1
|
Yan J, Li L, Bao J, Wang J, Liu X, Lin F, Zhu X. A glance at structural biology in advancing rice blast fungus research. Virulence 2024; 15:2403566. [PMID: 39285518 PMCID: PMC11407398 DOI: 10.1080/21505594.2024.2403566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024] Open
Abstract
The filamentous fungus Magnaporthe oryzae is widely recognized as a notorious plant pathogen responsible for causing rice blasts. With rapid advancements in molecular biology technologies, numerous regulatory mechanisms have been thoroughly investigated. However, most recent studies have predominantly focused on infection-related pathways or host defence mechanisms, which may be insufficient for developing novel structure-based prevention strategies. A substantial body of literature has utilized cryo-electron microscopy and X-ray diffraction to explore the relationships between functional components, shedding light on the identification of potential drug targets. Owing to the complexity of protein extraction and stochastic nature of crystallization, obtaining high-quality structures remains a significant challenge for the scientific community. Emerging computational tools such as AlphaFold for structural prediction, docking for interaction analysis, and molecular dynamics simulations to replicate in vivo conditions provide novel avenues for overcoming these challenges. In this review, we aim to consolidate the structural biological advancements in M. oryzae, drawing upon mature experimental experiences from other species such as Saccharomyces cerevisiae and mammals. We aim to explore the potential of protein construction to address the invasion and proliferation of M. oryzae, with the goal of identifying new drug targets and designing small-molecule compounds to manage this disease.
Collapse
Affiliation(s)
- Jongyi Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jiandong Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jiaoyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xiaohong Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Xianghu Laboratory, Hangzhou, Xianghu, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Younas MU, Qasim M, Ahmad I, Feng Z, Iqbal R, Jiang X, Zuo S. Exploring the molecular mechanisms of rice blast resistance and advances in breeding for disease tolerance. Mol Biol Rep 2024; 51:1093. [PMID: 39460780 DOI: 10.1007/s11033-024-10031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Rice blast, caused by the fungus Magnaporthe oryzae (syn. Pyricularia oryzae), is a major problem in rice cultivation and ranks among the most severe fungal diseases. Cloning and identifying resistance genes in rice, coupled with a comprehensive examination of the interaction between M. oryzae and rice, may provide insights into the mechanisms of rice disease resistance and facilitate the creation of new rice varieties with improved germplasm. These efforts are essential for protecting food security. This review examines the discovery of genes that confer resistance or susceptiblity to M. oryzae in rice over the last decade. It also discusses how knowledge of molecular mechanisms has been used in rice breeding and outlines key strategies for creating rice varieties resistant to this disease. The strategies discussed include gene pyramiding, molecular design breeding, editing susceptibility genes, and increasing expression of resistance genes through pathogen challenge. We address the prospects and challenges in breeding for rice blast resistance, emphasizing the need to fully exploit germplasm resources, employ cutting-edge methods to identify new resistance genes, and develop innovative breeding cultivars. Additionally, we underscore the importance of understanding the molecular basis of rice blast resistance and developing novel cultivars with broad-spectrum disease resistance.
Collapse
Affiliation(s)
- Muhammad Usama Younas
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Muhammad Qasim
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Irshad Ahmad
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Zhiming Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| | - Xiaohong Jiang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Liu X, Hu X, Tu Z, Sun Z, Qin P, Liu Y, Chen X, Li Z, Jiang N, Yang Y. The roles of Magnaporthe oryzae avirulence effectors involved in blast resistance/susceptibility. FRONTIERS IN PLANT SCIENCE 2024; 15:1478159. [PMID: 39445147 PMCID: PMC11496149 DOI: 10.3389/fpls.2024.1478159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Phytopathogens represent an ongoing threat to crop production and a significant impediment to global food security. During the infection process, these pathogens spatiotemporally deploy a large array of effectors to sabotage host defense machinery and/or manipulate cellular pathways, thereby facilitating colonization and infection. However, besides their pivotal roles in pathogenesis, certain effectors, known as avirulence (AVR) effectors, can be directly or indirectly perceived by plant resistance (R) proteins, leading to race-specific resistance. An in-depth understanding of the intricate AVR-R interactions is instrumental for genetic improvement of crops and safeguarding them from diseases. Magnaporthe oryzae (M. oryzae), the causative agent of rice blast disease, is an exceptionally virulent and devastating fungal pathogen that induces blast disease on over 50 monocot plant species, including economically important crops. Rice-M. oryzae pathosystem serves as a prime model for functional dissection of AVR effectors and their interactions with R proteins and other target proteins in rice due to its scientific advantages and economic importance. Significant progress has been made in elucidating the potential roles of AVR effectors in the interaction between rice and M. oryzae over the past two decades. This review comprehensively discusses recent advancements in the field of M. oryzae AVR effectors, with a specific focus on their multifaceted roles through interactions with corresponding R/target proteins in rice during infection. Furthermore, we deliberated on the emerging strategies for engineering R proteins by leveraging the structural insights gained from M. oryzae AVR effectors.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Xiaochun Hu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Zhouyi Tu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
| | - Zhenbiao Sun
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Peng Qin
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Yikang Liu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
| | - Xinwei Chen
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Jiang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Yuanzhu Yang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
4
|
Kou Y, Shi H, Qiu J, Tao Z, Wang W. Effectors and environment modulating rice blast disease: from understanding to effective control. Trends Microbiol 2024; 32:1007-1020. [PMID: 38580607 DOI: 10.1016/j.tim.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
Rice blast is a highly destructive crop disease that requires the interplay of three essential factors: the virulent blast fungus, the susceptible rice plant, and favorable environmental conditions. Although previous studies have focused mainly on the pathogen and rice, recent research has shed light on the molecular mechanisms by which the blast fungus and environmental conditions regulate host resistance and contribute to blast disease outbreaks. This review summarizes significant achievements in understanding the sophisticated modulation of blast resistance by Magnaporthe oryzae effectors and the dual regulatory mechanisms by which environmental conditions influence rice resistance and virulence of the blast fungus. Furthermore, it emphasizes potential strategies for developing blast-resistant rice varieties to effectively control blast disease.
Collapse
Affiliation(s)
- Yanjun Kou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China.
| | - Huanbin Shi
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Zeng Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Wenming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
5
|
Zhang C, Feng Q, Ruan J, Wang GL, You X, Ning Y. Targeting conserved secreted effectors to control rice blast. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00225-5. [PMID: 39232945 DOI: 10.1016/j.tplants.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/02/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
Plant pathogens usually secrete effectors to suppress the host immune response, resulting in effector-triggered susceptibility (ETS). Plants use nucleotide-binding leucine-rich repeat receptors (NLRs) to detect specific effectors and elicit effector-triggered immunity (ETI). Two recent papers (Liu et al. and Zhang et al.) have made promising progress in controlling rice blast by modulating ETS and ETI.
Collapse
Affiliation(s)
- Chongyang Zhang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 440307, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qin Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Jue Ruan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 440307, China
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaoman You
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
McClelland AJ, Ma W. Zig, Zag, and 'Zyme: leveraging structural biology to engineer disease resistance. ABIOTECH 2024; 5:403-407. [PMID: 39279864 PMCID: PMC11399530 DOI: 10.1007/s42994-024-00152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 09/18/2024]
Abstract
Dynamic host-pathogen interactions determine whether disease will occur. Pathogen effector proteins are central players in such disease development. On one hand, they improve susceptibility by manipulating host targets; on the other hand, they can trigger immunity after recognition by host immune receptors. A major research direction in the study of molecular plant pathology is to understand effector-host interactions, which has informed the development and breeding of crops with enhanced disease resistance. Recent breakthroughs on experiment- and artificial intelligence-based structure analyses significantly accelerate the development of this research area. Importantly, the detailed molecular insight of effector-host interactions enables precise engineering to mitigate disease. Here, we highlight a recent study by Xiao et al., who describe the structure of an effector-receptor complex that consists of a fungal effector, with polygalacturonase (PG) activity, and a plant-derived polygalacturonase-inhibiting protein (PGIP). PGs weaken the plant cell wall and produce immune-suppressive oligogalacturonides (OGs) as a virulence mechanism; however, PGIPs directly bind to PGs and alter their enzymatic activity. When in a complex with PGIPs, PGs produce OG polymers with longer chains that can trigger immunity. Xiao et al. demonstrate that a PGIP creates a new active site tunnel, together with a PG, which favors the production of long-chain OGs. In this way, the PGIP essentially acts as both a PG receptor and enzymatic manipulator, converting virulence to defense activation. Taking a step forward, the authors used the PG-PGIP complex structure as a guide to generate PGIP variants with enhanced long-chain OG production, likely enabling further improved disease resistance. This study discovered a novel mechanism by which a plant receptor plays a dual role to activate immunity. It also demonstrates how fundamental knowledge, obtained through structural analyses, can be employed to guide the design of proteins with desired functions in agriculture.
Collapse
Affiliation(s)
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH UK
| |
Collapse
|
7
|
Seong K, Wei W, Vega B, Dee A, Ramirez-Bernardino G, Kumar R, Parra L, Krasileva K. Engineering the plant intracellular immune receptor Sr50 to restore recognition of the AvrSr50 escape mutant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.607039. [PMID: 39149390 PMCID: PMC11326300 DOI: 10.1101/2024.08.07.607039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Sr50, an intracellular nucleotide-binding leucine-rich repeat receptor (NLR), confers resistance of wheat against stem rust caused by the fungal pathogen Puccinia graminis f. sp. tritici. The receptor recognizes the pathogen effector AvrSr50 through its C-terminal leucine-rich repeat domain, initiating a localized cell death immune response. However, this immunity is compromised by mutations in the effector, as in the escape mutant AvrSr50QCMJC, which evades Sr50 detection. In this study, we employed iterative computational structural analyses and site-directed mutagenesis for rational engineering of Sr50 to gain recognition of AvrSr50QCMJC. Following an initial structural hypothesis driven by molecular docking, we identified the Sr50K711D single mutant, which induces an intermediate immune response against AvrSr50QCMJC without losing recognition against AvrSr50. Increasing gene expression with a stronger promoter enabled the mutant to elicit a robust response, indicating weak effector recognition can be complemented by enhanced receptor expression. Further structural refinements led to the creation of five double mutants and two triple mutants with dual recognition of AvrSr50 and AvrSr50QCMJC with greater immune response intensities than Sr50K711D against the escape mutant. All effective mutations against AvrSr50QCMJC required the K711D substitution, indicating that multiple solutions exist for gain of recognition, but the path to reach these mutations may be confined. Furthermore, this single substitution alters the prediction of AlphaFold 2, allowing it to model the complex structure of Sr50K711D and AvrSr50 that match our final structural hypothesis. Collectively, our study outlines a framework for rational engineering of NLR systems to overcome pathogen escape mutations and provides datasets for future computational models for NLR resurrection.
