral budding, autophagy, nuclear envelope reformation and membrane repair, although many of these have not yet been studied in plants. In this review, recent findings on non-endosomal ESCRT functions in plant, yeast and animals are highlighted and discussed.
Collapse
Affiliation(s)
- Erika Isono
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany
| |
Collapse
|
42
|
Pawar S, Kutay U. The Diverse Cellular Functions of Inner Nuclear Membrane Proteins. Cold Spring Harb Perspect Biol 2021; 13:a040477. [PMID: 33753404 PMCID: PMC8411953 DOI: 10.1101/cshperspect.a040477] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nuclear compartment is delimited by a specialized expanded sheet of the endoplasmic reticulum (ER) known as the nuclear envelope (NE). Compared to the outer nuclear membrane and the contiguous peripheral ER, the inner nuclear membrane (INM) houses a unique set of transmembrane proteins that serve a staggering range of functions. Many of these functions reflect the exceptional position of INM proteins at the membrane-chromatin interface. Recent research revealed that numerous INM proteins perform crucial roles in chromatin organization, regulation of gene expression, genome stability, and mediation of signaling pathways into the nucleus. Other INM proteins establish mechanical links between chromatin and the cytoskeleton, help NE remodeling, or contribute to the surveillance of NE integrity and homeostasis. As INM proteins continue to gain prominence, we review these advancements and give an overview on the functional versatility of the INM proteome.
Collapse
Affiliation(s)
- Sumit Pawar
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
43
|
Adding Some "Splice" to Stress Eating: Autophagy, ESCRT and Alternative Splicing Orchestrate the Cellular Stress Response. Genes (Basel) 2021; 12:genes12081196. [PMID: 34440370 PMCID: PMC8393842 DOI: 10.3390/genes12081196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a widely studied self-renewal pathway that is essential for degrading damaged cellular organelles or recycling biomolecules to maintain cellular homeostasis, particularly under cellular stress. This pathway initiates with formation of an autophagosome, which is a double-membrane structure that envelopes cytosolic components and fuses with a lysosome to facilitate degradation of the contents. The endosomal sorting complexes required for transport (ESCRT) proteins play an integral role in controlling autophagosome fusion events and disruption to this machinery leads to autophagosome accumulation. Given the central role of autophagy in maintaining cellular health, it is unsurprising that dysfunction of this process is associated with many human maladies including cancer and neurodegenerative diseases. The cell can also rapidly respond to cellular stress through alternative pre-mRNA splicing that enables adaptive changes to the cell's proteome in response to stress. Thus, alternative pre-mRNA splicing of genes that are involved in autophagy adds another layer of complexity to the cell's stress response. Consequently, the dysregulation of alternative splicing of genes associated with autophagy and ESCRT may also precipitate disease states by either reducing the ability of the cell to respond to stress or triggering a maladaptive response that is pathogenic. In this review, we summarize the diverse roles of the ESCRT machinery and alternative splicing in regulating autophagy and how their dysfunction can have implications for human disease.
Collapse
|
44
|
Coyne AN, Baskerville V, Zaepfel BL, Dickson DW, Rigo F, Bennett F, Lusk CP, Rothstein JD. Nuclear accumulation of CHMP7 initiates nuclear pore complex injury and subsequent TDP-43 dysfunction in sporadic and familial ALS. Sci Transl Med 2021; 13:eabe1923. [PMID: 34321318 PMCID: PMC9022198 DOI: 10.1126/scitranslmed.abe1923] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/02/2021] [Accepted: 06/09/2021] [Indexed: 01/29/2023]
Abstract
Alterations in the components [nucleoporins (Nups)] and function of the nuclear pore complex (NPC) have been implicated as contributors to the pathogenesis of genetic forms of neurodegeneration including C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). We hypothesized that Nup alterations and the consequential loss of NPC function may lie upstream of TDP-43 dysfunction and mislocalization widely observed in ALS, FTD, and related neurodegenerative diseases. Here, we provide evidence that CHMP7, a critical mediator of NPC quality control, is increased in nuclei of C9orf72 and sporadic ALS induced pluripotent stem cell (iPSC)-derived spinal neurons (iPSNs) and postmortem human motor cortex before the emergence of Nup alterations. Inhibiting the nuclear export of CHMP7 triggered Nup reduction and TDP-43 dysfunction and pathology in human neurons. Knockdown of CHMP7 alleviated disease-associated Nup alterations, deficits in Ran GTPase localization, defects in TDP-43-associated mRNA expression, and downstream glutamate-induced neuronal death. Thus, our data support a role for altered CHMP7-mediated Nup homeostasis as a prominent initiating pathological mechanism for familial and sporadic ALS and highlight the potential for CHMP7 as therapeutic target.