Collapse
Affiliation(s)
- Kyungyong Seong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Wei Wei
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Brandon Vega
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Amanda Dee
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | - Rakesh Kumar
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Lorena Parra
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Ksenia Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94704
| |
Collapse
|
8
|
Zdrzałek R, Xi Y, Langner T, Bentham AR, Petit-Houdenot Y, De la Concepcion JC, Harant A, Shimizu M, Were V, Talbot NJ, Terauchi R, Kamoun S, Banfield MJ. Bioengineering a plant NLR immune receptor with a robust binding interface toward a conserved fungal pathogen effector. Proc Natl Acad Sci U S A 2024; 121:e2402872121. [PMID: 38968126 PMCID: PMC11252911 DOI: 10.1073/pnas.2402872121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/21/2024] [Indexed: 07/07/2024] Open
Abstract
Bioengineering of plant immune receptors has emerged as a key strategy for generating novel disease resistance traits to counteract the expanding threat of plant pathogens to global food security. However, current approaches are limited by rapid evolution of plant pathogens in the field and may lack durability when deployed. Here, we show that the rice nucleotide-binding, leucine-rich repeat (NLR) immune receptor Pik-1 can be engineered to respond to a conserved family of effectors from the multihost blast fungus pathogen Magnaporthe oryzae. We switched the effector binding and response profile of the Pik NLR from its cognate rice blast effector AVR-Pik to the host-determining factor pathogenicity toward weeping lovegrass 2 (Pwl2) by installing a putative host target, OsHIPP43, in place of the native integrated heavy metal-associated domain (generating Pikm-1OsHIPP43). This chimeric receptor also responded to other PWL alleles from diverse blast isolates. The crystal structure of the Pwl2/OsHIPP43 complex revealed a multifaceted, robust interface that cannot be easily disrupted by mutagenesis, and may therefore provide durable, broad resistance to blast isolates carrying PWL effectors in the field. Our findings highlight how the host targets of pathogen effectors can be used to bioengineer recognition specificities that have more robust properties compared to naturally evolved disease resistance genes.
Collapse
Affiliation(s)
- Rafał Zdrzałek
- Department of Biochemistry and Metabolism, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Yuxuan Xi
- Department of Biochemistry and Metabolism, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, NorwichNR4 7UH, United Kingdom
| | - Adam R. Bentham
- Department of Biochemistry and Metabolism, John Innes Centre, NorwichNR4 7UH, United Kingdom
- The Sainsbury Laboratory, University of East Anglia, NorwichNR4 7UH, United Kingdom
| | | | - Juan Carlos De la Concepcion
- Department of Biochemistry and Metabolism, John Innes Centre, NorwichNR4 7UH, United Kingdom
- The Sainsbury Laboratory, University of East Anglia, NorwichNR4 7UH, United Kingdom
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, NorwichNR4 7UH, United Kingdom
| | - Motoki Shimizu
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate024-0003, Japan
| | - Vincent Were
- The Sainsbury Laboratory, University of East Anglia, NorwichNR4 7UH, United Kingdom
| | - Nicholas J. Talbot
- The Sainsbury Laboratory, University of East Anglia, NorwichNR4 7UH, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate024-0003, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto606-8501, Japan
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, NorwichNR4 7UH, United Kingdom
| | - Mark J. Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, NorwichNR4 7UH, United Kingdom
| |
Collapse
|
9
|
De la Concepcion JC, Langner T, Fujisaki K, Yan X, Were V, Lam AHC, Saado I, Brabham HJ, Win J, Yoshida K, Talbot NJ, Terauchi R, Kamoun S, Banfield MJ. Zinc-finger (ZiF) fold secreted effectors form a functionally diverse family across lineages of the blast fungus Magnaporthe oryzae. PLoS Pathog 2024; 20:e1012277. [PMID: 38885263 PMCID: PMC11213319 DOI: 10.1371/journal.ppat.1012277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/28/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Filamentous plant pathogens deliver effector proteins into host cells to suppress host defence responses and manipulate metabolic processes to support colonization. Understanding the evolution and molecular function of these effectors provides knowledge about pathogenesis and can suggest novel strategies to reduce damage caused by pathogens. However, effector proteins are highly variable, share weak sequence similarity and, although they can be grouped according to their structure, only a few structurally conserved effector families have been functionally characterized to date. Here, we demonstrate that Zinc-finger fold (ZiF) secreted proteins form a functionally diverse effector family in the blast fungus Magnaporthe oryzae. This family relies on the Zinc-finger motif for protein stability and is ubiquitously present in blast fungus lineages infecting 13 different host species, forming different effector tribes. Homologs of the canonical ZiF effector, AVR-Pii, from rice infecting isolates are present in multiple M. oryzae lineages. Wheat infecting strains of the fungus also possess an AVR-Pii like allele that binds host Exo70 proteins and activates the immune receptor Pii. Furthermore, ZiF tribes may vary in the proteins they bind to, indicating functional diversification and an intricate effector/host interactome. Altogether, we uncovered a new effector family with a common protein fold that has functionally diversified in lineages of M. oryzae. This work expands our understanding of the diversity of M. oryzae effectors, the molecular basis of plant pathogenesis and may ultimately facilitate the development of new sources for pathogen resistance.
Collapse
Affiliation(s)
- Juan Carlos De la Concepcion
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Koki Fujisaki
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, Japan
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Vincent Were
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Anson Ho Ching Lam
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Indira Saado
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Helen J. Brabham
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Kentaro Yoshida
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Nicholas J. Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Mark J. Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
10
|
Gao M, Hao Z, Ning Y, He Z. Revisiting growth-defence trade-offs and breeding strategies in crops. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1198-1205. [PMID: 38410834 PMCID: PMC11022801 DOI: 10.1111/pbi.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 02/28/2024]
Abstract
Plants have evolved a multi-layered immune system to fight off pathogens. However, immune activation is costly and is often associated with growth and development penalty. In crops, yield is the main breeding target and is usually affected by high disease resistance. Therefore, proper balance between growth and defence is critical for achieving efficient crop improvement. This review highlights recent advances in attempts designed to alleviate the trade-offs between growth and disease resistance in crops mediated by resistance (R) genes, susceptibility (S) genes and pleiotropic genes. We also provide an update on strategies for optimizing the growth-defence trade-offs to breed future crops with desirable disease resistance and high yield.
Collapse
Affiliation(s)
- Mingjun Gao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco‐Chongming, School of Life SciencesFudan UniversityShanghaiChina
| | - Zeyun Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Zuhua He
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
11
|
Dodds PN, Chen J, Outram MA. Pathogen perception and signaling in plant immunity. THE PLANT CELL 2024; 36:1465-1481. [PMID: 38262477 PMCID: PMC11062475 DOI: 10.1093/plcell/koae020] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Plant diseases are a constant and serious threat to agriculture and ecological biodiversity. Plants possess a sophisticated innate immunity system capable of detecting and responding to pathogen infection to prevent disease. Our understanding of this system has grown enormously over the past century. Early genetic descriptions of plant disease resistance and pathogen virulence were embodied in the gene-for-gene hypothesis, while physiological studies identified pathogen-derived elicitors that could trigger defense responses in plant cells and tissues. Molecular studies of these phenomena have now coalesced into an integrated model of plant immunity involving cell surface and intracellular detection of specific pathogen-derived molecules and proteins culminating in the induction of various cellular responses. Extracellular and intracellular receptors engage distinct signaling processes but converge on many similar outputs with substantial evidence now for integration of these pathways into interdependent networks controlling disease outcomes. Many of the molecular details of pathogen recognition and signaling processes are now known, providing opportunities for bioengineering to enhance plant protection from disease. Here we provide an overview of the current understanding of the main principles of plant immunity, with an emphasis on the key scientific milestones leading to these insights.
Collapse
Affiliation(s)
- Peter N Dodds
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Jian Chen
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Megan A Outram
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT 2601, Australia
| |
Collapse
|
12
|
Singh D, Mathur S, Ranjan R. Pattern recognition receptors as potential therapeutic targets for developing immunological engineered plants. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:525-555. [PMID: 38762279 DOI: 10.1016/bs.apcsb.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
There is an urgent need to combat pathogen infestations in crop plants to ensure food security worldwide. To counter this, plants have developed innate immunity mediated by Pattern Recognition Receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and damage- associated molecular patterns (DAMPs). PRRs activate Pattern-Triggered Immunity (PTI), a defence mechanism involving intricate cell-surface and intracellular receptors. The diverse ligand-binding ectodomains of PRRs, including leucine-rich repeats (LRRs) and lectin domains, facilitate the recognition of MAMPs and DAMPs. Pathogen resistance is mediated by a variety of PTI responses, including membrane depolarization, ROS production, and the induction of defence genes. An integral part of intracellular immunity is the Nucleotide-binding Oligomerization Domain, Leucine-rich Repeat proteins (NLRs) which recognize and respond to effectors in a potent manner. Enhanced understanding of PRRs, their ligands, and downstream signalling pathways has contributed to the identification of potential targets for genetically modified plants. By transferring PRRs across plant species, it is possible to create broad-spectrum resistance, potentially offering innovative solutions for plant protection and global food security. The purpose of this chapter is to provide an update on PRRs involved in disease resistance, clarify the mechanisms by which PRRs recognize ligands to form active receptor complexes and present various applications of PRRs and PTI in disease resistance management for plants.