Collapse
Affiliation(s)
- Alyssa N Coyne
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Victoria Baskerville
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin L Zaepfel
- Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | | | - C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
45
|
Panagaki D, Croft JT, Keuenhof K, Larsson Berglund L, Andersson S, Kohler V, Büttner S, Tamás MJ, Nyström T, Neutze R, Höög JL. Nuclear envelope budding is a response to cellular stress. Proc Natl Acad Sci U S A 2021; 118:e2020997118. [PMID: 34290138 PMCID: PMC8325156 DOI: 10.1073/pnas.2020997118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nuclear envelope budding (NEB) is a recently discovered alternative pathway for nucleocytoplasmic communication distinct from the movement of material through the nuclear pore complex. Through quantitative electron microscopy and tomography, we demonstrate how NEB is evolutionarily conserved from early protists to human cells. In the yeast Saccharomyces cerevisiae, NEB events occur with higher frequency during heat shock, upon exposure to arsenite or hydrogen peroxide, and when the proteasome is inhibited. Yeast cells treated with azetidine-2-carboxylic acid, a proline analog that induces protein misfolding, display the most dramatic increase in NEB, suggesting a causal link to protein quality control. This link was further supported by both localization of ubiquitin and Hsp104 to protein aggregates and NEB events, and the evolution of these structures during heat shock. We hypothesize that NEB is part of normal cellular physiology in a vast range of species and that in S. cerevisiae NEB comprises a stress response aiding the transport of protein aggregates across the nuclear envelope.
Collapse
Affiliation(s)
- Dimitra Panagaki
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Jacob T Croft
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Katharina Keuenhof
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Lisa Larsson Berglund
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Stefanie Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Verena Kohler
- Department of Molecular Bioscienses, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Sabrina Büttner
- Department of Molecular Bioscienses, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Thomas Nyström
- Department of Microbiology and Immunology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden;
| |
Collapse
|
46
|
Gatta AT, Olmos Y, Stoten CL, Chen Q, Rosenthal PB, Carlton JG. CDK1 controls CHMP7-dependent nuclear envelope reformation. eLife 2021; 10:59999. [PMID: 34286694 PMCID: PMC8324300 DOI: 10.7554/elife.59999] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/09/2021] [Indexed: 12/21/2022] Open
Abstract
Through membrane sealing and disassembly of spindle microtubules, the Endosomal Sorting Complex Required for Transport-III (ESCRT-III) machinery has emerged as a key player in the regeneration of a sealed nuclear envelope (NE) during mitotic exit, and in the repair of this organelle during interphase rupture. ESCRT-III assembly at the NE occurs transiently during mitotic (M) exit and is initiated when CHMP7, an ER-localised ESCRT-II/ESCRT-III hybrid protein, interacts with the Inner Nuclear Membrane (INM) protein LEM2. Whilst classical nucleocytoplasmic transport mechanisms have been proposed to separate LEM2 and CHMP7 during interphase, it is unclear how CHMP7 assembly is suppressed in mitosis when NE and ER identities are mixed. Here, we use live cell imaging and protein biochemistry to examine the biology of these proteins during M-exit. Firstly, we show that CHMP7 plays an important role in the dissolution of LEM2 clusters that form at the NE during M-exit. Secondly, we show that CDK1 phosphorylates CHMP7 upon M-entry at Ser3 and Ser441 and that this phosphorylation reduces CHMP7's interaction with LEM2, limiting its assembly during M-phase. We show that spatiotemporal differences in the dephosphorylation of CHMP7 license its assembly at the NE during telophase, but restrict its assembly on the ER at this time. Without CDK1 phosphorylation, CHMP7 undergoes inappropriate assembly in the peripheral ER during M-exit, capturing LEM2 and downstream ESCRT-III components. Lastly, we establish that a microtubule network is dispensable for ESCRT-III assembly at the reforming nuclear envelope. These data identify a key cell-cycle control programme allowing ESCRT-III-dependent nuclear regeneration.