Collapse
Affiliation(s)
- Deeksha Singh
- Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra-282005, India
| | - Shivangi Mathur
- Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra-282005, India
| | - Rajiv Ranjan
- Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra-282005, India.
| |
Collapse
|
13
|
Shao W, Shi G, Chu H, Du W, Zhou Z, Wuriyanghan H. Development of an NLR-ID Toolkit and Identification of Novel Disease-Resistance Genes in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:668. [PMID: 38475513 DOI: 10.3390/plants13050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
The recognition of pathogen effectors through the nucleotide-binding leucine-rich repeat receptor (NLR) family is an important component of plant immunity. In addition to typical domains such as TIR, CC, NBS, and LRR, NLR proteins also contain some atypical integrated domains (IDs), the roles of which are rarely investigated. Here, we carefully screened the soybean (Glycine max) genome and identified the IDs that appeared in the soybean TNL-like proteins. Our results show that multiple IDs (36) are widely present in soybean TNL-like proteins. A total of 27 Gm-TNL-ID genes (soybean TNL-like gene encoding ID) were cloned and their antiviral activity towards the soybean mosaic virus (SMV)/tobacco mosaic virus (TMV) was verified. Two resistance (R) genes, SRA2 (SMV resistance gene contains AAA_22 domain) and SRZ4 (SMV resistance gene contains zf-RVT domain), were identified to possess broad-spectrum resistance characteristics towards six viruses including SMV, TMV, plum pox virus (PPV), cabbage leaf curl virus (CaLCuV), barley stripe mosaic virus (BSMV), and tobacco rattle virus (TRV). The effects of Gm-TNL-IDX (the domain of the Gm-TNL-ID gene after the TN domain) on the antiviral activity of a R protein SRC7TN (we previously reported the TN domain of the soybean broad-spectrum resistance gene SRC7) were validated, and most of Gm-TNL-IDX inhibits antiviral activity mediated by SRC7TN, possibly through intramolecular interactions. Yeast-two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that seven Gm-TNL-IDX interacted with SMV-component proteins. Truncation analysis on a broad-spectrum antiviral protein SRZ4 indicated that SRZ4TIR is sufficient to mediate antiviral activity against SMV. Soybean cDNA library screening on SRZ4 identified 48 interacting proteins. In summary, our results indicate that the integration of IDs in soybean is widespread and frequent. The NLR-ID toolkit we provide is expected to be valuable for elucidating the functions of atypical NLR proteins in the plant immune system and lay the foundation for the development of engineering NLR for plant-disease control in the future.
Collapse
Affiliation(s)
- Wei Shao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Gongfu Shi
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Han Chu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wenjia Du
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Zikai Zhou
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
14
|
Zhang X, Liu Y, Yuan G, Wang S, Wang D, Zhu T, Wu X, Ma M, Guo L, Guo H, Bhadauria V, Liu J, Peng YL. The synthetic NLR RGA5 HMA5 requires multiple interfaces within and outside the integrated domain for effector recognition. Nat Commun 2024; 15:1104. [PMID: 38321036 PMCID: PMC10847126 DOI: 10.1038/s41467-024-45380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
Some plant sensor nucleotide-binding leucine-rich repeat (NLR) receptors detect pathogen effectors through their integrated domains (IDs). Rice RGA5 sensor NLR recognizes its corresponding effectors AVR-Pia and AVR1-CO39 from the blast fungus Magnaporthe oryzae through direct binding to its heavy metal-associated (HMA) ID to trigger the RGA4 helper NLR-dependent resistance in rice. Here, we report a mutant of RGA5 named RGA5HMA5 that confers complete resistance in transgenic rice plants to the M. oryzae strains expressing the noncorresponding effector AVR-PikD. RGA5HMA5 carries three engineered interfaces, two of which lie in the HMA ID and the other in the C-terminal Lys-rich stretch tailing the ID. However, RGA5 variants having one or two of the three interfaces, including replacing all the Lys residues with Glu residues in the Lys-rich stretch, failed to activate RGA4-dependent cell death of rice protoplasts. Altogether, this work demonstrates that sensor NLRs require a concerted action of multiple surfaces within and outside the IDs to both recognize effectors and activate helper NLR-mediated resistance, and has implications in structure-guided designing of sensor NLRs.
Collapse
Affiliation(s)
- Xin Zhang
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, 100193, Beijing, China
| | - Yang Liu
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, 100193, Beijing, China
| | - Guixin Yuan
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, 100193, Beijing, China
| | - Shiwei Wang
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, 100193, Beijing, China
| | - Dongli Wang
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, 100193, Beijing, China
| | - Tongtong Zhu
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, 100193, Beijing, China
| | - Xuefeng Wu
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, 100193, Beijing, China
| | - Mengqi Ma
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, 100193, Beijing, China
| | - Liwei Guo
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201, Kunming, China
| | - Hailong Guo
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Vijai Bhadauria
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Junfeng Liu
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China.
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, 100193, Beijing, China.
| | - You-Liang Peng
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
15
|
Rozano L, Hane JK, Mancera RL. The Molecular Docking of MAX Fungal Effectors with Plant HMA Domain-Binding Proteins. Int J Mol Sci 2023; 24:15239. [PMID: 37894919 PMCID: PMC10607590 DOI: 10.3390/ijms242015239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Fungal effector proteins are important in mediating disease infections in agriculturally important crops. These secreted small proteins are known to interact with their respective host receptor binding partners in the host, either inside the cells or in the apoplastic space, depending on the localisation of the effector proteins. Consequently, it is important to understand the interactions between fungal effector proteins and their target host receptor binding partners, particularly since this can be used for the selection of potential plant resistance or susceptibility-related proteins that can be applied to the breeding of new cultivars with disease resistance. In this study, molecular docking simulations were used to characterise protein-protein interactions between effector and plant receptors. Benchmarking was undertaken using available experimental structures of effector-host receptor complexes to optimise simulation parameters, which were then used to predict the structures and mediating interactions of effector proteins with host receptor binding partners that have not yet been characterised experimentally. Rigid docking was applied for both the so-called bound and unbound docking of MAX effectors with plant HMA domain protein partners. All bound complexes used for benchmarking were correctly predicted, with 84% being ranked as the top docking pose using the ZDOCK scoring function. In the case of unbound complexes, a minimum of 95% of known residues were predicted to be part of the interacting interface on the host receptor binding partner, and at least 87% of known residues were predicted to be part of the interacting interface on the effector protein. Hydrophobic interactions were found to dominate the formation of effector-plant protein complexes. An optimised set of docking parameters based on the use of ZDOCK and ZRANK scoring functions were established to enable the prediction of near-native docking poses involving different binding interfaces on plant HMA domain proteins. Whilst this study was limited by the availability of the experimentally determined complexed structures of effectors and host receptor binding partners, we demonstrated the potential of molecular docking simulations to predict the likely interactions between effectors and their respective host receptor binding partners. This computational approach may accelerate the process of the discovery of putative interacting plant partners of effector proteins and contribute to effector-assisted marker discovery, thereby supporting the breeding of disease-resistant crops.
Collapse
Affiliation(s)
- Lina Rozano
- Curtin Medical School, Curtin Health Innovation Research Institute, GPO Box U1987, Perth, WA 6845, Australia
- Curtin Institute for Data Science, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - James K. Hane
- Curtin Institute for Data Science, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Ricardo L. Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute, GPO Box U1987, Perth, WA 6845, Australia
- Curtin Institute for Data Science, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
16
|
Contreras MP, Lüdke D, Pai H, Toghani A, Kamoun S. NLR receptors in plant immunity: making sense of the alphabet soup. EMBO Rep 2023; 24:e57495. [PMID: 37602936 PMCID: PMC10561179 DOI: 10.15252/embr.202357495] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Plants coordinately use cell-surface and intracellular immune receptors to perceive pathogens and mount an immune response. Intracellular events of pathogen recognition are largely mediated by immune receptors of the nucleotide binding and leucine rich-repeat (NLR) classes. Upon pathogen perception, NLRs trigger a potent broad-spectrum immune reaction, usually accompanied by a form of programmed cell death termed the hypersensitive response. Some plant NLRs act as multifunctional singleton receptors which combine pathogen detection and immune signaling. However, NLRs can also function in higher order pairs and networks of functionally specialized interconnected receptors. In this article, we cover the basic aspects of plant NLR biology with an emphasis on NLR networks. We highlight some of the recent advances in NLR structure, function, and activation and discuss emerging topics such as modulator NLRs, pathogen suppression of NLRs, and NLR bioengineering. Multi-disciplinary approaches are required to disentangle how these NLR immune receptor pairs and networks function and evolve. Answering these questions holds the potential to deepen our understanding of the plant immune system and unlock a new era of disease resistance breeding.