Collapse
Affiliation(s)
- Alberto T Gatta
- School of Cancer and Pharmaceutical Sciences, King's College, London, United Kingdom.,Organelle Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Yolanda Olmos
- School of Cancer and Pharmaceutical Sciences, King's College, London, United Kingdom.,Organelle Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Caroline L Stoten
- School of Cancer and Pharmaceutical Sciences, King's College, London, United Kingdom.,Organelle Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Qu Chen
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Jeremy G Carlton
- School of Cancer and Pharmaceutical Sciences, King's College, London, United Kingdom.,Organelle Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
47
|
Coyne AN, Rothstein JD. The ESCRT-III protein VPS4, but not CHMP4B or CHMP2B, is pathologically increased in familial and sporadic ALS neuronal nuclei. Acta Neuropathol Commun 2021; 9:127. [PMID: 34281622 PMCID: PMC8287756 DOI: 10.1186/s40478-021-01228-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear pore complex injury has recently emerged as an early and significant contributor to familial and sporadic ALS disease pathogenesis. However, the molecular events leading to this pathological phenomenon characterized by the reduction of specific nucleoporins from neuronal nuclear pore complexes remain largely unknown. This is due in part to a lack of knowledge regarding the biological pathways and proteins underlying nuclear pore complex homeostasis specifically in human neurons. We have recently uncovered that aberrant nuclear accumulation of the ESCRT-III protein CHMP7 initiates nuclear pore complex in familial and sporadic ALS neurons. In yeast and non-neuronal mammalian cells, nuclear relocalization of CHMP7 has been shown to recruit the ESCRT-III proteins CHMP4B, CHMP2B, and VPS4 to facilitate nuclear pore complex and nuclear envelope repair and homeostasis. Here, using super resolution structured illumination microscopy, we find that neither CHMP4B nor CHMP2B are increased in ALS neuronal nuclei. In contrast, VPS4 expression is significantly increased in ALS neuronal nuclei prior to the emergence of nuclear pore injury in a CHMP7 dependent manner. However, unlike our prior CHMP7 knockdown studies, impaired VPS4 function does not mitigate alterations to the NPC and the integral transmembrane nucleoporin POM121. Collectively our data suggest that while alterations in VPS4 subcellular localization appear to be coincident with nuclear pore complex injury, therapeutic efforts to mitigate this pathogenic cascade should be targeted towards upstream events such as the nuclear accumulation of CHMP7 as we have previously described.
Collapse
Affiliation(s)
- Alyssa N. Coyne
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Jeffrey D. Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
48
|
Chen NY, Kim PH, Tu Y, Yang Y, Heizer PJ, Young SG, Fong LG. Increased expression of LAP2β eliminates nuclear membrane ruptures in nuclear lamin-deficient neurons and fibroblasts. Proc Natl Acad Sci U S A 2021; 118:e2107770118. [PMID: 34161290 PMCID: PMC8237679 DOI: 10.1073/pnas.2107770118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Defects or deficiencies in nuclear lamins cause pathology in many cell types, and recent studies have implicated nuclear membrane (NM) ruptures as a cause of cell toxicity. We previously observed NM ruptures and progressive cell death in the developing brain of lamin B1-deficient mouse embryos. We also observed frequent NM ruptures and DNA damage in nuclear lamin-deficient fibroblasts. Factors modulating susceptibility to NM ruptures remain unclear, but we noted low levels of LAP2β, a chromatin-binding inner NM protein, in fibroblasts with NM ruptures. Here, we explored the apparent link between LAP2β and NM ruptures in nuclear lamin-deficient neurons and fibroblasts, and we tested whether manipulating LAP2β expression levels would alter NM rupture frequency. In cortical plate neurons of lamin B1-deficient embryos, we observed a strong correlation between low LAP2β levels and NM ruptures. We also found low LAP2β levels and frequent NM ruptures in neurons of cultured Lmnb1-/- neurospheres. Reducing LAP2β expression in Lmnb1-/- neurons with an siRNA markedly increased the NM rupture frequency (without affecting NM rupture duration), whereas increased LAP2β expression eliminated NM ruptures and reduced DNA damage. Consistent findings were observed in nuclear lamin-deficient fibroblasts. Reduced LAP2β expression increased NM ruptures, whereas increased LAP2β expression virtually abolished NM ruptures. Increased LAP2β expression nearly abolished NM ruptures in cells subjected to mechanical stress (an intervention that increases NM ruptures). Our studies showed that increasing LAP2β expression bolsters NM integrity in nuclear lamin-deficient cells and markedly reduces NM rupture frequency.
Collapse
Affiliation(s)
- Natalie Y Chen
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Paul H Kim
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Yiping Tu
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Ye Yang
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Patrick J Heizer
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, CA 90095;
- Department of Human Genetics, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, CA 90095;
| |
Collapse
|
49
|
Koch BA, Staley E, Jin H, Yu HG. The ESCRT-III complex is required for nuclear pore complex sequestration and regulates gamete replicative lifespan in budding yeast meiosis. Nucleus 2021; 11:219-236. [PMID: 32893723 PMCID: PMC7529410 DOI: 10.1080/19491034.2020.1812872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cellular aging occurs as a cell loses its ability to maintain homeostasis. Aging cells eliminate damaged cellular compartments and other senescence factors via self-renewal. The mechanism that regulates cellular rejuvenation remains to be further elucidated. Using budding yeast gametogenesis as a model, we show here that the endosomal sorting complex required for transport (ESCRT) III regulates nuclear envelope organization. During gametogenesis, the nuclear pore complex (NPC) and other senescence factors are sequestered away from the prospore nuclei. We show that the LEM-domain protein Heh1 (Src1) facilitates the nuclear recruitment of ESCRT-III, which is required for meiotic NPC sequestration and nuclear envelope remodeling. Furthermore, ESCRT-III-mediated nuclear reorganization appears to be critical for gamete rejuvenation, as hindering this process curtails either directly or indirectly the replicative lifespan in gametes. Our findings demonstrate the importance of ESCRT-III in nuclear envelope remodeling and its potential role in eliminating senescence factors during gametogenesis.
Collapse
Affiliation(s)
- Bailey A Koch
- Department of Biological Science, The Florida State University , Tallahassee, FL, USA
| | - Elizabeth Staley
- Department of Biological Science, The Florida State University , Tallahassee, FL, USA
| | - Hui Jin
- Department of Biological Science, The Florida State University , Tallahassee, FL, USA
| | - Hong-Guo Yu
- Department of Biological Science, The Florida State University , Tallahassee, FL, USA
| |
Collapse
|
50
|
Borah S, Thaller DJ, Hakhverdyan Z, Rodriguez EC, Isenhour AW, Rout MP, King MC, Lusk CP. Heh2/Man1 may be an evolutionarily conserved sensor of NPC assembly state. Mol Biol Cell 2021; 32:1359-1373. [PMID: 34010011 PMCID: PMC8694041 DOI: 10.1091/mbc.e20-09-0584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Integral membrane proteins of the Lap2-emerin-MAN1 (LEM) family have emerged as important components of the inner nuclear membrane (INM) required for the functional and physical integrity of the nuclear envelope. However, like many INM proteins, there is limited understanding of the biochemical interaction networks that enable LEM protein function. Here, we show that Heh2/Man1 can interact with major scaffold components of the nuclear pore complex (NPC), specifically the inner ring complex (IRC), in evolutionarily distant yeasts. Although an N-terminal domain is required for Heh2 targeting to the INM, we demonstrate that more stable interactions with the NPC are mediated by a C-terminal winged helix (WH) domain, thus decoupling INM targeting and NPC binding. Inhibiting Heh2's interactions with the NPC by deletion of the Heh2 WH domain leads to NPC clustering. Interestingly, Heh2's association with NPCs can also be disrupted by knocking out several outer ring nucleoporins. Thus, Heh2's interaction with NPCs depends on the structural integrity of both major NPC scaffold complexes. We propose a model in which Heh2 acts as a sensor of NPC assembly state, which may be important for NPC quality control mechanisms and the segregation of NPCs during cell division.
Collapse
Affiliation(s)
- Sapan Borah
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - David J Thaller
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | | | - Elisa C Rodriguez
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - Anthony W Isenhour
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | | | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|