Collapse
Affiliation(s)
| | - Daniel Lüdke
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | - Hsuan Pai
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| |
Collapse
|
17
|
Bentham AR, De la Concepcion JC, Benjumea JV, Kourelis J, Jones S, Mendel M, Stubbs J, Stevenson CEM, Maidment JHR, Youles M, Zdrzałek R, Kamoun S, Banfield MJ. Allelic compatibility in plant immune receptors facilitates engineering of new effector recognition specificities. THE PLANT CELL 2023; 35:3809-3827. [PMID: 37486356 PMCID: PMC10533329 DOI: 10.1093/plcell/koad204] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 07/25/2023]
Abstract
Engineering the plant immune system offers genetic solutions to mitigate crop diseases caused by diverse agriculturally significant pathogens and pests. Modification of intracellular plant immune receptors of the nucleotide-binding leucine-rich repeat (NLR) receptor superfamily for expanded recognition of pathogen virulence proteins (effectors) is a promising approach for engineering disease resistance. However, engineering can cause NLR autoactivation, resulting in constitutive defense responses that are deleterious to the plant. This may be due to plant NLRs associating in highly complex signaling networks that coevolve together, and changes through breeding or genetic modification can generate incompatible combinations, resulting in autoimmune phenotypes. The sensor and helper NLRs of the rice (Oryza sativa) NLR pair Pik have coevolved, and mismatching between noncoevolved alleles triggers constitutive activation and cell death. This limits the extent to which protein modifications can be used to engineer pathogen recognition and enhance disease resistance mediated by these NLRs. Here, we dissected incompatibility determinants in the Pik pair in Nicotiana benthamiana and found that heavy metal-associated (HMA) domains integrated in Pik-1 not only evolved to bind pathogen effectors but also likely coevolved with other NLR domains to maintain immune homeostasis. This explains why changes in integrated domains can lead to autoactivation. We then used this knowledge to facilitate engineering of new effector recognition specificities, overcoming initial autoimmune penalties. We show that by mismatching alleles of the rice sensor and helper NLRs Pik-1 and Pik-2, we can enable the integration of synthetic domains with novel and enhanced recognition specificities. Taken together, our results reveal a strategy for engineering NLRs, which has the potential to allow an expanded set of integrations and therefore new disease resistance specificities in plants.
Collapse
Affiliation(s)
- Adam R Bentham
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Javier Vega Benjumea
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sally Jones
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Melanie Mendel
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jack Stubbs
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Clare E M Stevenson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Josephine H R Maidment
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Mark Youles
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Rafał Zdrzałek
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Mark J Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
18
|
Yang L. Getting the right helper opens a new avenue for NLR engineering. THE PLANT CELL 2023; 35:3633-3634. [PMID: 37474306 PMCID: PMC10533317 DOI: 10.1093/plcell/koad201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Affiliation(s)
- Leiyun Yang
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, Rockville, MD, USA
- Department of Plant Pathology, College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
Wang R, Wang GL, Ning Y. Harnessing nanobodies to expand the recognition spectrum of plant NLRs for diverse pathogens. ABIOTECH 2023; 4:272-276. [PMID: 37974906 PMCID: PMC10638280 DOI: 10.1007/s42994-023-00111-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 11/19/2023]
Abstract
The strategy to expand the recognition spectrum of plant nucleotide-binding domain leucine-rich repeat (NLR) proteins by modifying their recognition sequences is generally limited and often unsuccessful. Kourelis et al. introduced a groundbreaking approach for generating a customized immune receptor, called Pikobody. This method involves integrating a nanobody domain of a fluorescent protein (FP) into a plant NLR. Their research demonstrates that the resulting Pikobody successfully initiates an immune response against diverse pathogens when exposed to the corresponding FP.
Collapse
Affiliation(s)
- Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210 USA
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
20
|
Förderer A, Kourelis J. NLR immune receptors: structure and function in plant disease resistance. Biochem Soc Trans 2023; 51:1473-1483. [PMID: 37602488 PMCID: PMC10586772 DOI: 10.1042/bst20221087] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Nucleotide-binding and leucine-rich repeat receptors (NLRs) are a diverse family of intracellular immune receptors that play crucial roles in recognizing and responding to pathogen invasion in plants. This review discusses the overall model of NLR activation and provides an in-depth analysis of the different NLR domains, including N-terminal executioner domains, the nucleotide-binding oligomerization domain (NOD) module, and the leucine-rich repeat (LRR) domain. Understanding the structure-function relationship of these domains is essential for developing effective strategies to improve plant disease resistance and agricultural productivity.
Collapse
Affiliation(s)
- Alexander Förderer
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, U.K
| |
Collapse
|
21
|
Zdrzałek R, Stone C, De la Concepcion JC, Banfield MJ, Bentham AR. Pathways to engineering plant intracellular NLR immune receptors. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102380. [PMID: 37187111 DOI: 10.1016/j.pbi.2023.102380] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
Factors including climate change and increased global exchange are set to escalate the prevalence of plant diseases, posing an unprecedented threat to global food security and making it more challenging to meet the demands of an ever-growing population. As such, new methods of pathogen control are essential to help with the growing danger of crop losses to plant diseases. The intracellular immune system of plants utilizes nucleotide-binding leucine-rich repeat (NLR) receptors to recognize and activate defense responses to pathogen virulence proteins (effectors) delivered to the host. Engineering the recognition properties of plant NLRs toward pathogen effectors is a genetic solution to plant diseases with high specificity, and it is more sustainable than several current methods for pathogen control that frequently rely on agrochemicals. Here, we highlight the pioneering approaches toward enhancing effector recognition in plant NLRs and discuss the barriers and solutions in engineering the plant intracellular immune system.
Collapse
Affiliation(s)
- Rafał Zdrzałek
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Caroline Stone
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Mark J Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Adam R Bentham
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
22
|
Cadiou L, Brunisholz F, Cesari S, Kroj T. Molecular engineering of plant immune receptors for tailored crop disease resistance. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102381. [PMID: 37192575 DOI: 10.1016/j.pbi.2023.102381] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/17/2023] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
The specific recognition of pathogen effectors by intracellular nucleotide-binding and leucine-rich repeat domain receptors (NLRs) is an important component of plant immunity. Creating NLRs with new bespoke recognition specificities is a major goal in molecular plant pathology as it promises to provide unlimited resources for the resistance of crops against diseases. Recent breakthrough discoveries on the structure and molecular activity of NLRs begin to enable their knowledge-guided molecular engineering. First, studies succeeded to extend or change effector recognition specificities by modifying, in a structure-guided manner, the NLR domains that directly bind effectors. By modifying the LRR domain of the singleton NLR Sr35 or the unconventional decoy domains of the helper NLRs RGA5 or Pik-1, receptors that detected other or additional effectors were created.
Collapse
Affiliation(s)
- Lila Cadiou
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Francois Brunisholz
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Stella Cesari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France.
| |
Collapse
|
23
|
Tamborski J, Seong K, Liu F, Staskawicz BJ, Krasileva KV. Altering Specificity and Autoactivity of Plant Immune Receptors Sr33 and Sr50 Via a Rational Engineering Approach. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:434-446. [PMID: 36867580 PMCID: PMC10561695 DOI: 10.1094/mpmi-07-22-0154-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Many resistance genes deployed against pathogens in crops are intracellular nucleotide-binding (NB) leucine-rich repeat (LRR) receptors (NLRs). The ability to rationally engineer the specificity of NLRs will be crucial in the response to newly emerging crop diseases. Successful attempts to modify NLR recognition have been limited to untargeted approaches or depended on previously available structural information or knowledge of pathogen-effector targets. However, this information is not available for most NLR-effector pairs. Here, we demonstrate the precise prediction and subsequent transfer of residues involved in effector recognition between two closely related NLRs without their experimentally determined structure or detailed knowledge about their pathogen effector targets. By combining phylogenetics, allele diversity analysis, and structural modeling, we successfully predicted residues mediating interaction of Sr50 with its cognate effector AvrSr50 and transferred recognition specificity of Sr50 to the closely related NLR Sr33. We created synthetic versions of Sr33 that contain amino acids from Sr50, including Sr33syn, which gained the ability to recognize AvrSr50 with 12 amino-acid substitutions. Furthermore, we discovered that sites in the LRR domain needed to transfer recognition specificity to Sr33 also influence autoactivity in Sr50. Structural modeling suggests these residues interact with a part of the NB-ARC domain, which we named the NB-ARC latch, to possibly maintain the inactive state of the receptor. Our approach demonstrates rational modifications of NLRs, which could be useful to enhance existing elite crop germplasm. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Janina Tamborski
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, U.S.A
| | - Kyungyong Seong
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, U.S.A
| | - Furong Liu
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, U.S.A
- Innovative Genomics Institute, University of California Berkeley, 2151 Berkeley Way, Berkeley, CA 94720, U.S.A
| | - Brian J. Staskawicz
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, U.S.A
- Innovative Genomics Institute, University of California Berkeley, 2151 Berkeley Way, Berkeley, CA 94720, U.S.A
| | - Ksenia V. Krasileva
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, U.S.A
- Innovative Genomics Institute, University of California Berkeley, 2151 Berkeley Way, Berkeley, CA 94720, U.S.A
| |
Collapse
|
24
|
Guo L, Mu Y, Wang D, Ye C, Zhu S, Cai H, Zhu Y, Peng Y, Liu J, He X. Structural mechanism of heavy metal-associated integrated domain engineering of paired nucleotide-binding and leucine-rich repeat proteins in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1187372. [PMID: 37448867 PMCID: PMC10338059 DOI: 10.3389/fpls.2023.1187372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023]
Abstract
Plant nucleotide-binding and leucine-rich repeat (NLR) proteins are immune sensors that detect pathogen effectors and initiate a strong immune response. In many cases, single NLR proteins are sufficient for both effector recognition and signaling activation. These proteins possess a conserved architecture, including a C-terminal leucine-rich repeat (LRR) domain, a central nucleotide-binding (NB) domain, and a variable N-terminal domain. Nevertheless, many paired NLRs linked in a head-to-head configuration have now been identified. The ones carrying integrated domains (IDs) can recognize pathogen effector proteins by various modes; these are known as sensor NLR (sNLR) proteins. Structural and biochemical studies have provided insights into the molecular basis of heavy metal-associated IDs (HMA IDs) from paired NLRs in rice and revealed the co-evolution between pathogens and hosts by combining naturally occurring favorable interactions across diverse interfaces. Focusing on structural and molecular models, here we highlight advances in structure-guided engineering to expand and enhance the response profile of paired NLR-HMA IDs in rice to variants of the rice blast pathogen MAX-effectors (Magnaporthe oryzae AVRs and ToxB-like). These results demonstrate that the HMA IDs-based design of rice materials with broad and enhanced resistance profiles possesses great application potential but also face considerable challenges.
Collapse
Affiliation(s)
- Liwei Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yuanyu Mu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dongli Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Chen Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hong Cai
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Youyong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Youliang Peng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Junfeng Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China
| |
Collapse
|
25
|
Minter F, Saunders DGO. Safeguarding wheat yields from cereal fungal invaders in the postgenomic era. Curr Opin Microbiol 2023; 73:102310. [PMID: 37018996 DOI: 10.1016/j.mib.2023.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Wheat production is under constant threat from pests and pathogens, with fungal foliar diseases causing considerable annual yield losses. However, recent improvements in genomic tools and resources provide an unprecedented opportunity to enhance wheat's resilience in the face of these biotic constraints. Here, we discuss the impact of these advances on three key areas of managing fungal diseases of wheat: (i) enhancing the abundance of resistance traits available for plant breeding, (ii) accelerating the identification of novel fungicide targets and (iii) developing better tools for disease diagnostics and surveillance. Embracing these new genomics-led technological innovations in crop protection could revolutionise our wheat production system to improve resilience and prevent yield losses.
Collapse
|
26
|
Gao M, Schornack S. Antibodies for a bespoke plant immunity. Cell Host Microbe 2023; 31:683-684. [PMID: 37167947 DOI: 10.1016/j.chom.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/07/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
Plants do not have antibodies. However, in a recent Science article, Kourelis and Marchal et al. have demonstrated that plant immune receptors can be retrofitted with animal antibodies to provide plants potentially with hundreds and thousands of options to perceive attacking microbes. This is the dawn of bespoke plant immunity.
Collapse
Affiliation(s)
- Mingjun Gao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China.
| | | |
Collapse
|
27
|
Vo KTX, Yi Q, Jeon JS. Engineering effector-triggered immunity in rice: Obstacles and perspectives. PLANT, CELL & ENVIRONMENT 2023; 46:1143-1156. [PMID: 36305486 DOI: 10.1111/pce.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Improving rice immunity is one of the most effective approaches to reduce yield loss by biotic factors, with the aim of increasing rice production by 2050 amidst limited natural resources. Triggering a fast and strong immune response to pathogens, effector-triggered immunity (ETI) has intrigued scientists to intensively study and utilize the mechanisms for engineering highly resistant plants. The conservation of ETI components and mechanisms across species enables the use of ETI components to generate broad-spectrum resistance in plants. Numerous efforts have been made to introduce new resistance (R) genes, widen the effector recognition spectrum and generate on-demand R genes. Although engineering ETI across plant species is still associated with multiple challenges, previous attempts have provided an enhanced understanding of ETI mechanisms. Here, we provide a survey of recent reports in the engineering of rice R genes. In addition, we suggest a framework for future studies of R gene-effector interactions, including genome-scale investigations in both rice and pathogens, followed by structural studies of R proteins and effectors, and potential strategies to use important ETI components to improve rice immunity.
Collapse
Affiliation(s)
- Kieu Thi Xuan Vo
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| | - Qi Yi
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| |
Collapse
|
28
|
Al Mamun Khan MA, Ahsan A, Khan MA, Sanjana JM, Biswas S, Saleh MA, Gupta DR, Hoque MN, Sakif TI, Rahman MM, Islam T. In-silico prediction of highly promising natural fungicides against the destructive blast fungus Magnaporthe oryzae. Heliyon 2023; 9:e15113. [PMID: 37123971 PMCID: PMC10130775 DOI: 10.1016/j.heliyon.2023.e15113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Magnaporthe oryzae causes destructive blast disease in more than 50 species of the major cereal crops rice, wheat and maize and destroys food of millions of people worldwide. Application of synthetic chemical fungicides are environmentally hazardous and unreliable in controlling M. oryzae. Conversely, naturally occurring biofungicides with multiple modes of actions are needed to be discovered for combatting the blast fungus. To find the effective biofungicides, we performed molecular docking study of some potential antifungal natural compounds targeting two proteins including a single-stranded DNA binding protein MoSub1 (4AGH), and an effector protein AVR-Pik (5E9G) of M. oryzae that regulates transcription in fungus and/or suppresses the host cell immunity. The thirty-nine natural compounds previously shown to inhibit M. oryzae growth and reproduction were put under molecular docking against these two proteins followed by simulation, free energy, and interaction analysis of protein-ligand complexes. The virtual screening revealed that two alkaloidal metabolites, camptothecin and GKK1032A2 showed excellent binding energy with any of these target proteins compared to reference commercial fungicides, azoxystrobin and strobilurin. Of the detected compounds, GKK1032A2 bound to both target proteins of M. oryzae. Both compounds showed excellent bioactivity scores as compared to the reference fungicides. Results of our computational biological study suggest that both camptothecin and GKK1032A2 are potential fungicides that could also be considered as lead compounds to design novel fungicides against the blast fungus. Furthermore, the GKK1032A2 acted as a multi-site mode of action fungicide against M. oryzae.
Collapse
Affiliation(s)
- Md Abdullah Al Mamun Khan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Asif Ahsan
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Arif Khan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh
- Bio-Bio-1 Bioinformatics Research Foundation, Dhaka, Bangladesh
| | - Jannatul Maowa Sanjana
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Suvro Biswas
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Dipali Rani Gupta
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur 1706, Bangladesh
| | - M. Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, BSMRAU, Gazipur 1706, Bangladesh
| | - Tahsin Islam Sakif
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506-6109, USA
| | - Md Masuder Rahman
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur 1706, Bangladesh
- Corresponding author. Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur 1706, Bangladesh.
| |
Collapse
|
29
|
Rozano L, Mukuka YM, Hane JK, Mancera RL. Ab Initio Modelling of the Structure of ToxA-like and MAX Fungal Effector Proteins. Int J Mol Sci 2023; 24:ijms24076262. [PMID: 37047233 PMCID: PMC10094246 DOI: 10.3390/ijms24076262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Pathogenic fungal diseases in crops are mediated by the release of effector proteins that facilitate infection. Characterising the structure of these fungal effectors is vital to understanding their virulence mechanisms and interactions with their hosts, which is crucial in the breeding of plant cultivars for disease resistance. Several effectors have been identified and validated experimentally; however, their lack of sequence conservation often impedes the identification and prediction of their structure using sequence similarity approaches. Structural similarity has, nonetheless, been observed within fungal effector protein families, creating interest in validating the use of computational methods to predict their tertiary structure from their sequence. We used Rosetta ab initio modelling to predict the structures of members of the ToxA-like and MAX effector families for which experimental structures are known to validate this method. An optimised approach was then used to predict the structures of phenotypically validated effectors lacking known structures. Rosetta was found to successfully predict the structure of fungal effectors in the ToxA-like and MAX families, as well as phenotypically validated but structurally unconfirmed effector sequences. Interestingly, potential new effector structural families were identified on the basis of comparisons with structural homologues and the identification of associated protein domains.
Collapse
|
30
|
Kourelis J, Marchal C, Posbeyikian A, Harant A, Kamoun S. NLR immune receptor-nanobody fusions confer plant disease resistance. Science 2023; 379:934-939. [PMID: 36862785 DOI: 10.1126/science.abn4116] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/01/2023] [Indexed: 03/04/2023]
Abstract
Plant pathogens cause recurrent epidemics, threatening crop yield and global food security. Efforts to retool the plant immune system have been limited to modifying natural components and can be nullified by the emergence of new pathogen strains. Made-to-order synthetic plant immune receptors provide an opportunity to tailor resistance to pathogen genotypes present in the field. In this work, we show that plant nucleotide-binding, leucine-rich repeat immune receptors (NLRs) can be used as scaffolds for nanobody (single-domain antibody fragment) fusions that bind fluorescent proteins (FPs). These fusions trigger immune responses in the presence of the corresponding FP and confer resistance against plant viruses expressing FPs. Because nanobodies can be raised against most molecules, immune receptor-nanobody fusions have the potential to generate resistance against plant pathogens and pests delivering effectors inside host cells.
Collapse
Affiliation(s)
- Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Clemence Marchal
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Andres Posbeyikian
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
31
|
Xiao G, Wang W, Liu M, Li Y, Liu J, Franceschetti M, Yi Z, Zhu X, Zhang Z, Lu G, Banfield MJ, Wu J, Zhou B. The Piks allele of the NLR immune receptor Pik breaks the recognition of AvrPik effectors of rice blast fungus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:810-824. [PMID: 36178632 DOI: 10.1111/jipb.13375] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Arms race co-evolution of plant-pathogen interactions evolved sophisticated recognition mechanisms between host immune receptors and pathogen effectors. Different allelic haplotypes of an immune receptor in the host mount distinct recognition against sequence or non-sequence related effectors in pathogens. We report the molecular characterization of the Piks allele of the rice immune receptor Pik against rice blast pathogen, which requires two head-to-head arrayed nucleotide-binding sites and leucine-rich repeat proteins. Like other Pik alleles, both Piks-1 and Piks-2 are necessary and sufficient for mediating resistance. However, unlike other Pik alleles, Piks does not recognize any known AvrPik variants of Magnaporthe oryzae. Sequence analysis of the genome of an avirulent isolate V86010 further revealed that its cognate avirulence (Avr) gene most likely has no significant sequence similarity to known AvrPik variants. Piks-1 and Pikm-1 have only two amino acid differences within the integrated heavy metal-associated (HMA) domain. Pikm-HMA interacts with AvrPik-A, -D, and -E in vitro and in vivo, whereas Piks-HMA does not bind any AvrPik variants. Characterization of two amino acid residues differing Piks-1 from Pikm-1 reveal that Piks-E229Q derived from the exchange of Glu229 to Gln229 in Piks-1 gains recognition specificity against AvrPik-D but not AvrPik-A or -E, indicating that Piks-E229Q partially restores the Pikm spectrum. By contrast, Piks-A261V derived from the exchange of Ala261 to Val261 in Piks-1 retains Piks recognition specificity. We conclude that Glu229 in Piks-1 is critical for Piks breaking the canonical Pik/AvrPik recognition pattern. Intriguingly, binding activity and ectopic cell death induction is maintained between Piks-A261V and AvrPik-D, implying that positive outcomes from ectopic assays might be insufficient to deduce its immune activity against the relevant effectors in rice and rice blast interaction.
Collapse
Affiliation(s)
- Gui Xiao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
- International Rice Research Institute, Metro Manila, 1301, Philippines
| | - Wenjuan Wang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Ya Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianbin Liu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
| | - Marina Franceschetti
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Zhaofeng Yi
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
| | - Xiaoyuan Zhu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mark J Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jun Wu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
| | - Bo Zhou
- International Rice Research Institute, Metro Manila, 1301, Philippines
| |
Collapse
|
32
|
Sugihara Y, Abe Y, Takagi H, Abe A, Shimizu M, Ito K, Kanzaki E, Oikawa K, Kourelis J, Langner T, Win J, Białas A, Lüdke D, Contreras MP, Chuma I, Saitoh H, Kobayashi M, Zheng S, Tosa Y, Banfield MJ, Kamoun S, Terauchi R, Fujisaki K. Disentangling the complex gene interaction networks between rice and the blast fungus identifies a new pathogen effector. PLoS Biol 2023; 21:e3001945. [PMID: 36656825 PMCID: PMC9851567 DOI: 10.1371/journal.pbio.3001945] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023] Open
Abstract
Studies focused solely on single organisms can fail to identify the networks underlying host-pathogen gene-for-gene interactions. Here, we integrate genetic analyses of rice (Oryza sativa, host) and rice blast fungus (Magnaporthe oryzae, pathogen) and uncover a new pathogen recognition specificity of the rice nucleotide-binding domain and leucine-rich repeat protein (NLR) immune receptor Pik, which mediates resistance to M. oryzae expressing the avirulence effector gene AVR-Pik. Rice Piks-1, encoded by an allele of Pik-1, recognizes a previously unidentified effector encoded by the M. oryzae avirulence gene AVR-Mgk1, which is found on a mini-chromosome. AVR-Mgk1 has no sequence similarity to known AVR-Pik effectors and is prone to deletion from the mini-chromosome mediated by repeated Inago2 retrotransposon sequences. AVR-Mgk1 is detected by Piks-1 and by other Pik-1 alleles known to recognize AVR-Pik effectors; recognition is mediated by AVR-Mgk1 binding to the integrated heavy metal-associated (HMA) domain of Piks-1 and other Pik-1 alleles. Our findings highlight how complex gene-for-gene interaction networks can be disentangled by applying forward genetics approaches simultaneously to the host and pathogen. We demonstrate dynamic coevolution between an NLR integrated domain and multiple families of effector proteins.
Collapse
Affiliation(s)
- Yu Sugihara
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Crop Evolution Laboratory, Kyoto University, Mozume, Muko, Kyoto, Japan
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Yoshiko Abe
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Hiroki Takagi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Akira Abe
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Kazue Ito
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Eiko Kanzaki
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Kaori Oikawa
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Aleksandra Białas
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Daniel Lüdke
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | | | - Izumi Chuma
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | | | | - Shuan Zheng
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Crop Evolution Laboratory, Kyoto University, Mozume, Muko, Kyoto, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Mark J. Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Ryohei Terauchi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Crop Evolution Laboratory, Kyoto University, Mozume, Muko, Kyoto, Japan
| | - Koki Fujisaki
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| |
Collapse
|
33
|
Marchal C, Pai H, Kamoun S, Kourelis J. Emerging principles in the design of bioengineered made-to-order plant immune receptors. CURRENT OPINION IN PLANT BIOLOGY 2022; 70:102311. [PMID: 36379872 DOI: 10.1016/j.pbi.2022.102311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Crop yield and global food security are under constant threat from plant pathogens with the potential to cause epidemics. Traditional breeding for disease resistance can be too slow to counteract these emerging threats, resulting in the need to retool the plant immune system using bioengineered made-to-order immune receptors. Efforts to engineer immune receptors have focused primarily on nucleotide-binding domain and leucine-rich repeat (NLR) immune receptors and proof-of-principles studies. Based upon a near-exhaustive literature search of previously engineered plant immune systems we distil five emerging principles in the design of bioengineered made-to-order plant NLRs and describe approaches based on other components. These emerging principles are anticipated to assist the functional understanding of plant immune receptors, as well as bioengineering novel disease resistance specificities.
Collapse
Affiliation(s)
- Clemence Marchal
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Hsuan Pai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, UK.
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, UK.
| |
Collapse
|
34
|
Martin EC, Ion CF, Ifrimescu F, Spiridon L, Bakker J, Goverse A, Petrescu AJ. NLRscape: an atlas of plant NLR proteins. Nucleic Acids Res 2022; 51:D1470-D1482. [PMID: 36350627 PMCID: PMC9825502 DOI: 10.1093/nar/gkac1014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
NLRscape is a webserver that curates a collection of over 80 000 plant protein sequences identified in UniProtKB to contain NOD-like receptor signatures, and hosts in addition a number of tools aimed at the exploration of the complex sequence landscape of this class of plant proteins. Each entry gathers sequence information, domain and motif annotations from multiple third-party sources but also in-house advanced annotations aimed at addressing caveats of the existing broad-based annotations. NLRscape provides a top-down perspective of the NLR sequence landscape but also services for assisting a bottom-up approach starting from a given input sequence. Sequences are clustered by their domain organization layout, global homology and taxonomic spread-in order to allow analysis of how particular traits of an NLR family are scattered within the plant kingdom. Tools are provided for users to locate their own protein of interest in the overall NLR landscape, generate custom clusters centered around it and perform a large number of sequence and structural analyses using included interactive online instruments. Amongst these, we mention: taxonomy distribution plots, homology cluster graphs, identity matrices and interactive MSA synchronizing secondary structure and motif predictions. NLRscape can be found at: https://nlrscape.biochim.ro/.
Collapse
Affiliation(s)
- Eliza C Martin
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest 060031, Romania
| | - Catalin F Ion
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest 060031, Romania
| | - Florin Ifrimescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest 060031, Romania
| | - Laurentiu Spiridon
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest 060031, Romania
| | - Jaap Bakker
- Laboratory of Nematology, Wageningen University and Research, Wageningen 6700ES, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University and Research, Wageningen 6700ES, The Netherlands
| | | |
Collapse
|
35
|
De la Concepcion JC, Fujisaki K, Bentham AR, Cruz Mireles N, Sanchez de Medina Hernandez V, Shimizu M, Lawson DM, Kamoun S, Terauchi R, Banfield MJ. A blast fungus zinc-finger fold effector binds to a hydrophobic pocket in host Exo70 proteins to modulate immune recognition in rice. Proc Natl Acad Sci U S A 2022; 119:e2210559119. [PMID: 36252011 PMCID: PMC9618136 DOI: 10.1073/pnas.2210559119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Exocytosis plays an important role in plant-microbe interactions, in both pathogenesis and symbiosis. Exo70 proteins are integral components of the exocyst, an octameric complex that mediates tethering of vesicles to membranes in eukaryotes. Although plant Exo70s are known to be targeted by pathogen effectors, the underpinning molecular mechanisms and the impact of this interaction on infection are poorly understood. Here, we show the molecular basis of the association between the effector AVR-Pii of the blast fungus Maganaporthe oryzae and rice Exo70 alleles OsExo70F2 and OsExo70F3, which is sensed by the immune receptor pair Pii via an integrated RIN4/NOI domain. The crystal structure of AVR-Pii in complex with OsExo70F2 reveals that the effector binds to a conserved hydrophobic pocket in Exo70, defining an effector/target binding interface. Structure-guided and random mutagenesis validates the importance of AVR-Pii residues at the Exo70 binding interface to sustain protein association and disease resistance in rice when challenged with fungal strains expressing effector mutants. Furthermore, the structure of AVR-Pii defines a zinc-finger effector fold (ZiF) distinct from the MAX (Magnaporthe Avrs and ToxB-like) fold previously described for a majority of characterized M. oryzae effectors. Our data suggest that blast fungus ZiF effectors bind a conserved Exo70 interface to manipulate plant exocytosis and that these effectors are also baited by plant immune receptors, pointing to new opportunities for engineering disease resistance.
Collapse
Affiliation(s)
| | - Koki Fujisaki
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
| | - Adam R. Bentham
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Neftaly Cruz Mireles
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
- The Sainsbury Laboratory, University of East Anglia, Norwich, NR4 7UH, United Kingdom
| | | | - Motoki Shimizu
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
| | - David M. Lawson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, NR4 7UH, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8501, Japan
| | - Mark J. Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
36
|
Förderer A, Li E, Lawson AW, Deng YN, Sun Y, Logemann E, Zhang X, Wen J, Han Z, Chang J, Chen Y, Schulze-Lefert P, Chai J. A wheat resistosome defines common principles of immune receptor channels. Nature 2022; 610:532-539. [PMID: 36163289 PMCID: PMC9581773 DOI: 10.1038/s41586-022-05231-w] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/11/2022] [Indexed: 01/17/2023]
Abstract
Plant intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) detect pathogen effectors to trigger immune responses1. Indirect recognition of a pathogen effector by the dicotyledonous Arabidopsis thaliana coiled-coil domain containing NLR (CNL) ZAR1 induces the formation of a large hetero-oligomeric protein complex, termed the ZAR1 resistosome, which functions as a calcium channel required for ZAR1-mediated immunity2-4. Whether the resistosome and channel activities are conserved among plant CNLs remains unknown. Here we report the cryo-electron microscopy structure of the wheat CNL Sr355 in complex with the effector AvrSr356 of the wheat stem rust pathogen. Direct effector binding to the leucine-rich repeats of Sr35 results in the formation of a pentameric Sr35-AvrSr35 complex, which we term the Sr35 resistosome. Wheat Sr35 and Arabidopsis ZAR1 resistosomes bear striking structural similarities, including an arginine cluster in the leucine-rich repeats domain not previously recognized as conserved, which co-occurs and forms intramolecular interactions with the 'EDVID' motif in the coiled-coil domain. Electrophysiological measurements show that the Sr35 resistosome exhibits non-selective cation channel activity. These structural insights allowed us to generate new variants of closely related wheat and barley orphan NLRs that recognize AvrSr35. Our data support the evolutionary conservation of CNL resistosomes in plants and demonstrate proof of principle for structure-based engineering of NLRs for crop improvement.
Collapse
Affiliation(s)
- Alexander Förderer
- Institute of Biochemistry, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ertong Li
- Institute of Biochemistry, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Aaron W Lawson
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ya-Nan Deng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yue Sun
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Elke Logemann
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Xiaoxiao Zhang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jie Wen
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhifu Han
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Normal University, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuhang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | | | - Jijie Chai
- Institute of Biochemistry, University of Cologne, Cologne, Germany.
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
37
|
Xi Y, Cesari S, Kroj T. Insight into the structure and molecular mode of action of plant paired NLR immune receptors. Essays Biochem 2022; 66:513-526. [PMID: 35735291 PMCID: PMC9528088 DOI: 10.1042/ebc20210079] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
The specific recognition of pathogen effectors by intracellular nucleotide-binding domain and leucine-rich repeat receptors (NLRs) is an important component of plant immunity. NLRs have a conserved modular architecture and can be subdivided according to their signaling domain that is mostly a coiled-coil (CC) or a Toll/Interleukin1 receptor (TIR) domain into CNLs and TNLs. Single NLR proteins are often sufficient for both effector recognition and immune activation. However, sometimes, they act in pairs, where two different NLRs are required for disease resistance. Functional studies have revealed that in these cases one NLR of the pair acts as a sensor (sNLR) and one as a helper (hNLR). The genes corresponding to such resistance protein pairs with one-to-one functional co-dependence are clustered, generally with a head-to-head orientation and shared promoter sequences. sNLRs in such functional NLR pairs have additional, non-canonical and highly diverse domains integrated in their conserved modular architecture, which are thought to act as decoys to trap effectors. Recent structure-function studies on the Arabidopsis thaliana TNL pair RRS1/RPS4 and on the rice CNL pairs RGA4/RGA5 and Pik-1/Pik-2 are unraveling how such protein pairs function together. Focusing on these model NLR pairs and other recent examples, this review highlights the distinctive features of NLR pairs and their various fascinating mode of action in pathogen effector perception. We also discuss how these findings on NLR pairs pave the way toward improved plant disease resistance.
Collapse
Affiliation(s)
- Yuxuan Xi
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Stella Cesari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
38
|
Marchal C, Michalopoulou VA, Zou Z, Cevik V, Sarris PF. Show me your ID: NLR immune receptors with integrated domains in plants. Essays Biochem 2022; 66:527-539. [PMID: 35635051 PMCID: PMC9528084 DOI: 10.1042/ebc20210084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
Nucleotide-binding and leucine-rich repeat receptors (NLRs) are intracellular plant immune receptors that recognize pathogen effectors secreted into the plant cell. Canonical NLRs typically contain three conserved domains including a central nucleotide binding (NB-ARC) domain, C-terminal leucine-rich repeats (LRRs) and an N-terminal domain. A subfamily of plant NLRs contain additional noncanonical domain(s) that have potentially evolved from the integration of the effector targets in the canonical NLR structure. These NLRs with extra domains are thus referred to as NLRs with integrated domains (NLR-IDs). Here, we first summarize our current understanding of NLR-ID activation upon effector binding, focusing on the NLR pairs Pik-1/Pik-2, RGA4/RGA5, and RRS1/RPS4. We speculate on their potential oligomerization into resistosomes as it was recently shown for certain canonical plant NLRs. Furthermore, we discuss how our growing understanding of the mode of action of NLR-ID continuously informs engineering approaches to design new resistance specificities in the context of rapidly evolving pathogens.
Collapse
Affiliation(s)
- Clemence Marchal
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, United Kingdom
| | - Vassiliki A Michalopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece
| | - Zhou Zou
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath BA2 7AY, United Kingdom
| | - Volkan Cevik
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath BA2 7AY, United Kingdom
| | - Panagiotis F Sarris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece
- Department of Biology, University of Crete, 714 09 Heraklion, Crete, Greece
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
39
|
Zhang B, Liu M, Wang Y, Yuan W, Zhang H. Plant NLRs: Evolving with pathogen effectors and engineerable to improve resistance. Front Microbiol 2022; 13:1018504. [PMID: 36246279 PMCID: PMC9554439 DOI: 10.3389/fmicb.2022.1018504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogens are important threats to many plants throughout their lifetimes. Plants have developed different strategies to overcome them. In the plant immunity system, nucleotide-binding domain and leucine-rich repeat-containing proteins (NLRs) are the most common components. And recent studies have greatly expanded our understanding of how NLRs function in plants. In this review, we summarize the studies on the mechanism of NLRs in the processes of effector recognition, resistosome formation, and defense activation. Typical NLRs are divided into three groups according to the different domains at their N termini and function in interrelated ways in immunity. Atypical NLRs contain additional integrated domains (IDs), some of which directly interact with pathogen effectors. Plant NLRs evolve with pathogen effectors and exhibit specific recognition. Meanwhile, some NLRs have been successfully engineered to confer resistance to new pathogens based on accumulated studies. In summary, some pioneering processes have been obtained in NLR researches, though more questions arise as a result of the huge number of NLRs. However, with a broadened understanding of the mechanism, NLRs will be important components for engineering in plant resistance improvement.
Collapse
|
40
|
Rabiey M, Welch T, Sanchez-Lucas R, Stevens K, Raw M, Kettles GJ, Catoni M, McDonald MC, Jackson RW, Luna E. Scaling-up to understand tree-pathogen interactions: A steep, tough climb or a walk in the park? CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102229. [PMID: 35567925 DOI: 10.1016/j.pbi.2022.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/15/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Plants have proficient tools that allow them to survive interactions with pathogens. Upon attack, they respond with specific countermeasures, which are controlled by the immune system. However, defences can fail and this failure exposes plants to fast-spreading devastation. Trees face similar challenges to other plants and their immune system allows them to mount defences against pathogens. However, their slow growth, longevity, woodiness, and size can make trees a challenging system to study. Here, we review scientific successes in plant systems, highlight the key challenges and describe the enormous opportunities for pathology research in trees. We discuss the benefits that scaling-up our understanding on tree-pathogen interactions can provide in the fight against plant pathogenic threats.
Collapse
Affiliation(s)
- Mojgan Rabiey
- The Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Edgbaston Campus, Birmingham, B15 2TT, UK
| | - Thomas Welch
- The Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Edgbaston Campus, Birmingham, B15 2TT, UK
| | - Rosa Sanchez-Lucas
- The Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Edgbaston Campus, Birmingham, B15 2TT, UK
| | - Katie Stevens
- The Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Edgbaston Campus, Birmingham, B15 2TT, UK
| | - Mark Raw
- The Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Edgbaston Campus, Birmingham, B15 2TT, UK
| | - Graeme J Kettles
- The Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Edgbaston Campus, Birmingham, B15 2TT, UK
| | - Marco Catoni
- The Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Edgbaston Campus, Birmingham, B15 2TT, UK
| | - Megan C McDonald
- The Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Edgbaston Campus, Birmingham, B15 2TT, UK
| | - Robert W Jackson
- The Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Edgbaston Campus, Birmingham, B15 2TT, UK
| | - Estrella Luna
- The Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Edgbaston Campus, Birmingham, B15 2TT, UK.
| |
Collapse
|
41
|
Zhao Y, Zhu X, Chen X, Zhou JM. From plant immunity to crop disease resistance. J Genet Genomics 2022; 49:693-703. [PMID: 35728759 DOI: 10.1016/j.jgg.2022.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Plant diseases caused by diverse pathogens lead to serious reduction in crop yield and threaten food security worldwide. Genetic improvement of plant immunity is considered as the most effective and sustainable approach to control crop diseases. In the last decade, our understanding of plant immunity at both molecular and genomic levels has improved greatly. Combined with advances in biotechnologies, particularly CRISPR/Cas9-based genome editing, we can now rapidly identify new resistance genes and engineer disease resistance crop plants like never before. In this review, we summarize the current knowledge of plant immunity and outline existing and new strategies for disease resistance improvement in crop plants. We also discuss existing challenges in this field and suggest directions for future studies.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu Sichuan 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu Sichuan 611130, China.
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainai 572025, China.
| |
Collapse
|
42
|
Bai R, Li H, Du W, Niu N, Li W, Gao Q, Yao C, Zhou Z, Bao W, Che M, Zhao Y, Zhou B, Wang Y, Wuriyanghan H. Decoy engineering of the receptor-like cytoplasmic kinase StPBS1 to defend against virus infection in potato. MOLECULAR PLANT PATHOLOGY 2022; 23:901-908. [PMID: 35393767 PMCID: PMC9104261 DOI: 10.1111/mpp.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Potato virus Y (PVY) is an important pathogen of potato (Solanum tuberosum). Although the PBS1-RPS5 immune system is well documented in Arabidopsis thaliana, it has not been reported in potato. In Arabidopsis, the bacterial effector AvrPphB cleaves AtPBS1 to trigger an immune response. Here, we show that the AvrPphB-triggered immune response is mediated by StPBS1, a close homologue of AtPBS1 in potato. However, downstream signalling of StPBS1 was mediated by unknown resistance (R) proteins other than potato orthologues of AtRPS5 and HvPBR1, which is important for HvPBS1 signalling in barley. Immune signalling of StPBS1 is mediated by the AvrPphB C-terminal cleavage domain and an STKPQ motif, in contrast to AtPBS1-mediated immunity in which both AvrPphB cleavage fragments and an SEMPH motif are essential. The cleavage sequence of AvrPphB in StPBS1 was replaced with that of the PVY NIa-Pro protease to obtain StPBS1NIa . StPBS1NIa overexpression potato displayed stronger immunity to PVY infection than did the StPBS1 transgenic lines. StPBS1NIa was cleaved at the expected target site by NIa-Pro protease from PVY. Thus, we characterized the function of StPBS1 in potato immunity and provide a biotechnology control method for PVY via transformation of decoy-engineered StPBS1NIa .
Collapse
Affiliation(s)
- Runyao Bai
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Huanhuan Li
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Wenjia Du
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Niu Niu
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Wenxia Li
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Qican Gao
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Chongyang Yao
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Zikai Zhou
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Wenhua Bao
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Mingjia Che
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Yongxiu Zhao
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Bin Zhou
- Crop Research Institute of Anhui Academy of Agricultural SciencesHefeiChina
| | - Yaohui Wang
- School of Biological Science and TechnologyBaotou Teachers CollegeBaotouChina
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| |
Collapse
|
43
|
Förderer A, Yu D, Li E, Chai J. Resistosomes at the interface of pathogens and plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102212. [PMID: 35462196 DOI: 10.1016/j.pbi.2022.102212] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Nucleotide-binding and leucine-rich repeat (NLR) proteins are a large family of intracellular immune receptors that detect specific pathogen effector proteins secreted into plant cells. Upon direct or indirect recognition of effector proteins, NLRs form higher-order oligomeric complexes termed resistosomes that trigger defence responses typically associated with a regulated cell death. Here, we review recent advances in our understanding of signalling mediated by plant NLR resistosomes. Emphasis is placed on discussing the activation mechanisms and biochemical functions of resistosomes. We also summarize the most recent research in structure-based rational engineering of NLRs. At the end, we outline challenging questions concerning the elucidation of resistosome signalling.
Collapse
Affiliation(s)
- Alexander Förderer
- Institute of Biochemistry, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Dongli Yu
- Institute of Biochemistry, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ertong Li
- Institute of Biochemistry, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jijie Chai
- Institute of Biochemistry, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany; Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
44
|
Outram MA, Figueroa M, Sperschneider J, Williams SJ, Dodds PN. Seeing is believing: Exploiting advances in structural biology to understand and engineer plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102210. [PMID: 35461025 DOI: 10.1016/j.pbi.2022.102210] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/27/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Filamentous plant pathogens cause disease in numerous economically important crops. These pathogens secrete virulence proteins, termed effectors, that modulate host cellular processes and promote infection. Plants have evolved immunity receptors that detect effectors and activate defence pathways, resulting in resistance to the invading pathogen. This leads to an evolutionary arms race between pathogen and host that is characterised by highly diverse effector repertoires in plant pathogens. Here, we review the recent advances in understanding host-pathogen co-evolution provided by the structural determination of effectors alone, and in complex with immunity receptors. We highlight the use of recent advances in structural prediction within this field and its role for future development of designer resistance proteins.
Collapse
Affiliation(s)
- Megan A Outram
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Jana Sperschneider
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Simon J Williams
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
| | - Peter N Dodds
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia.
| |
Collapse
|
45
|
Han X, Tsuda K. Evolutionary footprint of plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102209. [PMID: 35430538 DOI: 10.1016/j.pbi.2022.102209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
There are pieces of evidence from genomic footprints and fossil records indicating that plants have co-evolved with microbes after terrestrialization for more than 407 million years. Therefore, to truly comprehend plant evolution, we need to understand the co-evolutionary process and history between plants and microbes. Recent developments in genomes and transcriptomes of a vast number of plant species as well as microbes have greatly expanded our knowledge of the evolution of the plant immune system. In this review, we summarize recent advances in the co-evolution between plants and microbes with emphasis on the plant side and point out future research needed for understanding plant-microbial co-evolution. Knowledge of the evolution and variation of the plant immune system will better equip us on designing crops with boosted performance in agricultural fields.
Collapse
Affiliation(s)
- Xiaowei Han
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
46
|
Liu X, Wan L. Molecular insights into the biochemical functions and signalling mechanisms of plant NLRs. MOLECULAR PLANT PATHOLOGY 2022; 23:772-780. [PMID: 35355394 PMCID: PMC9104254 DOI: 10.1111/mpp.13195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Plant intracellular immune receptors known as NLR (nucleotide-binding leucine-rich repeat) proteins confer immunity and cause cell death. Plant NLR proteins that directly or indirectly recognize pathogen effector proteins to initiate immune signalling are regarded as sensor NLRs. Some NLR protein families function downstream of sensor NLRs to transduce immune signalling and are known as helper NLRs. Recent breakthrough studies on plant NLR protein structures and biochemical functions greatly advanced our understanding of NLR biology. Comprehensive and detailed knowledge on NLR biology requires future efforts to solve more NLR protein structures and investigate the signalling events between sensor and helper NLRs, and downstream of helper NLRs.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Li Wan
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
47
|
Indirect recognition of pathogen effectors by NLRs. Essays Biochem 2022; 66:485-500. [PMID: 35535995 DOI: 10.1042/ebc20210097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
To perceive pathogen threats, plants utilize both plasma membrane-localized and intracellular receptors. Nucleotide-binding domain leucine-rich repeat containing (NLR) proteins are key receptors that can recognize pathogen-derived intracellularly delivered effectors and activate downstream defense. Exciting recent findings have propelled our understanding of the various recognition and activation mechanisms of plant NLRs. Some NLRs directly bind to effectors, but others can perceive effector-induced changes on targeted host proteins (guardees), or non-functional host protein mimics (decoys). Such guarding strategies are thought to afford the host more durable resistance to quick-evolving and diverse pathogens. Here, we review classic and recent examples of indirect effector recognition by NLRs and discuss strategies for the discovery and study of new NLR-decoy/guardee systems. We also provide a perspective on how executor NLRs and helper NLRs (hNLRs) provide recognition for a wider range of effectors through sensor NLRs and how this can be considered an expanded form of indirect recognition. Furthermore, we summarize recent structural findings on NLR activation and resistosome formation upon indirect recognition. Finally, we discuss existing and potential applications that harness NLR indirect recognition for plant disease resistance and crop resilience.
Collapse
|
48
|
Cesari S, Xi Y, Declerck N, Chalvon V, Mammri L, Pugnière M, Henriquet C, de Guillen K, Chochois V, Padilla A, Kroj T. New recognition specificity in a plant immune receptor by molecular engineering of its integrated domain. Nat Commun 2022; 13:1524. [PMID: 35314704 PMCID: PMC8938504 DOI: 10.1038/s41467-022-29196-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 02/11/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractPlant nucleotide-binding and leucine-rich repeat domain proteins (NLRs) are immune sensors that recognize pathogen effectors. Here, we show that molecular engineering of the integrated decoy domain (ID) of an NLR can extend its recognition spectrum to a new effector. We relied for this on detailed knowledge on the recognition of the Magnaporthe oryzae effectors AVR-PikD, AVR-Pia, and AVR1-CO39 by, respectively, the rice NLRs Pikp-1 and RGA5. Both receptors detect their effectors through physical binding to their HMA (Heavy Metal-Associated) IDs. By introducing into RGA5_HMA the AVR-PikD binding residues of Pikp-1_HMA, we create a high-affinity binding surface for this effector. RGA5 variants carrying this engineered binding surface perceive the new ligand, AVR-PikD, and still recognize AVR-Pia and AVR1-CO39 in the model plant N. benthamiana. However, they do not confer extended disease resistance specificity against M. oryzae in transgenic rice plants. Altogether, our study provides a proof of concept for the design of new effector recognition specificities in NLRs through molecular engineering of IDs.
Collapse
|
49
|
Wang Y, Pruitt RN, Nürnberger T, Wang Y. Evasion of plant immunity by microbial pathogens. Nat Rev Microbiol 2022; 20:449-464. [PMID: 35296800 DOI: 10.1038/s41579-022-00710-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 12/21/2022]
Abstract
Plant pathogenic viruses, bacteria, fungi and oomycetes cause destructive diseases in natural habitats and agricultural settings, thereby threatening plant biodiversity and global food security. The capability of plants to sense and respond to microbial infection determines the outcome of plant-microorganism interactions. Host-adapted microbial pathogens exploit various infection strategies to evade or counter plant immunity and eventually establish a replicative niche. Evasion of plant immunity through dampening host recognition or the subsequent immune signalling and defence execution is a crucial infection strategy used by different microbial pathogens to cause diseases, underpinning a substantial obstacle for efficient deployment of host genetic resistance genes for sustainable disease control. In this Review, we discuss current knowledge of the varied strategies microbial pathogens use to evade the complicated network of plant immunity for successful infection. In addition, we discuss how to exploit this knowledge to engineer crop resistance.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Rory N Pruitt
- Centre for Molecular Biology of Plants (ZMBP), University of Tübingen, Tübingen, Germany
| | - Thorsten Nürnberger
- Centre for Molecular Biology of Plants (ZMBP), University of Tübingen, Tübingen, Germany.,Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China. .,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
50
|
Bouvet L, Holdgate S, James L, Thomas J, Mackay IJ, Cockram J. The evolving battle between yellow rust and wheat: implications for global food security. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:741-753. [PMID: 34821981 PMCID: PMC8942934 DOI: 10.1007/s00122-021-03983-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/21/2021] [Indexed: 05/04/2023]
Abstract
Wheat (Triticum aestivum L.) is a global commodity, and its production is a key component underpinning worldwide food security. Yellow rust, also known as stripe rust, is a wheat disease caused by the fungus Puccinia striiformis Westend f. sp. tritici (Pst), and results in yield losses in most wheat growing areas. Recently, the rapid global spread of genetically diverse sexually derived Pst races, which have now largely replaced the previous clonally propagated slowly evolving endemic populations, has resulted in further challenges for the protection of global wheat yields. However, advances in the application of genomics approaches, in both the host and pathogen, combined with classical genetic approaches, pathogen and disease monitoring, provide resources to help increase the rate of genetic gain for yellow rust resistance via wheat breeding while reducing the carbon footprint of the crop. Here we review key elements in the evolving battle between the pathogen and host, with a focus on solutions to help protect future wheat production from this globally important disease.
Collapse
Affiliation(s)
- Laura Bouvet
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Sarah Holdgate
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Lucy James
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Jane Thomas
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Ian J Mackay
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Scotland's Rural College (SRUC), The King's Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - James Cockram
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
| |
Collapse
|